斜拉桥设计规范

合集下载

《公路斜拉桥设计规范》JTGT 3365-01—2020解读

《公路斜拉桥设计规范》JTGT 3365-01—2020解读

《公路斜拉桥设计规范》解读《公路斜拉桥设计规范》JTG/T 3365-01—2020专家解读一、引言《公路斜拉桥设计规范》(JTG/T 3365-01—2020)是中国交通运输部发布的一部重要规范,旨在指导公路斜拉桥的设计工作,确保桥梁的安全性、耐久性和经济性。

本文将从多个方面对该规范进行详细解读,包括规范背景、主要内容和特点等。

二、规范背景随着中国公路建设的快速发展,桥梁工程作为公路工程的重要组成部分,其设计水平和施工质量越来越受到关注。

斜拉桥作为一种常见的桥梁类型,具有结构独特、造型美观、跨越能力大等优点,在公路建设中得到了广泛应用。

然而,由于斜拉桥结构的复杂性和设计难度的增加,一些斜拉桥在设计、施工和运营过程中出现了安全问题。

为了解决这些问题,提高斜拉桥的设计水平,中国交通运输部发布了《公路斜拉桥设计规范》(JTG/T 3365-01—2020)。

三、主要内容设计原则:规范明确了公路斜拉桥设计应遵循的基本原则,包括安全性、耐久性、经济性、美观性和环保性等。

这些原则为设计师提供了明确的设计方向和要求。

设计荷载:规范规定了公路斜拉桥设计应考虑的各种荷载,包括恒载、活载、风荷载、地震荷载等。

这些荷载的取值和组合方式对于桥梁的安全性和经济性具有重要影响。

结构分析:规范详细介绍了公路斜拉桥结构分析的方法和步骤,包括静力分析、动力分析、稳定性分析等。

这些方法为设计师提供了科学的分析手段和工具,有助于准确评估桥梁的结构性能。

构造设计:规范对公路斜拉桥的构造设计提出了具体要求,包括主塔、主梁、斜拉索等关键构件的设计细节和构造措施。

这些要求有助于确保桥梁的结构安全和耐久性。

施工监控:规范强调了公路斜拉桥施工过程中的监控和管理要求,包括施工阶段的监测内容、频率和方法等。

这些要求有助于及时发现和解决施工过程中的问题,确保桥梁的施工质量。

养护管理:规范提出了公路斜拉桥养护管理的建议和要求,包括定期检查、维修加固、监测预警等内容。

《城市桥梁设计规范》(局部修订)条文部分

《城市桥梁设计规范》(局部修订)条文部分

《城市桥梁设计规范》(局部修订)条⽂部分《城市桥梁设计规范》CJJ11–2011局部修订条⽂(2019年版)说明:1.下划线标记的⽂字为新增内容,⽅框标记的⽂字为删除的原内容,⽆标记的⽂字为原内容。

2.本次修订的条⽂应与《城市桥梁设计规范》CJJ11-2011中的其他条⽂⼀并实施。

3.0.12根据桥梁结构在施⼯和使⽤中的环境条件和影响,可将桥梁设计区为以下三种状况应按下列四种状况进⾏设计:1持久状况:在桥梁使⽤过程中⼀定出现,且持续期很长的设计状况。

2短暂状况:在桥梁施⼯和使⽤过程中出现概率较⼤⽽持续期较短的状况。

桥梁专监3偶然状况:在桥梁使⽤过程中出现概率很⼩,且持续期极短的状况。

4地震状况:在桥梁使⽤过程中可能经历地震作⽤的状况。

3.0.13桥梁结构或其构件:对3.0.12条所述三种设计状况均应进⾏承载能⼒极限状态设计;对持久状况还应进⾏正常使⽤极限状态设计;对短暂状况及偶然状况中的地震设计状况,可根据需要进⾏正常使⽤极限状态设计;对偶然状况中的船舶或汽车撞击等设计状况,可不按进⾏正常使⽤极限状态设计。

桥梁结构或其构件,对3.0.12条所述四种设计状况,应分别进⾏下述极限状态设计:1持久状况应进⾏承载能⼒极限状态和正常使⽤极限状态设计。

2短暂状况应进⾏承载能⼒极限状态设计,可根据需要进⾏正常使⽤极限状态设计。

3偶然状况应进⾏承载能⼒极限状态设计。

4地震状况应进⾏承载能⼒极限状态设计。

当进⾏承载能⼒极限状态设计时,应采⽤作⽤效应的基本组合和作⽤效应的偶然组合;当按正常使⽤极限状态设计时,应采⽤作⽤效应的标准组合、作⽤短期效应组合(频遇组合)和作⽤长期效应组合(准永久组合)。

桥梁专监3.0.16桥梁结构应符合下列规定:1构件在制造、运输、安装和使⽤过程中,应具有规定的强度、刚度、稳定性和耐久性;2构件应减⼩由附加⼒、局部⼒和偏⼼⼒引起的应⼒;3结构或构件应根据其所处的环境条件进⾏耐久性设计。

采⽤的材料及其技术性能应符合相关标准的规定。

斜拉桥施工方案

斜拉桥施工方案
3
桥梁宽度:1.0(护索区)+0。5m(护栏)+净—7。0m(行车道)
+0。5m(护栏)+1。0(护索区)=10.0m
桥面横坡:2%
桥梁纵坡:2.6%
设计荷载:汽车—20级,挂车—100
地震烈度:基本烈度Ⅶ度,按Ⅷ度设防
桥面铺装:6~13cm厚40号混凝土调平层+6cm沥青混凝土铺装
3
3
箱梁、桥塔:50号混凝土
我国一直以发展混凝土斜拉桥为主,近几年我国开始修建钢与混凝土混合式斜拉桥,如汕头石大桥,主跨518m;武汉长江第三大桥,主跨618m。钢箱斜拉桥如南京长江第二大桥南汊桥,主跨628m;前几年上海建成的南浦(主跨423m)和杨浦(主跨602m)大桥为钢与混凝土的结合梁斜拉桥。
一般说,斜拉桥跨径300~1000m是合适的,在这一跨径范围,斜拉桥与悬索桥相比,斜拉桥有较明显优势。德国著名桥梁专家F.leonhardt认为,即使跨径1400m的斜拉桥也比同等跨径悬索桥的高强钢丝节省二分之一,其造价低30%左右。
(8)边跨支架应待箱梁预应力束全部张拉完毕,且管道压浆的强度均达到设计强度的90%以上时方可进行,落架应遵循全孔多点、对称、缓慢、均匀的原则,从跨中向支点拆卸.斜拉索张拉前,边跨支架应拆卸完毕.
(9)施工时箱梁顶底板的上、下层钢筋及腹板的内、外层钢筋之间应采用Φ12短钢筋(两端用90°弯钩)固定绑扎成整体。
第3章工程概况
3.1
本桥是高速公路第二合同段,净宽7m上跨车行天桥。桥梁起讫桩号K0+307。17~K0+417.17,全长110m,中心桩号K0+362。17,与高速公路交叉桩号K18+225.上部结构采用(20+32+32+20)m预应力钢筋混凝土斜拉桥-连续梁组合体系,塔墩梁固结。下部结构采用圆端形桥墩、肋式台、钻孔灌注桩基础。

斜拉桥斜拉索施工作业指导书

斜拉桥斜拉索施工作业指导书

斜拉桥斜拉索施工作业指导书1.目的明确斜拉桥斜拉索施工作业工艺流程、操作要点和相应的工艺、质量标准,指导、规范桩基成孔作业。

2.编制依据(1)《斜拉桥施工图设计-拉索结构施工图设计》;(2)《公路桥涵施工技术规范》(JTJ041-2000);(3)《公路斜拉桥设计规范》(试行)JTJ027-96;(4)《斜拉桥热挤聚乙烯高强钢丝拉索技术条件》GB/T18635-2001;(5) 斜拉索安装的相关技术资料;(6)《公路斜拉桥设计细则》(JTG/TD65-1-2007)。

3.适用范围适用于斜拉桥高强平行钢丝成品索配合对称悬灌主梁施工的斜拉索施工。

4.技术准备4.1内业准备(1)开工前组织技术人员认真审核施工设计图纸和有关设计资料,澄清有关技术问题,熟悉规范和技术标准,编制斜拉桥斜拉索实施性施工组织设计,制定施工安全保证措施,提出应急预案。

(2)从事起重机械作业、登高架设作业、机动车辆驾驶等特种作业的人员必须持有特种作业证。

对所有施工人员进行岗前技术培训,作业前进行技术交底。

4.2外业准备4.2.1施工前检查工作(1)对已施工完成的塔柱和主梁段进行检查,并将检查结果报监理工程师进行审核,合格后方能进行斜拉索作业施工。

(2)在锚垫板上放出孔道口十字中心线,以便对中,如若锚头安装偏位会造成锚头外螺纹与孔口磨擦,影响斜拉索张拉力精度。

(3)对施工所用的平行钢丝斜拉索、斜拉索锚具生产厂家进行调查,选用供货商。

成品索进场后根据质保单进行严格查验,检查锚具,PE在运输过程中是否有损伤,如有损伤,及时采取修理措施并妥善保管;检验并核对成品索合同内的质量证明文件等是否齐全完整。

对需要进行试验和检验的项目要按规定进行试验和检验,确保工程材料的质量和数量满足设计、规范和施工的要求。

(4)对施工所需的设备机具,如塔吊、卷扬机、千斤顶、放索架等进行选型,组织进场、调试、安装,需要进行校正检验的进行校正检验。

(5)斜拉索安装前的清理检查:清除锚索管内的水泥砂浆、焊渣和管口处毛刺;清理锚垫板上的砂浆、焊渣等,保证锚固螺母与锚垫板密贴;检查锚头槽口尺寸,以确定千斤顶的安装位置。

《公路斜拉桥设计规范JTG_T 3365-01—2020》修订解读

《公路斜拉桥设计规范JTG_T 3365-01—2020》修订解读

《公路斜拉桥设计规范》修订解读近日,交通运输部发布了《公路斜拉桥设计规范》(JTG 3365-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年8月1日起施行,原《公路斜拉桥设计细则》(JTG/T D65-01—2007,以下简称原《细则》)同时废止。

为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下:一、修订背景原《细则》自2007年实施以来,在公路斜拉桥设计、施工、养护等方面发挥了重要的规范和指导作用。

近年来,我国斜拉桥建造技术迅速发展,建设了大量大跨度、特殊结构型式的斜拉桥,积累了大量设计、施工经验。

原《细则》已不能满足我国目前斜拉桥设计的需求了。

为适应斜拉桥建设技术的发展,交通运输部组织完成了《规范》的修订工作。

二、标准的定位《规范》涵盖了公路斜拉桥常用材料、作用、总体设计、构造设计、结构分析计算、设计对施工监控的要求以及养护条件设计,与上游的公路桥涵通用设计规范、钢筋混凝土及预应力混凝土桥涵设计规范、钢结构桥梁设计规范等,共同形成了公路斜拉桥设计体系。

《规范》以规范和指导公路斜拉桥设计为目标,旨在体现全寿命周期设计理念。

《规范》充分考虑了与其他标准的衔接,以国内外工程实践和先进研究成果为依托,根据我国公路斜拉桥建设的现状以及实际特点,以容全面、分类指导、重点突出、简单适用为基本原则,广泛征求意见,具有清晰明确的定位,对进一步提升公路斜拉桥设计工作具有较强的指导作用。

三、《规范》的特点《规范》注重落实新发展理念和交通强国建设纲要,对标国内国际先进水平,充分吸纳我国公路斜拉桥的设计、施工和养护中的先进成果,广泛征求了设计、施工、建设、养护、管理等有关单位和专家的意见,经过反复讨论、修改后定稿。

主要修订内容包括:(一)使用科学的极限状态设计方法,满足大跨径建设需求。

借鉴和吸收国内外先进的设计方法,结构设计根据可靠性设计理论,按照相关设计规范要求,采用了以概率理论为基础、按分项系数表达的极限状态设计方法。

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG T 2231-01—2020》解读

《公路桥梁抗震设计规范JTG/T 2231-01—2020》解读近日,交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。

原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。

为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下:一、修订背景原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。

近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。

原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。

二、《规范》的定位《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。

斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。

《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。

《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。

三、特点及主要修订内容《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。

根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。

E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。

斜拉桥施工方案

斜拉桥施工方案

长春轻轨净月线伊通河桥施工组织设计编制单位:二〇〇三年四月八日目录一、编制依据---------------------------------------------------------------------1二、工程概况-------------------------------------------------------------------1三、自然条件-------------------------------------------------------------------1四、地貌、地质、水文及气象--------------------------------------------------1五、工程工期------------------------------------------------------------------1六、工程质量达到的目标------------------------------------------------------1七、劳动力准备--------------------------------------------------------------1八、机械设备------------------------------------------------------------------1九、施工总体部署------------------------------------------------------------1十、工程重点和难点----------------------------------------------------------1十一、总体施工方案---------------------------------------------------------1十二、具体施工方案----------------------------------------------------------1十三、各项保证措施-----------------------------------------------------------1十四、施工平面布置图---------------------------------------------------------1十五、施工进度计划-------------------------------------------------------------1十六、施工监控-----------------------------------------------------------1长春轻轨净月线伊通河桥施工组织设计一、编制依据1、轻轨净月线03号标段伊通河斜拉桥工程《招标文件》招标编号:JAZB2003-022、长春市快速轨道交通净月线工程施工图设计、工程编号:0194Q。

几种常见的桥梁施工控制标准

几种常见的桥梁施工控制标准

(一)位移控制1.悬臂浇筑预应力混凝土连续梁桥、连续—刚构桥误差限值(m m)(1)成桥后线形(标高) ±50;(2)合拢相对高差±30;(3)轴线按《公路桥涵施工技术规范》(JTJ 014—89)执行。

2.混凝土斜拉桥误差限值(m m)(1) 索塔轴线偏位 10倾斜度≯ H/ 2500 且≯30(或设计要求)( H 为桥面以上塔高)塔顶高程±10(2) 主梁悬浇主梁时:轴线偏位 10 合拢高差±30 线形±40 挠度±20悬拼主梁时:轴线偏位 10 拼接高程±10 合拢高差±303.悬索桥施工控制误差限值(m m)(1) 索塔同斜拉桥(2) 主缆线形基准索标高 > 0,≤35(虎门大桥);±20(汕头海湾大桥)上下游基准索股高差 < 10(虎门大桥);30(汕头海湾大桥)一般索股标高(相对值) ±10(虎门大桥)主缆线形建议竖直标高±50(3) 索夹安装纵、横向偏位±20(虎门大桥);纵向位置±10,横向扭转 6(汕头海湾大桥)。

(4) 索鞍偏移、高程纵、横向位置±10,标高 + 20~0(虎门大桥);中线偏差 + 2,高程偏差±20(汕头海湾大桥)。

索鞍偏移建议值±5(二)应力控制1.结构在自重下的应力(实际应力与设计相差宜控制在 + 5 % )。

2.结构在施工荷载下的应力(实际应力与设计应力相差宜控制在 + 5 %)。

3.结构预加应力结构预加应力除对张拉实施双控(油表控制和伸长量控制,伸长量误差允许在±6 % 以内)外,还必须考虑管道摩阻影响(对于后张结构)。

4.斜拉桥拉索张力,允许偏差宜为±5 %。

5.悬索桥主缆吊杆拉力、中下承式拱桥吊杆拉力,允许偏差宜控制在±5 % 。

6.温度应力,特别是大体积基础、墩柱等。

(完整版)公路斜拉桥设计规范

(完整版)公路斜拉桥设计规范

公路斜拉桥设计规范(试行)Design Specifications of Highway Cable StayedBridge (on trial)主编部门:交通部重庆公路科学研究所批准部门:中华人民共和国交道部试行日期:1996年12月1日人民交通出版社1996-北京1总则1.0.1为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。

1.0.2本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。

除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。

1.0.3斜拉轿总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。

1.0.4桥宽应满足交通发展的要求,并应符合《公路工程技术标准(JTJ01--88)(1995年版)的规定。

1.0.5设计主梁、索塔与拉索时,宜进行多方案比较。

1.0.6所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意收缩徐变影响2术语2.0.1混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。

2.0.2钢斜拉桥:主粱及桥面系均为钢结构的斜拉桥。

2.0.3结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。

2.0.4拉索:承受拉力并作为主梁主要支承的结构构件。

2.0.5索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。

2.0.6主梁:主要由拉索支承,直接承受荷载的结构构件。

2.0.7辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。

2.O.8训拉力:安装拉索时,给拉索施加的张拉力。

2.0.9拉索调整力:为改善主梁及索塔的截面内力状态而调整拉索的拉力。

2.0.10跨径:原则上为两支座中心线间的距离,中跨为两个索塔中心线间的距离,边跨为后锚索处的墩上支座中心线与临近的索塔中心线间的距离。

《公路桥梁抗震设计规范JTGT2231-01—2020》解读+原文

《公路桥梁抗震设计规范JTGT2231-01—2020》解读+原文

《公路桥梁抗震设计规范》解读交通运输部发布了《公路桥梁抗震设计规范》(JTG/T 2231-01—2020,以下简称《规范》),作为公路工程行业标准,自2020年9月1日起施行。

原《公路桥梁抗震设计细则》(JTG/T B02-01—2008,以下简称原《细则》)同时废止。

为便于理解本次修订的主要内容,切实做好贯彻实施工作,现将有关修订情况解读如下:一、修订背景原《细则》自2008年实施以来,在公路桥梁抗震设计方面发挥了重要的规范和指导作用。

近年来,我国公路桥梁建设技术发展迅速,桥梁抗震设计技术也取得了重要进展,积累了大量设计经验和成熟的研究成果。

原《细则》已不能全面反映我国目前公路桥梁抗震设计的技术水平,为适应公路桥梁建设技术和抗震设计技术的发展,交通运输部组织完成了《规范》的修订工作。

二、《规范》的定位《规范》适用于单跨跨径不超过150m的圬工或混凝土拱桥、下部结构为混凝土结构的梁桥的抗震设计。

斜拉桥、悬索桥、单跨跨径超过150m的梁桥和拱桥的抗震设计,除满足本规范要求外,还应进行专项研究。

《规范》既考虑了当前我国桥梁抗震设计的技术需求及国内外桥梁抗震设计技术的新进展,也重点考虑了与《公路桥涵通用设计规范》《公路工程抗震规范》《钢筋混凝土及预应力混凝土桥涵设计规范》《中国地震动参数区划图》等相关标准的衔接。

《规范》的体系更为完善、适用性和可操作性更强,对进一步提升我国公路桥梁抗震设计水平具有指导作用。

三、特点及主要修订内容《规范》保持两水准设防、两阶段设计,抗震设防标准(地震作用重现期)和性能目标与原《细则》一致。

根据现行《中国地震动参数区划图》(GB18306-2015)的规定将计算地震作用常数调整为2.5,对抗震设计提出了更高的要求。

E1地震作用下,采用弹性抗震设计,要求墩、梁、基础等桥梁主体结构保持弹性状态,主要验算结构和构件的强度以及支座的抗震能力;E2地震作用下,对采用延性抗震设计的桥梁,主要验算结构变形(位移)和能力保护构件的强度以及支座的抗震能力,对采用减隔震设计的桥梁,主要验算结构强度以及减隔震装置的能力。

斜拉桥设计规范

斜拉桥设计规范

路桥隧道管理养护专业网www.rbt mm.co m中华人民共和国行业标准公路斜拉桥设计规范(试行)Design Specifications of Highway Cable StayedBridge(on trial)JTJ 027—96主编部门:交通部重庆公路科学研究所批准部门:中华人民共和国交通部试行日期:1996年12月1日l 总则1.0.1 为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。

1.0.2 本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。

除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。

1.0.3 斜拉桥总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。

1.0.4 桥宽应满足交通发展的要求,并应符合《公路工程技术标准》 (JTJ 01 —88)(1995 年版 ) 的规定。

1.0.5 设计主梁、索塔与拉索时,宜进行多方案比较² .1.0.6 所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意减小收缩徐变影响。

2 术语2.0.1 混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。

2.0.2 钢斜拉桥:主梁及桥面系均为钢结构的斜拉桥。

2.0.3 结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。

2.0.4 拉索:承受拉力并作为主梁主要支承的结构构件。

2.0.5 索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。

2.0.6 主梁:主要由拉索支承,直接承受荷载的结构构件。

2.0.7 辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。

2.0.8 初拉力:安装拉索时,给拉索施加的张拉力。

斜拉桥施工方案

斜拉桥施工方案

x x斜拉桥施工方案根据施工整体部署,斜拉桥分南、北两岸对称施工,上、下游幅两幅的间距为基本上并列施工;南岸北仑侧工区负责施工的范围为:D0、D1、D2墩位范围的工程;北岸镇海侧工区负责施工的范围为:D3、D4、D5墩位范围的工程;索塔、主梁及斜拉索施工处于关键线路上,辅助墩、过渡墩、边跨支架段作为非关键工程,可根据关键线路上的工程进度,来确定其经济的开工日期、完工日期;索塔施工整体方案概述基本构造索塔为双菱形联塔,可分为上游幅索塔、下游幅索塔,每幅索塔有内塔肢、外塔肢两个塔肢,塔肢高度上可分为下塔柱、中塔柱、上塔柱,连接内、外塔肢的结构有塔座、下横梁、上横梁;塔座采用C40纤维混凝土,下塔柱第1m高度内采用C50纤维混凝土,索塔其他部位采用C50混凝土;塔肢纵桥向宽度由塔顶7.0m单斜率变化到塔底;索塔一般构造图塔肢横桥向宽度:中、上塔柱基本宽度为,为单箱单室横截面;单幅索塔的上塔柱内、外塔肢连成一体,形成单箱三室横截面;上、下游幅索塔的内塔肢在下横梁中线以上、以下范围内连成一体,形成实体断面或者单箱小二室横截面;下塔柱由4.0m双斜率塔肢内外侧面斜率不同变化至塔座顶面的,为单箱单室横截面;索塔上斜拉索锚固段设水平预应力钢绞线束来平衡斜拉索产生的水平力,预应力在上横梁及其以上高度的索塔内呈“井”字,锚固在索塔外表面;预应力在上横梁以下段呈“U”型布置,锚固在索塔塔壁内;施工工艺流程图索塔总体施工工艺流程图索塔分段、模板体系、基本工期索塔分节示意图含中、上塔柱脚手架塔柱总工期为:360d=325d+35d特别因素塔吊、电梯、砼泵管、水电布设,各种预埋件塔吊每个索塔选用1台波坦MC170A塔吊臂长55m,起重量19kN;最大起重量80kN,在范围内安装在左右幅的中间、1台QTZ6015塔吊臂长35m,起重量35kN;最大起重量100kN,在范围内安装在边塔柱的外侧,整个索塔都处于吊装范围内,两台塔吊安装高度分别为159m塔柱高度、149m;斜爬电梯安装在另一外塔肢的外侧;制定塔吊台风期安全技术方案;施工电梯、爬梯施工人员到达作业面的方法施工电梯采用SCQ100载货载人电梯1台,电梯安装起始高度与原地面平齐,布置在边塔柱外侧面;在下塔柱施工时,人员通过专用脚手架到达施工作业面;在下横梁施工时,人员通过专用脚手架到达施工作业面;上塔柱施工时,通过电梯直接达到边塔柱爬架的–3号平台;上塔柱施工时,在下横梁处设置平台,通过电梯到达下横梁平台后,通过座落在下横梁上的支架兼泵管、水管、爬梯可到达中间塔柱、边塔柱的顶操作平台即+1号平台;上塔柱施工时,通过电梯直接达到边塔柱爬架上即可;另外上塔柱内腔,可考虑随高度施工永久性工作爬梯;水索塔用水的储水池用钢护筒改造而成,由多级高压水泵直接从储水池中取水,2条φ38mm上水管线与泵管线一同沿座落在下横梁上的支架兼泵管、水管、爬梯到达爬模系统的顶操作平台即+1号平台,采用能承受3MPa的优质铁管,套丝连接;在爬模+1号平台上设2个储水桶,以备消防、应急;动力电、照明在承台顶面上设1台低压配电箱,分别输送给塔吊、施工电梯、高压水泵的专用配电箱;随座落在下横梁上的支架布置动力电缆,在塔吊塔身上设置备用动力电缆,在塔柱施工工作面上设小型配电箱,以满足工作面上的电焊机、振捣器、照明、液压爬模等电力需要;动力线路与照明线路分离;塔柱内照明电路采用36V低压冷光源,内壁应每隔10米附照明灯;大型照明灯具设置在塔吊升降节上,在液压爬模上设低压小型灯具;预埋件严格按照专用规范索塔及主桥墩-1-23,专用规范索塔及主桥墩-1-25, 专用规范索塔及主桥墩-1-27施工;主要包括承台上的预埋件、下塔柱的预埋件、上塔柱外壁预埋件、上塔柱内壁预埋件;一般预埋件安全系数为,起重预埋件的尺寸和埋入长度应该使它能发挥出设计所需的力量,并保有够大的安全系数,一般采用安全系数为5,其中是考虑冲击作用、吸附力和偏心力;斜拉索锚固区足尺模型试验索塔锚固区U形预应力束施工是高空作业,由于该区段受到斜拉索强大的集中作用,结构受力复杂;预应力筋束定位是否准确,张拉是否到位,直接影响塔柱内力,加之该区段钢筋较多,又有劲性骨架,锚下局部加强钢筋等干扰,施工难度较大;因此在施工前作足尺模型试验,对小半径U形预应力束的定位、穿束、张拉、真空吸浆工艺等进行探索,积累经验,以指导施工操作;上塔柱环形预应力足尺模型暨塔柱首件工程,和科研项目“xx特大桥锚固区节段模型试验”相结合;斜拉索锚固区足尺模型试验由设计院、西南交通大学主持,我方协作完成土建工作;同时考虑抗剪预埋件、索塔表层钢筋网的定位与混凝土密实性试验;钢筋网的净保护层为2cm,与索塔外壁箍筋的净间距为,选购适用该部位振捣的插入式振捣棒;主要技术1)混凝土外观质量包括裂缝预防控制;环向预应力张拉、压浆控制,避免对已浇筑索塔的污染;2)监测塔肢的变形、变位,并进行相应调整,以保证塔柱设计要素;3)根据索塔混凝土参数、理论计算对索塔压缩变形进行分析,考虑设置相应的预抬量,以消除混凝土收缩、徐变和塔柱弹性变形的影响,以确保斜拉索在塔上锚固位置的精确;索塔混凝土中粉煤灰掺入最应≤15%;4)索导管定位技术5)混凝土泵送工艺6)台风期安全施工安全7)上下游幅索塔内塔肢联体部位的钢筋、混凝土施工工艺9)模板的收、分、组合,要严格其接口的封闭;10)仔细分析上塔柱突出索塔表面的锚头对爬架系统、模板的不利影响;各种预埋件精确定位、安装可靠,不得遗漏;精确预埋爬模系统的预埋件,确保其节段顶标高;钢筋、劲性骨架竖向主筋均采用滚轧直螺纹机械连接,并利用劲性骨架进行钢筋的空间定位;劲性骨架采用L100×100角钢主弦杆及L75×75角钢腹杆形成桁架;下塔柱施工时,在地面加工成一定尺寸的考虑预偏的个体,逐个拼装,上塔柱开始时,考虑整体吊装;混凝土C50泵送混凝土,采用1台120m3/h拌和站,1台HBT80拖泵泵送,低压高频振捣系统;混凝土垫块强度应大于等于主体混凝土强度;两阶段施工图变更设计第二册第三分册S5-3-1-8页“施工要点”第6点:混凝土强度到达设计强度的85%后方可张拉预应力;预应力管道采用塑料波纹管,真空吸浆工艺;通气孔采用φ110×管;防雷系统S9-2-01:对防雷系统进行了明确的要求;4个避雷针,保证8根钢筋自上而下包括钻孔桩贯通;索导管用φ12钢筋连通起来,并与索塔接地钢筋焊接;桥面系内接地钢筋与索塔接地钢筋焊接;索塔钢筋采用套筒时,要用φ12绕形焊接;支座预埋件与接地钢筋焊接;支座上下用40×4的扁铁与接地钢筋焊接,接地电阻应小于1欧姆;索塔桩基础应有不少于33根桩每桩2根1号钢筋作为接地,承台、塔座内利用φ32钢筋做均压环;索塔内+以下每个塔肢用8根主筋作为接地、不设均压环;索塔内+及以上每个塔肢用4根主筋作为接地、每6m高度设优先采用水平钢筋作为均压环,但似乎要求采用圆钢筋塔顶消雷器与索塔主筋4根焊接;每阶段或节段完成后,应进行接地电阻测量;下塔柱第1~第5节段混凝土尽可能采用全自动液压爬模以下将全自动液压爬模分成爬架、爬模两部分;分5节段混凝土,每节段平均施工时间为12d,共60d;工艺流程下塔柱施工工艺流程图模板、支架、脚手架泵管、水管索塔第1节段~第7节段模板支架体系外模基本采用爬模,通过裁剪来适用每节段混凝土的变化;其他面的裁剪要考虑到在裁剪后是否能应用到中塔柱;内塔肢第4节段底模采用木模,建筑钢管脚手架为支架,预埋H型螺母将该模板靠紧塔柱;下塔柱外倾力平衡结构主动张拉结构由于下塔柱塔肢外倾,施工时混凝土、模板、施工机具等荷载偏离塔柱形心,使塔柱处于偏心受力状态,使内侧边缘因受拉,一旦超过C50混凝土的极限抗拉强度,将形成裂缝,同时会使塔柱偏位;为此,通过设置主动张拉来形成反弯矩,抵消M;两阶段施工图变更设计第二册第三分册S5-3-1-8:施工至+时,在+处设临时拉杆,拉力2500kN;施工设计图第二分册图S5-2-6索塔施工主要流程图表明:可在塔肢联体前张拉临时钢绞线来平衡外倾力,即第5节段混凝土顶面位置的预应力钢绞线;但只能等第6节段混凝土完成后才能张拉;临时预应力考虑用32精轧螺纹钢及连接套,塔身处预留PVC管道;由于下塔柱主动拉杆计算工况的复杂,应在下塔柱相关截面根部、拉杆截面设置应力观测,并在设计主动拉杆时,考虑张拉储备、放松的可能;混凝土塔柱联体部位、下横梁与索塔交叉部位的砼需采取降低水化热、防止温度应力裂缝的措施;木模板用水性脱模剂,脱模剂的涂刷应均匀,不漏刷,经雨雪后应重新涂刷一遍,严禁使用废机油;消除错台的基本方法:在模板下口用少量的玻璃胶、柔性水泥或金属腻子把缝隙涂满,模板的下层拉杆离混凝土面不宜>20cm,必要时设扒锥将模板下口与混凝土紧贴;圈2cm厚的限位木条,以方便控制,当混凝土浇筑完成后进行施上缝凿毛,认真保护好接缝线,使得上、下节段混凝土的接缝顺直;混凝土浇筑前,对接缝表面进行检查清理;混凝土浇筑时,充分振捣接缝两侧的混凝土,使得缝线饱满密实;塔柱节段混凝土的数量为89~208 m3,设计容许的模板的侧压力为50 kN/ m2,因此混凝土的灌注速度应控制在25 m3/ h以下,塌落度控制在16~18 cm,初凝时间控制在6~8 h;当混凝土倾落高度大于2m时,应采用串筒,通过控制混凝土的塌落度和浇筑高度,保证混凝土不离析;采用φ30mm振捣棒插入主钢筋与钢筋网片之间进行振捣;混凝土浇筑时应分层、均匀、对称进行,同时尽量减小混凝土坍落度;混凝土浇筑应连续进行,若因故必须中断时,中断时间不得超过范本第410节表410-20的规定,否则应按施工缝处理;泌水要及时清除;必要时,清除顶部混凝土浮浆;采用喷洒养护剂进行养护,即脱模后用喷枪喷养生剂,养生剂喷两遍,对混凝土表面形成封闭面膜,混凝土内部水份不能蒸发,从而达到养生的目的;养生剂不会对以后表面涂装产生不利影响;也可采用自制的环形喷射装置,并安装在爬架上同步升高,定时喷洒,效果较好;冬季施工时采用拆模后包塑料薄膜及挂泡沫塑料板方法进行保温养护,其它时间采用拆模后涂刷两度养护液进行养护;冬期养护混凝土的模板和保温层的拆除,应在混凝土冷却到5℃后方可进行;当混凝土与外界温差大于20℃时,拆模后的混凝土表面,应采取使其缓慢冷却的临时覆盖措施;离混凝土顶面标高一定高度内如50cm~60cm要逐渐调小混凝土坍落度,减少顶部灰浆,防止因灰浆过多,造成混凝土强度偏低、上下塔柱颜色不一致、混凝土产生收缩裂缝等不利影响;质量标准必要时,采用角钢对阳角进行保护;上下游幅索塔的下横梁联体预应力通长,长度,单箱单室结构,顶宽,底宽,6m高,壁厚;两阶段施工图变更设计第二册第三分册S5-3-8:下横梁预应力仅布置在顶、底板;下横梁可分2次浇筑含相应部位的塔柱,分别为第6节段、第7节段,计划工期50d;工艺流程图下横梁施工工艺流程图模板、支架、脚手架下横梁支架示意图横梁支架系统由钢管柱及其平联、纵联、钢砂筒、H400横梁、H200小纵梁、分配梁、模板组成;钢管柱采用承台基坑支护拆除下来的φ610mmδ8mm钢管,钢管柱底部与承台顶预埋“H”型螺母直接螺栓连接;钢管柱顶部、底部浇筑60cm高C20 混凝土或者δ10钢板十字撑板,以确保局部稳定性和轴向抗压;为在横梁施工完成后能顺利地脱模,在钢管柱顶部设置钢砂筒;预应力2料波纹管,压浆采用真空辅助压浆工艺;下横梁预应力钢束的张拉锚固位置设在塔柱外侧,而该侧有塔柱密集的钢筋束和角钢劲性骨架;为了避免预应力张拉端槽口开得过大而切断塔柱的竖向钢筋,预应力钢绞线采取深埋锚工艺,将原设计埋置深度15~20cm沿张拉轴线方向延伸至30~40cm,并相应延伸张拉接长板;锚垫板按套筒设计要求对螺栓进行攻丝,套筒外缘距塔柱外侧表面为5cm,施工塔柱时先用泡沫塑料封堵套筒,防止施工时混凝土进入套筒内;混凝土浇注前应安排专人对预应力管道位置进行检查,波纹管固定措施到位,防止混凝土浇注过程中上浮,对损伤的管道立即进行修复;混凝土浇注过程应控制振捣棒不碰触预应力管道,以免防止损伤波纹管造成漏浆,给预应力施工时带来困难;部分空间狭小的部位使用25、30型振捣棒进行振捣;预应力材料表面的油污等只能用中性洗涤剂;钢绞线采用单根后穿束,在单根钢绞线头部套上钢性子弹头帽,人工将钢绞线逐根穿入管道;严格按照图纸、设计要求顺序进行张拉应力,一般遵循以下原则:从腹板中部上、下对称张拉且两腹板对称张拉;压浆时、压浆后5d以内温度应大于+5℃;混凝土混凝土在搅拌站集中拌和,2台输送泵泵送到下横梁位置;第一次混凝土浇筑从中间向两端斜向分层、水平分段进行浇筑;第二次混凝土浇筑从两端向中间斜向分层、水平分段进行浇筑;混凝土浇注必须在初凝前完成,混凝土缓凝时间要求达到20 h以上;混凝土入模温度应≤30℃,当蒸发率大于0.5 kg/m2h时,则不宜浇筑混凝土;在塔柱部分布置散热水管,按大体积混凝土施工方法施工;送审稿S5-2-1-5规定:塔柱、上下横梁及侧壁混凝土必须达到设计强度85%时,才能施加预应力,其张拉吨位、张拉顺序详见有关图纸;避免内腔倒角处“翻浆”,除增加压脚模板外,还要控制坍落度及浇筑速度;混凝土浇筑从中间开始至两端;设一定的预拱度>下沉量;两端支架立在塔肢上,减小下沉量;质量标准标高+至上横梁弧形起点++–,约;采用全自动液压爬模,每节段混凝土浇注斜向长度一般为,垂直高度为,18节段混凝土高度为;2200kN;施工至+时,在+处支撑1950kN;施工至+时,在+处支撑2000kN;考虑内塔肢联体部位液压爬模的爬架“打架”,前后异步施工增加的工期2个节段的时间,18个节段混凝土计划工期为68~13×9+1214~25×6+14=140d;工艺示意图每节段混凝土施工流程每节段混凝土施工流程图中塔柱水平主动临时支撑随塔柱施工不断升高,塔肢在自重、爬模、施工荷载及风荷载等作用下,塔肢外侧面会产生较大拉应力,因此在塔柱施工的同时必须每隔一定距离设置水平主动临时支撑;水平主动临时支撑对塔柱线形也起到调整作用,且将塔柱在施工过程中形成框架,有利于结构的稳定;水平支撑系统的设计包括水平支撑系统支撑位置、主动力大小和水平支撑系统结构设计三个主要方面;水平横撑设计应达到的目标:1)施工过程中,主要荷载组合下,塔柱各截面拉应力不超过1MPa;2)水平横撑拆除后,成塔线形、弯矩与设计基本一致;水平横撑位置应满足施工工艺和施工空间要求,爬架高度会影响主动横撑的位置;索导管定位目前,高索塔的拉索索导管定位,均采用三维空间极座标法;此法借助全站仪利用施工专用控制网,进行空间三维坐标测量;直接测拉索索导管锚垫板中心和塔壁外侧拉索索导管中心.从而进行定位调整;它将以高精度、高速度提供放样点,同时克服施工干扰给测量带来的困难,大大提高了工作效率;拉索锚垫板中心和塔壁外侧索导管中心的标定,是用一定厚度10mm的钢板加1个半圆形的标定器和1个圆形中心标定器来测定锚垫板和索导管的中心;一,定位精度为防止拉索与索导管口发生摩擦而损坏拉素,以及保证对称于索塔的中跨、边跨侧各拉索位于同一平面内,防止偏心而产生的弯矩超过设计允许值,对拉索锚垫板中心和塔壁外侧索导管中心的三维坐标位置提出了很高的精度要求;1.锚固点空间位置的三维允许偏差±5mm专用规范;2.导管轴线与斜拉索轴线的相对允许偏差±5mm;根据公路桥涵施工技术规范JTJ041-2000-19.5.2-1规定,及公路工程质量检验评利用全站仪依据控制网的放样参数进行每节段的施工放样;由于受日照、气温及风力等外界条件变化的影响,索塔会处于一定幅度的摆动之中,己浇塔柱顶部会产生一定量的水平位移,且在不同时间位移量也不相同,这一差异随着塔身升高而逐渐增大;为此,要对塔柱近的气温条件下进行;上塔柱越往上,自由端越大,风荷作用会使塔体摆动摇晃,对测量工作影响较大,因此选择适当的气候和时机是首要的,实践证明只有在两种自然条件下可行:1阴天,3级风以下;不管什么季节,阴天无日照,塔体周边不存在温差效应,此时测控效果较好;2 0时至凌晨6时,3级风以下;可根据季节日出时间确定测控时间下限,此时效果最好;增加索导管部位劲性骨架的局部强度,以减少索导管因劲性骨架而引起的弹性变形,此方法也是减少索导管定位偏差的重要一点;索塔上定位的方法由于每对索导管的间距都不一样,以及劲性骨架制作安装的误差,很难在地面上将索导管定位准确,所以将初定位、终定位均放到塔柱上进行,更能保证精度和节约时间;步骤如下:01.将劲性骨架统一制作,在塔柱上定位;02.测量索导管的位置,对索导管位置处的劲性骨架进行加固,根据测量放样位置设置托架及吊点,最后将索导管放置在托架上,进行初次的定位;03.初定位时,根据索导管的倾斜角度,先用手拉葫芦吊起索导管,适当调整托架位置,以不超过测量放样索导管下口最下边的高度为准,焊接托架托住索导管底,然后调节手拉葫芦形成初定位的角度,最后用紧弦器固定索导管的位置;04.在精确定位前必须对索导管进行检查,检查定位角钢是否位置正确;索导管的实际长度是否与测量组计算的长度一致;索道管内壁油漆是否涂刷合格等;05.由测量组将全站仪棱镜放置在索导管上口中心点处,复核此时索道管的偏差,通过手拉葫芦及紧弦器调整索导管的位置;同样的,在由测量组将全站仪棱镜放置在索导管下口中心点处,Y方向可用厚度不同的钢板进行支垫,X、Z方向可用紧弦器调整;06.用水平靠尺放在索道管上下口的定位角钢上,调整紧弦器及固定葫芦,使水平泡居中,即可以将索导管自身 N方向调整达规范要求,这样将第一、第二步骤循环进行调整,最终使索导管的位置误差达到规范允许的范围;分四个方向循环调整索导管的空间位置如图八所示,以达到规范的要求;07.对索导管进行固定;由于索导管精确定位后再不允许索导管有任何位移、变形,采取在索导管周围的劲性骨架上焊接废旧的φ32钢筋,使钢筋尽量多的从个各角度对索导管形成支顶,使索道管完全固定在钢筋支顶力下,且杜绝在索道管上随意焊接;08.将在索导管预上预先焊接好的锚固钢筋按图纸与主筋焊接,确定索导管完全固定牢固后,解除手拉葫芦、紧弦器等临时锚固设施;以上步骤均在测量组配合下进行,直至临时锚固设施拆除;在浇注完混凝土后,对索导管进行复测,并记录安装误差为下一步相关施工做好准备;环形预应力安装波纹管的安装定位没有采用等劲性骨架、普通钢筋完全施工到位后再穿入波纹管的施工方法,而是在劲性骨架焊接成形后就穿波纹管,整体吊装,然后再绑扎普通钢筋,以提高孔道的安装精度;确、稳定;在绑扎主筋的横向箍筋到波纹管处时,同时绑扎波纹管的防崩钢筋;将锚座逐个临时固定在主筋或箍筋上,并连接好波纹管,再用螺栓固定在槽口模板上;为防止波纹管漏浆,在锚座安装结束后,在波纹管内穿入一根胶管,待混凝土初凝后拔出;如有波纹管变形,马上处理;塑料波纹管的刚度较大,在低温状态下自然弯曲成R = 160 cm 的形状有一定困难,且易产生折断裂纹,施工采用喷灯火焰辅助热弯,在温度稍高时,也可采用自然成形;波纹管固定采用“U ”型卡,对小半径预应力管道采用圆弧型螺旋筋保护措施;每束12根,分4小束4次穿完,每小束疏理并2m 一段进行绑扎,采用人工穿束方法; 张拉的严格要求S5-2-1-5页“施工要点”中第6点:塔柱、上下横梁及侧壁混凝土必须达到设计强度85%时才能施加预应力,其张拉吨位、张拉顺序详见相关图纸;所有预应力钢绞线均采用两端张拉;张拉预应力要求按张拉吨位、钢束引伸量双控制,以张拉吨位为主,以伸长量进行校核,伸长量计算是以倍张拉控制力为起点,取 Ep=195000MPa 进行计算;在一束钢丝中断丝不得大于1%,一根钢绞线中断丝不得超过1根;环向预应力束张拉伸长值控制:由于预应力钢绞线布置的线形为半环形,而且转弯半径只为130cm 、165cm ,故12根钢绞线各自的平面、竖向位置均不一样,在预应力钢绞线两端加上同等级的张拉力后,12根钢绞线必然进行重新紧密排列组合,在12根钢绞线中,贴近波纹管转弯内壁的转弯半径最小的钢绞线受力相对较大,而转弯半径最大的受力相对较小,这就造成在张拉时12根钢绞线受力不均,导致部分钢绞线代替全数钢绞线完成了张拉控制力,相应的伸长值就超出原设计允许伸长值,产生了附加伸长量;试验证明,上塔柱U 形预应力张拉施工中设计伸长量与实际伸长量存在一定误差,不能如实反映现场实际情况,可通过足尺节段试验进行总结分析;上塔柱环向预应力张拉伸长量按下式进行调整:下限为锚点间设计伸长值+两端工作长度伸长值;上限为下限值×+15mm;由于张拉吨位大,曲率半径小,为保证每根钢绞线受力均匀,其张拉程序为:0→25%k σ→80%k σ→5%k σ→25%k σ 初读数→100%k σ持荷5分钟,测量最后伸长值;预应力施工中严格注意以下几点:1) 锚具安装过程中,确保锚板、索孔与千斤顶处在同轴线上,减少锚圈口的摩阻损失;2) 严格控制各级张拉力,确保两端在张拉力实施中同步和准确性;3) 在钢绞线预张拉时,预张拉力控制在控制荷载的25%,0~25%张拉阶段的伸长值选用25%~50%张拉阶段间的伸长值;4) 由于预应力钢束较短,其最终伸长值也较小,故在张拉过程中,要求操作人员对张拉伸长值仔细读数;由于施工场地小,除采用较小的高压油泵和更轻便的千斤顶外,还要对张拉端口处认真处理,使张拉有足够的空间位置,保证机具设备的运用自如;水泥浆指标控制:流动度20~30s,水灰比~,膨胀剂PLOWcable 和缓凝剂分别为水泥重量的3%和%,设计标号50,泌水率小于水泥浆初始体积的1%且24小时内水泥浆泌水应能被吸收,初凝时间≥3h,体积变化率0~2%;钢筋、混凝土、预应力工程特别规定。

PTI斜拉索规范

PTI斜拉索规范

PTI斜拉索规范斜拉索设计、测试和安装条例——美国后张法协会斜拉桥委员会2001年2⽉第四版编译:彭旭民吴美艳中铁⼤桥局集团武汉桥梁科学研究院有限公司⼆○○五年六⽉1.0适⽤范围本条例适⽤于以预应⼒平⾏钢丝、钢绞线、钢筋作为主要受拉构件的的斜拉桥拉索的设计、试验与安装。

条例仅适⽤于超静定斜拉桥的拉索。

建议本条例与观点近似的《荷载与抗⼒系数设计:桥梁设计技术规范》(美国州际⾼速公路和运输协会——AASHTO,第S版)结合使⽤。

本版将取代所有以前的版本。

若若未规定专门的有效期,标准和规范应当参照最新版本。

C.1.0适⽤范围注释:本条例⼀般不涉及斜拉桥的设计,⽽仅限于作拉索的设计、检测、试验和安装的依据。

本条例不包括利⽤螺旋状的或闭式卷制的钢绞线、钢丝绳制成的斜拉索。

超静定斜拉桥是指设计上单根斜拉索失效不会导致严重的结构损伤或整个桥梁破坏的桥梁。

本条例是在典型的美国施⼯合约公共部分的基础上起草的,公共部分由互异且独⽴的三⽅组成,分别是:业主⽅(政府或公众机构)设计⽅(⼯程师)承包⽅(桥梁建设者)完善的程序反映了组织及合同的权威性。

在别处,合同管理可能不同,同样地,在设计施⼯项⽬上,合同管理也会不同。

本条例应由具有斜拉桥设计资质的专业⼯程师来完成。

本条例未规定的设计程序,其他⽅法设计出相同安全及⼯作性能的⽅案也是可⾏的,但必须满⾜本条例。

1.1参考标准和规范1.1.1美国⾼速公路和运输协会(AASHTO)AASHTO《荷载与抗⼒系数设计:桥梁设计技术规范》-SI制1.1.2美国检测与材料协会(ASTM)1.1.3美国焊接协会(AWS)1.1.4加利福尼亚运输部(CALTRANS)1.1.5联邦⾼速公路管理局(FHWA)1.1.6国际预应⼒协会(FIP)1.1.7后张法协会(PTI)1.1.8SSPC:保护涂层协会2.0名词术语2.1名词锚具(套筒)——指⽤来夹持张拉产⽣的索⼒并将该⼒传递⾄桥梁的上部结构或塔⾝的所有材料以及组装件。

公路斜拉桥设计规范

公路斜拉桥设计规范

公路斜拉桥设计规范第一章总则第一条为了保证公路斜拉桥的安全、稳定和经济性,根据国家相关法律法规,制定本规范。

第二条本规范适用于公路斜拉桥的设计、施工、验收和运营管理等各个阶段。

第三条公路斜拉桥的设计应遵循"安全、经济、美观、舒适"的原则,保证桥梁具有良好的功能性和可持续发展性。

第四条公路斜拉桥设计应根据当地的地质地形情况、交通需求、环境因素等进行综合考虑。

第二章设计要求第五条公路斜拉桥的荷载计算应按照国家标准和相关规范执行,确保桥梁能承受预定的荷载。

第六条公路斜拉桥的主梁和拉索应具备足够的刚度和强度,以充分抵抗荷载引起的变形和产生的应力。

第七条公路斜拉桥的塔柱和锚固设施应有足够的稳定性和抗震性能,以保证桥梁在各种自然和人为因素的作用下保持稳定和完好。

第八条公路斜拉桥的桥面铺装应满足道路交通安全的要求,路面平整、耐磨、防滑,并考虑特殊气候条件下的排水和防冻措施。

第九条公路斜拉桥的交通标志、标线和照明设施应符合国家相关标准和规定,以确保夜间和恶劣天气条件下的交通安全。

第三章施工要求第十条公路斜拉桥的施工应按照设计图纸和相关规范进行,确保施工质量和安全。

第十一条公路斜拉桥的施工过程中,施工单位应采取相应的措施,确保桥梁结构、临时工程和施工场地的安全。

第十二条公路斜拉桥的施工现场应设置警示标识和安全设施,确保施工人员和过往车辆的安全。

第十三条公路斜拉桥的桥梁部分的施工需要严格执行相关工序和工艺要求,以确保施工质量。

第十四条公路斜拉桥的施工人员应具备相关的专业技术和安全意识,施工作业时应佩戴必要的安全装备。

第四章验收与运营第十五条公路斜拉桥的验收应由专业验收机构进行,并遵循相关的验收规范和程序。

第十六条公路斜拉桥的运营管理应符合国家相关法律法规和标准,确保桥梁的安全使用。

第十七条公路斜拉桥的定期检修和维护应按照相关规定进行,确保桥梁的安全性和功能性。

第十八条公路斜拉桥的运营单位应建立健全桥梁管理制度和应急预案,及时处置突发事件和灾害。

《城市桥梁设计规范》(局部修订)条文部分

《城市桥梁设计规范》(局部修订)条文部分

《城市桥梁设计规范》 CJJ 11 – 2011局部修订条文(2019年版)说明:1.下划线标记的文字为新增内容,方框标记的文字为删除的原内容,无标记的文字为原内容。

2.本次修订的条文应与《城市桥梁设计规范》CJJ 11-2011中的其他条文一并实施。

3.0.121 持久状况:在桥梁使用过程中一定出现,且持续期很长的设计状况。

2 短暂状况:在桥梁施工和使用过程中出现概率较大而持续期较短的状况。

3 偶然状况:在桥梁使用过程中出现概率很小,且持续期极短的状况。

4 地震状况:在桥梁使用过程中可能经历地震作用的状况。

3.0.13桥梁结构或其构件,对3.0.12条所述四种设计状况,应分别进行下述极限状态设计:1 持久状况应进行承载能力极限状态和正常使用极限状态设计。

2 短暂状况应进行承载能力极限状态设计,可根据需要进行正常使用极限状态设计。

3 偶然状况应进行承载能力极限状态设计。

4 地震状况应进行承载能力极限状态设计。

当进行承载能力极限状态设计时,应采用作用效应的基本组合和作用效应的偶然组合;当按正常使用极限状态设计时,应采用作用效应的标准组合、作用短期效应组合(频遇组合)和作用长期效应组合(准永久组合)。

3.0.16桥梁结构应符合下列规定:1 构件在制造、运输、安装和使用过程中,应具有规定的强度、刚度、稳定性和耐久性;2 构件应减小由附加力、局部力和偏心力引起的应力;3 结构或构件应根据其所处的环境条件进行耐久性设计。

采用的材料及其技术性能应符合相关标准的规定。

4 选用的形式应便于制造、施工和养护。

5 桥梁应进行抗震设计。

抗震设计应按国家现行标准《中国地震动参数区划图》CJJ 166的规定执行。

对已编制地震小区划的城市,可应按行政主管部门批准的地震动参数进行抗震设计。

6 当受到城市区域条件限制,需建斜桥、弯桥、坡桥时,应根据其具体特点,作为特殊桥梁进行设计。

7 桥梁基础沉降量应符合现行行业标准《公路桥涵地基与基础设计规范》JTG D63的规定。

斜拉桥塔顶吊架方案设计及验算

斜拉桥塔顶吊架方案设计及验算

斜拉桥塔顶吊架方案设计及验算发布时间:2022-11-28T11:54:21.618Z 来源:《工程建设标准化》2022年第7月第14期作者:方建创[导读] 本工程塔顶吊架设计为钢桁架结构方建创广东骏熙建设有限公司广东佛山 528000摘要:本工程塔顶吊架设计为钢桁架结构,为保证连接的可靠性及安装的可操作性,立柱及主斜撑与平杆、纵梁之间采用开坡口完全融透焊缝,各节点板与其附着构件之间的连接均采用开坡口完全融透焊缝,焊缝质量必须达到二级焊缝标准;腹杆、斜撑等构件与节点板之间采用角焊缝围焊;主斜撑、平杆及纵梁断开位置采用高强螺栓连接;横梁与纵梁之间采用连接板(节点板)与高强螺栓连接向结合的连接方式。

吊架立柱底部设预埋“锚板+锚筋”及φ32精轧螺纹钢锚固,每根立柱底部设4根精轧螺纹钢,同时立柱底部开坡口与预埋锚板之间完全融透焊接牢固。

塔顶吊架在上部施工中,分两个阶段发挥其作用。

第一阶段承担着主索鞍及其附属构件的吊装工作,第二阶段配合索股架设工作。

通过工程实践,塔顶吊架的强度、刚度和稳定性均满足施工需要及规范要求,结构安全可靠,各连接件强度均满足规范要求。

关键词:斜拉桥塔顶吊架方案设计验算1.塔顶吊架方案简介塔顶吊架高度为9m,两个主桁片之间的中心距为6.7m。

吊架材料中,HW400×408mm型钢及节点板、连接板采用Q345b钢材,其余采用Q235钢材。

其中立柱、立杆、主斜撑、横梁以及纵梁均采用HW400×408mm型钢,立柱之间及立柱与主斜撑之间的平杆采用[]28a槽钢(对拼),主斜撑中跨侧的平杆采用HW400×408mm型钢,腹杆采用][28a槽钢(背拼),斜撑采用[]28a槽钢(对拼)及][28a槽钢(背拼)。

为加强立柱及主斜撑的横桥向刚度,在其横桥向外侧面加设加劲桁片,同时加劲桁片还可为吊架顶面的工作平台提供支撑,加劲桁片采用][28a槽钢(背拼)。

塔顶吊架分两阶段进行安装。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜拉桥设计规范
斜拉桥是一种具有特殊结构形式和设计理论的大型桥梁,其特点是主体斜拉索、悬臂桥面板和斜拉塔等部分构件协同工作,形成了独特的桥体形态和力学性能。

斜拉桥的设计规范对于确保其安全性和可靠性至关重要,下面将从桥梁设计和材料选用两方面对斜拉桥设计规范进行详细说明。

一、桥梁设计
(一)结构形式设计:
1. 桥面板宽度设计应满足通行安全需求,结构形式应符合规范要求,并考虑特殊气候和地质条件对桥梁的影响。

2. 悬臂长度和主跨设计应合理,力学性能稳定可靠,满足承载能力和服务性能的要求。

3. 斜拉索的布置形式和角度应按照设计规范来确定,斜拉塔的高度应满足结构性能和美观要求。

(二)斜拉索设计:
1. 斜拉索应选用高强度、耐腐蚀的材料,满足桥梁设计寿命要求。

2. 斜拉索的预应力应按照规范要求进行计算和施工,确保其稳定可靠。

3. 斜拉索的锚固端和张拉端应设置合理的补偿装置,以确保索力的持久稳定和桥面板的上下变形满足规范要求。

(三)桥梁静力学和动力学分析:
1. 桥梁结构应进行全面的静力学和动力学计算,满足设计要求,
并考虑抗风、抗震和抗冰等特殊荷载条件。

2. 斜拉桥应进行稳定性分析,确保其在各种工况下不发生失稳或翻转的现象。

3. 桥梁应进行设计寿命内的疲劳分析和振动分析,确保其安全可靠。

二、材料选用
(一)混凝土材料:
1. 桥面板和斜拉塔的混凝土应选用符合设计要求的高强度混凝土,抗压强度和抗冻性能要满足规范要求。

2. 混凝土材料应具备耐久性,抗化学腐蚀和抗温度变化的性能。

(二)钢材料:
1. 斜拉索应采用高强度钢材,抗拉强度和耐腐蚀性能要满足规范要求。

2. 桥梁结构中的钢构件应选用符合设计要求的优质钢材,抗压、抗剪和抗扭强度要满足规范要求。

(三)其他材料:
1. 锚固装置和张拉装置应选用高强度、耐久性好的材料,确保其稳定可靠。

2. 防腐涂料和防水材料应选用符合设计要求的环境保护型产品,确保桥梁耐久性和美观性。

综上所述,斜拉桥设计规范涉及到斜拉桥的结构形式、斜拉索设计、桥梁静力学和动力学分析以及材料选用等多个方面,规
范的制定和遵守对于斜拉桥的安全性和可靠性至关重要。

只有通过严格遵守设计规范,合理选用材料和控制施工质量,才能建造出安全性能优越、服务性能稳定的斜拉桥。

相关文档
最新文档