高考数学总复习习题11-2

合集下载

高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 11 word版含答案

高考考点完全题数学(理)考点通关练习题 第二章 函数、导数及其应用 11 word版含答案

考点测试11 函数的图象一、基础小题1.已知函数f (x )=2x-2,则函数y =|f (x )|的图象可能是( )答案 B解析 函数y =|f (x )|=⎩⎪⎨⎪⎧2x-2,x ≥1,2-2x,x <1,故y =|f (x )|在(-∞,1)上为减函数,在(1,+∞)上为增函数,排除A 、C 、D.2.为了得到函数y =lgx +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 答案 C 解析 y =lgx +310=lg (x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到.3.函数f (x )=x +|x |x的图象是( )答案 C解析 化简f (x )=⎩⎪⎨⎪⎧x +1x >0,x -1x <0,作出图象可知选C.4.已知a >0,b >0且ab =1,则函数f (x )=a x与函数g (x )=-log b x 的图象可能是( )答案 B解析 ∵ab =1,且a >0,b >0,∴a =1b,又g (x )=-log b x =-log 1ax =log a x ,所以f (x )与g (x )的底数相同,单调性相同,且两图象关于直线y =x 对称,故选B.5.已知函数f (x )=1lnx +1-x,则y =f (x )的图象大致为( )答案 B解析 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近0时,y 趋向于-∞,排除C ,选B.6.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是( )答案 A解析 由函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上是奇函数,得k =2,又f (x )是减函数,得0<a <1,则g (x )=log a (x +k )=log a (x +2),定义域是(-2,+∞),且单调递减,故图象是A.7.已知函数y =f (x )(-2≤x ≤2)的图象如图所示,则函数y =f (|x |)(-2≤x ≤2)的图象是( )答案 B解析 解法一:由题意可得f (x )=⎩⎪⎨⎪⎧-12x -1,-2≤x <0,-x -12+1,0≤x ≤2,所以y =f (|x |)=⎩⎪⎨⎪⎧-x +12+1,-2≤x <0,-x -12+1,0≤x ≤2,可知选B.解法二:由函数f (x )的图象可知,函数在y 轴右侧的图象在x 轴上方,函数在y 轴左侧的图象在x 轴下方,而y =f (|x |)在x >0时的图象保持不变,因此排除C 、D ,由于y =f (|x |)是偶函数,函数y =f (|x |)在y 轴右侧的图象与在y 轴左侧的图象关于y 轴对称,故选B.8.若对任意的x ∈R ,y =1-a |x |均有意义,则函数y =log a ⎪⎪⎪⎪⎪⎪1x 的大致图象是( )答案 B解析 由题意得1-a |x |≥0,即a |x |≤1=a 0恒成立,由于|x |≥0,故0<a <1.y =log a ⎪⎪⎪⎪⎪⎪1x=-log a |x |是偶函数,且在(0,+∞)上是单调递增函数,故选B.9.函数f (x )=⎩⎪⎨⎪⎧ax +b x ≤0,log c ⎝ ⎛⎭⎪⎫x +19x >0的图象如图所示,则a +b +c =( )A .43B .73C .4D .133答案 D解析 由题图知,可将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133,选D.10.如图,虚线是四个象限的角平分线,实线是函数y =f (x )的部分图象,则f (x )可能是( )A .x sin xB .x cos xC .x 2cos x D .x 2sin x答案 A解析 由题图知f (x )是偶函数,排除B 、D.当x ≥0时,-x ≤f (x )≤x .故选A. 11.把函数f (x )=(x -2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.答案 y =(x -1)2+3解析 把函数f (x )=(x -2)2+2的图象向左平移1个单位,得y =2+2=(x -1)2+2,再向上平移1个单位,所得图象对应的函数解析式为y =(x -1)2+2+1=(x -1)2+3.12.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案(2,8]f(x)有意义,由函数f(x)的图象知满足f(x)>0解析当f(x)>0时,函数g(x)=log2的x∈(2,8].二、高考小题13.函数y=2x2-e|x|在的图象大致为( )答案 D解析当x∈(0,2]时,y=f(x)=2x2-e x,f′(x)=4x-e x.f′(x)在(0,2)上只有一个零点x0,且当0<x<x0时,f′(x)<0;当x0<x≤2时,f′(x)>0.故f(x)在(0,2]上先减后增,又f(2)-1=7-e2<0,所以f(2)<1.故选D.14.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D .{x |-1<x ≤2} 答案 C解析 作出函数y =log 2(x +1)的图象,如图所示:其中函数f (x )与y =log 2(x +1)的图象的交点为D (1,1),结合图象可知f (x )≥log 2(x +1)的解集为{x |-1<x ≤1},故选C.15.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0答案 C解析 函数f (x )的定义域为{x |x ≠-c },由题中图象可知-c =x P >0,即c <0,排除B ;令f (x )=0,可得x =-b a ,则x N =-b a ,又x N >0,则b a<0,所以a ,b 异号,排除A ,D.故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -22,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .⎝ ⎛⎭⎪⎫74,+∞B .⎝⎛⎭⎪⎫-∞,74 C .⎝ ⎛⎭⎪⎫0,74 D .⎝ ⎛⎭⎪⎫74,2答案 D解析 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y=x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =x -22,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有四个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.17.已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1(x i +y i )=( )A .0B .mC .2mD .4m答案 B解析 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x +1x =1+1x的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,则x 1+x m =x 2+x m -1=…=0,y 1+y m =y 2+y m -1=…=2,∴∑mi =1(x i +y i )=0×m 2+2×m2=m .故选B.18.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B解析 当点P 与C 、D 重合时,易求得PA +PB =1+5;当点P 为DC 的中点时,有OP ⊥AB ,则x =π2,易求得PA +PB =2PA =2 2.显然1+5>22,故当x =π2时,f (x )没有取到最大值,则C 、D 选项错误.当x ∈⎣⎢⎡⎭⎪⎫0,π4时,f (x )=tan x +4+tan 2x ,不是一次函数,排除A ,故选B.三、模拟小题19.已知函数f (x )=4-x 2,函数g (x )(x ∈R 且x ≠0)是奇函数,当x >0时,g (x )=log 2x ,则函数f (x )·g (x )的大致图象为( )答案 D解析 因为函数f (x )=4-x 2为偶函数,g (x )是奇函数,所以函数f (x )·g (x )为奇函数,其图象关于原点对称,排除A 、B.又当x >0时,g (x )=log 2x ,当x >1时,g (x )>0,当0<x <1时,g (x )<0;f (x )=4-x 2,当x >2时,f (x )<0,当0<x <2时,f (x )>0,所以C 错误,故选D.20.已知f (x )=ax -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y=g (x )在同一坐标系内的大致图象是( )答案 B 解析 ∵f (x )=ax -2>0恒成立,又f (4)g (-4)<0,所以g (-4)=log a |-4|=log a 4<0=log a 1,∴0<a <1.故函数y =f (x )在R 上单调递减,且过点(2,1),函数y =g (x )在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B 正确.21.已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln |x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x答案 A解析 由函数图象可知,函数f (x )为奇函数,应排除B 、C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.22.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y =f (4-x )的图象过定点(3,1).23.设函数y =f (x )的图象与函数y =2x +a的图象关于直线y =-x +1对称,且f (-3)+f (-7)=1,则实数a 的值是________.答案 2解析 设函数y =f (x )的图象上任意一点的坐标为(x ,y ),其关于直线y =-x +1对称的点的坐标为(m ,n ),则点(m ,n )在函数y =2x +a的图象上,由⎩⎪⎨⎪⎧y +n 2=-x +m2+1,y -nx -m =1,得m =1-y ,n =1-x ,代入y =2x +a得1-x =21-y +a,即y =-log 2(1-x )+a +1,即函数y=f (x )=-log 2(1-x )+a +1,又f (-3)+f (-7)=1,所以-log 24+a +1-log 28+a +1=1,解得a =2.24.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 y =⎩⎪⎨⎪⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,函数y =kx -2恒过定点M (0,-2),k MA =0,k MB =4.当k =1时,直线y =kx -2在x >1时与直线y =x +1平行,此时有一个公共点,∴k ∈(0,1)∪(1,4),两函数图象恰有两个交点.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解 (1)函数f (x )的图象如图所示. (2)由图象可知,函数f (x )的单调递增区间为,.(3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.2.已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. 解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎪⎨⎪⎧x x -4,x ≥4,-x x -4,x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为.(4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.3.已知函数f (x )=|x 2-4x +3|.若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.解 f (x )=⎩⎪⎨⎪⎧x -22-1,x ∈-∞,1]∪[3,+∞,-x -22+1,x ∈1,3.作出图象如图所示.原方程变形为|x 2-4x +3|=x +a .于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时,a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a ,y =-x 2+4x -3⇒x 2-3x +a +3=0.由Δ=9-4(3+a )=0,得a =-34.由图象知当a ∈⎣⎢⎡⎦⎥⎤-1,-34时方程至少有三个不等实根. 4.设函数f (x )=x +1x(x ∈(-∞,0)∪(0,+∞))的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x ).(1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标. 解 (1)设P (u ,v )是y =x +1x上任意一点,∴v =u +1u①.设P 关于A (2,1)对称的点为Q (x ,y ),∴⎩⎪⎨⎪⎧u +x =4,v +y =2⇒⎩⎪⎨⎪⎧u =4-x ,v =2-y .代入①得2-y =4-x +14-x ,y =x -2+1x -4,∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0,b =0或b =4. ∴当b =0时,得交点(3,0);当b =4时,得交点(5,4).。

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n次独立重复试验与二项分布理20210

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n次独立重复试验与二项分布理20210

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n 次独立重复试验与二项分布理2021051541341.下列表中能成为随机变量X 的分布列的是( )答案 C2.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( ) A .1,2,…,6 B .1,2,…,7 C .1,2,…,11 D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.3.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )X 0 1 2 3 P0.1mn0.1 A.-0.2 C .0.1 D .-0.1答案 B解析 由m +n +0.2=1,m +2n =1.2,可得m =n =0.4,m -n2=0.2.4.已知随机变量X 的分布列为P(X =k)=12k ,k =1,2,…,则P(2<X≤4)等于( )A.316B.14C.116D.516答案 A解析 P(2<X≤4)=P(X =3)+P(X =4)=123+124=316.5.若随机变量X 的分布列为则当P(X<a)=0.8A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X<a)=0.8时,实数a 的取值范畴是(1,2].6.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ) A .25 B .10 C .7 D .6答案 C解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.7.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,竞赛规定:关于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮竞赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了;X =0,甲没抢到题,或甲抢到2题,但答时一对一错;X =1时,甲抢到1题且答对或甲抢到3题,且一错两对;X =2时,甲抢到2题均答对;X =3时,甲抢到3题均答对.8.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=________. 答案310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 32C 42C 42C 62=15,P (ξ=1)=C 31C 42+C 32C 21C 41C 42C 62=715,又P(ξ=3)=C 31C 42C 62=130,∴P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-15-715-130=310.9.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列与数学期望.答案 (1)67 (2)175解析 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A , 则P(A)=C 21C 53+C 22C 52C 74=67. 因此取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P(X =1)=C 33C 74=135,P(X =2)=C 43C 74=435,P(X =3)=C 53C 74=27,P(X =4)=C 63C 74=47.则随机变量X 的分布列是故随机变量X 的数学期望E(X)=1×35+2×35+3×7+4×7=5.10.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列. 答案 (1)23(2)略解析 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由因此等可能地抽取,因此该顾客中奖的概率 P =C 41C 61+C 42C 102=3045=23.(或用间接法,即P =1-C 62C 102=1-1545=23).(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P(X =0)=C 40C 62C 102=13,P(X =10)=C 31C 61C 102=25,P(X =20)=C 32C 102=115,P(X =50)=C 11C 61C 102=215,P(X =60)=C 11C 31C 102=115.因此X 的分布列为:11.在103件,求:(1)取出的3件产品中一等品件数X 的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率. 答案 (1)略 (2)31120解析 (1)由于从10件产品中任取3件的结果数为C 103,从10件产品中任取3件,其中恰有k 件一等品的结果数为C 3kC 73-k,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P(X =k)=C 3kC 73-kC 103,k =0,1,2,3.因此随机变量X 的分布列是(2)设“取出的31件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P(A 1)=C 31C 32C 103=340,P(A 2)=P(X =2)=740,P(A 3)=P(X =3)=1120,∴取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A 1)+P(A 2)+P(A 3)=340+740+1120=31120. 12.(2021·大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的概率分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的概率分布列. 答案 (1)略 (2)略解析 (1)由题意知X 的可能取值为0,1,2,3, 则P(X =0)=(1-12)×(1-13)×(1-23)=19,P(X =1)=12×(1-13)×(1-23)+(1-12)×13×(1-23)+(1-12)×(1-13)×23=718,P(X =2)=12×13×(1-23)+(1-12)×13×23+12×(1-13)×23=718,P(X =3)=12×13×23=19.∴X 的分布列为(2)∵得分Y =5X +2(3∵X 的可能取值为0,1,2,3.∴Y 的可能取值6,9,12,15.则P(Y =6)=P(X =0)=19,P(Y =9)=P(X =1)=718,P(Y =12)=P(X =2)=718,P(Y =15)=P(X =3)=19.∴Y 的分布列为13.力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,若每位参赛选手演唱完之前有导师为其转身,则该选手能够选择加入为其转身的导师的团队中同意指导训练.已知某期《中国新歌声》,6位选手演唱完后,四位导师为其转身的情形如下表所示:现从这6(1)求选出的2人导师为其转身的人数和为4的概率;(2)记选出的2人导师为其转身的人数之和为X ,求X 的分布列及数学期望E(X). 答案 (1)15(2)E(X)=5解析 (1)设6位选手中,A 有4位导师为其转身,B ,C 有3位导师为其转知,D ,E 有2位导师为其转身,F 只有1位导师为其转身.从6人中随机抽取两人有C 62=15种情形,其中选出的2人导师为其转身的人数和为4的有C 22+C 21C 11=3种,∴所求概率为P =315=15.(2)X 的所有可能取值为3,4,5,6,7.P(X =3)=C 21C 11C 62=215;P(X =4)=15;P(X =5)=1+C 21C 21C 62=515=13;P(X =6)=C 21C 11+C 22C 62=315=15;P(X =7)=C 21C 11C 62=215. ∴X 的分布列为X 3 4 5 6 7 P215151315215E(X)=3×215+4×5+5×3+6×5+7×15=5.1.由于电脑故障,使得随机变量X 的分布列中部分数据丢失(以“x,y ”代替),其分布列如下:X 1 2 3 4 5 6 P0.200.100.x50.100.1y0.20答案 2,5解析 由于0.20+0.10+(0.1x +0.05)+0.10+(0.1+0.01y)+0.20=1,得10x +y =25,又因为x ,y 为正整数,故两个数据依次为2,5.2.一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y ,则随机变量Y 的分布列是________. 答案Y 1 2 3 4 P15152515解析 Y P(Y =1)=15,P(Y =2)=15,P(Y =3)=25,P(Y =4)=15.∴Y 的分布列为3.一个袋子中装有74,黄球3个,编号分别为2,4,6,从袋中任取4个球(假设取到任何一个球的可能性相同). (1)求取出小球中有相同编号的概率;(2)记取出的小球的最大编号为X ,求随机变量X 的分布列. 答案 (1)1935(2)略解析 (1)设“取出的小球中有相同编号的”为事件A ,编号相同可分成一个相同和两个相同,则P(A)=2(C 21C 31+C 32)+1C 74=1935. (2)随机变量X 的可能取值为:3,4,6. P(X =3)=1C 74=135,P(X =4)=C 21C 43+C 42C 74=25, P(X =6)=C 63C 74=47,随机变量X 的分布列为:4.一袋中装有102个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 答案 (1)5个 (2)略解析 (1)记“从袋中任意摸出2个球,至少得1个白球”为事件A ,设袋中白球的个数为x ,则P(A)=1-C 10-x 2C 102=79,得到x =5.故白球有5个.(2)X 服从超几何分布,P(X =k)=C 5kC 53-kC 103,k =0,1,2,3.因此可得其分布列为P112 512 512 1125.(2020·福建,理)该银行卡将被锁定.小王到该银行取钱时,发觉自己不记得了银行卡的密码,但能够确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则终止尝试;否则连续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 答案 (1)12 (2)分布列略,E(X)=52解析 (1)设“当天小王的该银行卡被锁定”的事件为A , 则P(A)=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P(X =1)=16,P(X =2)=56×15=16,P(X =3)=56×45×1=23.因此X 的分布列为X 1 2 3 P161623因此E(X)=1×16+2×16+3×3=2.6.某中学动员学生在春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列.答案 (1)2.3 (2)4199(3)略解析 依照统计图知参加活动1次、2次、3次的学生数分别为10,50,40.(1)该合唱团学生参加活动的人均次数为x -=1×10+2×50+3×40100=2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率P =C 102+C 502+C 402C 1002=4199. (3)ξ的取值为0,1,2,ξ的分布列为7.(2020·重庆)摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.依照摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列. 答案 (1)1835(2)略解析 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P(A 1)=C 31C 42C 73=1835.(2)X 的所有可能的值为:0,10,50,200, 则P(X =200)=P(A 3B 1)=P(A 3)P(B 1)=C 33C 73·13=1105,P(X =50)=P(A 3B 0)=P(A 3)P(B 0)=C 33C 73·23=2105,P(X =10)=P(A 2B 1)=P(A 2)P(B 1)=C 32C 41C 73·13=12105=435,P(X =0)=1-1105-2105-435=67.综上知X 的分布列为8.试销终止后(3件,当天营业终止后检查存货,若发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)设X 为翌日开始营业时该商品的件数,求X 的分布列和均值. 答案 (1)310 (2)114解析 (1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P(X =2)=P(“当天商品销售量为1件”)=520=14;P(X =3)=P(“当天商品销售量为0件”)+P(“当天商品销售量为2件”)+P(“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为X 的均值为E(X)=2×14+3×34=4.9.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).解析 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,因此共有8C 32对相交棱,因此P(ξ=0)=8C 32C 122=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C 122=111. 因此P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611.因此随机变量ξ的分布列是因此E(ξ)=1×611+10.(2020·贵州遵义联考)2021年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家差不多上通过层层选择才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采纳分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:(1)(2)当产品中的微量元素x ,y 满足x≥175,且y≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望). 答案 (1)35 (2)14 (3)45解析 (1)乙厂生产的产品总数为5÷1498=35.(2)样品中优等品的频率为25,估量乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i)=C 2iC 32-iC 52(i =0,1,2), ξ的分布列为3 10+1×35+2×110=45.均值E(ξ)=0×。

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

2022版高考数学大一轮复习第11章概率第2讲古典概型与几何概型2

第十一章概率第二讲古典概型与几何概型1。

[2021长春市第一次质量监测]张老师居住的一条街上,行驶着甲、乙两路公交车,这两路公交车的数目相同,并且都是每隔十分钟就到达车站一辆(即停即走)。

张老师每天早晨都是在6:00到6:10之间到达车站乘车到学校,这两条公交线路对他是一样的,都可以到达学校,甲路公交车的到站时间是6:09,6:19,6:29,6:39,…,乙路公交车的到站时间是6:00,6:10,6:20,6:30,…,则张老师乘坐上甲路公交车的概率是() A.10%B。

50%C。

60%D。

90%2。

[2021安徽省示范高中联考]在以正五边形ABCDE的顶点为顶点的三角形中,任取一个,是钝角三角形的概率()A。

12B.13C。

14D.233。

[2021石家庄质检]北京冬奥会将于2022年2月4日到2022年2月20日在北京和张家口举行.申奥成功后,中国邮政陆续发行多款邮票,图案包括冬奥会会徽“冬梦”、冬残奥会会徽“飞跃”、冬奥会吉祥物“冰墩墩”、冬残奥会吉祥物“雪容融”、多种冰上运动等.现从2枚会徽邮票、2枚吉祥物邮票、1枚冰上运动邮票共5枚邮票中任取3枚,则恰有1枚吉祥物邮票的概率为()A.310B.12C。

35D。

7104。

[2021晋南高中联考]把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为 ( )A.23B .13C 。

35D 。

145。

[2021贵阳四校第一次联考][条件创新]在区间[-2,2]内随机取一个数x ,则事件“y ={2x ,x ≤0,x +1,x >0,且y ∈[12,2]”发生的概率为( )A.78B 。

58C 。

38D 。

126。

[2021广东珠海模拟][与音乐结合]现有8位同学参加音乐节演出活动,每位同学都会拉小提琴或吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 ( )A.14B 。

【志鸿优化设计】高考数学一轮总复习 11.2 排列与组合课件(含高考真题)文 新人教版

【志鸿优化设计】高考数学一轮总复习 11.2 排列与组合课件(含高考真题)文 新人教版
3 5 这时是 5 个元素的全排列,应有A5 5 种排法,由分步计数原理,有A 3 A 5 =720 种
不同排法.
考点一
考点二
考点三
第十一章
11.2 排列与组合 15 -15-
(2)先将男生排好,共有A4 4 种排法,再在这 4 个男生的中间及两头的 5 个 4 3 空当中插入 3 个女生有A3 种方案 , 故符合条件的排法共有 A 4 A 5 =1 440 种不 5 同排法. (3)甲、乙两人先排好,有A2 2 种排法,再从余下 5 人中选 3 人排在甲、乙 两人中间,有A3 5 种排法,这时把已排好的 5 人视为一整体,与最后剩下的两人 2 3 3 再排,又有A3 3 种排法,这样总共有A 2 A 5 A 3 =720 种不同排法. (4)先排甲、乙和丙 3 人以外的其他 4 人,有A4 4 种排法;由于甲、乙要相 邻,故再把甲、乙排好,有A2 2 种排法;最后把甲、乙排好的这个整体与丙分 4 2 2 别插入原先排好的 4 人的空当中有A2 5 种排法.这样,总共有A 4 A 2 A 5 =960 种 不同排法. (5)从 7 个位置中选出 4 个位置把男生排好,则有A4 7 种排法.然后再在余 下的 3 个空位置中排女生,由于女生要按身体高矮排列,故仅有一种排法.这 样总共有A4 7 =840 种不同排法.
������ 要借助于排列数公式,公式C������
=
排列数A������ ������ 相同,分母是 m 个元素的全排列数.当 m,n 较小时,可利用该公式
������ 计数;组合数公式还可以表示成C������ =
A������ ������(������-1)(������-2)…(������-������+1) ������ ������ = A������ ������! ������! ������!(������-������)!

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。

【绿色通道】高考数学总复习 11-2排列与组合课件 新人教A版

【绿色通道】高考数学总复习 11-2排列与组合课件 新人教A版
考纲 要求
1.理解排列与组合的概念. 2.能利用计数原理推导排列数公式、组合数公式 . 3.能利用排列与组合解决一些简单的实际问题.
热点 提示
1.排列、组合问题每年必考,以选择、填空题的 形式考查,或在解答题中和概率相结合进行考查. 2.以实际问题为背景,以考查排列数、组合数为 主,同时考查分类讨论的思想及解决实际问题的能 力.
排列与排列数
组合与组合数 1.组合:从n个不同元素中取 出m(m≤n)个元素 合成一组 , 叫做从n个不同元素中取出m 个元素的一个组合. 2.组合数:从n个不同元素中 取出m(m≤n)个元素的 所有 不同组合的个数 ,叫做从n 个不同元素中取出m个元素的 组合数.
1.排列:从n个不同元素中取 按照一定的 出m(m≤n)个元素, 顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排 列. 定义 2.排列数:从n个不同元素中 取出m(m≤n)个元素的 所有 不同排列的个数 ,叫做从n个 不同元素中取出m个元素的排 列数.
数,组成一个没有重复数字的三位数,这样的三位数共有
( A.9个 C.36个 B.24个 D.54个 =9种方法, )
解析:选出符合题意的三个数有
每三个数可排成
=6个三位数,
∴共有9×6=54个符合题意的三位数. 答案:D
2.停车场每排恰有10个停车位.当有7辆不同型号的 车已停放在同一排后,恰有 3 个空车位连在一起的排法有
6 A1 种,其余 6 人全排列,有 A 3 6种.由分步乘法计数原理得符 6 合条件的排法共有 A1 A 3 6=2160 种.
(2)位置分析法(特殊位置优先安排).先排最左边,除去
6 甲外,有 A1 种,余下的 6 个位置全排列有 A 6 6种,但应剔除乙 5 1 6 1 5 在最右边的排法数 A1 A ,则符合条件的排法共有 A A - A 5 5 6 6 5A5

【高考复习参考】高三数学(理)配套黄金练习:11-2(含答案)

【高考复习参考】高三数学(理)配套黄金练习:11-2(含答案)

S=0
i=1

while i< 100

S=S+i

end

要使上述程序能运算出“ 1+ 2+…+ 100”的结果,需将语句“ i =i+ 1”加在
()
A .①处
B.②处
C.③处
D.④处
答案 C
5.程序 上述程序如果输入的值是 51,则运行结果是 ( )
A.51
B.15
C. 105 答案 B
D. 501
二、填空题
7.下边的程序语句输出的结果 S 为 ________.
答案 17 解析 i 从 1 开始,依次取 3,5,7,9…,当 i <8 时,循环继续进行,故当 i= 9 时,跳出循环,故输出 S=2×7+3=17.
8 给出一个算法: Readx
IF x≤0 THEN
y x ←4x ELSE f x ←2x
解析 因为算术运算符 “”和“MOD ”分别用来取商和余数,所以 a=5,b=1,
x= 10×1+5=15.故选 B.
6.下边方框中为一个求 20 个数的平均数的程序,则在横线上应填的语句为 ()
A.i >20
B.i< 20
C. i>= 20
D. i<= 20
答案 A
解析 加完第 20 个数, i= 21,应是第 1 个满足条件,故选 A.
c= a+ b PRINT c
________ b= c n= n+ 1
WEND END 答案 a=b 10.
i←i+
End while
Print t 以上程序输出的结果是 ________ 答案 24 解析 由题意可知,它表示计算 1×2×…× n 的算法,所以输出的结果是 1 ×2×3×4=24. 11.为了在运行下面的程序之后得到输出 y=25,键盘输入 x 应该是 ________ INPUT x

高考数学一轮总复习第十一章计数原理和概率2排列与组合课件理

高考数学一轮总复习第十一章计数原理和概率2排列与组合课件理

A.60 种
B.63 种
C.65 种 答案 D
D.66 种
解析 共有 4 个不同的偶数和 5 个不同的奇数,要使和为偶数,
则 4 个数全为奇数,或全为偶数,或 2 个奇数 2 个偶数,故不同的
取法有 C54+C44+C52C42=66 种.
第十一页,共55页。
6.(2018·上海春季高考题)某校组队参加辩论赛,从 6 名学 生中选出 4 人分别担任一、二、三、四辩,若其中学生甲必须参 赛且不担任四辩,则不同的安排方法种数为________(结果用数值 表示).
第2课时(kèshí) 排列与组合
第一页,共55页。
…2018 考纲下载… 1.理解排列、组合的概念. 2.能利用计数原理推导排列数公式、组合数公式. 3.能解决简单的实际问题. 请注意 1.排列、组合问题每年必考. 2.以实际问题为背景,考查排列数、组合数,同时考查分 类讨论的思想及解决问题的能力. 3.以选择、填空的形式考查,或在解答题中和概率相结合 进行考查.
第二十四页,共55页。
(6)(捆绑法)把甲、乙及中间 3 人看作一个整体,第一步先排 甲乙两人,有 A22 种方法;第二步从余下 5 人中选 3 人排在甲乙 中间,有 A53 种;第三步把这个整体与余下 2 人进行全排列,有 A33 种方法.故共有 A22·A53·A33=720 种.
(7)(消序法)A277=2 520. (8)(间接法)A77-2A66+A55=3 720. 位置分析法:分甲在排尾与不在排尾两类.
【解析】 甲、乙两同学必须相邻,而且丙不能站在排头和排 尾的排法有:
方法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时 一共有 6 个元素,因为丙不能站在排头和排尾,所以可以从其余的 5 个元素中选取 2 个元素放在排头和排尾,有 A52 种方法;将剩下的 4 个元素进行全排列有 A44 种方法;最后将甲、乙两个同学“松绑” 进行排列有 A22 种方法,所以这样的排法一共有 A52A44A22=960 种 方法.

2021高考数学一轮复习统考第11章概率第2讲古典概型课时作业含解析北师大版

2021高考数学一轮复习统考第11章概率第2讲古典概型课时作业含解析北师大版

古典概型课时作业1.(2019·新疆乌鲁木齐第三次质检)从1,2,3,4,5,6中任意取出两个不同的数,其和为7的概率为( )A.215B.15C.415D.13答案 B解析 从1,2,3,4,5,6中任意取出两个不同的数,共有15种不同的取法,它们分别是{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15种.从1,2,3,4,5,6中任意取出两个不同的数,它们的和为7,则不同的取法为{1,6},{2,5},{3,4},共3种,故所求的概率为15,故选B.2.(2019·安徽江淮十校最后一卷)《易经》是我国古代预测未来的著作.其中有同时抛掷三枚古钱币观察正反面来预测未知,则抛掷一次时出现两枚正面一枚反面的概率为( )A.18B.14C.38D.12答案 C解析 抛掷三枚古钱币出现的基本事件共有{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},{反反反},共8种,其中出现两正一反的基本事件共3种,故概率为38.故选C.3.(2019·山东潍坊三模)五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成.如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A.12B.13C.14D.15答案 A解析 从金、木、水、火、土中任取2类,包含的基本事件为金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共10种,其中2类元素相生的基本事件包含木火、火土、水木、金水、土金,共5种,所以2类元素相生的概率为510=12,故选A.4.(2019·湖南六校联考)某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是( )A.23B.12C.14D.16答案 B解析 从黄、白、蓝、红4种颜色中任意选2种颜色的所有基本事件有{黄白},{黄蓝},{黄红},{白蓝},{白红},{蓝红},共6种.其中包含白色的基本事件有3种,所以选中的颜色中含有白色的概率为12,故选B.5.(2019·湖南雅礼中学模拟二)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( )A.12B.13C.14D.15 答案 C解析 甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人共有4种情况,包含(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁).其中甲、乙将贺年卡都送给丁的情况只有一种,其概率是14,故选C.6.(2019·辽宁大连二模)一个口袋中装有5个球,其中有3个红球,其余为白球,这些球除颜色外完全相同,若一次从中摸出2个球,则至少有1个红球的概率为( )A.910B.35C.310D.110 答案 A解析 由题意知白球有5-3=2个,记三个红球为A ,B ,C ,两个白球为a ,b .一次摸出2个球所有可能的结果为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab ,共10种,至少有一个红球的结果为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,共9种.∴所求概率P =910.7.(2019·江西景德镇第二次质检)袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件A ,用随机模拟的方法估计事件A 发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:A.19B.29C.518D.718答案 C解析 事件A 包含“瓷”“都”两字,即包含数字0和1,随机产生的18组数中,包含0,1的有021,001,130,031,103,共5组,故所求概率为P =518,故选C.8.(2019·湖北4月联考)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,若抽得的第一张卡片上的数小于第二张卡片上的数的概率为p 1,抽得的第一张卡片上的数大于第二张卡片上的数的概率为p 2,抽得的第一张卡片上的数等于第二张卡片上的数的概率为p 3,则( )A.p 1+p 2=1 B .p 2<p 1,C.p 1>p 3D .p 1=p 2=答案 C解析 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n =25,抽得的第一张卡片上的数小于第二张卡片上的数包含的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10个,抽得的第一张卡片上的数等于第二张卡片上的数包含的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),共5个,∴p 1=p 2=1025=25,p 3=525=15,故选C.9.(2019·四川宜宾二检)一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为( )A.45B.710C.35D.12答案 B解析 记3张红桃,1张黑桃,1张梅花分别为红1,红2,红3,黑1,梅1.所有可能情况有(红1,黑1),(红1,梅1),(红2,黑1),(红2,梅1),(红3,黑1),(红3,梅1),(红1,红2),(红1,红3),(红2,红3),(黑1,梅1),共10种.其中符合花色不同的情况有(红1,黑1),(红1,梅1),(红2,黑1),(红2,梅1),(红3,黑1),(红3,梅1),(黑1,梅1),共7种,根据古典概型的概率公式得P =710,故选B.10.(2019·甘肃兰州模拟)双曲线C :x 2a 2-y 2b2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14B.38C.12D.58答案 B解析 直线l :y =x 与双曲线C 的左、右支各有一个交点,则b a>1,总基本事件数为16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为38. 11.(2019·新疆阿克苏三诊)将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是( )A.29B.827C.49D.1627答案 C解析 由题可得大正方体的最上层、中间一层及最底层都有4个恰好是两面涂色的小正方体,所以恰好是两面涂色的小正方体个数为4×3=12,所以从这些小正方体中任取一个,恰好是两面涂色的概率是P =1227=49,故选C.12.(2019·湖南长郡中学第六次月考)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )A.13B.23C.14D.34答案 B解析 此人从小区A 前往小区H 的所有最短路径有A →G →O →H ,A →E →O →H ,A →E →D →H ,共3条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件有A →G →O →H ,A →E→O →H ,共2条.所以他经过市中心的概率为P (M )=23,故选B.13.(2019·合肥模拟)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排1名男生、星期日安排1名女生的概率为________.答案 13解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动的情况有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,共12种,而星期六安排1名男生、星期日安排1名女生的情况有A 1B 1,A 1B 2,A 2B 1,A 2B 2,共4种,则所求的概率为P =412=13.14.(2019·四川绵阳模拟)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.答案 16解析 从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16.15.某人在微信群中发了一个7元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领取的钱数不少于其他任何人的概率是________.答案 25解析 由题意,得基本事件有(1,1,5),(1,5,1),(5,1,1),(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1),(1,3,3),(3,1,3),(3,3,1),(2,2,3),(2,3,2),(3,2,2),共15种,其中甲领取的钱数不少于其他任何人的基本事件有(5,1,1),(4,1,2),(4,2,1),(3,1,3),(3,3,1),(3,2,2),共6种,所以所求概率为615=25.16.(2019·黑龙江哈尔滨六中二模)从装有3双不同鞋子的柜子里,随机取出2只鞋子,则取出的2只鞋子不成对的概率为________.答案 45解析 设3双鞋子分别为A 1,A 2、B 1,B 2、C 1,C 2,则取出2只鞋子的情况有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(C 1,C 2)共15种,其中,不成对的情况有(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),共12种,由古典概型的公式得,所求概率为1215=45.17.(2019·成都市高三一诊)某部门为了解某企业在生产过程中的用水量情况,对日用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的日用水量的数据作为样本,得到的统计结果如下表:(2)已知样本中日用水量在[80,90)内的这6个数据分别为83,85,86,87,88,89,从这6个数据中随机抽取2个,求抽取的2个数据中至少有一个大于86的概率.解 (1)∵3+6+m =12,∴m =3,∴n =312=14,p =m 12=312=14,,∴m =3,n =p =14.(2)从这6个数据中随机抽取2个数据的情况有{83,85},{83,86},{83,87},{83,88},{83,89},{85,86},{85,87},{85,88},{85,89},{86,87},{86,88},{86,89},{87,88},{87,89},{88,89},共15种.其中2个数据都小于或等于86的情况有{83,85},{83,86},{85,86},共3种. 故抽取的2个数据中至少有一个大于86的概率P =1-315=45.18.(2019·西安模拟)某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如下表:他们各自在每个站下车的可能性是相同的.(1)若甲、乙两人共付费2元,则甲、乙下车的方案共有多少种? (2)若甲、乙两人共付费4元,求甲比乙先到达目的地的概率.解 (1)由题意,得甲、乙两人乘坐地铁均不超过3站,前3站设为A 1,B 1,C 1.,甲、乙两人下车方案有(A 1,A 1),(A 1,B 1),(A 1,C 1),(B 1,A 1),(B 1,B 1),(B 1,C 1),(C 1,A 1),(C 1,B 1),(C 1,C 1),共9种.(2)设9站分别为A 1,B 1,C 1,A 2,B 2,C 2,A 3,B 3,C 3.因为甲、乙两人共付费4元,所以可能有甲付1元,乙付3元;甲付3元,乙付1元;甲付2元,乙付2元,共三类情况.由(1)可知每类情况中有9种方案,所以甲、乙两人共付费4元共有27种方案.而甲比乙先到达目的地的方案有(A 1,A 3),(A 1,B 3),(A 1,C 3),(B 1,A 3),(B 1,B 3),(B 1,C 3),(C 1,A 3),(C 1,B 3),(C 1,C 3),(A 2,B 2),(A 2,C 2),(B 2,C 2),共12种,故所求概率为1227=49.所以甲比乙先到达目的地的概率为49.19.(2019·河南八市重点高中联盟压轴)某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,处罚时,得到如下数据:(1)当处罚金定为100元时,员工迟到的概率会比不进行处罚时降低多少?(2)将选取的200人中会迟到的员工分为A ,B 两类:A 类员工在处罚金不超过100元时就会改正行为;B 类是其他员工.现对A 类与B 类员工按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B 类员工的概率是多少?解 (1)∵当处罚金定为100元时,员工迟到的概率为40200=15,不处罚时,迟到的概率为80200=25.∴当处罚金定为100元时,比不制定处罚,员工迟到的概率会降低15.(2)由题意知,A 类员工和B 类员工各有40人,分别从A 类员工和B 类员工中各抽出两人,从A 类员工中抽出的两人分别记为A 1,A 2,从B 类员工中抽出的两人分别记为B 1,B 2,设“从A 类与B 类员工中按分层抽样的方法抽取4人依次进行深度问卷”为事件M ,则事件M 中首先抽出A 1的事件有(A 1,A 2,B 1,B 2),(A 1,A 2,B 2,B 1),(A 1,B 1,A 2,B 2),(A 1,B 1,B 2,A 2),(A 1,B 2,A 2,B 1),(A 1,B 2,B 1,A 2),共6种,,同理首先抽出A 2,B 1,B 2的事件也各有6种,故事件M 共有4×6=24种,设“抽取4人中前两位均为B 类员工”为事件N ,则事件N 有(B 1,B 2,A 1,A 2),(B 1,B 2,A 2,A 1),(B 2,B 1,A 1,A 2),(B 2,B 1,A 2,A 1),共4种,∴P (N )=424=16,∴抽取4人中前两位均为B 类员工的概率是16.20.(2019·山东淄博模拟)为响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男、女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.解 (1)根据阅读用时频数分布表知,该市市民每天阅读用时的平均值为0+0.52×10200+0.5+12×20200+1+1.52×50200+1.5+22×60200+2+2.52×40200+2.5+32×20200=1.65,故该市市民每天阅读用时的平均值为1.65.(2)设参加交流会的男代表为A 1,A 2,a ,其中A 1,A 2喜欢古典文学,则男代表参加交流会的方式有A 1A 2,A 1a ,A 2a ,共3种.参加交流会的女代表为B ,b 1,b 2,其中B 喜欢古典文学,则女代表参加交流会的方式有Bb 1,Bb 2,b 1b 2,共3种,所以参加交流会代表的组成方式有{Bb 1,A 1A 2},{Bb 1,A 1a },{Bb 1,A 2a },{Bb 2,A 1A 2},{Bb 2,A 1a },{Bb 2,A 2a },{b 1b 2,A 1A 2},{b 1b 2,A 1a },{b 1b 2,A 2a },共9种,其中喜欢古典文学的男代表多于喜欢古典文学的女代表的是{Bb 1,A 1A 2},{Bb 2,A 1A 2},{b 1b 2,A 1A 2},{b 1b 2,A 1a },{b 1b 2,A 2a },共5种,所以喜欢古典文学的男代表多于喜欢古典文学的女代表的概率是P =59.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

2022版新高考数学总复习真题专题--二项式定理(解析版)

2022版新高考数学总复习真题专题--二项式定理(解析版)

2022版新高考数学总复习--§11.2 二项式定理— 五年高考 —考点 二项式定理1.(2020课标Ⅰ理,8,5分)(x +y 2x)(x +y )5的展开式中x 3y 3的系数为 ( )A.5B.10C.15D.20 答案 C2.(2020北京,3,4分)在(√x -2)5的展开式中,x 2的系数为 ( )A.-5B.5C.-10D.10 答案 C3.(2019课标Ⅲ理,4,5分)(1+2x 2)(1+x )4的展开式中x 3的系数为( )A.12B.16C.20D.24 答案 A4.(2021浙江,13,6分)已知多项式(x -1)3+(x +1)4=x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 1= ;a 2+a 3+a 4= .答案 5;105.(2021上海,6,4分)若(x +a )5,则x 2的系数为80,则a = .答案 26.(2020课标Ⅲ理,14,5分)(x 2+2x )6的展开式中常数项是 (用数字作答). 答案 2407.(2020浙江,12,6分)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4= ,a 1+a 3+a 5= .答案 80;1228.(2020天津,11,5分)在(x+2x 2)5的展开式中,x 2的系数是.答案 109.(2019浙江,13,6分)在二项式(√2+x )9的展开式中,常数项是 ,系数为有理数的项的个数是 . 答案 16√2;510.(2019天津理,10,5分)(2x -18x 3)8的展开式中的常数项为 . 答案 2811.(2018浙江,14,4分)(√x 3+12x )8的展开式的常数项是 .答案 7以下为教师用书专用(1—27)1.(2016四川理,2,5分)设i 为虚数单位,则(x +i )6的展开式中含x 4的项为 ( )A.-15x 4B.15x 4C.-20i x 4D.20i x 4答案 A T 3=C 62x 4i 2=-15x 4,故选A .易错警示 易误认为i 2=1而致错.2.(2015湖北理,3,5分)已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为 ( ) A.212B.211C.210D.29答案 D ∵(1+x )n的展开式中第4项与第8项的二项式系数分别为C n 3,C n 7,∴C n 3=C n 7,得n =10.从而有C 100+C 101+C 102+C 103+…+C 1010=210,又C 100+C 102+…+C 1010=C 101+C 103+…+C 109,∴奇数项的二项式系数和为C 100+C 102+…+C 1010=29.评析 本题考查求二项展开式的二项式系数及其性质、组合数性质,考查运算求解能力. 3.(2015陕西理,4,5分)二项式(x +1)n(n ∈N +)的展开式中x 2的系数为15,则n = ( )A.4B.5C.6D.7答案C因为(x+1)n的展开式中x2的系数为C n n-2,所以C n n-2=15,即C n2=15,亦即n2-n=30,解得n=6(n=-5舍).4.(2015课标Ⅰ理,10,5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60答案C(x2+x+y)5=[(x2+x)+y]5的展开式中只有C52(x2+x)3y2中含x5y2,易知x5y2的系数为C52C31=30,故选C.5.(2014四川理,2,5分)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10答案C在(1+x)6的展开式中,含x2的项为T3=C62·x2=15x2,故在x(1+x)6的展开式中,含x3的项的系数为15.评析本题考查二项展开式中求指定项的系数,属容易题.但在(1+x)6前面乘以x后,易误求T4=C63x3.6.(2014湖南理,4,5分)(12x-2y)5的展开式中x2y3的系数是()A.-20B.-5C.5D.20答案A展开式的通项为T k+1=C5k(12x)5-k·(-2y)k=(-1)k·22k-5C5k x5-k·y k,令5-k=2,得k=3.则展开式中x2y3的系数为(-1)3·22×3-5C53=-20,故选A.评析本题考查由二项式定理求指定项系数、组合数的计算,考查学生的运算求解能力,属于中档题.7.(2014浙江理,5,5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)= ()A.45B.60C.120D.210答案C在(1+x)6的展开式中,x m的系数为C6m,在(1+y)4的展开式中,y n的系数为C4n,故f(m,n)=C6m·C4n.从而f(3,0)=C63=20,f(2,1)=C62·C41=60,f(1,2)=C61·C42=36,f(0,3)=C43=4,故选C.8.(2013课标Ⅱ理,5,5分)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a = ( )A.-4B.-3C.-2D.-1答案 D 由二项式定理得(1+x )5的展开式的通项为T r +1=C 5r·x r ,所以当r =2时,(1+ax )(1+x )5的展开式中x 2的系数为C 52,当r =1时,x 2的系数为C 51·a ,所以C 52+C 51·a =5,a =-1,故选D .9.(2013辽宁理,7,5分)使(3x x √x)n(n ∈N +)的展开式中含有常数项的最小的n 为 ( )A.4B.5C.6D.7 答案 BT r +1=C n r (3x )n -r ·x -32r =C n r ·3n -r ·x n -r -32r =C n r·3n -r ·x n -5r2(r =0,1,2,…,n ),若T r +1是常数项,则有n -52r =0,即2n =5r (r =0,1,…,n ),当r =0,1时,n =0,52,不满足条件;当r =2时,n =5,故选B .10.(2013大纲全国理,7,5分)(1+x )8(1+y )4的展开式中x 2y 2的系数是( )A.56B.84C.112D.168答案 D (1+x )8·(1+y )4的展开式中x 2y 2的系数为C 82·C 42=28×6=168,选D .11.(2013课标Ⅰ理,9,5分)设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b.若13a =7b ,则m = ( ) A.5 B.6 C.7 D.8答案 B 由题意得:a =C 2m m ,b =C 2m+1m ,所以13C 2m m =7C 2m+1m ,∴13·(2m )!m !·m !=7·(2m+1)!m !·(m+1)!,∴7(2m+1)m+1=13,解得m =6,经检验m =6为原方程的解.选B .12.(2012湖北理,5,5分)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a = ( )A.0B.1C.11D.12 答案 D 512 012+a =(52-1)2 012+a =522 012+C 2 0121×522 011×(-1)+…+C 2 0122 011×52×(-1)2 011+(-1)2 012+a能被13整除,只需(-1)2 012+a =1+a 能被13整除即可.∵0≤a <13,∴a =12,故选D .评析 本题考查二项式定理及整除等知识,考查学生应用意识和运算求解能力. 13.(2012安徽理,7,5分)(x2+2)(1x 2-1)5的展开式的常数项是()A.-3B.-2C.2D.3答案 D 由题意知展开式的常数项为2×(-1)5+C 51×(-1)4=-2+5=3,故选D .评析 本题考查二项式定理的应用,抓住常数项的构成特征是顺利解题的关键.14.(2018上海,3,4分)在(1+x )7的二项展开式中,x 2项的系数为 (结果用数值表示).答案 21解析 本题主要考查二项展开式.(1+x )7的二项展开式中,x 2项的系数为C 72=7×62=21. 15.(2016天津理,10,5分)(x 2-1x )8的展开式中x 7的系数为 .(用数字作答)答案 -56解析 T r +1=C 8rx16-2r(-x )-r=(-1)-rC 8rx16-3r,令16-3r =7,得r =3,所以x 7的系数为(-1)-3C 83=-56.易错警示 本题中,展开式的通项易写错,尤其是符号,正负易混,需引起注意. 评析 本题主要考查二项式定理,对运算求解能力要求较高.属中档题. 16.(2015天津,12,5分)在(x -14x )6的展开式中,x 2的系数为.答案1516解析 (x -14x )6的展开式的通项为T r +1=C 6r x 6-r(-14x )r =(-14)rC 6rx6-2r,令6-2r =2,得r =2,所以x 2的系数为C 62×(-14)2=1516.17.(2015重庆理,12,5分)(x 32√x)5的展开式中x 8的系数是 (用数字作答). 答案52解析 二项展开式的通项为T r +1=C 5r (x 3)5-r·(2√x )r =12r C 5r ·x 15-3r -r 2,令15-3r -r2=8,得r =2,于是展开式中x 8的系数为122×C 52=14×10=52.18.(2015课标Ⅱ理,15,5分)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a = .答案 3解析 设f (x )=(a +x )(1+x )4,则其所有项的系数和为f (1)=(a +1)·(1+1)4=(a +1)×16,又奇数次幂项的系数和为12[f (1)-f (-1)],∴12×(a +1)×16=32,∴a =3. 评析 二项展开式问题中,涉及系数和的问题,通常采用赋值法.19.(2014安徽理,13,5分)设a ≠0,n 是大于1的自然数,(1+x a )n的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a = .答案 3解析 根据题意知a 0=1,a 1=3,a 2=4,结合二项式定理得{C n 1·1a =3,C n 2·1a 2=4,即{n -1=83a ,n =3a ,解得a =3. 20.(2014课标Ⅰ理,13,5分)(x -y )(x +y )8的展开式中x 2y 7的系数为 .(用数字填写答案)答案 -20解析 由二项展开式公式可知,含x 2y 7的项可表示为x ·C 87xy 7-y ·C 86x 2y 6,故(x -y )(x +y )8的展开式中x 2y 7的系数为C 87-C 86=C 81-C 82=8-28=-20.21.(2014课标Ⅱ理,13,5分)(x +a )10的展开式中,x 7的系数为15,则a = .(用数字填写答案) 答案12解析 T r +1=C 10rx10-r a r,令10-r =7,得r =3,∴C 103a 3=15,即10×9×83×2×1a 3=15,∴a 3=18,∴a =12.22.(2013浙江理,11,4分)设二项式(√x -√x3)5的展开式中常数项为A ,则A = .答案 -10解析 展开式通项为T r +1=C 5r·(√x )5-r (1√x3)r=C 5r(-1)r x 52-56r .令52-56r =0,得r =3.当r =3时,T 4=C 53(-1)3=-10.故A =-10.23.(2012福建理,11,4分)(a +x )4的展开式中x 3的系数等于8,则实数a = .答案 2解析 T 3+1=C 43a 1x 3=4ax 3,∴4a =8,∴a =2.评析 本题考查二项展开式的通项公式,也考查了学生的运算求解能力.24.(2012浙江理,14,4分)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3= .答案 10解析 由于f (x )=x 5=[(1+x )-1]5,所以a 3=C 53(-1)2=10.评析 本题考查二项式定理的运用,考查整体思想、转化与化归思想,可利用构造法解决问题. 25.(2012大纲全国理,15,5分)若(x +1x )n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为 . 答案 56 解析由C n 2=C n 6得n =8,T r +1=C 8r x 8-r ·(1x )r =C 8r x 8-2r,令8-2r =-2,解得r =5,故所求系数为C 85=C 83=56.评析 本题考查了二项式定理,运用二项展开式的通项公式求指定项的系数.26.(2016课标Ⅰ,14,5分)(2x +√x )5的展开式中,x 3的系数是 .(用数字填写答案)答案 10解析 T r +1=C 5r (2x )5-r·(√x )r =25-rC 5r·x 5-r2,令5-r2=3,得r =4,∴T 5=10x 3,∴x 3的系数为10.思路分析 利用二项展开式的通项公式求出第r +1项,令x 的指数为3,求出r ,即可求解x 3的系数.方法总结写出二项展开式的通项,化简通项,解出满足题意的r的值,代入通项是解决此类问题的通法.27.(2016山东,12,5分)若(ax2√x )5的展开式中x5的系数是-80,则实数a=.答案-2解析T r+1=a5-r C5r x10-52r,令10-52r=5,解之得r=2,所以a3C52=-80,a=-2.—三年模拟—A组考点基础题组考点二项式定理1.(2020河北邯郸空中课堂备考检测,6)(1-2x)6的展开式的第三项为()A.60B.-120C.60x2D.-120x3答案C2.(2021湖南衡阳联考,4)(x-ax )6的展开式中常数项为-20,则含x4项的系数为()A.-6B.-15C.6D.15答案A3.(2020福建泉州适应性线上测试)若(2x+1)5=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4+a5(x+1)5,则a4= ()A.10B.-10C.80D.-80答案D4.(2021广东韶关一模,6)已知(1+x)10=a0+a1(2+x)+a2(2+x)2+…+a10(2+x)10,则a9= ()A.-10B.10C.-45D.45答案 A5.(2021广东肇庆二模,5)(ax 2-1x )6的展开式的常数项为60,则a 的值为 ( )A.2B.-2C.±2D.±3 答案 C6.(2021山东枣庄二模,6)若x 6=a 0+a 1(x +1)+a 2(x +1)2+a 3(x +1)3+…+a 6(x +1)6,则a 3=( )A.20B.-20C.15D.-15 答案 BB 组 综合应用题组时间:40分钟 分值:55分一、单项选择题(每小题5分,共10分)1.(2020福建毕业班质量检查)(2x -1)(x +2)5的展开式中,x 3的系数是( )A.200B.120C.80D.40 答案 B2.(2021上海徐汇位育中学开学考试,16)已知数列{a n }为有穷数列,共95项,且满足a n =C 200n(√63)200-n (√2)n,则数列{a n }中的整数项的个数为 ( )A.13B.14C.15D.16 答案 C二、多项选择题(每小题5分,共15分)3.(2021湖南永州二模,10)关于(2x-x)6的展开式,下列结论正确的是( )A.各项系数之和为1B.二项式系数之和为26C.存在常数项D.x 4的系数为12答案 ABC4.(2021江苏百校联考4月调研,11)设(1-2x )29=a 0+a 1x +a 2x 2+…+a 29x 29,则下列结论正确的是( )A.a 15+a 16>0B.a 1+a 2+a 3+…+a 29=-1C.a 1+a 3+a 5+…+a 29=-1+3292D.a 1+2a 2+3a 3+…+29a 29=-58 答案 ACD5.(2021江苏盐城二模,12)已知n ∈N *,n ≥2,p +q =1,设f (k )=C 2n k p k q2n -k,其中k ∈N ,k ≤2n ,则( )A.∑k=02nf (k )=1B.∑k=02nkf (k )=2npqC.若np =4,则f (k )≤f (8)D.∑k=0nf (2k )<12<∑k=1nf (2k -1)答案 AC三、填空题(每小题5分,共30分)6.(2020湖南、河南、江西3月线上联考,14)(x 2+2)·(2x -1x )6的展开式中所有项的系数和为 ,常数项为 . 答案 3;-2607.(2020辽宁葫芦岛兴城高级中学模拟)已知(2x √x )n的展开式中第2项与第3项的二项式系数之比是2∶5,则x 3的系数为 .答案 2408.(2020山东青岛三模,15)若(2-x )17=a 0+a 1(1+x )+a 2(1+x )2+…+a 16(1+x )16+a 17(1+x )17,则 (1)a 0+a 1+a 2+…+a 16= ;(2)a 1+2a 2+3a 3+…+16a 16= .答案 (1)217+1 (2)17-17×2169.(2021山东济南十一学校联考,14)已知m 是常数,(1-mx )5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,且a 1+a 2+a 3+a 4+a 5=-2,则a 1= .答案 -1010.(2021山东聊城二模,13)(a +1x )(x -2x )6的展开式中各项系数的和为3,那么展开式中的常数项为 .答案 -32011.(2021上海崇明二模,8)已知(x -2x 2)n 的展开式中,所有二项式系数的和等于64,则该展开式中常数项的值等于 .答案 60 — 一年原创 —1.(2021 5·3原创题)已知-C 1001(2-x )+C 1002(2-x )2-C 1003(2-x )3+…+C 100100(2-x )100=a 0+a 1x +a 2x 2+…+a 100x 100,则a 1+a 2+a 3+…+a 99的值是 ( ) A.-1 B.-2 C.299-1D.299-12答案 B 2.(2021 5·3原创题)设正整数n ≥5,若(x -1x )(1-x )n 不含有x 3的项,则n 的值为 ( ) A.5 B.6C.7D.8答案 B3.(2021 5·3原创题)设(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,集合M={a i|0≤i≤5,i∈Z},则集合M 的双元素子集(即恰含2个元素的子集)个数为()A.10B.15C.20D.30答案A4.(2021 5·3原创题)我国南宋数学家杨辉1261年所著的《详解九章算术》一书中展示了二项式系数表(图1),在欧洲,法国数学家帕斯卡在十七世纪五十年代才发现并使用它.我国数学家利用杨辉三角做了广泛的研究,1303年元代数学家朱世杰在《四元玉鉴》(图2)中关于三角垛的研究就是典型一例.11阶杨辉三角图1图2观察图一的第三斜列有如下规律3=1+2,6=1+2+3,10=1+2+3+4,……,第四斜列有如下规律4=1+3,10=1+3+6,20=1+3+6+10,……,第四斜列第n个数是第三斜列的前n个数之和,第五斜列同样有类似的规律,朱世杰根据这一规律给出了一系列所谓“三角垛”公式,现在表示如下:∑i=1n i =1+2+3+…+n =12!n (n +1), ①∑i=1n 12!i (i +1)=1+3+6+…+12!n (n +1)=13!n (n +1)(n +2), ② ∑i=1n 13!i (i +1)(i +2)=1+4+10+…+13!n (n +1)(n +2)= . ③在③式中当n =8时其和为 ,猜想∑i=1n 13!i (i +1)(i +2)= . 答案 330;14!n (n +1)(n +2)(n +3)5.(2021 5·3原创题)已知x 10=a 0+a 1(x +1)+a 2(x +1)2+a 3(x +1)3+…+a 10(x +1)10,则a 1+a 2+a 3+…+a 10= ;系数a i (i =0,1,2,…,10)中最大的是 (用数字作答). 答案 -1;210。

高考数学总复习 11-2 复数的概念与运算但因为测试 新人教B版

高考数学总复习 11-2 复数的概念与运算但因为测试 新人教B版

高考数学总复习 11-2 复数的概念与运算但因为测试 新人教B版1.(2011²福建理,1)i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈S C .i 3∈S D.2i∈S [答案] B[解析] i 2=-1∈S ,故选B.2.(文)(2011²天津文,1)i 是虚数单位,复数1-3i1-i =( )A .2-iB .2+iC .-1-2iD .-1+2i[答案] A [解析]1-3i1-i=-+-+=4-2i 2=2-i.(理)(2011²安徽皖南八校联考)复数z 满足z =2-i 1-i ,则z -等于( )A .1+3iB .3-i C.32-12i D.12+32i [答案] C[解析] ∵z =2-i1-i =-+2=3+i2, ∴z -=32-12i ,故选C.3.(2011²揭阳一中月考)设a ,b 为实数,若复数1+2ia +b i =1+i ,则( )A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3[答案] A[解析] 1+2i =(a +b i)(1+i)=a -b +(a +b )i ,∴⎩⎪⎨⎪⎧a -b =1a +b =2,∴⎩⎪⎨⎪⎧a =32b =12,故选A.4.(文)(2011²山东济南一模)设a 是实数,且a 1+i +1-i2是实数,则a 等于( )A.12 B .-1 C .1 D .2[答案] B [解析] ∵a1+i +1-i 2=a -i 2+1-i2=1+a 2-1+a2i 是实数, 又∵a ∈R ,∴1+a 2=0,∴a =-1.(理)(2011²山东潍坊一模)复数z =2+m i1+i (m ∈R)是纯虚数,则m =( )A .-2B .-1C .1D .2[答案] A [解析] 因为z =+m-2=2+m 2+m -22i 是纯虚数,所以⎩⎪⎨⎪⎧2+m =0,m -2≠0.得m =-2.5.(2010²广东江门调研)已知复数z =a +i(其中a ∈R ,i 为虚数单位)的模为|z |=2,则a 等于( )A .1B .±1 C. 3 D .± 3[答案] D[解析] ∵|z |=2,∴a 2+1=4,∴a =± 3.6.(文)(2011²安徽文,1)设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 为( )A .2B .-2C .- 12D.12[答案] A[解析]1+a i2-i =+a +-+=-a +a +5=2-a 5+2a +15i 为纯虚数,∴⎩⎪⎨⎪⎧2-a5=02a +15≠0,∴a =2.(理)(2011²温州八校期末)若i 为虚数单位,已知a +b i =2+i 1-i(a ,b ∈R),则点(a ,b )与圆x 2+y 2=2的关系为( )A .在圆外B .在圆上C .在圆内D .不能确定[答案] A[解析] ∵a +b i =2+i1-i =++2=12+32i(a ,b ∈R), ∴⎩⎪⎨⎪⎧a =12b =32,∵⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=52>2, ∴点P ⎝ ⎛⎭⎪⎫12,32在圆x 2+y 2=2外,故选A.7.规定运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若⎪⎪⎪⎪⎪⎪zi -i2=1-2i ,设i 为虚数单位,则复数z =________.[答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪zi -i2=2z +i 2=2z -1=1-2i ,∴z =1-i . 8.(2011²无为中学月考)已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别为A 、B 、C .若OC →=xOA →+yOB →,则x +y 的值是________.[答案] 5[解析] ∵OC →=xOA →+yOB →,∴(3-2i )=x (-1+2i )+y (1-i ),∴⎩⎪⎨⎪⎧-x +y =32x -y =-2,解得⎩⎪⎨⎪⎧x =1y =4,故x +y =5.9.(2010²上海大同中学模考)设i 为虚数单位,复数z =(12+5i)(cos θ+isin θ),若z ∈R ,则tan θ的值为________.[答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R , ∴12sin θ+5cos θ=0,∴tan θ=-512.10.(2010²江苏通州市调研)已知复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R).试求实数a 分别为什么值时,z 分别为:(1)实数; (2)虚数; (3)纯虚数.[解析] (1)当z 为实数时,⎩⎪⎨⎪⎧a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数.11.(文)(2011²东北四市统考)已知复数z 1=cos23°+isin23°和复数z 2=cos37°+is in37°,则z 1²z 2为( )A.12+32i B.32+12i C.12-32i D.32-12i [答案] A[解析] z 1²z 2=cos23°cos37°-sin23°sin37°+(sin37°cos23°+cos37°sin23°)i=cos60°+i²sin60°=12+32i ,故选A.(理)若z =cos θ+i sin θ(i 为虚数单位),则使z 2=-1的θ值可能是( ) A.π6 B.π4 C.π3D.π2[答案] D[解析] ∵z 2=cos2θ+i sin2θ=-1,∴⎩⎪⎨⎪⎧cos2θ=-1sin2θ=0.∴2θ=2k π+π (k ∈Z), ∴θ=k π+π2.令k =0知,D 正确.12.如果复数(m 2+i )(1+mi )是实数,则实数m 等于( ) A .1 B .-1 C. 2 D .- 2[答案] B[解析] ∵(m 2+i )(1+mi )=(m 2-m )+(m 3+1)i 是实数,m ∈R , ∴由a +bi (a 、b ∈R)是实数的充要条件是b =0, 得m 3+1=0,即m =-1.13.(2011²南通调研)若复数z 满足z +i =3+ii ,则|z |=________.[答案]17[解析] ∵z =3+ii -i =-3i +1-i =1-4i ,∴|z |=17.14.在复平面内,z =cos10+isin10的对应点在第________象限. [答案] 三[解析] ∵3π<10<7π2,∴cos10<0,sin10<0,∴z 的对应点在第三象限.15.(文)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当实数m 取何值时. (1)z 是纯虚数. (2)z 是实数.(3)z 对应的点位于复平面的第二象限.[解析] (1)由题意知⎩⎪⎨⎪⎧m 2-2m -=0,m 2+3m +2≠0.解得m =3.所以当m =3时,z 是纯虚数.(2)由m 2+3m +2=0,得m =-1或m =-2, 又m =-1或m =-2时,m 2-2m -2>0, 所以当m =-1或m =-2时,z 是实数.(3)由⎩⎪⎨⎪⎧m 2-2m -,m 2+3m +2>0.解得:-1<m <1-3或1+3<m <3.(理)设z 是虚数,ω=z +1z是实数,且-1<ω<2.(1)求z 的实部的取值范围;(2)设u =1-z1+z ,那么u 是不是纯虚数?并说明理由.[解析] (1)设z =a +bi (a 、b ∈R ,b ≠0), ω=a +bi +1a +bi =⎝ ⎛⎭⎪⎫a +a a 2+b 2+⎝ ⎛⎭⎪⎫b -b a 2+b 2i ,∵ω是实数,∴b -ba 2+b 2=0.又b ≠0,∴a 2+b 2=1,ω=2a . ∵-1<ω<2,∴-12<a <1,即z 的实部的取值范围是⎝ ⎛⎭⎪⎫-12,1. (2)u =1-z 1+z =1-a -bi 1+a +bi =1-a 2-b 2-2bi +a 2+b 2=-b a +1i , ∵-12<a <1,b ≠0,∴u 是纯虚数.16.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +bi (i 为虚数单位),求事件“z -3i 为实数”的概率;(2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥00≤a ≤4b ≥0表示的平面区域内(含边界)的概率.[解析] (1)z =a +bi (i 为虚数单位),z -3i 为实数,则a +bi -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1,2,3,4,5,6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:(6,5)不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.1.(2011²罗源一中月考)已知复数z 1=cos α+i s in α,z 2=sin β+i cos β,(α,β∈R),复数z =z 1²z -2的对应点在第二象限,则角α+β所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] ∵z =(cos α+i sin α)²(sin β-i cos β)=sin(α+β)-i cos(α+β)的对应点在第二象限,∴⎩⎪⎨⎪⎧α+β-α+β,∴角α+β的终边在第三象限.2.(2010²安徽合肥市质检)已知复数a =3+2i ,b =4+xi (其中i 为虚数单位,x ∈R),若复数a b∈R ,则实数x 的值为( )A .-6B .6 C.83 D .-83[答案] C [解析] a b =3+2i4+xi=+2i -xi 16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2²i ∈R ,∴8-3x16+x2=0,∴x =83.3.(2010²泰安市质检)若复数2+ai1-i (a ∈R)是纯虚数(i 是虚数单位),则a 的值为( )A .-2B .-1C .1D .2[答案] D [解析]2+ai1-i =+ai +i -i +i=a +i +-a2为纯虚数,∴⎩⎪⎨⎪⎧2-a =0a +2≠0,∴a =2.4.若i 是虚数单位,则满足(p +q i)2=q +p i 的实数p 、q 一共有( ) A .1对 B .2对 C .3对 D .4对[答案] D[解析] 由(p +q i)2=q +p i 得(p 2-q 2)+2pq i =q +p i ,所以⎩⎪⎨⎪⎧p 2-q 2=q ,2pq =p .解得⎩⎪⎨⎪⎧p =0q =0,或⎩⎪⎨⎪⎧p =0q =-1,或⎩⎪⎨⎪⎧ p =32q =12,或⎩⎪⎨⎪⎧p =-32q =12,因此满足条件的实数p 、q 一共有4对.5.设A 、B 为锐角三角形的两个内角,则复数z =(cot B -tan A )+i (tan B -cot A )对应点位于复平面的第________象限.[答案] 二[解析] 由于0<A <π2,0<B <π2且A +B >π2∴π2>A >π2-B >0 ∴tan A >cot B ,cot A <tan B 故复数z 对应点在第二象限.6.关于x 的不等式mx 2-nx +p >0(m ,n ,p ∈R)的解集为区间(-53,2),则复数m +ni所对应的点位于复平面内的第________象限.[答案] 三[解析] ∵mx 2-nx +p >0(m 、n 、p ∈R)的解集为(-53,2),∴⎩⎪⎨⎪⎧m <0-53+2=n m>0-53=p m<0,∵m <0,∴p >0,n <0.故复数m +ni 所对应的点位于复平面内的第三象限.7.(2011²上海文,19)已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1²z 2是实数,求z 2.[解析] 设z 1=(a +2)+b i ,a ,b ∈R ,∵(z 1-2)(1+i )=1-i ,∴a -b +(b +a )i =1-i.∴⎩⎪⎨⎪⎧a -b =1a +b =-1∴⎩⎪⎨⎪⎧a =0b =-1,∴z 1=2-i.又设z 2=c +2i ,c ∈R ,则z 1z 2=(2-i)(c +2i)=(2c +2)+(4-c )i ∵z 1z 2∈R ,∴4-c =0,c =4,∴z 2=4+2i.。

2024年领军高考数学二轮复习专题11函数与方程考点必练理

2024年领军高考数学二轮复习专题11函数与方程考点必练理

考点11 函数与方程1.已知是定义在上的偶函数,对于,都有,当时,,若在[-1,5]上有五个根,则此五个根的和是()A. 7 B. 8 C. 10 D. 122.已知函数是定义在上的偶函数,且,若函数有 6 个零点,则实数的取值范围是()A. B.C. D.【答案】D3.函数的零点所在的区间是( )A . (,1)B . (1,2)C . (e,3)D . (2,e) 【答案】B 【解析】令,当时,;当时,;当时,.在其定义域上单调递增,则函数只有一个零点,又由上式可知,故函数零点在区间内.选.4.函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x x +2,x ≤0的零点个数是( )A .0B .1C .2D .3【答案】D【解析】当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.5.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4【解析】选B ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.10.对于满意0<b ≤3a 的随意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca的取值范围是( ) A .(1,74]B .(1,2]C .[1,+∞)D .(2,+∞)【答案】D11.已知函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是( ) A .(-1,-log 32) B .(0,log 52) C .(log 32,1) D .(1,log 34)【答案】C【解析】∵单调函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.12.(2024·甘肃天水一中月考)已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( ) A .(-∞,0) B .(0,+∞) C .(0,1)∪(1,+∞) D .(-∞,0)∪{1}【答案】C【解析】由题意,明显x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x 2-x +1x=2⎝ ⎛⎭⎪⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,解除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x 2+x x =1+2x1-xx,f ′(x )=0得x =1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,解除B ,故选C.13.已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 017x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( ) A .(1,2 017) B .(1,2 018) C .[2,2 018] D .(2,2 018)【答案】D14.设函数f (x )是定义在R 上的周期为2的函数,且对随意的实数x ,恒有f (x )-f (-x )=0,当x ∈[-1,0]时,f (x )=x 2,若g (x )=f (x )-log a x 在x ∈(0,+∞)上有三个零点,则a 的取值范围为( ) A .[3,5] B .[4,6] C .(3,5) D .(4,6)【答案】C【解析】∵f (x )-f (-x )=0,∴f (x )=f (-x ),∴f (x )是偶函数,依据函数的周期性和奇偶性作出函数f (x )的图像如图所示:15.(2024·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B.18 C .-78D .-38【答案】C【解析】令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个根,即2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.16.已知定义在R 上的奇函数y =f (x )的图像关于直线x =1对称,当-1≤x <0时,则方程f (x )-12=0在(0,6)内的全部根之和为( )A .8B .10C .12D .16【答案】C【解析】∵奇函数f (x )的图像关于直线x =1对称,∴f (x )=f (2-x )=-f (-x ),即f (x )=-f (x +2)=f (x +4),∴f (x )是周期函数,其周期T =4.又当x ∈[-1,0)时,f (x )=-log 12(-x ),故f (x )在(0,6)上的函数图像如图所示.由图可知方程f (x )-12=0在(0,6)内的根共有4个,其和为x 1+x 2+x 3+x 4=2+10=12,故选C.17.已知a 是正实数,函数f(x)=2ax 2+2x -3-a.假如函数y =f(x)在区间[-1,1]上有零点,求a 的取值范围.【答案】[1,+∞)【解析】f(x)=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a≤12时,须使⎩⎪⎨⎪⎧f -1≤0,f 1≥0,即⎩⎪⎨⎪⎧a≤5,a≥1,∴无解.②当-1<-12a <0,即a>12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎪⎫-12a ≤0,f 1≥0,即⎩⎪⎨⎪⎧-12a -3-a≤0,a≥1,解得a≥1,∴a 的取值范围是[1,+∞).24.已知函数f (x )=|x -a |-2x+a ,a ∈R ,若方程f (x )=1有且只有三个不同的实数根,则实数a 的取值范围是 .【答案】(-∞,1-222)∪(1+222,2)。

高中数学高考总复习定积分与微积分基本定理习题及详解

高中数学高考总复习定积分与微积分基本定理习题及详解

年 级 高二 学科数学内容标题 定积分的计算 编稿老师马利军一、教学目标:1。

理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题。

2。

理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题。

二、知识要点分析1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:⎰badx x f )(2. 定积分的几何意义:(1)当函数f (x )在区间[a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是:y=f(x)与x=a ,x=b 及x 轴围成的曲边梯形面积,在一般情形下.⎰b adx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a,x=b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号。

在图(1)中:0s dx )x (f ba>=⎰,在图(2)中:0s dx )x (f ba<=⎰,在图(3)中:dx)x (f ba⎰表示函数y=f (x )图象及直线x=a,x=b 、x 轴围成的面积的代数和。

注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于⎰badx x f )(,仅当在区间[a,b ]上f (x )恒正时,其面积才等于⎰badx x f )(。

3. 定积分的性质,(设函数f (x),g (x )在区间[a,b]上可积) (1)⎰⎰⎰±=±bab abadx )x (g dx )x (f dx )]x (g )x (f [(2)⎰⎰=bab a dx x f k dx x kf )()(,(k 为常数)(3)⎰⎰⎰+=bcbac adx x f dx x f dx x f )()()((4)若在区间[a ,b ]上,⎰≥≥badx x f x f 0)(,0)(则推论:(1)若在区间[a,b]上,⎰⎰≤≤babadx x g dx x f x g x f )()(),()(则(2)⎰⎰≤babadx x f dx x f |)(||)(|(3)若f(x )是偶函数,则⎰⎰=-a aadx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=⎰-aadx x f4。

人教B版高考数学一轮总复习课后习题 课时规范练10 函数的奇偶性、周期性与对称性

人教B版高考数学一轮总复习课后习题 课时规范练10 函数的奇偶性、周期性与对称性

课时规范练10 函数的奇偶性、周期性与对称性基础巩固练1.(天津耀华中学检测)下列函数中,为偶函数的是( )A.f(x)=xx-1B.f(x)=√x2C.f(x)=√1-x+√x-1D.f(x)=x+1x2.(河南开封模拟)已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log3x,则f(-3)=( )A.-1B.0C.1D.23.(山东潍坊模拟)若f(x)=x(x+1)(x+a)(a∈R)为奇函数,则a的值为( )A.-1B.0C.1D.-1或14.(四川绵阳模拟)设f(x)是定义在R上的周期为2的偶函数,已知当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,f(x)的解析式为( )A.x+4B.2-xC.3-|x+1|D.2+|x+1|5.(江苏镇江模拟)若函数f(x)=πx -π-x +2 023x,则不等式f(x+1)+f(2x-4)≥0的解集为( ) A.[1,+∞) B.(-∞,1] C.(0,1]D.[-1,1]6.(多选题)(辽宁锦州模拟)若定义在R 上的奇函数f(x)满足f(2-x)=f(x),在区间(0,1)上,有(x 1-x 2)[f(x 1)-f(x 2)]>0,则下列说法正确的是( ) A.函数f(x)的图象关于点(2,0)对称 B.函数f(x)的图象关于直线x=2对称 C.在区间(2,3)上,f(x)单调递减 D.f(-72)>f(23)7.(江西吉安模拟)已知定义在R 上的函数f(x)满足f(x+4)=f(x),且当x ∈[0,2)时,f(x)=log 2(x+1),则f(49)= . 8.(全国甲,理13)若f(x)=(x-1)2+ax+sin (x +π2)为偶函数,则a= .9.(陕西西安模拟)已知定义在R 上的函数f(x)在区间(-∞,1]上单调递增,若函数f(x+1)为偶函数,且f(3)=0,则不等式f(x)>0的解集为 .综合 提升练10.(江西赣州模拟)已知函数f(x)=lg(√x2+1+x),则不等式f(2x)>f(x-2)的解集为( )A.(-2,+∞)B.(-∞,-2)C.(0,+∞)D.(-∞,0)11.(辽宁丹东模拟)设函数f(x)满足f(x+1)+f(x)=0,当0≤x<1时,f(x)=21-x,则f(log0.58)=( )A.-2B.-12C.12D.212.(多选题)(重庆巴蜀中学模拟)已知定义在R上的函数f(x)满足f(x+2)=-f(x),且函数y=f(x-1)为奇函数,则下列说法一定正确的是( )A.f(x)是周期函数B.f(x)的图象关于点(2 023,0)对称C.f(x)是R上的偶函数D.f(x)是R上的奇函数13.(山东青岛模拟)已知函数f(x)的定义域为R,f(1-2x)为偶函数,f(2+x)为奇函数,则f(0)= .创新应用练14.(新高考Ⅱ,8)若函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则∑k=122f(k)=( )A.-3B.-2C.0D.115.(多选题)(江苏盐城模拟)已知定义在R 上的函数f(x)满足f(x)+f(-x)=0,f(x)+f(x+6)=0,且对任意的x 1,x 2∈[-3,0],当x 1≠x 2时,都有x 1f(x 1)+x 2f(x 2)<x 1f(x 2)+x 2f(x 1),则以下判断正确的是( ) A.函数f(x)是偶函数B.函数f(x)在[-9,-6]上单调递增C.x=2是函数f(x+1)的对称轴D.函数f(x)的最小正周期是12课时规范练10 函数的奇偶性、周期性与对称性1.B 解析选项A中,函数定义域是{x|x≠1},不关于原点对称,是非奇非偶函数;选项B中,函数定义域是(-∞,+∞),f(-x)=√(-x)2=√x2=f(x),是偶函数;选项C中,函数定义域是{1},不关于原点对称,是非奇非偶函数;=-f(x),是奇函数,故选B. 选项D中,函数定义域是{x|x≠0},f(-x)=-x-1x2.A 解析因为f(x)是定义在R上的奇函数,且当x>0时,f(x)=log3x,所以f(-3)=-f(3)=-log33=-1,故选A.3.A 解析由题得f(-1)+f(1)=0,故a=-1,故选A.4.C 解析当x∈[-2,-1]时,x+4∈[2,3],f(x)=f(x+4)=x+4=3+(x+1),当x ∈[-1,0]时,2-x∈[2,3].因为f(x)为偶函数,则f(x)=f(-x)=f(2-x)=2-x=3-(x+1).综上,当x∈[-2,0]时,f(x)=3-|x+1|,故选C.5.A 解析f(x)的定义域为R,因为f(-x)=π-x-πx-x=-(πx-π-x+x)=-f(x),所以f(x)是奇函数,所以不等式f(x+1)+f(2x-4)≥0可化为f(x+1)≥f(4-2x),因为y=πx,y=-π-x,y=x在R上均单调递增,所以f(x)在R上单调递增,所以x+1≥4-2x,解得x≥1,故选A.6.AC 解析f(4-x)=f[2-(x-2)]=f(x-2)=-f(2-x)=-f(x),即f(4-x)+f(x)=0,故f(x)的图象关于点(2,0)成中心对称,A正确;∵f(2-x)=f(x),则f(x)的图象关于直线x=1成轴对称,B 错误;根据题意可得,f(x)在区间(0,1)上单调递增,∵f(x)图象关于直线x=1成轴对称,关于(2,0)中心对称,则f(x)在区间(2,3)上单调递减,C 正确;又f(x)=f(2-x)=-f(x-2),则f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),可知f(x)的周期为4,则f(-72)=f(12)<f(23),D 错误,故选AC.7.1 解析由题知,函数f(x)的周期为4,所以f(49)=f(4×12+1)=f(1)=log 2(1+1)=1.8.2 解析由题意整理得f(x)=x 2+(a-2)x+cosx+1,∴f(-x)=(-x)2+(a-2)(-x)+cos(-x)+1=x 2+(2-a)x+cosx+1. ∵函数f(x)是偶函数,∴f(x)=f(-x),即x 2+(a-2)x+cosx+1=x 2+(2-a)x+cosx+1,解得a=2.9.(-1,3) 解析因为f(x)定义域为R,且f(x+1)为偶函数,则f(1+x)=f(1-x),所以f(x)的图象关于直线x=1对称,因为f(3)=0,则f(-1)=f(3)=0,因为f(x)在区间(-∞,1]上单调递增,则f(x)在区间[1,+∞)上单调递减,当x≤1时,由f(x)>0=f(-1)可得-1<x≤1;当x>1时,由f(x)>0=f(3)可得1<x<3.综上,不等式f(x)>0的解集为(-1,3). 10.A 解析函数f(x)的定义域为R,又f(x)+f(-x)=lg(√x 2+1+x)+lg(√x 2+1-x)=0,故f(x)为奇函数.当x≥0时,f(x)=lg(√x2+1+x)单调递增,由f(x)为奇函数,可得f(x)在R上单调递增,故不等式f(2x)>f(x-2)等价于2x>x-2,解得x>-2,故选A.11.A 解析因为f(x+1)+f(x)=0,所以f(x+1)=-f(x),所以f(x+2)=f[(x+1)+1]=-f(x+1)=f(x),故f(x)的周期为2,又log0.58=-3,所以f(log0.58)=f(-3)=f(-3+2+2)=f(1)=-f(0)=-21-0=-2,故选A.12.ABC 解析对于A,由f(x+2)=-f(x),得f(x+4)=-f(x+2)=f(x),所以f(x)是周期为4的周期函数,故A正确;对于B,由y=f(x-1)为奇函数得f(x-1)=-f(-x-1),所以f(x)的图象关于点(-1,0)对称,又因为f(x)的周期是4,且=506×4-1,所以f(x)的图象关于点(,0)对称,故B正确;对于C,因为f(x+2)=-f(x),所以f(-x+2)=-f(-x),又f(x)的图象关于点(-1,0)对称,所以有f(x-2)=-f(-x),因此f(-x+2)=f(x-2),即f(-x)=f(x),又f(x)的定义域为R,故f(x)是偶函数,故C正确,D错误,故选ABC.13.0 解析因为函数f(x)的定义域为R,且f(1-2x)为偶函数,则f(1-2x)=f(1+2x),即f(1-t)=f(1+t),又因为f(2+x)为奇函数,则f(2-x)=-f(2+x),所以f(2)=-f(2),可得f(2)=0,在等式f(1-t)=f(1+t)中,令t=1,可得f(0)=f(2)=0.14.A 解析令y=1,得f(x+1)+f(x-1)=f(x)·f(1)=f(x),即f(x+1)=f(x)-f(x-1).从而f(x+2)=f(x+1)-f(x),f(x+3)=f(x+2)-f(x+1).消去f(x+2)和f(x+1),得到f(x+3)=-f(x),从而f(x+6)=f(x),故f(x)的周期为6.令x=1,y=0,得f(1)+f(1)=f(1)·f(0),得f(0)=2,f(2)=f(1)-f(0)=1-2=-1,f(3)=f(2)-f(1)=-1-1=-2,f(4)=f(3)-f (2)=-2-(-1)=-1,f(5)=f(4)-f(3)=-1-(-2)=1,f(6)=f(5)-f(4)=1-(-1)=2,∑k=122f(k)=3[f(1)+f(2)+…+f(6)]+f(19)+f(20)+f(21)+f(22)=f(1)+f(2)+f(3)+f(4)=1+(-1)+(-2)+(-1)=-3. 即∑k=122f(k)=-3,故选A.15.BCD 解析因为定义在R 上的函数f(x)满足f(x)+f(-x)=0,即f(-x)=-f(x),故函数f(x)是奇函数,故A 错误;因为f(x)+f(x+6)=0,故f(x+6)=-f(x),而f(-x)=-f(x),所以f(x+6)=f(-x),即f(x)的图象关于直线x=3对称,则直线x=2是函数f(x+1)图象的对称轴,故C 正确;因为f(x+6)=-f(x),所以f(x+12)=-f(x+6)=f(x),故12是函数f(x)的周期;因为对任意的x 1,x 2∈[-3,0],当x 1≠x 2时,都有x 1f(x 1)+x 2f(x 2)<x 1f(x 2)+x 2f(x 1),即(x 1-x 2)[f(x 1)-f(x 2)]<0,故x ∈[-3,0]时,f(x)单调递减,又因为f(x)为奇函数,所以x∈[0,3]时,f(x)单调递减,又因为f(x)的图象关于直线x=3对称,故x∈[3,6]时,f(x)单调递增,因为12是函数f(x)的周期,故函数f(x)在[-9,-6]的单调性与x∈[3,6]时的单调性相同,故函数f(x)在[-9,-6]上单调递增,故B正确,作出函数f(x)的大致图象如图,结合图象可知12是函数f(x)的最小正周期,D正确,故选BCD.。

菲翔学校高考数学总复习 113二项式定理课后作业 理 试题

菲翔学校高考数学总复习 113二项式定理课后作业 理  试题

墨达哥州易旺市菲翔学校【走向高考】2021年高考数学总复习11-3二项式定理(理)课后作业北师大一、选择题1.(2021·理,5)在(-)6的二项展开式中,x2的系数为()A.-B.C.-D.[答案]C[解析]此题主要考察二项式定理,设第r+1项为x2项,那么T r+1=C()6-r(-)r=C()6-r·x(-2)r·x,∴x3-r=x2,∴r=1,∴系数:C()5(-2)=6×(-2)×=-,应选C.2.(2021·调研)在(x-)10的展开式中,x4的系数为()A.-120B.120C.-15D.15[答案]C[解析]T r+1=C x r·(-)10-r.令x r·(-)10-r=a·x4(a为常数),∴r=7,∴a=(-)3.∴系数为C·(-)3=-15.3.假设n的展开式中含有常数项,那么正整数n的最小值为()A.3B.5C.6D.10[答案]B[解析]∵T r+1=C(3x2)n-rr=(-2)r3n-r C x2n-5r,当2n-5r=0时,2n=5r,又∵n∈N+,r∈N,∴n是5的倍数.∴n的最小值为5.4.(2021·理,4)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,那么n=()A.6B.7C.8D.9[答案]B[解析]此题主要考察二项式定理中二项展开式通项公式的应用.二项式(1+3x)n展开式的通项公式为T r+1=3r C x r,∴x5与x6的系数分别为35C,36C.由条件知:35C=36C,即C=3C,∴=3·∴n=7,选B.5.(2021·一检)在(1+x)5+(1+x)6+(1+x)7的展开式中,x4的系数是()A.25B.35C.45D.55[答案]D[解析]二项式(1+x)5中x4的系数为C,二项式(1+x)HY x4的系数为C,二项式(1+x)7中x4的系数为C,故(1+x)5+(1+x)6+(1+x)7的展开式中x4的系数为C+C+C=55,应选D.6.(2021·一模)(x2-)n的展开式中第三项与第五项的系数之比为,那么展开式中常数项是()A.-1B.1C.-45D.45[答案]D[解析]由题知第三项的系数为C(-1)2=C,第五项的系数为C(-1)4=C,那么有=,解之得n=10,由T r+1=C x20-2r·x(-1)r,当20-2r-=0时,即当r=8时.常数项为C(-1)8=C=45,选D.二、填空题7.(2021·理,11)(x-)18的展开式中含x15的项的系数为________.(结果用数值表示)[答案]17[解析]此题考察二项展开式通项公式的应用T r+1=C x18-r(-)r=(-)r C x.令18-=15,得r=2.∴含x15的项的系数为(-)2C=17.8.假设(2x-1)6(x+1)2=a0x8+a1x7+a2x6+a3x5+a4x4+a5x3+a6x2+a7x+a8,那么a0+a1+a2+a3+a4+a5+a6+a7+a8=________.[答案]4[解析]令x=1得:a0+a1+a2+…+a8=4.三、解答题9.在二项式n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项;(2)求展开式的常数项;(3)求展开式的各项系数的和.[解析]第一项系数的绝对值为C,第二项系数的绝对值为,第三项系数的绝对值为,依题意有C+=×2,解得n=8.(1)第四项T4=C()53=-7x.(2)通项公式为T k+1=C()8-k=C k·()8-2k,展开式的常数项满足8-2k=0,即k=4,所以常数项为T5=C·4=.(3)令x=1,得展开式的各项系数的和为8==.一、选择题1.在n的展开式中,只有第5项的二项式系数最大,那么展开式中常数项是()A.-7B.7C.-28D.28[答案]B[解析]由题意可知n=8,T r+1=C8-rr=8-r(-1)r C·x.∴r=6,∴2×(-1)6C=7.2.(1+ax+by)n展开式中不含x的项的系数绝对值的和为243,不含y的项的系数绝对值的和为32,那么a,b,n的值可能为()A.a=2,b=-1,n=5B.a=-2,b=-1,n=6C.a=-1,b=2,n=6D.a=1,b=2,n=5[答案]D[解析]考察二项式定理的灵敏运用.不含x项的系数的绝对值的和为(1+b)n,故(1+b)n=243,同理,不含x项的系数的绝对值的和为(1+a)n=32.即,所以a,b,n的可能取值为a=1,b=2,n=5.二、填空题3.(2021·安师大附中期中)(+2x)n的二项展开式中,假设各项的二项式系数的和是128,那么x5的系数是________.(以数字答题)[答案]560[解析]因为(+2x)n的二项展开式中,各项的二项式系数的和为128,所以2n=128,nr+1项为T r+1=C·2r(x-)7-r(x)r=C·2r x,令=5得r=4,所以展开式中x5的系数为C×24=560.4.(2021·理,12)设(x-1)21=a0+a1x+a2x2+…+a21x21,那么a10+a11=________.[答案]0[解析]此题主要考察二项展开式.a10=C(-1)11=-C,a11=C(-1)10=C,所以a10+a11=C-C=C-C=0.三、解答题5.求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.[分析]假设展开各括号,那么会使运算量增大,假设设展开后为a0x10+a1x9+…+a9x,那么问题转化为求a0+a1+…+a9的值,再令等式中x=1,即可求解.[解析]在原式中,令x=1,得1×(1-1)4+12×(1+2)5+13×(1-3)7=115.∴展开式各项系数和为115.[点评]在某些二项式定理的有关求“系数和〞的问题中,常用对字母取特值的方法解题.6.(a2+1)n展开式中的各项系数之和等于(x2+)5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值(a∈R).[解析](x2+)5的通项公式为T r+1=C(x2)5-r·()r=C·()5-r·x令20-5r=0,那么r=4,∴常数项为T5=C×=16.又(a2+1)n展开式的各项系数之和为2n,依题意得2n=16,n=4,由二项式系数的性质知(a2+1)4展开式中系数最大的项是中间项T3,所以C(a2)2=54,即a4=9,所以a=±.7.在二项式(ax m+bx n)12中,a>0,b>0,mn≠0且2m+n=0.(1)假设在它的展开式中,系数最大的项是常数项,那么它是第几项?(2)在(1)的条件下,求的取值范围.[解析](1)设T k+1=C(ax m)12-k·(bx n)k=C a12-k b k x m(12-k)+nk为常数项,那么有m(12-k)+nk=0,即m(12-k)-2mk=0.∵m≠0,∴k=4,∴它是第5项.(2)∵第5项是系数最大的项,∴由①得≤,由②得≥,∴≤≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章 第2节考点一:互斥事件的概率1.在6张卡片上分别写上数字0,1,2,3,4,5,然后把它们混合,再任意排成一行,组成最高位不为0的6位数,则能被5整除的概率为( )A .0.2B .0.3C .0.36D .0.46解析:“能被5整除”的事件分解为两个互斥事件的和.事件A 1表示“末位是0的6位数”,P (A 1)=A 555A 55=15;事件A 2表示“末位是5的6位数”,P (A 2)=4A 445A 55=425.故能被5整除的概率为15+425=0.2+0.16=0.36. 答案:C2.将7个人(含甲、乙)分成三个组,一组3人,另两组各2人,不同的分组数为a ,甲、乙分在同一组的概率为P ,则a 、P 的值分别为( )A .a =105、P =521B .a =105、P =421C .a =210、P =521D .a =210、P =421解析:①a =C 37C 24C 22A 22=105. ②甲、乙分到三个组为事件A ,P (A )=C 15C 24C 22A 22105=17;甲、乙分到两人组为事件B ,P (B )=C 35105=221;事件A 、B 互斥,P =P (A +B )=17+221=521.答案:A考点二:对立事件的概率3.10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是( )A.310B.112C.12D.1112 解析:设事件A 为至少1人中奖,其对立事件A 为没有人中奖,从10张奖券中任抽5张,其选法有A 510种,其中没有中奖的有A 57种,所以P (A )=A 57A 510=112,∴P (A )=1-112=1112.答案:D4.现有6个养蜂专业户随机在甲、乙、丙三地采油菜花蜜,若每户蜂群采蜜能力相同,三地油菜花含蜜也相同,每地的花蜜均最多能供4户蜂群足额采蜜,则总体采蜜量最多的概率为________.解析:直接解有困难,考虑间接法:6个养蜂户随机在甲、乙、丙三地放蜂的总方法有36种,不合题意的方法可分为2类:6家全在同一蜂场,有C 13=3种方法;5家在同一蜂场,有C 56A 23=36种方法,所以共有39种不符合要求的方法.故所求的概率为P =1-3936=230243. 答案:230243考点三:互斥事件和对立事件的概率综合应用5.以平行六面体ABCD -A 1B 1C 1D 1的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率为( )A.367385B.376385C.192385D.18385解析:此问题可分解成五个小问题:①由平行六面体的八个顶点可以组成多少个三角形?可组成C 38=56个三角形.②平行六面体的八个顶点中四点共面的情况共有多少种?平行六面体的六个面加上六个对角面共12个平面.③在上述12个平面内的每个四边形中共面的三角形有几个?有C 34=4个.④从56个三角形中任取两个三角形共面的概率P 等于多少?显然,P =12×C 24C 256=18385.⑤从56个三角形中任取两个三角形不共面的概率P 等于多少?利用求对立事件概率的公式得P =1-18385=367385.答案:A 6.(2010·徐州模拟)在某银行的一个自动取款机,在某一时刻恰有n (n ∈N *)个人正在使用或等待使用该取款机的概率为P (n ),且P (n )与时刻t 无关,统计得到P (n )=⎩⎪⎨⎪⎧(12)n ·P (0) 1≤n ≤60 n ≥6,那么在某一时刻,这个取款机没有人正在使用或等待使用的概率是________.解析:取款机有人的事件可分为n 个互斥事件的和,其概率为P (1)+P (2)+P (3)+P (4)+P (5)+P (6)+…=12·P (0)+14·P (0)+18·P (0)+116·P (0)+…+132·P (0)+0=3132·P (0).故取款机无人的概率是P (0)=1-3132·P (0),解得P (0)=3263.答案:32637.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个.假设各部门选择每个景区是等可能的.(1)求3个景区都有部门选择的概率; (2)求恰有2个景区有部门选择的概率.解:某个单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(1)3个景区都有部门选择可能出现的结果数为C 24·3!(从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P (A 1)=C 24·3!34=49.(2)解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2和A 3,则事件A 3的概率为P (A 3)=334=127,事件A 2的概率为P (A 2)=1-P (A 1)-P (A 3)=1-49-127=1427.方法二:恰有2个景区有部门选择可能的结果数为3(C 14·2!+C 24)(先从3个景区任意选定2个,共有C 23=3种方法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有C 14·2!种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门到另1个景区,共有C 24种不同选法).所以P (A 2)=3(C 14·2!+C 24)34=1427. 8.(1)袋中有9个编号分别为1,2,3,…,9的小球,从中任意随机取出2个,求至少有1个编号为奇数的概率;(2)同时掷3枚骰子时,求出现的点数的和是5的倍数的概率. 解:(1)由题意知,基本事件有C 29个,从袋中取出2个小球,记“只有一个编号为奇数”、“两个编号全为奇数”分别为事件A 、B ,它们分别有C 15·C 14种和C 25种,显然A 、B 互斥且是等可能事件.∴P (A +B )=P (A )+P (B )=C 15·C 14+C 25C 29=56. (2)设同时掷三枚骰子,其和为5的事件为A 1,其和为10的事件为A 2,其和为15的事件为A 3 ,且事件A 1、A 2、A 3彼此互斥.①其和为5的点数的组合有(1,1,3),(1,2,2),则P (A 1)=663.②其和为10的点数的组合有(1,3,6)、(1,4,5)、(2,3,5)、(2,2,6)、(2,4,4),(3,3,4),由它们组成的序列对前三组有A 33=6个,后三组是3个,总共是6×3+3×3=27个.则P (A 2)=2763.③其和为15的点数的组合有(3,6,6)、(4,5,6)、(5,5,5),由它们组成的序列的个数总共有3+3+1=7个.则P (A 3)=763.故所求的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=663+2763+763=527.1.(2009·上海,16)若事件E 与F 相互独立,且P (E )=P (F )=14,则P (E ∩F )的值等于( )A .0 B.116 C.14 D.12解析:E ∩F 代表E 与F 同时发生.∴P (E ∩F )=P (E )·P (F )=116,故选B.答案:B 2.(2009·四川)为振兴旅游业,四川省2009年面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中34是省外游客,其余是省内游客.在省外游客中有13持金卡,在省内游客中有23持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡的人数相等的概率.解:(1)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.设事件A 为“采访该团2人,恰有1人持银卡”,P (A )=C 16C 130C 236=27.所以采访该团2人,恰有1人持银卡的概率是27.(2)设事件B 为“采访该团2人中,持金卡人数与持银卡人数相等”, 事件A 2为“采访该团2人中,0人持银卡”,P (B )=P (A 1)+P (A 2)=C 221C 236+C 19C 16C 236=13+335=44105.所以采访该团2人中,持金卡人数与持银卡人数相等的概率是44105.3.(2008·北京)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率.解:(1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 23C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.1.(2010·湖南长沙模拟)一个口袋中,装有大小相等的5个黑球、6个白球和4个黄球,从中摸出3个球,那么摸出的3个球颜色不超过2种的概率是( )A.6791B.2491C.4365D.2265解析:从15个球中摸出3个球的方法有C 315种,3个球中颜色超过2种的概率为C 16C 15C 14C 315=2491,故颜色不超过2种的概率为1-2491=6791. 答案:A 2.(2010·福建泉州3月检测)有3个相识的人某天各自外出,假设火车有10节车厢,那么至少有两人在同一车厢相遇的概率为( )A.29100 B.725 C.29144 D.718解析:该事件的对立事件为三人处于不同的车厢,此事件的概率是A 31010×10×10=1825,所以所求概率为1-1825=725.答案:B。

相关文档
最新文档