哈尔滨道里2014-2015数学九年级上期末考试卷

合集下载

2014-2015学年九年级上期数学期末试卷及答案

2014-2015学年九年级上期数学期末试卷及答案

1.在4-,0,2-,1这四个数中,最小的数是( )A.4-B.2-C.0D.1 2.计算()234x -的结果是( )A.616x -B.516xC.64x -D.616x 3.如图,直线AB //CD ,直线EF 分别交直线AB 、CD 于 点E 、F ,EG 平分∠AEF 交CD 于点G ,若∠1=36°, 则∠2的大小是( )A.72°B.67°C.70°D.68°4.在函数1-=x y 中,自变量x 的取值范围是( )A.1>xB.1≠xC.1≤xD.1≥x 5.若点A (2-,m )在正比例函数x y 21-=的图像上,则m 的值是( ) A.41 B.41- C.1 D.1- 6.如图,AB 与⊙O 相切于点A ,AC 为⊙O 的直径,点D 在圆上,且满足∠BAD =40°,则 ∠ACD 的大小是( )A.50°B.45°C.40°D.42°7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,点E 为AB 中点,连 接OE ,则OE 的长是( ) A.5 B.512 C.4 D.25 8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是( )3题图xy12题图① ② ③A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2 9.分式方程0112=--x x 的解是( ) A.2-=x B.2=x C.32=x D.1=x 10.上周周末,小江进行了一次“惊心动魄”的自行车之旅,小江匀速行驶一段路程后,发 现了一处“世外桃源”,便停车享受美景,当小江准备拿手机拍照留影时,发现手机掉 了,于是小江沿原路原速返回,在路途中幸运地找到了手机(停车捡手机的时间忽略不 计),再掉头沿原计划路线以比原速大的速度行驶,则小江离出发点的距离s 与时间t 的 函数关系的大致图象是( )11.如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组 成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③ 个图形含边长为1的菱形10个,... ...,按此规律,则第⑦个图形中含边长为1的菱形的 个数为( )A.36B.38C.34D.28 12.如图,∆ABC 是等腰直角三角形,∠ACB=90°,点A 在 反比例函数xy 4-=的图像上,点B 、C 都在反比例函数 xy 2-=的图像上,AB //x 轴,则点A 的坐标为( ) A.(32,332-) B.(3,334-) C.(334,3-) D.(332,32-)二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答成绩(分) 39 42 44 45 4850 人数 1 2 1 2 1 3案填在答题卡相应位置的横线上. 13.实数2015-的相反数是 .14.新年第一天,我市大约有13000名市民涌上仙女山、金佛山、巫溪红池坝的滑雪场玩雪. 将13000这个数字用科学记数法表示是 .15.如图,在□ABCD 中,点E 是AD 的中点,连接CE 、BD 相交于点F ,则∆DEF 的周长 与∆BCF 的周长之比=∆∆F D EF :BC C C .16.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AO =AD =2,以A 为圆心,AO 为半径作弧,则图中阴影部分的面积为 . 17.从-1,0,1,2,3这五个数中,随机抽取一个数记为m ,则使关于x 的不等式组122x mx m+⎧⎨-⎩≤≤有解,并且使函数()2212+++-=m mx x m y 与x 轴有交点的概率为 .18.如图,在ABC ∆中,2AB =3AC ,AD 为∆BAC 的角平分线,点H 在线段AC 上,且CH=2AH ,E 为BC 延长线上的一点,连接EH 并延长交AD 于点G ,使EG=ED ,过点E 作 EF ⊥AD 于点F ,则FG AG := . 三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:() 45tan 22731221322--⎪⎭⎫ ⎝⎛-+-⨯-+--π20.今年四月份将举行体考,重庆一中为了解初三学生目前体育训练成果,于1月16日举行 了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根 据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计 图.(1)请补全条形统计图;(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.16题图成绩扇形统计图成绩条形统计图 15题图 18题图l21.先化简,再求值:34433922+++÷⎪⎭⎫ ⎝⎛-+++x x x x x x ,其中x 是方程374=+x 的解.22.如图,在笔直的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,且与观测点B 的距离为7.5千米.一辆自行车从位于点B 南偏西 76°方向的点C 处,沿公路自西向东行驶, 2小时后到达检查站A .(1)求观测点B 与公路l 的距离;(2)求自行车行驶的平均速度. (参考数据:252476sin ≈,25676cos ≈ ,476tan ≈,5453s ≈ in ,5353cos ≈ ,3453tan ≈ )23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2012年采购的书桌价格为 120元/张,椅子价格为40元/张,总支出费用34000元;2013年采购的书桌价格上涨为 130元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2012年分别相同,总支出 费用比2012年多2000元.(1)求2012年采购的书桌和椅子分别是多少张?(2)与2012年相比,2014年书桌的价格上涨了%a (其中500<<a ),椅子的价格上涨了%10,但采购的书桌的数量减少了%21a ,椅子的数量减少了50张,且2014 年学校桌子和椅子的总支出费用为34720元,求a 的值.24. 如图,在□ABCD 中,CE ⊥AD 于点E ,且CB=CE ,点F 为CD 边上的一点,CB=CF, 连接BF 交CE 于点G.(1)若60=∠D ,CF =32,求C G 的长; (2)求证:AB=ED+CG五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线223y x x =--与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于C 点,点D 是抛物线的顶点. (1)求B 、C 、D 三点的坐标;(2)连接BC,BD,CD ,若点P 为抛物线上一动点,设点P 的横坐标为m ,当PBC BCD S S ∆∆=时,求m 的值(点P 不与点D 重合);(3) 连接AC ,将∆AOC 沿x 轴正方向平移,设移动距离为a ,当点A 和点B 重合时,停止运动,设运动过程中∆AOC 与∆OBC重叠部分的面积为S ,请直接写出S 与a 之间的函数关系式,并写出相应自变量a 的取值范围.26.如图(1),抛物线)0(52≠++=a bx ax y 与x 轴交于A 、B 两点,与y 轴交于点C , 直线AC 的解析式为5+=x y ,抛物线的对称轴与x 轴交于点E ,点D (2-,3-)在 对称轴上.(1)求此抛物线的解析式;备用图 备用图(2)如图(1),若点M 是线段OE 上一点(点M 不与点O 、E 重合),过点M 作MN ⊥x 轴,交抛物线于点N ,记点N 关于抛物线对称轴的对称点为点F ,点P 是线段MN上一点,且满足MN =4MP ,连接FN 、FP ,作QP ⊥PF 交x 轴于点Q ,且满足PF =PQ , 求点Q 的坐标;(3)如图(2),过点B 作BK ⊥x 轴交直线AC 于点K ,连接DK 、AD ,点H 是DK 的中点,点G 是线段AK 上任意一点,将∆DGH 沿GH 边翻折得GH D '∆,求当KG 为何值时,GH D '∆与KGH ∆重叠部分的面积是∆DGK 面积的41.数 学 试 卷(答案)一、 选择题:备用图图(1)图(2)二.填空题 题号13 1415 答案 2015 4103.1⨯1:2 题号 161718答案 332-π 52 7:4三.解答题20.解:(1)…………………………………………………… 2分 (2)将男生分别标记为21,A A ,女生标记为1B一1A2A 1B1A()21,A A()11,B A 2A ()12,A A()12,B A1B()11,A B()21,A B……………………………………………………………………………… 5分3264(==一男一女)P …………………………… ……………………… 7分 二lH22.解:(1) 过点B 作l ⊥BH 交l 于点H ………………………………1分 在中在ABH Rt ∆km BH AB AB BH ABH 5.45.753cos =∴===∠, ………………4分(2)在中H A Rt B ∆, km AH AB AB AH BH 65.7,54A sin =∴===∠∴………………………6分 在中在BCH Rt ∆ km CH BH BH CH CBH 185.414tan =∴===∠∴, …………………8分 hkm kmAH CH CA /621212=∴=-=∴速度为: ………………………10分 答:观测点B 与公路l 的距离是4.5km ,自行车行驶的平均速度是6h km /. 23.解:(1)设2012年采购的书桌为x 张,椅子为y 张. ⎩⎨⎧=+=+36000401303400040120y x y x 解得⎩⎨⎧==250200y x ………… …………4分(2)()()34720)50250%10140%211200%1120=-++⎪⎭⎫⎝⎛-+(a a …7分 令t a =%,则原方程可化简为:0425252=+-t t解得=1a 0.2 ,=2a 0.8 (舍) ………………………9分 答:2013年采购书桌和椅子分别是200张和250张. ………………10分 24.解:(1) 四边形ABCD 是平行四边形 ∴AD//BCCE ⊥AD∴ECB CED ∠==∠9090,60=∠=∠DEC D∴ 120,30D =∠=∠CF EC BBC=CF 30=∠∴GBC在Rt ∆BCG 中,90=∠GCB∴tan 3233GCBC GC GBC ===∠ ∴GC=2 ……………4分(2)延长EC 到点H ,使得ED =CH ,连接BH ……………5分CGED DC GH BH GBH GBH CF BC CDBH DCE HBC BC EC HCB DEC HCDE DCE HBC +=∴=∴∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴==∠=∠∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆4534,1252,31 中和在…………………………………………………………………10分(2)设b kx y BC +=:将代入得:)3,0(),0,3(-C B⎩⎨⎧-==∴⎩⎨⎧=-+=31330b k b b k 3-=∴x y ,过点D 作y //DE 轴,交BC 于点E 21-=∴==E E D y x x3=+=∴∆∆∆CD E BED BCD S S S ……………4分过点P 作y //PQ 轴,交直线BC 于点Q)3,(),32,(2---m m Q m m m P 设①当P 是BC 下方抛物线上一点时,329232=+-=+=∴∆∆∆m m S S S PQC PBQ PCB 2)(121=-=∴m m ,舍…………………………………………………… ……………6分②32923)30(2C =-=-=><∆∆∆m m S S S m m BC P PQB PQ PBC 或上方抛物线上一点时是当 2173,217321-=+=m m 解得 ……………8分综上:=m 22173,2173,-+ (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<+-≤<+-=)43(6383)31(2381)10(3813222a a a a a a a a S ……………12分 25.解:(2)PF QP FN QM ⊥⊥⊥,MN MN ,∴ 9062=∠=∠, 90539031=∠+∠=∠+∠,51∠=∠∴又PQ F =P ,PNF MP ∆≅∆∴Q NF MP NP ==∴,MQ ………4分 设)0,(M m (02<<-m ),则54)54,(N 22+--=+--m m MN m m m , )54,4(F 2+----∴m m m ,42)4(+=---=m m m FND 'D ' 图(1) 图(2) 备用图)42(4542+=+--∴m m m ,解得:)(111舍或-=-=m m )0,7(643)0,1(,8MN -∴===∴-=∴Q MN NP MQ M ,, …………7分 (3))0,1(,15,0542B x x x x ∴=-==+--或得令)6,1(K ∴ [][]103)3(6)2(1DK 22=--+--=①若翻折后,点D '在直线GK 上方,记H D '与GK 交于点L ,连接K D ' D GH GHK DGK GHL 212141'∆∆∆∆===∴S S S S ,即KHL G L D G HL ∆'∆∆==S S S L D HL LK '==∴,GL ,是平行四边形四边形GHK D '∴, 102321D ==='=∴KD KH G D G ,又3,6BK ====AE DE BA AED ABK ∆∆∴和都是等腰直角三角形,23AD =904545DAG =+=∠∴,由勾股定理得:223AG 22=-=AD DG 22922326KG =-=-=∴AG KA ……………9分。

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年九年级上学期期末考试数学试题及答案

新人教版2014-2015年上学期期末考试九年级数学试题(考试时间:120分钟 满分:150分)一、选择题(本题共10道题,每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A. 221x x y ++=B. 2110x x+-= C. 20x = D. 2(1)(3)1x x x ++=- 2.下列汽车标志中,既是轴对称又是中心对称图形的是( )3.下列说法中正确的是( )A.不确定事件发生的概率是不确定的B.事件发生的概率可以等于事件不发生的概率C.事件发生的概率不可能等于0D.抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于24.如图45,15中,∠=∠=O CBO CAO ,则AOB ∠的度数是( )A.75 B.30 C.45 D.60 5.掷一枚六面分别标有1到6的均匀骰子,向上一面的点数大于2且小于5的概率为1P ,抛两枚硬币,正面均朝上的概率为2P ,则( )A.12P P <B.12P P >C.12P P =D.不能确定6.在同圆中,下列四个命题:○1圆心角是顶点在圆心的角;○2两个圆心角相等,它们所对的弦也相等;○3两条弦相等,所对的劣弧也相等;○4等弧所对的圆心角相等。

其中真命题有( )A.4个B.3个C.2个D.1个7.抛物线22(1)3y x =---与y 轴交点的纵坐标为( )A.3-B. 4-C.5-D.1-8.用配方法解关于x 的方程20x px q ++=,方程可变形为( ) A.224()24p p q x -+= B.224()24p q p x -+= C.224()24p p q x +-= 第4题D.224()24p p q x --= 9.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE=CF ,连接AE 、BF ,将△ABE 绕正方形的中心按逆时针方向旋转到BCF △,旋转角为()0180a a <<,则a =( )A.60 B.90 C.120 D.4510.已知二次函数2y ax bx c =++的图象如图所示,其对称轴为直线1x =-,给出下列结论(1)24b ac >; (2)0abc >; (3)20a b +=; (4)0a b c ++>; (5)420a b c -+<.则正确的结论有( )A. 2个B. 3个C. 4个D. 5个第9题C第16题第17题B二、填空题(本大题共8小题,每小题3分,共24分)11.方程2x =的根是 .12.众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是13.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是54002cm ,设金色纸边的宽为,那么x 满足的方程是14.如果函数232(3)1k k y k x kx -+=-++是二次函数,那么k 值为15.一个圆锥的侧面展开图是半径为1的半圆,该圆锥的底面半径是16.二次函数2y x bx c =-++的图象如图所示,则一次函数y bx c =+的图象不经过第 象限. 17.如图所示,一条公路的转变处是一段圆弧(图中的弧AB )点O 是这段弧的圆心,C 是AB 上一点,,OC AB ⊥ 垂足为D ,AB=300m ,CD=50m ,则这段弯路的半径是18.观察下列一组数:13579,,,,,27142334⋅⋅⋅它们是按一定规律排列的,那么这一组数的第n 个数是三、解答题(本大题共96分)19.解方程:(10分)(1) 2660x x --=(2) 22760x x -+=20.△ABC 在平面直角坐标系中的位置如图所示(A 、B 、C 三点在格点上),把△ABC 绕原点O 顺时针旋转90,A 、B 、C 旋转后的对应点分别是1A 、1B 、1C(1)画出旋转后的111△ABC ,并直接写出1A、1B 、1C 的坐标; (2)在旋转过程中,求点A 到点1A 所经过的路径的长.(12分)21.某汽车经销商推出A 、B 、C 、D 四种型号的小轿车共1000辆进行展销。

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()23.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,7.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二28.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣19.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )10.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 _________ . 12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是_________ .13.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2013的坐标为 _________ .14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 _________ . A . a <0B .a ﹣b+c <0 C . ﹣D . 4ac ﹣b 2<﹣8a15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC 于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x 的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()=2≤3.(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中÷=127.(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二2.8.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()﹣<最小值:9.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()BG=4AG==210.(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()∴==,二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.12.(2013•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵14.(2013•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.从这副牌中任意抽取一张,则这张牌是标有字母的概率是=故答案为:=15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.16.(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.时,抛物线与,×x<<17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.18.(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).,根据垂径定理可得:=由=E=∴,∵,AG===E=AD=,×=3∴(∴,,;三.解答题(共10小题)19.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)x个月,则乙队施工)20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.=﹣21.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC 点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.AE=CE=•AE=.22.(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.BC=3AM=6r=6r=CE=2r=OM=6﹣BE=2OM=BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6﹣BE=2OM=,∴,.23.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.∴∴××,解得,x++时,有最大值24.(2013•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.,=11时,25.(2013•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.y=y=∴﹣x,FH=FOB==x×,×=1,﹣﹣,=,AD==2xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=26.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE EH=:B==EQ=AEH==,EH=BE::27.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.,解得,mN=N=mON==点坐标为(m×≤,,,当≤(+,到达最高位置时的坐标为()28.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.==∴=,即==362)代入,解得x=36(负值舍去))代入,解得xx x y=31。

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级数学期末考试试卷含答案

2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014~2015学年度第一学期期末考试九年级数学试卷答案

2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。

2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。

1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。

人教版2014-2015学年度第一学期九年级数学期末试题及答案

人教版2014-2015学年度第一学期九年级数学期末试题及答案

2014-2015学年度第一学期九年级数学期末试题亲爱的同学:寒假快要到了,祝贺你又完成了一个学期的学习,为了使你度过一个丰富多彩的寒假生活,过一个愉快、幸福的春节,请你认真思考、细心演算,尽情发挥,向一直关心你的人们递交一份满意的答卷,祝你成功!★ 本试卷满分150分,考试时间120分钟,可以使用计算器一、选择题(本大题共有10个小题,每小题4分,共40分.每小题只有一个正确选项,请把正确选项的字母代号填在题后的括号内).1.下列图形中,是轴对称图形又是中心对称图形的是 ( )2.如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45°, 点A 旋转到A′的位置,则图中阴影部分的面积为 ( )A .πB. 2π C .2π D . 4π3.若关于x 的方程312=+-x x m 是一元二次方程,则m 的取值范围是( )A .1≥mB . 1-≥mC .1->mD .1>m4.已知关于x 的一元二次方程022)1(2=-+-x x k 有两个不相等的实数根,则k 的取值范围是 ( )A .21>kB .21≥kC .121≠>k k 且D .121≠≥k k 且 5.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于 ( )A .160°B .150°C .140°D .120°6.如图,圆锥体的高h =,底面圆半径r 2cm =,则圆锥体的全面积为( )cm 2A. π12B.π8C. π34D. π)434(+7.掷一枚质地均匀的硬币10次,下列说法正确的是 ( )A .可能有5次正面朝上B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上8.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ( )A .12 B .14 C .16 D .1129.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2014的值( )A .2012B .2013C .2014D .201510.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是 ( )A .a <0B .b 2﹣4ac <0C .当﹣1<x <3时,y >0D .b 12a-=二、填空题(本大题共有8小题,每小题4分,共32分.请把答案填在题中的横线上.)11.若1+x 与1-x 互为倒数,则x 的值是 。

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。

哈尔滨市道里区九年级上册期末考试数学试题有答案-名师版

哈尔滨市道里区九年级上册期末考试数学试题有答案-名师版

道里九年级数学期末试题一、选择题(每题3分,共30分)1.抛物线y=(一2)2+3的顶点坐标是( )(A)(2,3) (B)(-2,3) (C)(2, -3) (D)( -2, -3) 2.下列图形是中心对称图形的是( )3.在Rt △ABC 中,∠C=900,sinA=53 ,则cosA 的值等于( ) (A) 53 (B) 54 (C) 43 (D)55 4.下列几何体中,俯视图是三角形的几何体是( )5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小质 地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个是红 概率是( )(A)81 (B) 61 (C) 41 (D) 43 6.如图,E 是平行四边形ABCD 的边BA 延长线上的一点, CE 交AD 于点F ,下列各式中错误的是( ) (A)CF EF AB AE = (B) FC CF BE CD = (C) DF AF AB AE = (D) BCAF AB AE =7.若反比例函数y=xm-3=的图象位于第二、四象限,则m 的取值范围是( ) (A)m>0 (B)m<0 (C)m>3 (D)m<38.将二次函数y=2的图象先向下平移l 个单位,再向右平移3个单位,得到的图象与一次函数y=2+b 的图象有公共点,则实数b 的取值范围是( ) (A)b>8 (B)b>一8 (C)b ≥8 (D)b ≥8 9.如图,在Rt △ABC中,∠C=900,∠A=500,以BC 为 直径的⊙0交AB 于点D ,E 是⊙0上一点,且弧CE=弧CD ,连接0E ,过点E 作⊙0的切线交AC 的延长线于点F , 则∠F 的度数为( )(A)900(B)1000(C)1100(D)120010.如图,正方形ABCD 的边长为3 cm ,点P 从点A 出发沿AB →BC →CD 以3 cm /s 的速度向终点D 匀速运动,同时,点Q 从点A 出发沿AD 以 1 cm /s 的速度向终点D 匀速运动,设P 点运动的时间为ts ,△APQ 的面积为S cm2,下列选项中能表示S 与t 之间函数关系的是( )二、填空题(每题3分,共30分)11.在平面直角坐标系中,点P(1,.2)关于原点的对称点的坐标是 . 12.若△ABC ∽△DEF,DE=2AB ,若△DEF 的面积为20,则△ABC 的面积为 . 13.若反比例函数y=x6的图象经过点A(m,3),则m 的值是 . 14.一辆汽车行驶的距离S(单位:m)关于行驶时间t(单位:s)的函数解析式是S=9t+221t ,当t=10 s 时,则S= 米.15.如图,四边形ABCD 与四边形EFGH 位似,位似中心是点O ,若43 EA OE ,则BCFG= . 16.如图,在Rt △ABC 中,∠ACB=900,AC=BC=2.将Rt△ABC 绕A 点逆时针旋转30。

2014—2015九年级数学(上)期末试卷及答案

2014—2015九年级数学(上)期末试卷及答案

2014-2015 学年九年级数学(上)期末试卷说明:1、本卷共有6个大题,24 个小题,全卷满分120分,考试时间120 分钟。

2、不要答在试题卷上,请将答案写在所给的答题卡相应位置,否则不给分。

一、选择题(本大题共6小题,每小题3分,共18分)1.下列电视台的台标,是中心对称图形的是A.B.C.D.2.掷一枚质地均匀的硬币10 次,下列说法正确的是()A.必有5 次正面朝上B.可能有5 次正面朝上C.掷2 次必有1 次正面朝上D.不可能10次正面朝上3.用配方法解方程x -2x-3=0时,配方后所得的方程为A、(x-1) =4B、(x-1) =2C、(x+1) =4D、(x+1) =24.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070 张相片,如果全班有x 名学生,根据题意列出方程为11A、2x(x-1)=2070 B、2x(x+1)=2070 C、x(x+1)=2070 D、x(x-1)=2070 5.小明想用一个圆心角为120°,半径为6cm 的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为A、4 cmB、3cmC、2 cmD、1 cm6.已知抛物线y=ax +bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是A B C D二、填空题(本大题共8小题,每小题3分,共24分)C7.一元二次方程x=x 的解为。

8.如图,若AB 是⊙O 的直径,AB=10,∠CAB=30°,则BC=。

9.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为。

10.某品牌手机两年内由每台2500 元降低到每台1600 元,则这款手机平均每年降低的百分率为。

A O B22 2 2 22211.若正方形的边长为 6cm ,则其外接圆半径是 。

12.林业工人为调查树木的生长情况,常用一种角卡工具,可以很快测出大树的直径,其工作原理如图所示,已知 AC 和 AB 都与⊙O 相切,∠BAC =60°,AB =0.6m ,则这棵大树 的直径为 。

2014-2015九年级数学上下全册期末检测1

2014-2015九年级数学上下全册期末检测1

1-20142015九年级数学期末检测一、选择题1.若关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,则k 的取值范围是( )A .k <1B .k >1C .k=1D .k <1且k ≠02.二次函数y =x 2-2x -3的顶点坐标是( )A .(1,-3)B .(-1,-2)C .(1,-4)D .(0,-3)3.将等腰Rt△ABC绕点A 逆时针旋转15°得到△AB′C′,若AC =1,则图中阴影部分面积为( )A .33B .63 C .3 D .第3题图 第4题图 第11题图 第12题图4.如图,直线AB 、AD 分别与⊙O相切于点B 、D ,C 为⊙O上一点,且∠BCD=140°,则∠A的度数是( )A .70°B .105°C .100°D .110°5.“a 是实数,|a|≥0”这一事件是( )A . 必然事件B . 不确定事件C . 不可能事件D . 随机事件6.下列函数是反比例函数的是( )A .y x =B .1y kx -=C .8y x -=D .28y x= 7.下列各组图形中不一定相似的是( )A.两个等腰直角三角形B.各有一个角是50°的两个等腰三角形C.各有一个角是50°的两个直角三角形D.两个正方形 8. 在直角△ABC 中,∠C=90°,若AB =5,AC =4,则sin ∠B=( )A .35B .45C .34D .439.用6个完全相同的小正方体组合成如图所示的立体图形,它的主视图为( )A B C D10. 2010年银川市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x ,根据题意,列出方程为( ).A .221+)9.5x =( B .221+)2(1)9.5x x ++=(C .2881+)8(1)9.5x x +++=(D .22+21)2(1)9.5x x +++=(11.如图,正方形ABCD 的四个顶点分别在⊙O 上,点P 在上不同于点C 的任意一点,则∠BPC 的度数是( ) A .45° B .60° C .75° D .90°12.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac<0;②方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;③a+b+c>0;④当x >1时,y 随x 的增大而增大;⑤2a﹣b=0⑥b 2﹣4ac >0.正确的说法有( )A .1B .2C .3D .4二、填空题13.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 .14.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .第14题图 第15题图 第18题图 15.如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .16.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角的度数是 .17.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 .18.直线l 1:y=k 1x+b 与双曲线l 2:y=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式>k 1x+b 的解集为_______.三、解答题19.解方程:(1)x 2﹣4x+1=0.(配方法) (2)x 2+3x+1=0.(公式法) (3)(x ﹣3)2+4x (x ﹣3)=0. (分解因式法)20.如图,在四边形ABCD 中,∠BAD=∠C=90°,AB =AD ,AE⊥BC于E ,AF⊥DF于F ,△BEA旋转后能与△DFA重叠.(1)△BEA绕_____点______时针方向旋转______度能与△DFA重合;(2)若AE =6cm ,求四边形AECF 的面积.21.一块矩形土地的长为24m ,宽为12m ,要在它的中央建一块矩形的花坛,四周铺上草地,其宽度相同,花坛面积是原矩形面积的,求草地的宽.22.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC 的顶点均在格点上,点P 的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC 绕点P 旋转180°得△A′B′C′.(2)把△ABC 向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.23.已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .(1)请你用树形图或列表法列出所有可能的结果;(2)现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.24.如图,AB 为⊙O的直径,AD 与⊙O相切于点A ,DE 与⊙O相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线;(2)若52 AB ,AD =2,求线段BC 的长.25.如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点,A 点在原点的左则,B 点的坐标为(3,0),与y 轴交于C (0,―3)点,点P 是直线BC 下方的抛物线上一动点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档