高中数学高考总复习复数习题及详解

合集下载

高考数学复数习题及答案

高考数学复数习题及答案

高考复习试卷(附参考答案)一、选择题(每小题只有一个选项是正确的,每小题5分,共100分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.(2013·山东)复数3-i1-i等于 ( )A .1+2iB .1-2iC .2+iD .2-i 答案:C解析:3-i 1-i =(3-i)(1+i)(1-i)(1+i)=4+2i 2=2+i.故选C.2.(2013·宁夏、海南)复数3+2i 2-3i -3-2i2+3i=( )A .0B .2C .-2iD .2i答案:D解析:3+2i 2-3i -3-2i 2+3i =(3+2i)(2+3i)(2-3i)(2+3i)-(3-2i)(2-3i)(2-3i)(2+3i)=13i 13--13i 13=i +i =2i.3.(2013·陕西)已知z 是纯虚数,z +21-i是实数,那么z 等于( )A .2iB .iC .-iD .-2i 答案:D解析:由题意得z =a i.(a ∈R 且a ≠0). ∴z +21-i =(2+a i)(1+i)(1-i)(1+i)=2-a +(a +2)i 2,则a +2=0,∴a =-2.有z =-2i ,故选D.4.(2013·武汉市高三年级2月调研考试)若f (x )=x 3-x 2+x -1,则f (i)= ( )A .2iB .0C .-2iD .-2 答案:B解析:依题意,f (i)=i 3-i 2+i -1=-i +1+i -1=0,选择B.5.(2013·北京朝阳4月)复数z =2-i1+i(i 是虚数单位)在复平面内对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:D解析:z =2-i 1+i =12-32i ,它对应的点在第四象限,故选D.6.(2013·北京东城3月)若将复数2+i i 表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则ba的值为( )A .-2B .-12C .2 D.12答案:A解析:2+i i =1-2i ,把它表示为a +b i(a ,b ∈R ,i 是虚数单位)的形式,则b a的值为-2,故选A.7.(2013·北京西城4月)设i 是虚数单位,复数z =tan45°-i·sin60°,则z 2等于 ( ) A.74-3i B.14-3i C.74+3i D.14+3i 答案:B解析:z =tan45°-i·sin60°=1-32i ,z 2=14-3i ,故选B.8.(2013·黄冈中学一模)过原点和3-i 在复平面内对应的直线的倾斜角为 ( ) A.π6 B .-π6C.23πD.56π 答案:D解析:3-i 对应的点为(3,-1),所求直线的斜率为-33,则倾斜角为56π,故选D. 9.设a 、b 、c 、d ∈R ,若a +b ic +d i为实数,则( )A .bc +ad ≠0B .bc -ad ≠0C .bc -ad =0D .bc +ad =0 答案:C解析:因为a +b i c +d i =(a +b i)(c -d i)c 2+d 2=ac +bd c 2+d 2+bc -ad c 2+d 2i ,所以由题意有bc -adc 2+d2=0⇒bc -ad =0.10.已知复数z =1-2i ,那么1z = ( )A.55+255i B.55-255i C.15+25iD.15-25i 答案:D 解析:由z =1-2i 知z =1+2i ,于是1z =11+2i =1-2i 1+4=15-25i.故选D.11.已知复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .6B .-6C .0 D.16答案:A解析:z 1z 2=3-b i 1-2i =(3-b i)(1+2i)(1-2i)(1+2i)=(3+2b )+(6-b )i 5是实数,则实数b 的值为6,故选A.12.(2013·广东)设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=( ) A .2 B .4 C .6 D .8 答案:B解析:α(i )表示i n =1的最小正整数n ,因i 4k =1(k ∈N *),显然n =4,即α(i )=4.故选B. 13.若z =12+32i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2等于( )A .-12+32i B .-3+33iC .6+33iD .-3-33i 答案:B解析:∵T r +1=C r 4x4-r(-z )r , 由4-r =2得r =2,∴a 2=C 24(-z )2=6×(-12-32i )2 =-3+33i .故选B.14.若△ABC 是锐角三角形,则复数z =(cos B -sin A )+i (sin B -cos A )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:B解析:∵△ABC 为锐角三角形, ∴A +B >90°,B >90°-A , ∴cos B <sin A ,sin B >cos A , ∴cos B -sin A <0,sin B -cos A >0, ∴z 对应的点在第二象限.15.如果复数2-bi1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于( )A. 2B.23 C .-23D .2答案:C解析:2-bi 1+2i =(2-bi )(1-2i )5=(2-2b )5+(-4-b )5i由2-2b 5=--4-b 5得b =-23.16.设函数f (x )=-x 5+5x 4-10x 3+10x 2-5x +1,则f (12+32i )的值为( )A .-12+32i B.32-12iC.12+32i D .-32+12i 答案:C解析:∵f (x )=-(x -1)5∴f (12+32i )=-(12+32i -1)5=-ω5(其中ω=-12+32i )=-ω=-(-12-32i )=12+32i .17.若i 是虚数单位,则满足(p +qi )2=q +pi 的实数p ,q 一共有 ( )A .1对B .2对C .3对D .4对 答案:D解析:由(p +qi )2=q +pi 得(p 2-q 2)+2pqi =q +pi ,所以⎩⎪⎨⎪⎧ p 2-q 2=q ,2pq =p .解得⎩⎪⎨⎪⎧ p =0,q =0,或⎩⎪⎨⎪⎧p =0,q =-1,或⎩⎨⎧p =32,q =12,或⎩⎨⎧p =-32,q =12,因此满足条件的实数p ,q 一共有4对.总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特别注意不要出现漏解现象,如由2pq =p 应得到p =0或q =12.18.已知(2x 2-x p )6的展开式中,不含x 的项是2027,那么正数p 的值是 ( )A .1B .2C .3D .4 答案:C解析:由题意得:C 46·1p 4·22=2027,求得p =3.故选C.总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含x 的项,即找常数项.19.复数z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z =a +bi ,与复平面上的点Z (a ,b )对应,由z =-lg(x 2+2)-(2x +2-x -1)i (x ∈R )知:a =-lg(x 2+2)<0,又2x +2-x -1≥22x ·2-x -1=1>0;∴-(2x +2-x -1)<0,即b <0.∴(a ,b )应为第三象限的点,故选C.20.设复数z +i (z ∈C )在映射f 下的象为复数z 的共轭复数与i 的积,若复数ω在映射f 下的象为-1+2i ,则相应的ω为( ) A .2 B .2-2i C .-2+i D .2+i答案:A解析:令ω=a +bi ,a ,b ∈R ,则ω=[a +(b -1)i ]+i , ∴映射f 下ω的象为[a -(b -1)i ]·i =(b -1)+ai =-1+2i .∴⎩⎪⎨⎪⎧ b -1=-1,a =2.解得⎩⎪⎨⎪⎧b =0,a =2.∴ω=2. 第Ⅱ卷(非选择题 共50分)二、填空题(本大题共5小题,每小题4分,共20分,请将答案填在题中的横线上。

高考复数专题及答案百度文库

高考复数专题及答案百度文库

一、复数选择题1.设复数1i z i=+,则z 的虚部是( ) A .12B .12iC .12-D .12i - 2.复数3(23)i +(其中i 为虚数单位)的虚部为( )A .9iB .46i -C .9D .46-3.已知i 为虚数单位,则复数23i i -+的虚部是( ) A .35 B .35i - C .15- D .15i - 4.复数12i z i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 5.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2 C .10 D 6.122i i-=+( ) A .1B .-1C .iD .-i 7.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1- 8.已知i 是虚数单位,a 为实数,且3i 1i 2i a -=-+,则a =( ) A .2B .1C .-2D .-1 9.设21i z i +=-,则z 的虚部为( ) A .12 B .12- C .32 D .32- 10.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 11.复数()()212z i i =-+,则z 的共轭复数z =( )A .43i +B .34i -C .34i +D .43i -12.复数12z i =-(其中i 为虚数单位),则3z i +=( )A .5BC .2D 13.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( )A B C D14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .115.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( )A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.若复数351i z i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限18.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i - 19.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i = C .z 的共轭复数为1i + D .z 的虚部为1-20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限 21.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 22.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限23.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称24.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 25.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z 26.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数27.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 28.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 29.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件30.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C.3.A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是.故选:A.解析:A【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部.【详解】因为22(3)26133(3)(3)1055i i i iii i i-----===--++-,所以其虚部是35.故选:A.4.A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A【分析】对复数z进行分母实数化,根据复数的几何意义可得结果.【详解】由()()()1221 12121255i iiz ii i i-===+++-,知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.5.D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为,所以,,所以,故选:D.解析:D【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.【详解】因为1z i =+, 所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-==故选:D.6.D【分析】利用复数的除法求解.【详解】.故选:D解析:D【分析】利用复数的除法求解.【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D7.A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A8.B【分析】可得,即得.【详解】由,得a =1.故选:B .解析:B【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =.【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1.故选:B . 9.C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为,所以其虚部为.故选:C.解析:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】 因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.10.A利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.11.D【分析】由复数的四则运算求出,即可写出其共轭复数.【详解】∴,故选:D解析:D【分析】由复数的四则运算求出z ,即可写出其共轭复数z .【详解】2(2)(12)24243z i i i i i i =-+=-+-=+ ∴43z i =-,故选:D12.B【分析】首先求出,再根据复数的模的公式计算可得;【详解】解:因为,所以所以.故选:B.解析:B【分析】首先求出3z i +,再根据复数的模的公式计算可得;解:因为12z i =-,所以31231z i i i i +=-+=+所以3z i +==故选:B . 13.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C 14.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B15.A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果.【详解】 因为()()()()4202050550512111121111111i i i z i i i i i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限.故选:A.二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】 解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.18.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.19.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--, ||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.22.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】 (1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.23.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误; 对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.24.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.25.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.26.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.27.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 28.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.29.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

高考数学复习专题:复数

高考数学复习专题:复数

考法一 高考数学复习专题:复数复数的实部与虚部【例1-1】(2023·山西临汾·统考一模)复数()+=+z i 2i 54i 2)(的虚部为( )A .−3iB .−6iC .−3D .−6【答案】D【解析】+−+−+−−=====−−+−−−−z i(2i)12i (12i)(12i)536i 5(4i )1515(12i)1530i2,虚部为−6.故选:D. 【例1-2】(2023·河南·长葛市第一高级中学统考模拟预测)已知复数=−z 1i ,则+z z212的实部为( ) A .101 B .−101 C .51D .−51【答案】A【解析】:因为=−z 1i ,所以+=−+−=−z z 2(1i)2(1i)24i 22, 所以+−−+====+++z z 224i (24i)(24i)20105i 1124i 24i 112,所以+z z 212的实部为101.故选:A.【例1-3】(2023·重庆·统考一模)设复数z 满足+⋅=z z i i 1,则z 的虚部为( )A .−21B .21C .−1D .1【答案】B【解析】设=+∈z a b a b i(,R),则=−z a b i ,所以+−+a b a b i(i)i=1i, −−+=a b a b (i )i+1,得=b 21,解得=b 21,所以复数z 的虚部为21.故选:B. 考法二 共轭复数【例2-1】(2023·黑龙江·黑龙江实验中学校考一模)复数z 满足+=−z (1i)24i 2,则复数z 的共轭复数=z ( ) A .−12i B .−−2i C .−+2i D .+2i【答案】C【解析】将式子+=−z (1i)24i 2化简可得,()+===−−−−z 1i 2i2i 24i24i2,根据共轭复数定义可知=−+z 2i ,故选:C【例2-2】(2023·陕西西安·统考一模)复数−=z 1i ()2i 2的共轭复数为( ) A .−2i B .−4iC .2iD .4i【答案】C 【解析】=−+−+==−+z ((1i)(1i))2i 1[]i 2i(1i)22,则=z 2i ,所以复数−=z 1i()2i 2的共轭复数为2i .故选:C【例2-3】(2023·全国·唐山市第十一中学校考模拟预测)已知复数z 满足−−+=z z 2i 3i 0,则z 的共轭复数=z ( ) A .+1i B .−1i C .+5i 1D .−5i 1【答案】B【解析】由−−+=z z 2i 3i 0,得−=−z 12i 3i −+=−+(12i)(12i)(3i)(12i)==++51i 55i ,所以=−z 1i .故选:B考法三 复数的模长【例3-1】(2022·北京·统考高考真题)若复数z 满足⋅=−z i 34i ,则=z ( ) A .1 B .5C .7D .25【答案】B【解析】由题意有()⋅−===−−−−−z i i i 43i 34i 34i i )()(,故==z ||5.故选:B .【例3-2】(2023秋·山西太原·高三太原五中校考期末)已知+=−zz 12i 3,则=z ( )AB .3C .2D 【答案】D 【解析】由+=−zz 12i 3,得−=+z z 3i 2i ,−=+z 12i 3i )(,所以()()−−+===++++z 12i 12i 12i 55i 3i 173i 12i )()(,所以=z D .【例3-3】(2023·全国·模拟预测)若复数z 满足⋅⋅+⋅−=z z z z 1112)()(,则+=z i ( )AB C .3D .5【答案】B【解析】设=+z x y i ,∈x y ,R .所以+⋅−⋅++⋅−+=x y x y x y x y (i)(i)1i 1i 12)()(, 所以+−−+x y x y xy ()(12i)=122222,所以−−−−++=x y x y xy x y 122()i 0442222,所以⎩+=⎨−−−−=⎧xy x y x y x y 2()0120224422,所以⎩+=⎨+−−−=⎧xy x y x y x y 2()0()(1)120222222, 当+=x y 022时,方程组无解;当=≠x y 0,0时,++=y y 12042没有实数解; 当x 0,y=0≠时,−−=∴=∴=±x x x x 120,4,2422,所以=z 2或−2.所以当=z 2时,+=+z i |2;当=−z 2时,+=−+z i |2所以+=z i 故选:B考法四 复数对应的象限【例4-1】(2021·全国·统考高考真题)复数−−13i2i在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】−===−++−+13i 101022i 55i 1i2i 13i )()(,所以该复数对应的点为⎝⎭ ⎪⎛⎫22,11,该点在第一象限, 故选:A.【例4-2】(2023·全国·模拟预测)若复数=−+z a 2i 1i )()(在复平面内对应的点位于第四象限,则实数a 的取值范围为( ) A .+∞2,)( B .−∞−,2)( C .−2,2)( D .0,2)(【答案】A【解析】由于=−+=+−−=++−z a a a a a 2i 1i 22i i i 22i 2)()()(,所以复数z 在复平面内对应的点的坐标为+−a a 2,2)(,则⎩−<⎨⎧+>a a 2020,解得>a 2,所以实数a 的取值范围为+∞2,)(,故选:A .【例4-3】(2023·湖南·模拟预测)已知i 是虚数单位,复数R =−=+∈z z a a 12i,2i 12)(在复平面内对应的点为P ,Q ,若OP OQ ⊥(O 为坐标原点),则实数a =( ) A .−2 B .−1 C .0 D .1【答案】D【解析】复数=−=+z z a 12i,2i 12,则−P 1,2)(,Q a 2,1)(,则(1,2OP =−),(2,1OQ a =), OP OQ ⊥,∴−=a 220,解得=a 1,故选:D.考法五 复数的分类【例5-1】(2023·全国·高三专题练习)已知i 为虚数单位,复数++=z a 2i 1i 3)()(为纯虚数,则=z ( ) A .0 B .21C .2D .5【答案】D【解析】由题意,在++=z a 2i 1i 3)()(中,=−+=+−+=++−z a a a a a 2i 1i 22i i 221i)()()(∵z 为纯虚数,∴,+=−≠a a 20210,∴=−a 2,∴=−z 5i ∴=z 5,故选:D . 【例5-2】(湖北省武汉市2023届高三下学期二月调研数学试题)若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是−21B .实部是21C .虚部是0D .虚部是21【答案】A【解析】设=+z a b i (∈a b ,R 且≠b 0)+=+++=+−++=+−++z z a b a b a ab b a b a a b ab b (i)(i)2i i (2)i 222222, +z z 2是实数,因此+=ab b 20,=b 0(舍去),或=−a 21.故选:A . 【例5-3】(2022秋·江苏南京·高三校考期末)设a 为实数,若存在实数t ,使得+−−t a 2i(1)i 12为实数(i 为虚数单位),则a 的取值范围是( )A .≥−a 2B .0a<C .≥−a 1D .−≤≤−a 21【答案】C 【解析】由题知,⎝⎭⎪+−=+−=−−⎛⎫−−−t t t a a a 2i 2i 2(1)i (1)i 1i 111i 2222)(, 因为存在实数t ,使得+−−t a 2i (1)i 12为实数,所以关于t 的方程−−=−t a 21012有实数根, 所以,=+t a 212有实数根,所以=≥+t a 2012,即≥−a 1所以,a 的取值范围是≥−a 1故选:C考法六 相等复数【例6-1】(2022·全国·统考高考真题)设++=a b (12i)2i ,其中a b ,为实数,则( ) A .==−a b 1,1 B .==a b 1,1 C .=−=a b 1,1 D .=−=−a b 1,1【答案】A【解析】因为a b ,R ,++=a b a 2i 2i )(,所以+==a b a 0,22,解得:==−a b 1,1.故选:A.【例6-2】(2023·云南红河· )A .⎝⎭⎝⎭ ⎪ ⎪−+−⎛⎫⎛⎫33cos isin ππB 2i 1C .−1iD .3i π【答案】A⎝⎭⎝⎭==211,由⎝⎭ ⎪−==⎛⎫332cos cos 1ππ,⎝⎭⎪−=−=−⎛⎫332sin sin ππ,A 正确,B 、C 、D 错误.故选:A .考法七 在复数范围内解方程【例7-1】(2022·高一课时练习)复数2i 的平方根是( ) A .+1i 或−−1i B .2iC .+1iD .−−1i【答案】A【解析】设2i 的平方根为+∈x y x y i(,R),则+=x y (i)2i 2,即−+=x y xy 2i 2i 22,从而⎩=⎨−=⎧xy x y 22,0,22解得⎩=⎨⎧=y x 11,或⎩=−⎨⎧=−y x 1.1,所以复数2i 的平方根是+1i 或−−1i ,故选:A【例7-2】(2021·湖南衡阳·衡阳市八中校考模拟预测)已知复数−i 2是关于x 的方程++=∈x px q p q R 0,2)(的一个根,则+=pi q ( )A.25 B .5C D .41【答案】C【解析】因为复数−i 2是关于x 的方程++=x px q 02的一个根,所以−+−+=i p i q 2202)()(,所以+=+−pi q i p 423,所以==−p q p 4,23,所以==p q 4,5,则+=+=pi q i 45 C.【例7-3】(2021·江苏·一模)已知+i 2是关于x 的方程++=x ax 502的根,则实数a =( ) A .−i 2 B .−4 C .2 D .4【答案】B【解析】因为+i 2是关于x 的方程++=x ax 502的根,则另一根为−i 2 由韦达定理得++−=−i i a 22)()(,所以=−a 4 故选:B考法八 复数的综合运用【例8-1】(2023春·浙江·高三校联考开学考试)复数=−−z 2211,复数z 2满足⋅=z z 112,则下列关于z 2的说法错误的是( )A .=−z 212B .=z 12C .z 2D .z 2在复平面内对应的点在第二象限【答案】C【解析】对于A ,由已知可得,==z z 112==21=−421)(=−21,故A 正确.对于B ,因为=−z 212,所以==z 12,故B 正确;对于C ,根据复数的概念可知z 2,故C 错误;对于D ,根据复数的概念可知z 2在复平面内对应的点为⎝⎭⎪ ⎪−⎛⎫221,故D 正确.故选:C.【例8-2】(2023·高一课时练习)已知z 1、∈z C 2,且=z 11,若+=z z 2i 12,则−z z 12的最大值是( ). A .6 B .5 C .4 D .3【答案】C【解析】设=+∈z a b a b i,,R 1)(,=z 11,故+=a b 122,+=z z 2i 12,则=−+−z a b 2i 2)(,−=+−===z z a b 222i 12)(∈−b 1,1][,当1b时,−z z 12有最大值为4.故选:C【例8-3】(2023江苏镇江)(多选)已知复数=+z a b i 111,=+z a b i 222(a 1,b 1,a 2,b 2均为实数),下列说法正确的是( ) A .若=z z 212,则>z z 12B .z 1的虚部为b 1C .若z z =12,则=z z 1222D .=z z 1122【答案】BD【解析】对于A ,复数不等比较大小,A 项错误;对于B ,复数=+z a b i 111,a 1是实部,b 1是虚部,B 项正确;对于C ,z z =12==−+z a b a b 2i 11111222,=−+z a b a b 2i 22222222,不能得到=z z 1222,所以C 项错误;对于D ,=+z a b 111222,=−+z a b a b 2i 11111222,==+z a b 111222,所以=z z 1122,D 项正确;故选:BD.强化训练1.(2022·全国·统考高考真题)若=−z 1,则−=zz z1( )A .−1 B .−1C .−31D .−31【答案】C【解析】=−=−−=+=z zz 1(1113 4.−==−zz z 131故选 :C2.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)若复数z 满足+⋅=+z (12i)34i (其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是115 B .z 的虚部是52C .复数z 在复平面内对应的点在第一象限D .=z 5 【答案】C【解析】由题设++−===−++−z 12i (12i)(12i)55i 34i (34i)(12i)112,==z ||=+z 55i 112, A 选项,z 的实部是511,故A 错误;B 选项,z 的虚部是−52,故B 错误; C 选项,复数z 对应的坐标为⎝⎭⎪⎛⎫55,112,在复平面内对应的点在第一象限,故C 正确;D 选项,z D 错误.故选:C3.(2023秋·江苏·高三统考期末)若复数z 满足≤−z 12,则复数z 在复平面内对应点组成图形的面积为( ) A .π B .π2 C .π3 D .π4【答案】D【解析】z 在复平面对应的点是半径为2的圆及圆内所有点,=S π4,故选:D.4.(2023·内蒙古赤峰·统考模拟预测)已知R ∈a ,+=+a (5i)i 15i (i 为虚数单位),则a =( ) A .−1 B .1 C .−3 D .3【答案】A【解析】由题意知,+=−+=+a a (5i)i 5i 15i ,则=−a 1.故选:A.5.(2023春·湖南·高三校联考阶段练习)若复数z 满足−=z z 2i ,则++=z 32i ( )A B C .D 【答案】B【解析】+==−z 1i1i 2,则++=+=z 32i 4i B. 6.(2023·辽宁·校联考模拟预测)已知复数=−z 2i ,且−+=z az b i ,,其中a ,b 为实数,则−=a b ( ) A .-2 B .0C .2D .3【答案】C【解析】由题意得=+z 2i ,则代入原式得:+−−+=a b 2i 2i i )(,即−+++=a b a i 221i )()(,所以⎩+=⎨⎧−+=a a b 11220,解得⎩=−⎨⎧=b a 20,所以−=a b 2.故选:C .7.(2023·四川凉山·统考一模)已知复数z 满足=+−z1i 13i,z 是z 的共轭复数,则+z z 等于( ) A .−2i B .−2C .−4iD .−1【答案】B【解析】由题意在=+−z 1i 13i 中,()()++−−====−=−−−−++−−z 1i 1i 1i 1i 212i 13i 3i 4i 14i 213i 1i 22)()( ∴=−+z 12i ∴+=−−−+=−z z 12i 12i 2故选:B.8.(2023·浙江·永嘉中学校联考模拟预测)若+=z 12i i (i 为虚数单位),则=z ( )A.5 B CD 【答案】B【解析】由+=z 12i i 得==−+z i2i 12i,所以==z ,故选:B 9.(2023·江苏南通·统考一模)在复平面内,复数z z ,12对应的点关于直线−=x y 0对称,若=−z 1i 1,则−=z z 12( )A B .2C .D .4【答案】C【解析】=−z 1i 1对应的点为1,1,其中1,1关于−=x y 0的对称点为−1,1)(,故=−+z 1i 2,故−=−−=−==z z 1i+1i 22i 12故选:C10.(2023·陕西西安·校考模拟预测)已知复数z 满足=+z i21,其中i 为虚数单位,则z 的共轭复数在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】=+z i2=2-i 1,所以z 的共轭复数为=+z 2i ,对应在复平面内的点为(2,1),在第一象限, 故选:A11(2023·陕西榆林·统考一模)已知+−−=−z z z z 282i )()(,则+=z i ( )A.B .CD 【答案】A【解析】设R =+∈z a b a b i ,)(,则+−−=+=−=−z z z z z z a b 2342i 82i )()(,则==a b 2,1,故+=+=z i 22i 故选:A12.(2023·贵州毕节·统考一模)已知复数=+++z a a a 1i 2)(为纯虚数,则实数a 的值为( ) A .0 B .0或−1C .1D .−1【答案】A【解析】因为复数=+++z a a a 1i 2)(为纯虚数,则⎩+≠⎨+=⎧a a a 1002,解得=a 0.故选:A.13.(2023·全国·模拟预测)已知复数z 满足−=+z z 2537i )(,则z 的虚部为( ) A .−1311B .511 C .1329 D .−529 【答案】C【解析】对−=+z z 2537i )(移项并整理,得−=+z 23i 57i )(, ∴()()−−+===−++++z 23i 23i 23i 1313i 57i 112957i 23i )()(,∴z 的虚部为1329.故选:C. 14.(2022·全国·统考高考真题)若=+z 1i .则+=z z |i 3|( )A .B .C .D .【答案】D【解析】因为=+z 1i ,所以+=++−=−z z i 3i 1i 31i 22i )()(,所以+==z z i 3 故选:D.15.(2023春·江苏常州·高三校联考开学考试)若复数R +=∈+z a a 3i3i)(是纯虚数,则=z ( ) A .−1 B .−iC .−a iD .3i【答案】B 【解析】==+−++−z a a a 10103i 3i 339i )()()(为纯虚数,=−=a z 1,i ,=−z i ,故选:B .16.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)i 是虚数单位,设复数z 满足−=+z i 113i )(,则z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为+==13i 2,所以−−+−====−+++−+z i 1(i 1)(i 1)222i 23i (23i)(i 1)15i 15, 所以=+z 22i 15,所以z 的共轭复数对应的点位于第一象限,故选:A 17.(2023秋·浙江·高三期末)已知复数=+∈=z b b z i2i(R),212(其中i 为虚数单位),若−z z 12=b ( ) A .1 B .−5 C .1或−5 D .−1或5【答案】C【解析】由题意得==−z i2i 22,则−=++z z b 2(2)i 12,所以−==z z 12−b =5或=b 1,故选:C18.(2023广东深圳)设复数z 满足⋅+=−+z 12i 34i )(,则z 的虚部为( ) A .−2i B .2iC .−2D .2【答案】D【解析】由⋅+=−+z 12i 34i )(可得++====−−−+z 12i 12i 512i 55(12i)34i ,故=+z 12i ,则z 的虚部为2,故选:D19.(2022·山东济南·山东省实验中学校考模拟预测)虚数单位i 的平方根是( ) A .−1B.−−i 22C+22D.+22或 【答案】D【解析】设i 的平方根为+∈a bi a b R (,),则+=−+=a bi a b abi i ()2222,所以⎩=⎨−=⎧ab a b 21022,解得⎩⎪=⎪⎨⎪⎪=⎧b a 22或⎩⎪=⎪⎨⎪⎪=−⎧b a 2. 所以i的平方根为+i 22或−22. 故选:D .20.(2023·山西大同·大同市实验中学校考模拟预测)若复数z 满足+−=+z z z z 2+323i )()(,则z =( ) A .+22i 11B .−22i 11C .+22iD .−22i【答案】A【解析】设=+∈z a b a b i ,R )(,则=−z a b i ,所以+=++−=z z a b a b a i i 2)()(,−=+−−=z z a b a b b i i 2i )()(,所以+−=++z z z z a b 2+346i=23i )()(,所以===+a b z 2222,,i 1111.故选:A 21.(2023·广东佛山·统考一模)设复数z 满足+=−z 1i 52i 2)(,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵+=−z 1i 52i 2)(,则()+===−−−−z 1i 2i 21i 52i52i 52,∴z 在复平面内对应的点为⎝⎭ ⎪−−⎛⎫21,5,位于第三象限.故选:C.22.(2023·辽宁·辽宁实验中学校考模拟预测)已知复数+z1i 为纯虚数,且+=z 1i1 ,则z =( ) A .−1i B .+1i C .−+1i 或−1i D .−−1i 或+1i【答案】C【解析】设=+z a b i (a ,b ∈R ),则++===+++−+−z a b a b b aa b 1i 1i 222i i i 1i )()( , 因为复数+z 1i 为纯虚数,所以⎩⎪≠⎪−⎨⎪⎪=⎧+b a a b 20,20,解得⎩≠⎨⎧=−a b a b ,, 又+=z 1i 1,所以=−b a 21或=−−b a21,解得=b 1或1b ,所以=−+z 1i 或=−z 1i .故选:C23.(2023·安徽马鞍山·统考一模)若复数z 满足−=−zz z i 3i ,则z 的虚部为( ) A .−1 B .2C .1或2D .−1或2【答案】D【解析】设复数=+∈z a b a b i(,R),因为−=−zz z i 3i ,即+−−=−a b a b i 3i 22,所以⎩=⎨+−=⎧a a b b 1322,解得:1b或=b 2,所以z 的虚部为−1或2,故选:D .24.(2023·云南昆明·昆明一中校考模拟预测)已知复数z 满足−=z (12i)i 2023,则=z ( ) A .−55i 21 B .+55i 21C .−55i 12D .+55i 12【答案】A【解析】因为=⨯=−ii ii 202321011)(,所以()()−−−+====−−−+z 12i 12i 12i 12i 55i i i 21i 12i 2023)(,故选:A. 25.(2023·河南郑州·统考一模)已知i 是虚数单位,若复数z 的实部为1,⋅=z z 4,则复数z 的虚部为( )A.B .C .−1或1D .【答案】A【解析】由题意,设=+z b 1i ,则=−z b 1i ,所以⋅=+−=z z b b 1i 1i 4)()(,即+=b 142,所以=b =−z 1或z =+1,所以复数z 的虚部为故选:A.26.(2023·陕西宝鸡·校联考模拟预测)已知复数=++z 1i i 3)(,则复数z 的模为( )AB .CD 【答案】C【解析】因为=++=−+z 2i(1i)i 23i ,所以=z C.27.(2023·陕西咸阳·武功县普集高级中学统考一模)已知复数=−z i 12的共轭复数为z ,则−=z i2( ) A .−1i B .+2iC .+1iD .−+1i【答案】A【解析】由题知=+z 12i ,所以−+==−z i1i 1i 22故选:A 28.(2023·浙江·校联考模拟预测)已知复数=−z 12i 1,=+z 1i 2,则复数z z 12的模z z 12等于( )A B C .D .【答案】B【解析】复数=−z 12i 1,=+z 1i 2,则=−+=−z z (12i)(1i)3i 12,所以==z z 12故选:B29.(2023·广东梅州·统考一模)已知复数z 满足z +=−1i 2i )(,i 是虚数单位,则z 在复平面内的对应点落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】由z +=−1i 2i )(可得+===−−−−−z 1i 21i 2i (2i)(1i), 则z 在复平面内的对应点为−−(1,1),落在第三象限,故选:C 30.(2023秋·辽宁·高三校联考期末)已知z 是纯虚数,−+z 1i2是实数,那么=z ( ) A .2i B .iC .−iD .−2i【答案】A【解析】因为z 是纯虚数,故可设)=≠z b b i(0,所以()()−−−+=+−−+z b b 1i 1i 1i 1i =22i 2i 1i )()(=++−b b 222i)(,因为−+z 1i 2是实数,所以−=b 20,即=b 2,所以=z 2i .故选:A31.(2023秋·江苏南京·高三南京师范大学附属中学江宁分校校联考期末)设a 为实数,若存在实数t ,使+−−t a 2i(1)i i2为实数(i 为虚数单位),则a 的取值范围是( ) A .≥−a 2 B .0a< C .≤−a 1 D .≤−a 2【答案】A 【解析】⎝⎭⎪+−+−−−+−−+−−⎛⎫−−−t t t t a a a a 2i 222221i=1i=i 1i=1i i11i i 2222)()()()()(, 因为存在实数t ,使+−−t a 2i (1)i i 2为实数,a 为实数,所以存在实数t ,−−=t a2102,故存在实数t ,−=t a 222, 所以≥−a 2,故选:A.32.(2023·吉林·长春十一高校联考模拟预测)设复数z 满足+=z i 2,z 在复平面内对应的点为x y ,)(,则( ) A .−+=x y 1422)( B .++=x y 1422)( C .+−=x y 1422)( D .++=x y 1422)(【答案】D【解析】z 在复平面内对应的点为,x y (),则复数=∈z x y x y +i,,R ,则+=++=z x y i (1)i 2,由复数的模长公式可得++=x y (1)422,故选:D .33.(2023秋·广东广州·高二广东实验中学校考期末)设复数z 满足−=−z z z 1,则z 在复平面上对应的图形是( ) A .两条直线 B .椭圆 C .圆 D .双曲线【答案】A【解析】设=+z x y i ,则=−z x y i ,−=−z z z 1可得:−+=x y y 12222)()(,化简得:−=x y 1322)(,即−=x y 13或−=−x y 13,则z 在复平面上对应的图形是两条直线.故选:A34.(2022春·上海黄浦·高三上海市敬业中学校考开学考试)满足条件−=+z i 34i (i 是虚数单位)的复数z 在复平面上对应的点的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】因为+==34i 5,设=+z x y i ∈x y ,R )(,所以−=+−z x y i 1i )(,所以i −==z 5,两边平方得+−=x y 12522)(,满足条件的复数在复平面上对应的点的轨迹是圆, 故选:B35(2023春·湖南株洲·高二株洲二中校考开学考试)已知复数z 满足+=+ααz 1i sin i cos )((i 是虚数单位),则=z ( )A .21B C .2D .1【答案】B【解析】因为+=+ααz 1i sin i cos )(, 所以()()++−===+++−++−ααααααααz 1i 1i 1i 22i sin i cos sin cos sin cos sin i cos 1i )()(,解得==z 故选:B36.(2022秋·安徽阜阳·高三安徽省临泉第一中学校考期末)已知复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根,则+=p q i ( )A.4 B .C .8D .【答案】D【解析】因为复数+1i 是关于x 的方程++=x px q 02的一个根,所以⎩+=⎨++++=⇒+++=⇒⎧+=p p q p q p p q 201i 1i 02i 002)()()(,解得=−=p q 2,2,所以+==p qi另解:因为复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以复数−1i 也是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以有++−==−+−==p q 1i 1i 2,1i 1i 2)()(解得=−=p q 2,2,所以+=p qi 故选:D37.(2023·全国·模拟预测)若复数=+++⋅⋅⋅+z n i i i i 23,∈n N *则z 的最大值为( )A.1 B C D .2【答案】B【解析】因为=i i 1,=−i 12,=−i i 3,=i 14,,=+k i i 41,=−+k i 142,=−+k i i 43,=k i 14,∈k N ,且+++=i i i i 0234,所以当=n k 4,∈k N *)(时=z 0,则=z 0,当=+n k 41,∈k N )(时=z i ,则=z 1,当=+n k 42,∈k N )(时=−+z 1i ,则==z当=+n k 43,∈k N )(时=−z 1,则=z 1,所以z 故选:B38.(2021秋·上海浦东新·高三上海南汇中学校考阶段练习)已知函数+=−−x f x x 1()log (1)212的定义域为A ,复数−=−−z a 12ii 3i,若∈a A ,则z ||的取值范围是( )A .<z 1B .≤<z 1C .≤≤z 1D .<≤z 1【答案】B 【解析】由+−>−x x 11021,得+>−+x x 102,即−<<x 12,所以=−A (1,2) 因为复数−=−=−+−=+−−z a a a 12i 5i (3i)(12i)i 1(1)i 3i 1所以z ||因为∈−a (1,2),所以z || 故选:B39.(2023春·上海浦东新·高三上海市实验学校校考开学考试)设z 1,z 2为复数,下列命题一定成立的是( )A .如果=z a 1,a 是正实数,那么=z z a 112B .如果z z =12,那z z =±12C .如果≤z a 1,a 是正实数,那么−≤≤a z a 1D .如果+=z z 01122,那么==z z 012 【答案】A【解析】设)(,=+=+∈z x y z x y x y x y i,i ,,,R 1112221122,对A :∵==z a 1,则+=x y a 11222,∴=+−=+=z z x y x y x y a i i 11111111222)()(,A 正确;对B :∵z z =12=+=+x y x y 11222222,不能得到=±=±x x y y ,1212,更不能得到z z =±12,例如==z z 1,i 12,则==z z 112,但≠±z z 12,B 错误;对C :∵=z a 1,则+≤x y a 11222,但只有实数才能比较大小,对于虚数无法比较大小,C 错误;对D :∵+=z z 01122,则+++=−++−+=+−−++x y x y x y x y x y x y x x y y x y x y i i 2i 2i 2i=0112211112222121211222222222222)()()()()()(,可得⎩+=⎨+−−=⎧x y x y x x y y 00112212122222,不能得到====x y x y 01122,例如==z z 1,i 12,则+=−=z z 1101122,但显然≠≠z z 0,012,D 错误.故选:A.40.(2022秋·山西阳泉·高三统考期末)已知复数1232023i i i i 1i +++++=z ,则复数z 的虚部是( ) A .21B .−21C .2i 1D .−2i 1【答案】A 【解析】1232023i i i i 1i 1i 1i++++===+++−−+−−+++++++z i 1i 505i 1i 1i i i 505i i i i 1231234)()()()(+===−−+−−1i 2211i1i )(,故虚部为21 ,故选:A 41.(2022春·广西)下列关于复数的命题中(其中i 为虚数单位),说法正确的是( )A .若关于x 的方程+++−=∈i x ax i a R 11402)()(有实根,则=−a 25B .复数z 满足+=z i i12020)(,则z 在复平面对应的点位于第二象限C .=−+++z a a a i 412312)(,=++i z a a a 222)((i 为虚数单位,∈a R ),若>−a 21,则>z z 12D .+i 12是关于x 的方程++=x px q 02的一个根,其中p 、q 为实数,则=q 5 【答案】D【解析】对于A 中,设方程的实数根为t ,代入方程可得+++−=i i t at 11402)(,所以⎩−=⎨++=⎧t t at 401022,解得=±a 25,所以A 不正确;对于B 中,复数+=z i i 12020)(,可得==−++=i i i i z 12112112020,则复数z 在复平面内对应的点为−22(,)11,位于第四象限,所以B 不正确;对于C 中,复数=−+++z a a a i 412312)(,=++i z a a a 222)(,当>−a 21时,可知当+≠a a 02时 ,因为虚数不能比较大小,所以C 不正确;对于D 中,+i 12是关于x 的方程++=x px q 02的一个根, 根据复数方程的性质,可得−i 12也是方程的根,可得⎩+−=⎨⎧++−=−i i q i i p (12)(12)1212,解得=−=p q 2,5,所以D 正确.故选:D.42.(2023秋·河北唐山·高三统考期末)(多选)已知i 为虚数单位,复数,,=−=+∈z a z a a 2i 2i R 12)(,下列结论正确的有( )A .z z =12B .=z z 12C .若+=⋅z z z z 21212)(,则=a 2D .若=−z i 2,则=a 0 【答案】AC【解析】A 选项,==z z 12,A 选项正确. B 选项,=+≠z a z 2i 12,B 选项错误. C 选项,+=++−z z a a 22424i 12)()(, ⋅=+−z z a a 44i 122)(,若+=⋅z z z z 21212)(,则⎩−=−⎨⎧+=a a a a 2442442,解得=a 2,所以C 选项正确. D 选项,当=a 0时,=≠−z 2i 2,所以D 选项错误. 故选:AC43.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)(多选)设i 为虚数单位,下列关于复数的命题正确的有( ) A .=⋅z z z z 1212B .若z z ,12互为共轭复数,则z z =12C .若z z =12,则=z z 1222D .若复数=++−z m m 11i )(为纯虚数,则=−m 1【答案】ABD 【解析】由题意得:对于选项A :令=+=+z a b z c d i,i 12则⋅=++=−++z z a b c d ac bd ad bc i i i 12)()()( =−++ac bd ad bc 22)()(=⋅z z 12所以=⋅z z z z 1212,故A 正确;对于选项B :令=+=−z a b z a b i,i 12,z z 12z z =12,故B 正确;对于选项C :令=+=−z a b z a b i,i 12,==z z 12,根据复数的乘法运算可知:=+=−+z a b a b ab i 2i 12222)(,=−=−−z a b a b ab i 2i 22222)( ,≠z z 1222,所以C 错误;对于选项D :若复数=++−z m m 11i )(为纯虚数,则+=m 10,即=−m 1,故D 正确. 故选:ABD44.(2023春·安徽·高三校联考开学考试)(多选)若复数=+z i 121,=−z 73i 2,则下列说法正确的是( ).A .=z 1B .在复平面内,复数z 2所对应的点位于第四象限C .⋅z z 12的实部为13D .⋅z z 12的虚部为−11 【答案】ABC【解析】由题意得,==z 1A 正确;在复平面内,复数z 2所对应的点为−7,3)(,位于第四象限,故B 正确; ∵⋅=+−=−++=+z z 12i 73i 73i 14i 61311i 12)()(, ∴⋅z z 12的实部为13,虚部为11,故C 正确,D 错误. 故选:ABC .45.(2023秋·浙江宁波·高三期末)(多选)已知∈z z C ,12,且=+=z z z 10112,则( )A .当R =−=+∈z z x y x y 1i,i(,)12时,必有++−=x y (1)(1)1022B .复平面内复数z 1C .−=z i 1min 1D .=+z z 1max12【答案】BD【解析】A 项:+=⇒++−=z z x y 10111001222)()(,故错误;B 项:因为=z 1,故正确;C 项:−≥−=z i z i ||||111,当z 1与i 对应向量同向时取等,故错误;D 项:==≤==+z z 112+z z 12与z 1对应向量反向时取等,故正确. 故选:BD.46.(2023秋·湖北·高三校联考阶段练习)(多选)设z 1,z 2为复数,则下列四个结论中正确的是( )A .−=+−z z z z z z 412121222)(B .−z z 11是纯虚数或零C .+≤+z z z z 1212恒成立D .存在复数z 1,z 2,使得<z z z z 1212【答案】BC【解析】对于A :+−=−z z z z z z 412121222)()(,令−=+z z x y i 12, 则−=+=−+z z x y x y xy i 2i 122222)()(,−==+z z x y 12222,+xy 22与−+x y xy 2i 22不一定相等,故A 错误;对于B :=+z a b i 1,则=−z a b i 1,−=z z b 2i 11,当=b 0时为零,当≠b 0时为纯虚数,故B 正确;对于C :=+=+==z x y z a b z z i,i,1212则+=z z 12+=z z ||||12,(ay bx −≥02),则+−≥a y b x abxy 202222,∴+++≥++a x b x a y b y a x b y abxy 442222222222222)()(∴++≥+x y a b ax by 42222222)()()(∴+ax by 22∴++++≥+++++x y a b x y a b ax by 2222222222,∴≥22,∴+−+≥z z z z ||||0121222)()(故C 正确;对于D :设=+=+==z x y z a b z z i,i,1212则z z ||||12=+++=−++z z ax xb ay by ax by xb ay i i i i 122)()(==z z 12z z ||||12,故D 错误.故选:BD.47.(2022秋·甘肃甘南)(多选)已知=+∈z a b a b i ,R )(为复数,z 是z 的共轭复数,则下列命题一定正确的是( )A .若z 2为纯虚数,则=≠a b 0B .若∈z R 1,则∈z RC .若−=z i 1,则z 的最大值为2D .⋅=z z z ||2【答案】BCD【解析】对于A ,=+=−+z a b a b ab (i)2i 2222)(为纯虚数,所以⎩≠⎨−=⎧ab a b 20022,即=±≠a b 0,所以A 错误;对于B ,()()++−++===−−z a b a b a b a b a ba b a bi i i i 11i 2222, 因为∈zR 1,所以=b 0,从而∈z R ,所以B 正确;对于C , 由复数模的三角不等式可得=−+≤−+=z z z i i i i 2)(,所以C 正确;对于D ,⋅=+−=+=z z a b a b a b z i i ||222)()(,所以D 正确.故选:BCD .48.(2023秋·吉林长春·高三长春市第二中学校考期末)(多选)已知复数z 1,z 2,则下列结论中一定正确的是( ) A .若=z z 012,则=z 01或=z 02B .若+=z z 01222,则==z z 012 C .若=z z 1222,则z z =12D .若z z =12,则=z z 1222【答案】AC【解析】对于A , 设=+=+∈z x y z a b x y a b i,i,,,,R 12)(, 若=z z 012,则=++=−=z z x y a b xa yb xb ya i i ++i 012)()()(,所以⎩=⎨⎧−=xb ya xa yb +00,即⎩=−⎨⎧=xb ya xa yb,所以=−x y ab ab 22,若0a b ,则=−x y ab ab 22成立,此时=z 02;若,=≠a b 00,由=xa yb 得=y 0,由=−xb ya 得=x 0,此时=z 01; 若,≠≠a b 00,由=−x y ab ab 22得=−x y 22,所以==x y 0,此进=z 01, 所以若=z z 012,则=z 01或=z 02,故A 正确;对于B ,设=+=−z z 1i,1i,12则+=+−=z z 1i +1i 0122222)()(,故B 不正确; 对于C ,设=+=+∈z x y z a b x y a b i,i,,,,R 12)(,所以=+−=−∈z x y x y xy z a b ab x y a b i =+2i,+2i ,,,R 12222222)()(,若=z z 1222,则⎩⎩==⎨⎨⇒⎧−=−⎧=xy ab y b x y a b x a 222222或⎩=−⎨⎧=−y b x a , 所以z z =12,故C 正确;对于D , 由z z =12,取=+z 1i 1,=−z 1i 2满足条件,而=≠=−z z 2i 2i 1222,故D 不正确. 故选:AC.49.(2023·高一课时练习)在复平面上的单位圆上有三个点Z 1,Z 2,Z 3,其对应的复数为z 1,z 2,z 3.若−=+=z z z 1213△Z Z Z 123的面积S =______.【解析】由题意知,===z z z 1123, 由复数的加减法法则的几何意义及余弦定理,得⋅∠==−+−−z z Z OZ z z z z 22cos 112121212222,即∠=︒Z OZ 12012,⋅∠=−=+−+z z Z OZ z z z z 22cos 113131313222,即∠=︒Z OZ 6013,当OZ 2与OZ 3反向,=⨯⨯=S 22221;当线段OZ3在∠Z OZ12的内部时,==S2211所以△Z Z Z123..50(2023·高三课时练习)已知复数=−θz cos i1,=+θz sin i2,则⋅z z12的最大值为______.【答案】23【解析】⋅=⋅== z z z z1212===∵∈θsin20,12][,∴当=θsin212时,⋅z z12=23.故答案为:23.51.(2023·=______.====21)52.(2023·高一课时练习)设z 1,z 2,∈z C 3,下列命题中,假命题的个数为______. ①z z −=11;②若=z z 1222,则⋅=⋅z z z z 1122;③⋅=z z z z z z 3333121222; ④若−+−=z z z z 0122322)()(,则==z z z 123;⑤+≤z z z z 2121222.【答案】2【解析】令+z a b =i 1,+z c d =i 2,则−z a b =i 1,−z c d =i 2.则①−==z z 11,判断正确;②若=z z 1222,则=z z 1222,则=z z 1222又⋅=z z z 1112,⋅=z z z 2222,则⋅=⋅z z z z 1122.判断正确;③==⋅z z z z z z z z z 333333121212222.判断正确; ④若令z =2i 1,z =i 2,+z =1i 3,则−+−=−+=z z z z 110122322)()(, 但此时≠≠z z z 123.判断错误; ⑤当+z =23i 1,+z =2i 2时,=<+−=−=−z z z z z z 22i 402212121222)()(,即+>z z z z 2121222.判断错误.故答案为:253.(2023·上海·统考模拟预测)设∈z z ,C 12且=⋅z z i 12,满足−=z 111,则−z z 12的取值范围为_____.【答案】⎣⎡0,2【解析】设=+=+∈z a b z c d a b c d i,i,,,,R 12,=−z c d i 2,则+=⋅−=+a b c d d c i i i i )(,所以⎩=⎨⎧=b c a d ,−=−+==z a b 11i 11)(,所以−+=a b 1122)(,即z 1对应点a b ,)(在以1,0)(为圆心,半径为1的圆−+=x y 1122)(上.=+=+z c d b a i i 2,z 2对应点为b a ,)(,a b ,)(与b a ,)(关于=y x 对称,所以点b a ,)(在以0,1)(为圆心,半径为1的圆+−=x y 1122)(上,−z z 12表示a b ,)(与b a ,)(两点间的距离,圆−+=x y 1122)(与圆+−=x y 1122)(,如图所示,所以−z z 12的最小值为0+=112所以−z z 12的取值范围为⎣⎡0,2.故答案为:⎣⎡0,254.(2023·高三课时练习)复数z 1与z 2在复平面上对应的向量分别为OZ 1与OZ 2,已知=z i 1,OZ OZ ⊥12,且=OZ OZ 12,则复数=z 2______.【答案】1或−1【解析】依题意,(3,1)OZ =1,设(,)OZ x y =2,由OZ OZ ⊥12得:30OZ OZ ⋅=+=x y 12,由=OZ OZ 12得:+=x y 422,联立解得⎩⎪=⎨⎪⎧=y x 1⎩⎪⎨⎪⎧=−y x 1(1,3)OZ =−2或(1,3)OZ =−2,所以=z 12或=−z 12.故答案为:1或−155(2023·高三课时练习)已知复数z 满足−−≤−−+z z 12log 11121,则z 在复平面上对应的点Z所围成区域的面积为______. 【答案】π21 【解析】12log 1,2,215z z z z −+−+−−−−≤−∴≥<−≤z 12121111,∴=−=s π(52)21π22. 故答案为: π2156(2022春·上海闵行·高三上海市七宝中学校考阶段练习)已知=+z x y i ,x 、∈y R ,i 是虚数单位.若复数++z1ii 是实数,则z ||的最小值为______.【【解析】复数++−+=+=+=++−++−+−+z x y x y y x x y y x 1i (1i)(1i)222i i i i (i)(1i)()i 2是实数, 所以=−+y x 202,得=+x y 2.所以===≥z ||当且仅当=−y 1,=x 1取等号,所以z ||.。

高考复数专题及答案 百度文库

高考复数专题及答案 百度文库

一、复数选择题1.已知i 为虚数单位,则复数23ii -+的虚部是( ) A .35B .35i -C .15-D .15i -2.))5511--+=( )A .1B .-1C .2D .-2 3.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )A B C .3D .54.已知复数5i5i 2iz =+-,则z =( )A B .C .D .5.已知复数()211i z i-=+,则z =( )A .1i --B .1i -+C .1i +D .1i -6.若复数2i1ia -+(a ∈R )为纯虚数,则1i a -=( )A B C .3D .57.已知复数z 的共轭复数212iz i -=+,i 是虚数单位,则复数z 的虚部是( ) A .1B .-1C .iD .i -8.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z += B .22z i +=C .24z +=D .24z i +=9.122ii-=+( ) A .1 B .-1C .iD .-i10.设21iz i+=-,则z 的虚部为( ) A .12B .12-C .32D .32-11.设a +∈R ,复数()()()242121i i z ai ++=-,若1z =,则a =( )A .10B .9C .8D .712.已知i 为虚数单位,则43ii =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 13.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i14.若i 为虚数单位,,a b ∈R ,且2a ib i i+=+,则复数a bi -的模等于( )A BC D15.已知i 是虚数单位,设11iz i,则复数2z +对应的点位于复平面( ) A .第一象限B .第二象限C .第三象限D .第四象限二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-18.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为20.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( )A .第一象限B .第二象限C .第三象限D .第四象限21.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件22.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =23.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为225.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数26.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限27.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于128.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限29.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件 30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部. 【详解】因为,所以其虚部是. 故选:A. 解析:A 【分析】先由复数的除法运算化简复数23ii-+,再由复数的概念,即可得出其虚部. 【详解】因为22(3)26133(3)(3)1055i i i i i i i i -----===--++-,所以其虚部是35. 故选:A.2.D 【分析】先求和的平方,再求4次方,最后求5次方,即可得结果. 【详解】 ∵,, ∴,, ∴, , ∴, 故选:D.解析:D 【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果.【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--, )()51711+=--+=-,∴))55121-+=--,故选:D.3.D 【分析】求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.5.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解. 【详解】 由题意可得,则. 故答案为:B解析:B 【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解. 【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+.故答案为:B6.B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由复数()为纯虚数,则 ,则 所以 故选:B解析:B把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由()()()()()()21i 2221112a i a a ia i i i i ----+-==++- 复数2i1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B7.A 【分析】先化简,由此求得,进而求得的虚部. 【详解】 ,所以,则的虚部为. 故选:A解析:A 【分析】先化简z ,由此求得z ,进而求得z 的虚部. 【详解】()()()()212251212125i i i iz i i i i ----====-++-, 所以zi ,则z 的虚部为1.故选:A8.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论.因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B9.D 【分析】利用复数的除法求解. 【详解】 . 故选:D解析:D 【分析】利用复数的除法求解. 【详解】()()()()12212222i i i i i i i ---==-++-. 故选:D10.C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为, 所以其虚部为. 故选:C.解析:C 【分析】根据复数的除法运算,先化简复数,即可得出结果. 【详解】 因为()()()()21223113111222i i i i z i i i i ++++-====+--+, 所以其虚部为32. 故选:C.11.D 【分析】根据复数的模的性质求模,然后可解得. 【详解】解:,解得. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数,则, 模的性质:,,.解析:D 【分析】根据复数的模的性质求模,然后可解得a . 【详解】解:()()()()24242422221212501111i i i i a ai ai++++====+--,解得7a =. 故选:D . 【点睛】本题考查复数的模,掌握模的性质是解题关键.设复数(,)z a bi a b R =+∈,则z =模的性质:1212z z z z =,(*)nnz z n N =∈,1122z z z z =. 12.C 【分析】对的分子分母同乘以,再化简整理即可求解. 【详解】 , 故选:C解析:C 【分析】对43ii -的分子分母同乘以3i +,再化简整理即可求解. 【详解】()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C13.C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+- 1i =-故选:C14.C 【分析】首先根据复数相等得到,,再求的模即可. 【详解】 因为,所以,. 所以. 故选:C解析:C 【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可. 【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C15.A 【分析】由复数的除法求出,然后得出,由复数的几何意义得结果. 【详解】 由已知,,对应点为,在第一象限,解析:A【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果.【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-, 222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.二、多选题16.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ABCD先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误; 解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误; 对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.19.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 20.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.21.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.22.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题23.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.24.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围25.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.26.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212222ω---====-⎛⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.27.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.29.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

高考复数专题及答案百度文库

高考复数专题及答案百度文库

一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i +D .13i + 2.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i +3.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i4.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知复数5i5i 2iz =+-,则z =( )A B .C .D .6.已知i 为虚数单位,复数12i1iz +=-,则复数z 在复平面上的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.若复数1z i =-,则1zz=-( )A B .2C .D .48.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③10.若复数()41i 34iz +=+,则z =( )A .45B .35C .25D .511.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=13.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3πC .23π D .43π 14.已知i 是虚数单位,设11iz i,则复数2z +对应的点位于复平面( ) A .第一象限B .第二象限C .第三象限D .第四象限15.题目文件丢失!二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -18.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 21.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限22.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =23.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限24.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++= 26.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于129.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.2.C 【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可. 【详解】由已知可得,所以. 故选:C解析:C 【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可. 【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C3.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B4.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 5.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.6.C 【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为, 所以,所以复数在复平面上的对应点位于第三象限, 故选:C.解析:C 【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+,所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限, 故选:C.7.A 【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.8.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】由题意,得, 其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.9.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.10.A 【分析】首先化简复数,再计算求模. 【详解】 , .解析:A 【分析】首先化简复数z ,再计算求模. 【详解】()()()2242112434343434i i i z i i i i⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==.故选:A11.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.12.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )332Z i O OZ ππ=+=2111()2222z z i --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.【分析】由复数的除法求出,然后得出,由复数的几何意义得结果. 【详解】 由已知,,对应点为,在第一象限, 故选:A.解析:A 【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果. 【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-,222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.15.无二、多选题 16.BC 【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC 【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误. 【详解】 对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A错误;,B正确;z的共轭复数为,C错误;z的虚部为,D正确.故选:BD.【点解析:BD【分析】把21iz=-+分子分母同时乘以1i--,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)iz ii i i--===---+-+--,||z∴=A错误;22iz=,B正确;z的共轭复数为1i-+,C错误;z的虚部为1-,D正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.22.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.23.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.24.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m=时,1z =-,则1z =-,故A 错误;对于B ,若复数2z=,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z 为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确;对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误.故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高考数学复数典型例题附答案

高考数学复数典型例题附答案

1, 已知复数求k的值。

的值。

解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。

均为实数。

比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。

2, 若方程有实根,求实数m的值,并求出此实根。

的值,并求出此实根。

解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。

点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。

充要条件求解。

3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

的取值范围。

解:设,。

由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。

此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。

4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。

(2)z的实部与虚部都是整数。

,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。

此时①式无解。

(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。

的值。

(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。

特征。

解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

高考复数专题及答案

高考复数专题及答案

一、复数选择题1.复数11z i =-,则z 的共轭复数为( ) A .1i -B .1i +C .1122i +D .1122i - 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55⎛⎫- ⎪⎝⎭ D .43,55⎛⎫- ⎪⎝⎭ 3.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .2 4.若复数1z i i ⋅=-+,则复数z 的虚部为( )A .-1B .1C .-iD .i 5.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .86.若复数z 满足()322i z i i -+=+,则复数z 的虚部为( ) A .35 B .35i - C .35 D .35i 7.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③ 8.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( )A .恒在实轴上B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x =-上9.若1ii z ,则2z z i ⋅-=( )A .B .4C .D .8 10.若()()324z ii =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.若复数z 满足213z z i -=+,则z =( )A .1i +B .1i -C .1i -+D .1i -- 12.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .813.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限14.在复平面内,复数z 对应的点的坐标是(1,1),则z i =( ) A .1i -B .1i --C .1i -+D .1i +15.设复数满足(12)i z i +=,则||z =( )A .15BCD .5二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =21.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称22.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限23.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =24.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数25.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z += 26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i 5z +=- C .复数z 的实部为1- D .复数z 对应复平面上的点在第二象限27.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于128.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .529.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z30.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.2.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】 运用复数除法的运算法则化简复数534i i-的表示,最后选出答案即可. 【详解】因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D3.C【分析】根据复数的几何意义得.【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴,∴.故选:C .解析:C【分析】根据复数的几何意义得,a b .【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=.故选:C .4.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 5.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .6.A【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论.【详解】由题意,得,其虚部为,故选:A.解析:A【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论.【详解】由题意,得()()()()()23343313343434552i i ii z i i i i i ----====-++-+, 其虚部为35, 故选:A. 7.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.8.A【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果.【详解】由复数在复平面内对应的点为得,则,,根据得,得,.所以复数在复平面内对应的点恒在实轴上,故解析:A【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.【详解】由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+, 根据22z z =得222220x y x y xy ⎧-=+⎨=⎩,得0y =,x ∈R . 所以复数z 在复平面内对应的点(),x y 恒在实轴上,故选:A .9.A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A解析:A【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --.【详解】 因为1111i z i i i+==+=-,所以1z i =+,所以()()211222z z i i i i i ⋅-=-+-=-=故选:A10.D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D .解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限.故选:D . 11.A【分析】采用待定系数法,设,由复数运算和复数相等可求得,从而得到结果.【详解】设,则,,,解得:,.故选:A.解析:A【分析】采用待定系数法,设(),z a bi a b R =+∈,由复数运算和复数相等可求得,a b ,从而得到结果.【详解】设(),z a bi a b R =+∈,则z a bi =-,()()22313z z a bi a bi a bi i ∴-=+--=+=+,133a b =⎧∴⎨=⎩,解得:11a b =⎧⎨=⎩, 1z i ∴=+.故选:A.12.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+= 故选:D13.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.14.A【分析】根据复数对应的点的坐标是,得到,再利用复数的除法求解.【详解】因为在复平面内,复数对应的点的坐标是,所以,所以,故选:A解析:A【分析】根据复数z 对应的点的坐标是(1,1),得到1z i =+,再利用复数的除法求解.【详解】因为在复平面内,复数z 对应的点的坐标是(1,1),所以1z i =+, 所以11i i i z i+==-, 故选:A 15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z == 故选:B二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.本题考查复数的除法运算,以及对复数概念的理解,属于基础题.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题21.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.22.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.23.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.24.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.25.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误.故选:AC【点睛】 本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。

高中数学复数多选题专项训练100及解析(2)

高中数学复数多选题专项训练100及解析(2)

高中数学复数多选题专项训练100及解析(2)一、复数多选题1.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限答案:AD 【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项. 【详解】 ,故,故A 正确.的虚部为,故B 错,,故C 错, 在复平面内对应的点为,故D 正确. 故选:AD. 【点睛】 本题考解析:AD 【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项. 【详解】()()32232474725555i i i i iz i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,355z ==≠,故C 错,z 在复平面内对应的点为47,55⎛⎫⎪⎝⎭,故D 正确.故选:AD. 【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数. 2.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模答案:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D 【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD 【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D 【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确, 故选:ACD 【点睛】本题考查复数的几何意义,考查复数的模3.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数 B .若32a bi i -=+,则3,2a b == C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z -答案:AB 【分析】由复数的代数形式的运算,逐个选项验证可得. 【详解】 解:因为当且时复数为纯虚数,此时,故A 错误,D 正确; 当时,复数为实数,故C 正确; 对于B :,则即,故B 错误; 故错误的有AB解析:AB 【分析】由复数的代数形式的运算,逐个选项验证可得. 【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确; 当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误;故错误的有AB ; 故选:AB 【点睛】本题考查复数的代数形式及几何意义,属于基础题.4.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限答案:BD 【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断. 【详解】 因为复数满足, 所以所以,故A 错误; ,故B 正确;复数的实部为 ,故C 错误; 复数对应复平面上的点在第二象限解析:BD 【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误;复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD 【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.5.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD 【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确. 【详解】 因为(1﹣i )z =解析:ABCD 【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【详解】因为(1﹣i )z =2i ,所以21iz i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确;所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD. 【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.6.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12答案:BC 【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项. 【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC 【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项. 【详解】当0a =时,1b =,此时zi 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC 【点睛】本小题主要考查复数的有关知识,属于基础题. 7.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件答案:BC 【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】 设,则,则,若,则,,若,则不为纯虚数, 所以,“”是“为纯虚数”必要不充分解析:BC 【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】设(),z a bi a b R =+∈,则z a bi =-,则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件;若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC. 【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题. 8.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=答案:AC 【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC 【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论. 【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠, 所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确; 对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增,即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件. C 选项正确;对于D 选项,()11172488f x xx ++===,()1878f x x -'∴=,D 选项错误.故选:AC. 【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 9.i 是虚数单位,下列说法中正确的有( ) A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限答案:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD 【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果. 【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0ab ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+,所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--,所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.10.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.11.下列说法正确的是( ) A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确. 【详解】若,则,故A 正确; 设, 由,可得则,而不一定为0,故B 错误; 当时解析:AD 【分析】由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确. 【详解】若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误; 若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠±所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确;故选:AD 【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题. 12.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 答案:BC 【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项. 【详解】因为,所以,所以,所以,所以A 选解析:BC 【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项. 【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误; 当sin 20θ=,,22ππθ⎛⎫∈-⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC 【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.13.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点答案:BC 【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误. 【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限.故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.14.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为2答案:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题.15.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =答案:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确. 故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.16.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅= 答案:AD【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z 在复平面上对应的向量,所以,,|z|=,,故选:AD解析:AD【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD18.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 答案:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,2111102222ωω++=---++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.19.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.20.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数 答案:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.21.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于1答案:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.22.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5 答案:ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩,∴244(3)04a∆=--≥,解得:44a-≤≤,∴实数a的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.。

高考数学真题题型分类解析专题专题02 复数

高考数学真题题型分类解析专题专题02 复数
则所求复数对应的点为 ( 6, 8) ,位于第一象限. 故选:A.
一、复数的概念
( ) 叫虚数单位,满足 ,当 时, . 1 i
i2 = −1 k ∈ Z
i 4k = 1, i 4 k +1 = i, i 4k + 2 = −1, i 4k +3 = −i
(2)形如 a + bi(a, b∈ R) 的数叫复数,记作 a +bi∈C .
高考数学真题题型分类解析 专题 02 复数
命题解读
考向
高考对复数的考查,重点是复数的运 共轭复数、复数的除法运算
算、概念、复数的模、复数的几何意义 等,难度较低.
复数的乘法运算 复数的几何意义
复数的模
考查统计 2022·新高考Ⅰ卷,2 2023·新高考Ⅰ卷,2 2024 新高考Ⅰ卷,2 2022·新高考Ⅱ卷,2 2023 新高考Ⅱ卷,1 2024·新高考Ⅱ卷,1
综上所述,无论方程的判别式b2 −4ac 的符号如何,韦达定理都成立,于是韦达定理能被推广到复数根的
情况,即实系数一元二次方程ax2 +bx + c = 0( a 、b 、c∈ R 且a ≠ 0 )的两个根与系数满足关系
, x1
+
x2
=

b a
x1 x2
=
c a
4 / 11
一、单选题
1.(2024·安徽芜湖·三模)已知复数
=
(1− i)2
−2i
=
= −1− i .
−2i
故选:D
5.(2024·山东德州·三模)已知复数 z 满足: z − i(2 + z) = 0 ,则 z = ( )
. . . . A −1− i B −1+ i C 1+ i D 1− i 【答案】B

高考数学专题02 复数(解析版)

高考数学专题02 复数(解析版)

专题02 复数一、单选题1.(2022·河北深州市中学高三期末)已知复数()()2i 1i z a =++(其中i 为虚数单位,a R ∈)在复平面内对应的点为()1,3,则实数a 的值为( ) A .1 B .2C .1-D .0【答案】A 【解析】 【分析】先利用复数的乘法化简,再利用复数的几何意义求解. 【详解】因为()()()2i 1i 22i z a a a =++=-++, 又因为复数在复平面内对应的点为()1,3,所以2123a a -=⎧⎨+=⎩,解得1a = 故选:A2.(2022·河北保定·高三期末)()()2212i 1i --+=( ) A .32i -- B .36i -- C .32i - D .36i -【答案】B 【解析】 【分析】根据复数的四则运算计算即可. 【详解】22(12i)(1i)34i 2i 36i --+=---=--.故选:B3.(2022·河北张家口·高三期末)已知12z i =-,则5iz=( ) A .2i -+ B .2i - C .105i -D .105i -+【答案】A 【解析】 【分析】利用复数的除法化简可得结果. 【详解】()()()5i 12i 5i 5i2i 12i 12i 12i z +===-+--+, 故选:A.4.(2021·福建·莆田二中高三期末)复数()()cos2isin3cos isin θθθθ+⋅+的模为1,其中i 为虚数单位,[]0,2πθ∈,则这样的θ一共有( )个. A .9 B .10C .11D .无数【答案】C 【解析】 【分析】先根据复数()()cos2isin3cos isin θθθθ+⋅+的模为1及复数模的运算公式,求得22cos 2sin 31θθ+=即22cos 2cos 3θθ=,接下来分cos2cos3θθ=与cos2cos3θθ=-两种情况进行求解,结合[]0,2πθ∈,求出θ的个数. 【详解】()()cos2isin3cos isin =cos2isin3cos isin 1θθθθθθθθ+⋅++⋅+=,其中cos isin 1θθ+=,所以cos2isin31θθ+=,即22cos 2sin 31θθ+=,222cos 21sin 3cos 3θθθ=-=,当cos2cos3θθ=时,①1232πk θθ=+,1k Z ∈,所以12πk θ=-,1k Z ∈,因为[]0,2πθ∈,所以0θ=或2π;②2232πk θθ=-+,2k Z ∈,所以22π5k θ=,2k Z ∈,因为[]0,2πθ∈,所以0θ=,2π5,4π5,6π5,8π5或2π;当cos2cos3θθ=-时,①()32321πk θθ=++,3k Z ∈,即()321πk θ=-+,3k Z ∈,因为[]0,2πθ∈,所以πθ=,②()42321πk θθ=-++,4k Z ∈,即()421π5k θ+=,4kZ ∈,因为[]0,2πθ∈,所以π5θ=,3π5,π,7π5,9π5,综上:π5mθ=,0,1,10m =,一共有11个. 故选:C5.(2022·山东省淄博实验中学高三期末)设复数z 满足()23i 32i z -=+,则z =( )A.12 B C .1 D 【答案】C 【解析】 【分析】根据给定条件结合复数除法计算复数z ,进而计算z 的模作答. 【详解】因复数z 满足()23i 32i z -=+,则32i (32i)(23i)13ii 23i (23i)(23i)13z +++====--+, 所以1z =. 故选:C6.(2022·山东枣庄·高三期末)已知i 为虚数单位,则2022i =( ). A .1 B .1- C .I D .i -【答案】B 【解析】 【分析】由于41i =,故2022i 可以化简为2i ,即可得到答案. 【详解】20224505+22i i ==i ⨯=1-.故选:B.7.(2022·山东德州·高三期末)已知复数z 满足()121i iz +=-,其中i 为虛数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】根据复数的模长公式以及四则运算得出z =,最后确定复数z 在复平面内所对应的点的象限. 【详解】21i 22|2i |i i +=+=-=z =则复数z 在复平面内所对应的点坐标为⎝⎭,在第一象限.故选:A8.(2022·山东淄博·高三期末)已知复数z 是纯虚数,11iz+-是实数,则z =( ) A .-i B .iC .-2iD .2i【答案】B 【解析】 【分析】由题意设i()z b b R =∈,代入11iz+-中化简,使其虚部为零,可求出b 的值,从而可求出复数z ,进而可求得其共轭复数 【详解】由题意设i()z b b R =∈, 则11i (1i)(1i)(1)(1)i1i 1i (1i)(1i)2z b b b b ++++-++===---+, 因为11iz+-是实数,所以10b +=,得1b =-, 所以i z =-, 所以i z =, 故选:B9.(2022·山东临沂·高三期末)已知复数26i1iz +=-,i 为虚数单位,则z =( )A.B .C .D .【答案】C 【解析】 【分析】利用复数除法运算求得z ,然后求得z . 【详解】 ()()()()()()()()26i 1i 26i 1i 13i 1i 24i1i 1i 2z ++++===++=-+-+,z =故选:C10.(2022·湖北武昌·高三期末)已知复数1i z =-,则2iz=-( ) A .13i 55-B .13i 55--C .13i 55-+D .1355i +【答案】D 【解析】 【分析】先得出z ,由复数的乘法运算可得答案. 【详解】复数1i z =-,则1i z =+则()()()()1i 2i 1i 13i 2i 2i 2i 2i 5z ++++===---+ 故选:D11.(2022·湖北·黄石市有色第一中学高三期末)已知复数数列{}n a 满足12i a =,1i i 1n n a a +=++,N n *∈,(i 为虚数单位),则10a =( ) A .2i B .2i - C .1i + D .1i -+【答案】D 【解析】 【分析】推导出数列{}i n a -是等比数列,确定该数列的首项和公比,即可求得10a 的值. 【详解】由已知可得()1i i i n n a a +-=-,因此,数列{}i n a -是以1i i a -=为首项,以i 为公比的等比数列,所以,91010i i i i 1a -=⋅==-,故101i a =-+.故选:D.12.(2022·湖北江岸·高三期末)已知()12i 43i z -=-,则z =( ) A .10i +B .2i +C .2i -D .25i +【解析】 【分析】利用复数的除法化简复数z ,利用共轭复数的定义可得结果. 【详解】 由已知可得()()()()43i 12i 43i 105i2i 12i 12i 12i 5z -+-+====+--+,因此,2i z =-. 故选:C.13.(2022·湖北襄阳·高三期末)下面是关于复数22i 1i z =-(i 为虚数单位)的命题,其中真命题为( )A .2z =B .复数z 在复平面内对应点在直线y x =上C .z 的共轭复数为11i 22-D .z 的虚部为1i 2-【答案】B 【解析】 【分析】化简复数为代数形式,然后求模,写出对应点的坐标.得其共轭复数及虚部,判断各选项即得. 【详解】∵22i 11i 1i 1i 2z ---===--,所以z =A 错误;所以复数z 在复平面内对应点坐标为11(,)22--,在直线y x =上,B 正确;所以z 的共轭复数为11i 22-+,C 错误;所以z 的虚部为12-,D 错误.故选:B .14.(2022·湖北省鄂州高中高三期末)复数4i1iz =+,则z =( ) A .22i -- B .22i -+C .22i +D .22i -【答案】D 【解析】先计算z ,再根据共轭复数的概念即可求解. 【详解】根据复数除法的运算法则可得41i z i =+()()()414422112i i i i i i -+===+-+ ,所以可得其共轭复数22z i =-.故选:D.15.(2022·湖北·高三期末)已知复数121i,i z z =-=,则复数12z z 的共轭复数的模为( ) A .12 B2C .2 D【答案】D 【解析】 【分析】根据复数的除法运算得121i z z =--,再根据共轭复数的概念与模的公式计算即可. 【详解】解:因为121i,i z z =-=, 所以()121iii 1i 1i z z -==--=--, 所以复数12z z 的共轭复数为1i -+.故选:D16.(2022·湖北·恩施土家族苗族高中高三期末)若1i z =-+.设zz ω=,则ω=( ) A .2i B .2C .22i +D .22i -【答案】B 【解析】 【分析】根据1i z =-+求出1i z =--,结合复数的乘法运算即可. 【详解】由1i z =-+,得1i z =--,所以2(1i)(1i)=(i 1)=2zz ω==-+----. 故选:B17.(2022·湖南常德·高三期末)已知复数z 满足:()1i i z +=,则z z ⋅=( )A .12 B C .1D .i 2【答案】A 【解析】 【分析】首先根据复数的除法运算求出z ,然后根据复数的乘法运算即可求出结果. 【详解】 因为(1)z i i +=, 所以()()i 1i i 1i 11i 1i (1i)1i 222z -+====+++-, 因此11111i i 22222z z ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭⋅=.故选:A.18.(2022·湖南娄底·高三期末)复数()i 3i z =-⋅在复平面内对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A 【解析】 【分析】由复数乘法法则计算出z ,然后可得其对应点的坐标,得所在象限. 【详解】∵()3i i 13i z =-=+⋅,∴z 在复平面内对应的点为()1,3,位于第一象限. 故选:A .19.(2022·湖南郴州·高三期末)已知i 为虚数单位,复数z 满足()i 123i 4z +=+,则z 的共轭复数z =( ) A .12i - B .12i +C .2i -D .2i +【答案】B 【解析】根据复数的模和除法运算,即可得到答案; 【详解】 |43i |55(12i)12i 12i 12i 5z +-====-++ ∴12i z =+,故选:B20.(2022·广东揭阳·高三期末)复数z 满足()1i 1i(i z +=-为虚数单位),则z 的模为( ) A.12-B .12C .1 D【答案】C 【解析】 【分析】先做除法运算求出复数z ,再根据复数模的计算公式求其模. 【详解】由()1i 1i z +=-得1ii 1iz -==-+,从而i 1z =-= 21.(2022·广东潮州·高三期末)已知i 为虚数单位,复数21i 1i -=+z ,则z 的虚部为( )A .0B .-1C .-iD .1【答案】B 【解析】 【分析】化简复数z 1i =-, z 的虚部为i 前面的系数,即可得到答案. 【详解】21i 22(1-i)1i 1i 1i (1i)(1-i)z -====-+++.则z 的虚部为-1.故选:B.22.(2022·广东罗湖·高三期末)已知复数()1i i =+⋅z (i 为虚数单位),则z 的共轭复数z =( ) A .1i + B .1i -C .1i -+D .1i --【答案】D 【解析】求出复数z,进而可得其共轭复数.【详解】()1i i=1+iz=+⋅-,则1iz=--故选:D.23.(2022·广东清远·高三期末)已知i为虚数单位,复数z的共轭复数z满足(1i)|1|+=z,则z=()A.1i-B.1i+C.22i-D.22i+【答案】B【解析】【分析】结合复数除法运算求出z,进而得出z.【详解】因为21i1i===-+z,所以1iz=+.故选:B24.(2022·广东汕尾·高三期末)若复数z满足1i12iz+=+其中(i为虚数单位),则复数z的共轭复数为()A.3i5--B.3i5-+C.3i5-D.3i5+【答案】D 【解析】【分析】化简可得3i5z-=,根据共轭复数的概念,即可得答案.【详解】因为1i(1i)(12i)3i12i(12i)(12i)5z++--===++-,所以3i5z+ =,故选:D.25.(2022·江苏通州·高三期末)20221i1i-⎛⎫=⎪+⎝⎭()A .1B .iC .-1D .-i【答案】C 【解析】 【分析】由复数的除法和复数的乘方运算计算. 【详解】21i (1i)i 1i (1i)(1i)--==-+-+, 所以2022202221i (i)i 11i -⎛⎫=-==- ⎪+⎝⎭.故选:C .26.(2022·江苏宿迁·高三期末)已知复数z 满足()1i 4i z +=,则z =( ) A.2 B C .D .【答案】C 【解析】 【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果. 【详解】由已知可得()()()()4i 1i 4i2i 1i 22i 1i 1i 1i z -===-=+++-,因此,z = 故选:C.27.(2022·江苏扬州·高三期末)若复数z =202112i +(i 为虚数单位),则它在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】 化简复数z =202112i +,得到其对应点的坐标即可解决.【详解】z 202112i ==+12i =+2i 21i 555-=-, 则z 在复平面上对应的点为21(,)55Z -,Z 位于第四象限.故选:D28.(2022·江苏海安·高三期末)已知复数z 满足(1-i)z =2+3i (i 为虚数单位),则z =( ) A .-12+52iB .12+52iC .12-52iD .-12-52i 【答案】A 【解析】 【分析】利用复数的运算法则求解. 【详解】 ∵(1-i)z =2+3i, ∴()()()()23i 1i 23i 15i 15i 1i 1i 1i 222z +++-+====-+-+-. 故选:A.29.(2022·江苏如东·高三期末)已知复数z 满足202120222023i 4i 3i z =-,则z =( ) A .4+3i B .4-3iC .3+4iD .3-4i【答案】C 【解析】 【分析】将202120222023i 4i 3i z =-中的202120222023i ,i ,i ,根据41i = 化简,即可得答案. 【详解】 因为41i =,故由202120222023i 4i 3i z =-可得:23i 4i 3i z =-,即4i 334i z =+=+, 故选:C.30.(2022·江苏苏州·高三期末)设i 为虚数单位,若复数(1i)(1i)a -+是纯虚数,则实数a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】 【分析】用复数的乘法法则及纯虚数的定义即可. 【详解】(1i)(1i)1i i 1(1)i a a a a a -+=+-+=++-为纯虚数,10a ∴+=,1a ∴=-,故选:A .31.(2022·江苏无锡·高三期末)已知3i1ia ++(i 为虚数单位,a ∈R )为纯虚数,则=a ( ) A .1- B .1C .3-D .3【答案】C 【解析】 【分析】先利用复数除法法则进行化简,结合纯虚数条件列出方程,求出a 的值. 【详解】3i (3i)(1i)i 3i+31i 22a a a a ++--+==+3(3)i2a a ++-=为纯虚数, 30a ∴+=,3a ∴=-,故选:C. 二、多选题32.(2022·河北唐山·高三期末)已知复数i z a b =+(,a b ∈R 且0b ≠),z 是z 的共扼复数,则下列命题中的真命题是( ) A .z z +∈R B .z z -∈RC .z z ⋅∈RD .zz∈R【答案】AC 【解析】 【分析】由题知i z a b =-,进而根据复数的加减乘除运算依次讨论各选项即可得答案. 【详解】解:对于A 选项,i z a b =+,i z a b =-,所以2z z a +=∈R ,故正确; 对于B 选项,i z a b =+,i z a b =-,2i z z b -=∉R ,故错误;对于C 选项,i z a b =+,i z a b =-,22z z a b ⋅=+∈R ,故正确;对于D 选项,i z a b =+,i z a b =-,()22222222i i i i z a b ab z a a b a b a b b a b --===+-+-+, 所以当0a =时,z z ∈R ,当0a ≠时,zz ∉R ,故错误.故选:AC33.(2022·山东莱西·高三期末)已知复数()21i z a a =+-,i 为虚数单位,a R ∈,则下列正确的为( )A .若z 是实数,则1a =-B .复平面内表示复数z 的点位于一条抛物线上C .zD .若21z z =+,则1a =±【答案】BC 【解析】 【分析】以实数定义求出参数a 判断选项A ;以复数z 对应点的坐标判断选项B ;求出复数z 的模判断选项C ;以复数相等求出参数a 判断选项D. 【详解】选项A :由复数()21i z a a =+-是实数可知210a -=,解之得1a =±.选项A 判断错误;选项B :复数()21i z a a =+-在复平面内对应点2(,1)Z a a -,其坐标满足方程21y x =-,即点2(,1)Z a a -位于抛物线21y x =-上. 判断正确;选项C :由()21i z a a =+-,可得z ===判断正确; 选项D :21z z =+ 即()()221i =2121i a a a a +-+--可得()2221121a a a a =+⎧⎪⎨-=--⎪⎩,解之得1a =-.选项D 判断错误. 故选:BC34.(2022·广东东莞·高三期末)已知复数123,,z z z ,1z 是1z 的共轭复数,则下列结论正确的是( ) A .若120z z +=,则12=z zB .若21z z =,则12=z zC .若312z z z =,则312z z z =D .若1211z z +=+,则12=z z【答案】ABC 【解析】 【分析】若i z a b =+ ,则i z a b =-,z z ==,利用复数代数运算,可以判断AB ;利用复数的三角运算,可以判断C ;利用数形结合,可以判断D. 【详解】 对于A :若120z z += ,则12z z =-,故122z z z =-=, 所以A 正确; 对于B :若21z z =,则12=z z , 所以B 正确; 对于C :设11(cos i sin )z r αα=+ ,22(cos i sin )z r ββ=+则()()31212cos()i sin z z z r r αβαβ==+++ ,故312z z z = , 所以C 正确; 对于D :如下图所示,若11OA z =+ ,21OB z =+,则1OC z =,2OD z =,故12z z ≠ , 所以D 错误.故选:ABC35.(2022·江苏如皋·高三期末)关于复数12z =- (i 为虚数单位),下列说法正确的是( )A .|z |=1B .z +z 2=-1C .z 3=-1D .(z +1)3=i【答案】AB 【解析】 【分析】根据复数模的计算公式求得复数的模,可判断A;根据复数的乘方运算可判断B,C,D. 【详解】由复数12z =-,可得||1z == ,故A 正确;2211112222z z +=--=-- ,故B 正确;3222111()1222z z z =⋅=--+--=,故C 错误;3221111(1)(1)(1)(((12222z z z ⎛⎫+=++=+=-=- ⎪ ⎪⎝⎭,故D 错误, 故选:AB.36.(2022·江苏苏州·高三期末)下列命题正确的是( ) A .若12,z z 为复数,则1212z z z z =⋅ B .若,a b 为向量,则a b a b ⋅=⋅C .若12,z z 为复数,且1212z z z z +=-,则120z z =D .若,a b 为向量,且a b a b +=-,则0a b ⋅= 【答案】AD 【解析】 【分析】根据复数运算、向量运算的知识对选项进行分析,从而确定正确选项. 【详解】令1i z a b =+,()2i ,,,R z c d a b c d =+∈,,12()i z z ac bd ad bc =-++,12z z ===1z =2z =1212z z z z ∴=⋅,A 对;cos a b a b θ⋅=⋅⋅,cos a b a b a b θ∴⋅=⋅⋅=⋅不一定成立,B 错; 12()()i z z a c b d +=+++,12()()i z z a c b d -=-+-,1212z z z z -=+,0ac bd ∴+=,12(i)(i)()i 0z z a b c d ac bd ad bc =++=-++≠,C 错.将a b a b +=-两边平方并化简得0a b ⋅=,D 对. 故选:AD 三、填空题37.(2021·福建·莆田二中高三期末)设x ∈R ,记[]x 为不大于x 的最大整数,{}x 为不小于x 的最小整数.设集合{}|23,A z z z C =≤⎡⎤≤∈⎣⎦,{}{}|23,B z z z C =≤≤∈,则A B 在复平面内对应的点的图形面积是______ 【答案】5π 【解析】 【分析】依题意表示出集合{}|24,A z z z C =≤<∈,{}|13,B z z z C =<≤∈,从求出A B ,再根据复数的几何意义求出复数z 的轨迹,即可得解; 【详解】解:依题意由23z ≤⎡⎤≤⎣⎦,所以24z ≤<,由{}23z ≤≤,所以13z <≤,所以{}{}|23,|24,A z z z C z z z C =≤⎡⎤≤∈=≤<∈⎣⎦,{}{}{}|23,|13,B z z z C z z z C =≤≤∈=<≤∈,所以{}|23,A B z z z C =≤≤∈设()i ,z x y x y R =+∈,由23z ≤≤,所以23≤,所以2249x y ≤+≤,所以复数z 再复平面内对应的点为在复平面内到坐标原点的距离大于等于2且小于等于3的圆环部分,所以圆环的面积()22325S ππ=-=故答案为:5π38.(2022·广东佛山·高三期末)在复平面内,复数z 对应的点的坐标是(3,5)-.则(1i)z -=___________. 【答案】28i -- 【解析】 【分析】根据给定条件求出复数,再利用复数的乘法运算计算作答. 【详解】在复平面内,复数z 对应的点的坐标是(3,5)-,则35i z =-,所以(1i)(1i)(35i)28i z -=--=--. 故答案为:28i --39.(2022·江苏常州·高三期末)i 是虚数单位,已知复数z 满足等式2i0i z z+=,则z 的模z =________.【解析】 【分析】以复数运算规则和复数模的运算性质对已知条件进行变形整理,是本题的简洁方法. 【详解】 由2i 0i z z +=,可得2i i z z =- 则有2ii z z-=,即i 2i 2z z ⨯=⨯-=,故有z =。

高中数学复数的运算练习题及参考答案2023

高中数学复数的运算练习题及参考答案2023

高中数学复数的运算练习题及参考答案2023
在高中数学中,复数是非常重要的一部分。

学生需要了解复数的定义、性质及运算。

因此,掌握好复数的运算方法是高中数学的重点之一。

下面,本文将提供一些复数运算的练习题及参考答案,以帮助学生更好地掌握复数运算。

一、练习题
1. 将 $z_1 = 3+4i$ 和 $z_2 = -2+5i$ 相加。

2. 将 $z_1 = 2-3i$ 和 $z_2 = 4+5i$ 相乘。

3. 将 $z = 2+3i$ 除以 $w = -1+2i$。

4. 求 $z = \sqrt{-12}$。

5. 求 $z^{2023}$,其中 $z = 4+3i$。

二、参考答案
1. $z_1+z_2=(3+4i)+(-2+5i)=1+9i$
2. $z_1\times z_2=(2-3i)\times(4+5i)=23+2i$
3. $\frac{2+3i}{-1+2i}= \frac{(2+3i) \times (-1-2i)}{(-1+2i) \times (-1-2i)}=\frac{-8-1i}{5}=-\frac{8}{5}-\frac{1}{5}i$
4. $z=\sqrt{-12}=\sqrt{12}\times \sqrt{-1}=2\sqrt{3}i$
5. $z^{2023}=(4+3i)^{2023}=(-336+5272i)$
练习题及参考答案中的计算结果均经过精心计算,如果答案正确,则学生可以自信地进行下一步的学习。

总之,本文提供的练习题和参考答案,旨在帮助学生更好地掌握复数的运算方法,巩固相关的知识点。

希望本文能够对学生们的学习有所帮助。

高考复数专题及答案doc

高考复数专题及答案doc

一、复数选择题1.设复数1iz i=+,则z 的虚部是( )A .12B .12iC .12-D .12i -2.已知复数1=-iz i,其中i 为虚数单位,则||z =( )A .12B .2C D .23.复数()1z i i =⋅+在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .25.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i6.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )A .6BC .5D 7.若复数()()24z i i =--,则z =( ) A .76i --B .76-+iC .76i -D .76i +8.已知i 为虚数单位,复数12i1iz +=-,则复数z 在复平面上的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③10.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+ B .1i +C .1i --D .1i -11.复数12iz i=+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.设21iz i+=-,则z 的虚部为( )A .12B .12-C .32D .32-13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限14.复数22(1)1i i-+=-( ) A .1+iB .-1+iC .1-iD .-1-i15.设复数202011i z i+=-(其中i 为虚数单位),则z 在复平面内对应的点所在象限为( ) A .第四象限B .第三象限C .第二象限D .第一象限二、多选题16.下面是关于复数21iz =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-17.已知复数122z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为219.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =20.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z21.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =22.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( ) A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为223.下列命题中,正确的是( ) A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数24.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限25.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限 26.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 27.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模28.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件 29.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:. 解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .2.B 【分析】先利用复数的除法运算将化简,再利用模长公式即可求解. 【详解】 由于, 则.故选:B解析:B 【分析】先利用复数的除法运算将1=-iz i化简,再利用模长公式即可求解. 【详解】 由于()(1i)(1i)111(1i)222i i i i z i i ++====-+--+,则||2z ===. 故选:B3.B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】 因为复数,所以在复数z 复平面上对应的点位于第二象限 故选:B解析:B 【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解. 【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限 故选:B4.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .5.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B6.C 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】 , , 所以,, 故选:C.解析:C 【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案. 【详解】2z i =-,(12)(2)(12)43z i i i i ∴⋅+=-+=+,所以,5z =, 故选:C.7.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .8.C 【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为 , 所以,所以复数在复平面上的对应点位于第三象限, 故选:C.解析:C 【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+,所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限, 故选:C.9.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abiz a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.10.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A11.A 【分析】对复数进行分母实数化,根据复数的几何意义可得结果. 【详解】 由,知在复平面内对应的点位于第一象限, 故选:A. 【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A 【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果. 【详解】 由()()()122112121255i i i z i i i i -===+++-,知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题. 12.C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为,所以其虚部为.故选:C.解析:C【分析】根据复数的除法运算,先化简复数,即可得出结果.【详解】因为()()()()21223113111222i ii iz ii i i++++-====+ --+,所以其虚部为3 2 .故选:C.13.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论. 【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i=-+=+-=+,因此,复数z在复平面内对应的点位于第一象限.故选:A.14.C【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+-1i =-故选:C15.A 【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果. 【详解】 因为,所以,其在复平面内对应的点为,位于第四象限. 故选:A.解析:A 【分析】根据复数的运算,先将z 化简,求出z ,再由复数的几何意义,即可得出结果. 【详解】因为()()()()4202050550512111121111111i i i z i iii i i i ++++======+-----+, 所以1z i =-,其在复平面内对应的点为()1,1-,位于第四象限. 故选:A.二、多选题16.ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.17.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确; 因为,所以,所以D 正确解析:ACD 【分析】 分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 19.BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】122z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.20.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 21.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单. 22.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围 23.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.24.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确; 2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确; 22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛-⎝⎭,在第三象限,故D选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.25.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A不正确;的共轭复数为,则B不正确;的实部与虚部之和为,则C正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z,再逐一分析选项,即得.【详解】由题得,复数22(2)(1)13131(1)(1)122i i i iz ii i i i++++====+--+-,可得||2z==,则A不正确;z的共轭复数为1322i-,则B不正确;z的实部与虚部之和为13222+=,则C正确;z在复平面内的对应点为13(,)22,位于第一象限,则D正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.26.AD【分析】A.根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.【详解】A.根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 27.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模28.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高考数学压轴专题(易错题)备战高考《复数》知识点总复习含答案

高考数学压轴专题(易错题)备战高考《复数》知识点总复习含答案

【高中数学】数学复习题《复数》知识点练习一、选择题1.设复数4273i z i -=-,则复数z 的虚部为( ) A .1729- B .1729 C .129- D .129【答案】C【解析】【分析】 根据复数运算法则求解1712929z i =-,即可得到其虚部. 【详解】 依题意,()()()()427342281214634217173737358582929i i i i i i z i i i i -+-+-+-=====---+ 故复数z 的虚部为129-故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握运算法则,准确计算,正确辨析虚部的概念.2.已知i 是虚数单位,44z 3i (1i)=-+,则z (= )A .10BC .5D 【答案】B【解析】【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】4244z 3i 3i 13i (1i)(2i)=-=-=--+Q ,z ∴== 故选B .【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A B C .2 D .3【解析】()11z i i i =-=+,故2z =,故选A.4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B 【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5.a 为正实数,i 为虚数单位,2a i i+=,则a=( ) A .2B 3C 2D .1【答案】B【解析】【分析】【详解】 2||21230,3a i a a a a i+=+=∴=±>∴=Q ,选B.6.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B【解析】【分析】化简复数得到答案.【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B本题考查了复数的计算,意在考查学生的计算能力.7.复数21i z i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22iC .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限 【答案】D【解析】【分析】 利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论.【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则22z ==,z 的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D .【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -.8.(2018江西省景德镇联考)若复数2i 2a z -=在复平面内对应的点在直线0x y +=上,则z =( )A .2B C .1 D .【答案】B【解析】分析:化简复数z ,求出对应点坐标,代入直线方程,可求得a 的值,从而可得结果. 详解:因为复数2i 22a a z i -==-, 所以复数2i 2a z -=在复平面内对应的点的坐标为,12a ⎛⎫- ⎪⎝⎭,由复数2i 2a z -=在复平面内对应的点在直线0x y +=上, 可得10212a a z i -=⇒==-,,z ==,故选B.9.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1-B .12-C .12D .1 【答案】A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.10.在复平面内与复数21i z i =+所对应的点关于虚轴对称的点为A ,则A 对应的复数为( )A .1i --B .1i -C .1i +D .1i -+ 【答案】D【解析】【分析】根据复数的运算法则求出1z i =+,即可得到其对应点关于虚轴对称点的坐标,写出复数.【详解】 由题()()()2122211112i i i i z i i i i -+====+++-,在复平面对应的点为(1,1), 关于虚轴对称点为(-1,1),所以其对应的复数为1i -+.故选:D【点睛】此题考查复数的几何意义,关键在于根据复数的乘法除法运算准确求解,熟练掌握复数的几何意义.11.若复数z 满足2(12)1i z z +=+,则其共轭复数z 为( )A .1188i +B .1188i -+C .1188i --D .1188i - 【答案】B【解析】【分析】 计算得到18i z --=,再计算共轭复数得到答案. 【详解】 21111(12)1,,44888i i z z z z i i --+=+∴===-+-Q . 故选:B .【点睛】本题考查了复数的化简,共轭复数,意在考查学生的计算能力.12.设i 是虚数单位,则复数734i i ++在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】 因为734i i ++(7)(34)2525=1(34)(34)25i i i i i i +--==-+-, 所以所对应的点为(1,1)-,位于第四象限,选D.13.已知z C ∈,2z i z i ++-=,则z 对应的点Z 的轨迹为( )A .椭圆B .双曲线C .抛物线D .线段【答案】D【解析】【分析】由复数模的几何意义,结合三角不等式可得出点Z 的轨迹.【详解】 2z i z i ++-=的几何意义为复数z 对应的点Z 到点()0,1A -和点()0,1B 的距离之和为2,即ZA ZB AB +=,另一方面,由三角不等式得ZA ZB AB +≥.当且仅当点Z 在线段AB 上时,等号成立.因此,点Z 的轨迹为线段.故选:D.【点睛】本题考查复数模的几何意义,将问题转化为距离之和并结合三角不等式求解是解题的关键,考查分析问题和解决问题的能力,属于中等题.14.已知复数z 满足21zi z i +=-,则z =A .12i +B .12i -C .1i +D .1i - 【答案】C【解析】【分析】设出复数z ,根据复数相等求得结果.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故()()()()22221zi z a bi i a bi b a a b i i +=++-=-++-=-,故2121b a a b -+=⎧⎨-=-⎩,解得11a b =⎧⎨=⎩. 所以1z i =+.故选:C .【点睛】本题考查复数的运算,共轭复数的求解,属综合基础题.15.在复平面内,复数21i z i =+ (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】分析:首先求得复数z ,然后求解其共轭复数即可. 详解:由复数的运算法则有:()()()()2121211112i i i i i z i i i i --====+++-, 则1z i =-,其对应的点()1,1-位于第四象限.本题选择D 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.16.如果复数z 满足336z i z i ++-=,那么1z i ++的最小值是( )A .1B C .2 D 【答案】A【解析】 分析:先根据已知336z i z i ++-=找到复数z 对应的点Z 的轨迹,再利用数形结合求 1z i ++的最小值.详解:设复数z 对应的点Z(x,y),6=,它表示点Z 到A (0,-3)和B (0,3)的距离和为6,所以点Z 的轨迹为线段AB,因为1z i ++Z 到点C (-1,-1)的距离,所以当点Z 在点D(0,-1)时,它和点C (-1,-1)的距离最小,且这个最小距离为1. 故答案为:A点睛:(1)本题主要考查复数的几何意义,意在考查学生对这些知识的掌握水平和数形结合的思想方法.(2)z a bi ++表示复数z 对应的点到(-a,-b )的距离,类似这样的结论还有一些,大家要结合直角坐标理解它的几何意义,并做到能利用它解题.17.已知i 是虚数单位,复数z 满足()12i z i +=,则z 的虚部是( )A .1B .iC .1-D .i -【答案】A【解析】 ()12i z i +=22(1)112i i i z i i -⇒===++,所以z 的虚部是1,选A. 18.已知复数z 在复平面内对应点是()1,2-,i 为虚数单位,则21z z +=-( ) A .1i --B .1i +C .312i -D .312i + 【答案】D【解析】 21z z +=-323122i i i -=+- ,选D.19.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】 运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.20.已知复数z 满足()11z i i +=-,则z = ( )A .iB .1C .i -D .1-【答案】B【解析】 ()()1i 1i z +=-,则()()()21i 1i 2i 1i 1i 1i 2z ---====-++-i ,1z ∴=,故选B.。

高考复数专题及答案 百度文库

高考复数专题及答案 百度文库

一、复数选择题1.若()211z i =-,21z i =+,则12z z 等于( ) A .1i +B .1i -+C .1i -D .1i --2.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i -C .9D .46-3.212ii+=-( ) A .1 B .−1 C .i - D .i 4.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i5.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 6.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( )ABC .3D .57.已知复数1z i i =+-(i 为虚数单位),则z =( ) A .1B.iCiDi8.已知i 为虚数单位,若复数()12iz a R a i+=∈+为纯虚数,则z a +=( ) AB .3C .5D.9.若1m ii+-是纯虚数,则实数m 的值为( ). A .1- B .0C .1D10.设复数2i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+B .1i +C .1i --D .1i -12.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( ) AB .2C .10D13.设复数z 满足41iz i=+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4B .2C .0D .1-15.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .1二、多选题16.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =17.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 18.若复数351iz i-=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限19.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-20.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈ D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 21.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z =22.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =23.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限24.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 25.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于1 26.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2 D .z 在复平面内的对应点位于第一象限 27.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1B .4-C .0D .528.给出下列命题,其中是真命题的是( ) A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数 29.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】由复数的运算法则计算即可. 【详解】 解:, . 故选:D. 解析:D 【分析】由复数的运算法则计算即可. 【详解】 解:()2211122z i i i i =-=-+=-,()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.2.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9. 故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.3.D 【分析】利用复数的除法运算即可求解., 故选:D解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i ii i i i i +++++====--+-, 故选:D4.B 【分析】 ,然后算出即可. 【详解】由题意,则复数的虚部为1 故选:B解析:B 【分析】1iz i -+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B5.D 【分析】由复数乘法运算求得,根据共轭复数定义可求得结果. 【详解】 ,. 故选:.解析:D 【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果. 【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .6.D求出复数,然后由乘法法则计算. 【详解】 由题意, . 故选:D .解析:D 【分析】求出复数z ,然后由乘法法则计算z z ⋅. 【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .7.D 【分析】先对化简,求出,从而可求出 【详解】 解:因为, 所以, 故选:D解析:D 【分析】先对1z i i =+-化简,求出z ,从而可求出z 【详解】解:因为1z i i i i =+-==,所以z i =,故选:D8.A 【分析】根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得 【详解】由复数为纯虚数,则,解得 则 ,所以,所以解析:A 【分析】根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a + 【详解】()()()()()()2221222*********i a i a a i a ii a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101a aa a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--,所以z a += 故选:A9.C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题是纯虚数, 为纯虚数, 所以m=1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C 【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解. 【详解】 由题1m ii+-是纯虚数, ()()()()()()21111111222m i i m m i i m m i m i i i i +++++++-===+--+为纯虚数, 所以m =1. 故选:C 【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.10.D先求出,再求出,直接得复数在复平面内对应的点 【详解】因为,所以,在复平面内对应点,位于第四象限. 故选:D解析:D 【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点 【详解】 因为211i z i i==++,所以1z i -=-,z 在复平面内对应点()1,1-,位于第四象限.故选:D11.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A12.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.13.D 【分析】先对化简,从而可求出共轭复数,再利用复数的几何意义可得答案 【详解】 解:因为, 所以,所以共轭复数在复平面内的对应点位于第四象限, 故选:D解析:D 【分析】先对41iz i=+化简,从而可求出共轭复数z ,再利用复数的几何意义可得答案 【详解】解:因为244(1)4(1)=2(1)22221(1)(1)2i i i i i z i i i i i i i i --===-=-=+++-, 所以22z i =-,所以共轭复数z 在复平面内的对应点位于第四象限, 故选:D14.A 【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b . 【详解】 , 故选:A解析:A 【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+ 3,1a b ==,4a b +=故选:A15.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-故选:B 二、多选题 16.AC 【分析】根据复数的运算及复数的概念即可求解. 【详解】 因为复数, 所以z 的虚部为1,, 故AC 错误,BD 正确. 故选:AC解析:AC 【分析】根据复数的运算及复数的概念即可求解. 【详解】因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z = 故AC 错误,BD 正确.17.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 18.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD.19.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.20.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.21.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.22.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.23.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212222ω---====-⎛⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误.故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.24.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 25.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 26.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.27.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩,∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.28.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。

只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。

4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。

横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。

8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。

高中数学复数专题复习(知识点、例题、习题附解析pdf版)

高中数学复数专题复习(知识点、例题、习题附解析pdf版)

复数复数复数的概念定义i 的周期性复数的分类复数的几何意义复数的模复数的四则运算加法减法乘法除法运算常用结论一、复数的概念1.定义形如i (,)=+∈z a b a b R 的数叫做复数.复数常用字母z 表示,其中a 与b 分别叫做复数z 的实部与虚部,i 叫做虚数单位,规定2i 1=-.全体复数所成的集合叫做复数集,用C 表示.注意:复数不能比较大小,只有相等和不相等,当对应的实部和虚部相同时,我们说复数相等.例如:32i 32i 23i +=+≠+.例1复数2+3i 的实部是______,虚部是_______;复数-2-i 的实部是______,虚部是______. 解析:注意i 前面的数字才是虚部,包含正负号. 答案:2 3 -2 -1例2已知21i (3)i x y y -+=--,求x 与y .解析:两个复数相等的充要条件是实部与虚部分别对应相等. 由题意,得211(3)x y y -=⎧⎨=--⎩,解得524x y ⎧=⎪⎨⎪=⎩.答案:5,42x y ==2.i 的周期性1234i i i 1i i i 1==-=-=,以此类推,可得:4142434i i i 1i i i 1()n n n n n +++==-=-=∈Z4142434i i i i 0()n n n n n ++++++=∈Z例如:19873i i i ==-,20204i i 1==(指数除以4,只保留余数,如果整除,即为4i ).3.复数的分类对于复数a +b i ,当0b =时,它是实数;当0b ≠时,它是虚数;当0a =且0b ≠时,叫做纯虚数.0i 0,000,0()()()()b z a b b a b b a =⎧⎪=+≠≠⎧⎨≠⎨⎪≠=⎩⎩实数一般虚数虚数纯虚数 例如:2(实数),3i (纯虚数),2+3i (一般虚数).例3 设m ∈R ,复数2(2i)3(1i)2(1i)z m m =+-+--.(1)若z 为实数,求m 的值;(2)若z 为纯虚数,求m 的值. 解析:化简得22(232)(32)i z m m m m =--+-+ (1)由题意得2320m m -+=,解得12m m ==或.(2)由题意得222320320m m m m ⎧--=⎪⎨-+≠⎪⎩,解得12m =-.答案:(1)12m m ==或,(2)12m =-4.复数的几何意义在平面直角坐标系中,复数i z a b =+可用点(,)Z a b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点表示实数,除原点外,虚轴上的点表示纯虚数.复数()i ,z a b a b =+∈R ←−−−→一一对应复平面内的点(,)Z a b 复平面内,连接OZ ,向量OZ 由点Z 唯一确定,因此,复数与复平面内的向量也是一一对应的.复数()i ,z a b a b =+∈R ←−−−→一一对应平面向量OZ 例如:复数2+3i 在复平面内对应的点和向量的坐标为(2,3).例4实部为-2,虚部为1的复数所对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:由复数和点的一一对应关系,可知点的坐标为(-2,1),位于第二象限. 答案:B5.复数的模向量OZ 的模(长度)叫做复数i z a b =+的模,记作||z ,22|||i |z a b a b =+=+. 例如:22|23i |2313+=+=.||z 的几何意义:复数z 的点到原点的距离.12||z z -的集合意义:1z ,2z 对应的两点之间的距离.性质:1212||||||z z z z =,1122||||||z z z z =练习题:二、复数的四则运算1.加法设1i z a b =+,2i z c d =+,则12(i)(i)()()i z z a b c d a c b d +=+++=+++. 例如:(24i)(5i)(25)(41)i =35i ++-+=-++-+. 2.减法设1i z a b =+,2i z c d =+,则12(i)(i)()()i z z a b c d a c b d -=+-+=-+-. 例如:(24i)(5i)(25)(41)i =73i +--+=++-+.是原点,OA ,OC ,AB 对应的复数分别为BC 对应的复数为( )47i + 13i + C .4-解析:()BC OC OA AB =-+,对应的复数为答案:C3.乘法设1i z a b =+,2i z c d =+,则212i i i ()()i z z ac bc ad bd ac bd ad bc =+++=-++. 例如:2(24i)(5i)102i 20i 4i 1418i +⋅-+=-+-+=--.4.除法共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,通常记复数iz a b=+性质:||||z z=例如:23i+的共轭复数为23i-.设1iz a b=+,2iz c d=+,例如:24i(24i)(5i)622i311i(24i)(5i)5i(5i)(5i)2613++------+÷-+====-+-+--.结论:复数的四则运算可把i 看作是普通字母带入运算,如遇2i 则变为1-;除法运算时分子分母同乘以分母的共轭复数,基本思路就是把分母的复数变为实数.5.复数运算常用结论:2(1i)2i ±=± 1i i =-1i i 1i +=- 1i i 1i-=-+ 记122ω=-+,则2122ω=--,则有: 2ωω= 2||||1ωω== 210ωω++=练习题:解析:后式带入前式可得i 2i z z -=,则2ii 11iz ==--. 答案:i 1- 8已知1i 1imn =-+,则i m n +=( ) A .12i + B .12i - C .2i + D .2i - 解析:原式可化简为i 1i m n n +=++,所以11m n n =+⎧⎨=⎩,解得2m =,1n =,i 2i m n +=+.答案:C93(1i)-的虚部为( )A .3B .3-C .2D .2- 解析:32(1i)(1i)(1i)2i(1i)=22i -=--=---,虚部为2-. 答案:D 10若i2ia -+为实数,则a 的值为_______. 解析:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,则20a +=,2a =-. 答案:2-数学浪子整理制作,侵权必究。

高中数学高考总复习复数习题及详解

高中数学高考总复习复数习题及详解

高中数学高考总复习复数习题及详解一、选择题1.(2010·全国Ⅰ理)复数3+2i2-3i=()A.i B.-i C.12-13i D.12+13i [答案] A[解析]3+2i2-3i=(3+2i)(2+3i)(2-3i)(2+3i)=6+9i+4i-613=i.2.(2010·北京文)在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i[答案] C[解析]由题意知A(6,5),B(-2,3),AB中点C(x,y),则x=6-22=2,y=5+32=4,∴点C对应的复数为2+4i,故选C.3.若复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,则实数m的值是()A.-1B.4C.-1和4D.-1和6[答案] C[解析] 由m 2-3m -4=0得m =4或-1,故选C.[点评] 复数z =a +bi (a 、b ∈R )对应点在虚轴上和z 为纯虚数应加以区别.虚轴上包括原点(参见教材104页的定义),切勿错误的以为虚轴不包括原点.4.(文)已知复数z =11+i,则z -·i 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] B[解析] z =1-i 2,z -=12+i 2,z -·i =-12+12i .实数-12,虚部12,对应点⎝ ⎛⎭⎪⎫-12,12在第二象限,故选B.(理)复数z 在复平面上对应的点在单位圆上,则复数z 2+1z ( )A .是纯虚数B .是虚数但不是纯虚数C .是实数D .只能是零 [答案] C[解析] 解法1:∵z 的对应点P 在单位圆上, ∴可设P (cos θ,sin θ),∴z =cos θ+i sin θ. 则z 2+1z =cos2θ+i sin2θ+1cos θ+i sin θ=2cos 2θ+2i sin θcos θcos θ+i sin θ=2cos θ为实数.解法2:设z =a +bi (a 、b ∈R ), ∵z 的对应点在单位圆上,∴a 2+b 2=1, ∴(a -bi )(a +bi )=a 2+b 2=1,∴z 2+1z =z +1z=(a +bi )+(a -bi )=2a ∈R .5.(2010·广州市)复数(3i-1)i的共轭复数....是()A.-3+iB.-3-iC.3+iD.3-i[答案] A[解析](3i-1)i=-3-i,其共轭复数为-3+i.6.(2010·湖南衡阳一中)已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为()A.-4B.4C.-1D.1[答案] A[解析]由(x-1)i-y=2+i得,x=2,y=-2,所以(1+i)x-y=(1+i)4=(2i)2=-4,故选A.7.(文)(2010·吉林市质检)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析]∵z=z1z2=(3+i)(1-i)=4-2i,∴选D.(理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+C54cosθsin4θ,b=C51cos4θsinθ-C53cos2θsin3θ+C55sin5θ,那么复数a+b i等于() A.cos5θ+isin5θB .cos5θ-isin5θC .sin5θ+icos5θD .sin5θ-icos5θ [答案] A[解析] a +b i =C 50cos 5θ+iC 51cos 4θsin θ+i 2C 52cos 3θsin 2θ+i 3C 53cos 2θsin 3θ+i 4C 54cos θsin 4θ+i 5C 55sin 5θ=(cos θ+isin θ)5=(e i θ)5=e i (5θ)=cos5θ+isin5θ,选A.8.(文)(2010·安徽合肥市质检)已知复数a =3+2i ,b =4+xi (其中i 为虚数单位),若复数ab∈R ,则实数x 的值为( )A .-6B .6 C.83 D .-83[答案] C [解析]a b =3+2i 4+xi =(3+2i )(4-xi )16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2 i ∈R ,∴8-3x 16+x 2=0,∴x =83.(理)(2010·山东邹平一中月考)设z =1-i (i 是虚数单位),则z 2+2z=( )A .-1-iB .-1+iC .1-iD .1+i [答案] C[解析] ∵z =1-i ,∴z 2=-2i ,2z =21-i =1+i ,∴z 2+2z=1-i ,选C.9.(2010·山东聊城市模拟)在复平面内,复数21-i对应的点到直线y=x+1的距离是()A.2 2B. 2 C.2 D.2 2 [答案] A[解析]∵21-i=2(1+i)(1-i)(1+i)=1+i对应点为(1,1),它到直线x-y+1=0距离d=12=22,故选A.10.(文)(2010·山东临沂质检)设复数z满足关系式z+|z-|=2+i,则z等于() A.-34+iB.34-iC.34+iD.-34-i[答案] C[解析]由z=2-|z-|+i知z的虚部为1,设z=a+i(a∈R),则由条件知a=2-a2+1,∴a=34,故选C.(理)(2010·马鞍山市质检)若复数z=a+i1-2i(a∈R,i是虚数单位)是纯虚数,则|a+2i|等于()A.2B.2 2C .4D .8 [答案] B[解析]z =a +i 1-2i =(a +i )(1+2i )5=a -25+2a +15i 是纯虚数,∴⎩⎪⎨⎪⎧a -25=02a +15≠0,∴a =2,∴|a +2i |=|2+2i |=2 2. 二、填空题11.规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪ z i -i2=1-2i ,设i 为虚数单位,则复数z =________.[答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪zi -i2=2z +i 2=2z -1=1-2i ,∴z =1-i . 12.(2010·南京市调研)若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为________.[答案] -1[解析] 因为z 1·z 2=(a -i )(1+i )=a +1+(a -1)i 为纯虚数,所以a =-1. 13.(文)若a 是复数z 1=1+i 2-i 的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.[答案] -25[解析] ∵z 1=1+i 2-i =(1+i )(2+i )(2-i )(2+i )=15+35i , ∴a =15.又z 2=(1-i )3=1-3i +3i 2-i 3=-2-2i ,∴b =-2.于是,ab =-25.(理)如果复数2-bi1+2i(i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________.[答案] -23[解析] 2-bi 1+2i =2-bi 1+2i ·1-2i 1-2i =2-2b 5-b +45i ,由复数的实数与虚数互为相反数得,2-2b 5=b +45,解得b =-23.14.(文)若复数z =sin α-i (1-cos α)是纯虚数,则α=________. [答案] (2k +1)π (k ∈Z )[解析] 依题意,⎩⎨⎧ sin α=01-cos α≠0,即⎩⎨⎧α=k πα≠2k π,所以α=(2k +1)π (k ∈Z ).[点评] 新课标教材把《复数》这一章进行了精简,不再要求复数的三角形式以及复杂的几何形式和性质;对于复数的模的要求很低,了解概念就行.主要考查复数的代数形式以及复数的四则运算,这是我们复习的重点,不要超过范围.(理)(2010·上海大同中学模考)设i 为虚数单位,复数z =(12+5i )(cos θ+i sin θ),若z ∈R ,则tan θ的值为________.[答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R , ∴12sin θ+5cos θ=0,∴tan θ=-512. 三、解答题15.(2010·江苏通州市调研)已知复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R ).试求实数a 分别为什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.[解析] (1)当z 为实数时,⎩⎨⎧a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎨⎧a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数.16.(2010·上海徐汇区模拟)求满足⎪⎪⎪⎪⎪⎪z +1z -1=1且z +2z ∈R 的复数z . [解析] 设z =a +bi (a 、b ∈R ),由⎪⎪⎪⎪⎪⎪z +1z -1=1?|z +1|=|z -1|, 由|(a +1)+bi |=|(a -1)+bi |,∴(a +1)2+b 2=(a -1)2+b 2,得a =0, ∴z =bi ,又由bi +2bi ∈R 得,b -2b=0?b =±2,∴z =±2i .17.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +bi (i 为虚数单位),求事件“z -3i 为实数”的概率; (2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥00≤a ≤4b ≥0表示的平面区域内(含边界)的概率.[解析](1)z=a+bi(i为虚数单位),z-3i为实数,则a+bi-3i=a+(b-3)i 为实数,则b=3.依题意得b的可能取值为1,2,3,4,5,6,故b=3的概率为16.即事件“z-3i为实数”的概率为1 6.(2)连续抛掷两次骰子所得结果如下表:不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P(a,b)落在四边形ABCD内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P(a,b)落在四边形ABCD内(含边界)的概率为P=1836=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学高考总复习复数习题及详解Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】高中数学高考总复习复数习题及详解一、选择题1.(2010·全国Ⅰ理)复数3+2i2-3i=( )A.i B.-i C.12-13i D.12+13i [答案] A[解析] 3+2i2-3i=(3+2i)(2+3i)(2-3i)(2+3i)=6+9i+4i-613=i.2.(2010·北京文)在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i[答案] C[解析] 由题意知A(6,5),B(-2,3),AB中点C(x,y),则x=6-22=2,y=5+32=4,∴点C对应的复数为2+4i,故选C.3.若复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,则实数m的值是( ) A.-1B.4C.-1和4D.-1和6[答案] C[解析] 由m2-3m-4=0得m=4或-1,故选C.[点评] 复数z=a+bi(a、b∈R)对应点在虚轴上和z为纯虚数应加以区别.虚轴上包括原点(参见教材104页的定义),切勿错误的以为虚轴不包括原点.4.(文)已知复数z=11+i,则z-·i在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] B[解析] z=1-i2,z-=12+i2,z-·i=-12+12i.实数-12,虚部12,对应点⎝⎛⎭⎪⎫-12,12在第二象限,故选B.(理)复数z在复平面上对应的点在单位圆上,则复数z2+1z( )A.是纯虚数B.是虚数但不是纯虚数C.是实数D.只能是零[答案] C[解析] 解法1:∵z的对应点P在单位圆上,∴可设P(cosθ,sinθ),∴z=cosθ+i sinθ.则z2+1z=cos2θ+i sin2θ+1cosθ+i sinθ=2cos2θ+2i sinθcosθcosθ+i sinθ=2cosθ为实数.解法2:设z=a+bi(a、b∈R),∵z的对应点在单位圆上,∴a2+b2=1,∴(a-bi)(a+bi)=a2+b2=1,∴z2+1z=z+1z=(a+bi)+(a-bi)=2a∈R.5.(2010·广州市)复数(3i-1)i的共轭复数....是( )A.-3+iB.-3-iC.3+iD.3-i[答案] A[解析] (3i-1)i=-3-i,其共轭复数为-3+i.6.(2010·湖南衡阳一中)已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为( )A.-4B.4C.-1D.1[答案] A[解析] 由(x-1)i-y=2+i得,x=2,y=-2,所以(1+i)x-y=(1+i)4=(2i)2=-4,故选A.7.(文)(2010·吉林市质检)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] D[解析] ∵z=z1z2=(3+i)(1-i)=4-2i,∴选D.(理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+C 54cosθsin4θ,b=C51cos4θsinθ-C53cos2θsin3θ+C55sin5θ,那么复数a+b i等于( )A.cos5θ+isin5θB.cos5θ-isin5θC.sin5θ+icos5θD.sin5θ-icos5θ[答案] A[解析] a+b i=C50cos5θ+iC51cos4θsinθ+i2C52cos3θsin2θ+i3C53cos2θsin3θ+i4C54cosθsin4θ+i5C55sin5θ=(cosθ+isinθ)5=(e iθ)5=e i(5θ)=cos5θ+isin5θ,选 A. 8.(文)(2010·安徽合肥市质检)已知复数a=3+2i,b=4+xi(其中i为虚数单位),若复数ab∈R,则实数x的值为( )A.-6 B.6C.8 3D.-8 3[答案] C[解析] ab=3+2i4+xi=(3+2i)(4-xi)16+x2=12+2x16+x2+⎝⎛⎭⎪⎫8-3x16+x2i∈R,∴8-3x16+x2=0,∴x=83.(理)(2010·山东邹平一中月考)设z=1-i(i是虚数单位),则z2+2z=( )A.-1-i B.-1+i C.1-i D.1+i [答案] C[解析] ∵z=1-i,∴z2=-2i,2z=21-i=1+i,∴z2+2z=1-i,选C.9.(2010·山东聊城市模拟)在复平面内,复数21-i对应的点到直线y=x+1的距离是( )A.2 2B.2 C.2 D.22 [答案] A[解析] ∵21-i=2(1+i)(1-i)(1+i)=1+i对应点为(1,1),它到直线x-y+1=0距离d=12=22,故选A.10.(文)(2010·山东临沂质检)设复数z满足关系式z+|z-|=2+i,则z等于( ) A.-34+iB.34-iC.34+iD.-34-i[答案] C[解析] 由z=2-|z-|+i知z的虚部为1,设z=a+i(a∈R),则由条件知a=2-a2+1,∴a=34,故选C.(理)(2010·马鞍山市质检)若复数z=a+i1-2i(a∈R,i是虚数单位)是纯虚数,则|a+2i|等于( )A.2B.22C .4D .8 [答案] B[解析] z =a +i 1-2i =(a +i )(1+2i )5=a -25+2a +15i 是纯虚数,∴⎩⎨⎧a -25=02a +15≠0,∴a =2,∴|a +2i |=|2+2i |=2 2. 二、填空题11.规定运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若⎪⎪⎪⎪⎪⎪z i -i 2=1-2i ,设i 为虚数单位,则复数z =________.[答案] 1-i[解析] 由已知可得⎪⎪⎪⎪⎪⎪ z i -i 2=2z +i 2=2z -1=1-2i ,∴z =1-i . 12.(2010·南京市调研)若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为________.[答案] -1[解析] 因为z 1·z 2=(a -i )(1+i )=a +1+(a -1)i 为纯虚数,所以a =-1. 13.(文)若a 是复数z 1=1+i2-i的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.[答案] -25[解析] ∵z 1=1+i 2-i =(1+i )(2+i )(2-i )(2+i )=15+35i , ∴a =15.又z 2=(1-i )3=1-3i +3i 2-i 3=-2-2i ,∴b =-2.于是,ab =-25.(理)如果复数2-bi1+2i (i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________.[答案] -23[解析]2-bi 1+2i =2-bi 1+2i ·1-2i 1-2i =2-2b 5-b +45i , 由复数的实数与虚数互为相反数得,2-2b 5=b +45,解得b =-23.14.(文)若复数z =sin α-i (1-cos α)是纯虚数,则α=________. [答案] (2k +1)π (k ∈Z )[解析] 依题意,⎩⎨⎧sin α=01-cos α≠0,即⎩⎨⎧α=k πα≠2k π,所以α=(2k +1)π(k ∈Z ).[点评] 新课标教材把《复数》这一章进行了精简,不再要求复数的三角形式以及复杂的几何形式和性质;对于复数的模的要求很低,了解概念就行.主要考查复数的代数形式以及复数的四则运算,这是我们复习的重点,不要超过范围.(理)(2010·上海大同中学模考)设i 为虚数单位,复数z =(12+5i )(cos θ+i sin θ),若z ∈R ,则tan θ的值为________.[答案] -512[解析] z =(12cos θ-5sin θ)+(12sin θ+5cos θ)i ∈R , ∴12sin θ+5cos θ=0,∴tan θ=-512.三、解答题15.(2010·江苏通州市调研)已知复数z =a 2-7a +6a +1+(a 2-5a -6)i (a ∈R ).试求实数a 分别为什么值时,z 分别为: (1)实数;(2)虚数;(3)纯虚数.[解析] (1)当z 为实数时,⎩⎨⎧a 2-5a -6=0a +1≠0,∴a =6,∴当a =6时,z 为实数.(2)当z 为虚数时,⎩⎨⎧a 2-5a -6≠0a +1≠0,∴a ≠-1且a ≠6,故当a ∈R ,a ≠-1且a ≠6时,z 为虚数.(3)当z 为纯虚数时,⎩⎪⎨⎪⎧a 2-5a -6≠0a 2-7a +6=0a +1≠0∴a =1,故a =1时,z 为纯虚数.16.(2010·上海徐汇区模拟)求满足⎪⎪⎪⎪⎪⎪z +1z -1=1且z +2z ∈R 的复数z .[解析] 设z =a +bi (a 、b ∈R ), 由⎪⎪⎪⎪⎪⎪z +1z -1=1?|z +1|=|z -1|, 由|(a +1)+bi |=|(a -1)+bi |, ∴(a +1)2+b 2=(a -1)2+b 2,得a =0, ∴z =bi ,又由bi +2bi∈R 得,b -2b=0?b =±2,∴z =±2i . 17.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +bi (i 为虚数单位),求事件“z -3i 为实数”的概率;(2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥00≤a ≤4b ≥0表示的平面区域内(含边界)的概率.[解析] (1)z=a+bi(i为虚数单位),z-3i为实数,则a+bi-3i=a+(b-3)i为实数,则b=3.依题意得b的可能取值为1,2,3,4,5,6,故b=3的概率为16.即事件“z-3i为实数”的概率为1 6 .(2)连续抛掷两次骰子所得结果如下表:不等式组所表示的平面区域如图中阴影部分所示(含边界).由图知,点P(a,b)落在四边形ABCD内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P(a,b)落在四边形ABCD内(含边界)的概率为P=1836=12.。

相关文档
最新文档