最新高中数学《复数》经典考题分类解析

合集下载

高考复数知识点经典题型

高考复数知识点经典题型

高考复数知识点经典题型高考是每个学生人生道路中的重要里程碑,对于许多学生而言,复习备考是一项艰巨的任务。

在准备期间,学生需要重点关注高考复数知识点,因为这些知识点经常出现在考试中,且占据很大的比重。

在本文中,我将论述一些常见的高考复数知识点,并带你一起解析经典题型。

一、复数的定义和运算法则复数是由实数和虚数构成的数,通常用 a + bi 表示,其中 a 是实部,b 是虚部。

在复数中,虚数单位 i 的平方等于 -1。

对于复数的加法和减法,只需分别对实部和虚部进行运算即可。

而复数的乘法和除法则需要使用分配律和公式 (a + bi) * (c + di) = (ac - bd) + (ad + bc)i 进行计算。

经典题型:1. 计算复数 (3 + 2i) + (4 - i) 的结果。

2. 计算复数 (2 - 3i) - (5 + 2i) 的结果。

3. 计算复数 (1 - 2i) * (3 + 4i) 的结果。

4. 计算复数 (2 + i) / (1 - 3i) 的结果。

二、复数的共轭和模在复数中,共轭是指改变虚部的正负号,得到的新复数称为原复数的共轭。

复数的模是指复数到原点的距离,也可以理解为复数的绝对值。

经典题型:1. 计算复数 (4 + 3i) 的共轭。

2. 计算复数 (2 - i) 的共轭。

3. 计算复数 (3 + 4i) 的模。

4. 计算复数 (-1 + 2i) 的模。

三、复数的幂和根复数的幂是指将复数连续乘以自身多次。

复数的根是指满足a^k - z = 0 的复数 a,其中 a 是复数的根数,k 是根的次数。

经典题型:1. 计算复数 (1 + i)^2 的结果。

2. 求复数 (3 + 4i) 的平方根。

3. 求复数 (1 - i) 的立方根。

4. 求复数 (-1 + √3i) 的四次根。

四、复数的三角形式复数可以利用直角坐标系和极坐标系来表示。

在复数的三角形式中,复数 z = a + bi 可以改写为z = r(cosθ + isinθ) 的形式,其中 r 是复数的模,θ 是复数的辐角。

高考复数的知识题型总结归类

高考复数的知识题型总结归类

高考复数的知识题型总结一、复数的有关概念(1)复数1.定义:形如a+6i (a, 6WR)的数叫做复数,其中i叫做虚数单位,满足f= —1.二i,产三-1, Z,n-3=-i, 小= 1.)2.表示方法:复数通常用字母z表示,即z=a+6i (a, 6CR),叫做复数的代数形式,a叫做复数z的实部,6叫做复数z的虚部.(注意b是虚部而不是bi)(2)复数集1.定义:全体复数所成的集合叫做复数集.2.表示:大写字母C.(3)复数的分类’3正实数L= 0,-- 是实数QT上;实数0复数z=a+例—负实数一纯虚数hi、3n是虚数1&工°为£2”非纯虚数的虚敷复数集、实数集、虚数集、纯虚数集之间的关系(4 )复数相等的充要条件a+ 6i = c+ 力=a=c 且b=da+6i = 0=a=6=0. (a, b, c, d 均为实数)说明:要求复数相等要先将复数化为2=&+历(a, 6£R)的形式,即分离实部和虚部.二、复平面的概念点Z的横坐标是a,纵坐标是6,复数*a+6f(a、6£R)可用点Z(a, 6)表示, 这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.实轴上的点都表示实数.(1)实轴上的点都表示实数.(2)虚轴上的点都表示纯虚数.(3)原点对应的有序实数对为(0, 0)三、复数的两种几何意义(1)复数z=a+bi (a, Z>GR) -*对应复平而内的点Z (a, b).(2)复数z=a+6i (a, b£R) -*平而向量一OZ复数Z=a+罚(a1亡犬)—寸应点—―->向量无对应四、复数的模复数z=a+6i (a, 6CR)对应的向量为OZ ,则&的模叫做复数z的模,记作;z ,且|z|=^7F 注意:两个虚数是不可以比较大小的,但它们的模表示实数,可以比较大小.五、复数的运算设%=a+6,,z^c+di(a^ b、c、d£R)是任意两个复数,%与Z2 的加法运算律:^+^2= (a^bi) + (c+di) = (a+c) + (b+d) i.%与Z2 的减法运算律:4-纥=(a+6f)-(c+d£) = (a-c) + (Zy^£Z1 与诙的乘法运算律:21.乏二(a^bi) (c^di)-(ac— bd)^(bc^ad) i.cic + bd ^bc- ad .Z,与否的除法运算律:2一生二(/方)・(6人)=1+/2 /+/ (分母要利用平方差实数化)六、共甄复数1.定义:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共枕复数,虚部不等于0的两个共枕复数也叫做共枕虚数.通常记复数Z的共辗复数为5 o例如z=3 + 5i与5=3 — 5i互为共辄复数2.共辗复数的性质(1)实数的共规复数仍然是它本身⑵2区=团:团,(3)两个共规复数对应的点关于实轴对称七、常用结论.⑴"i,(2)(l-i)2=-2i⑶- = -/(5)— = -/ 1 + Z(6)(。

高考数学压轴专题最新备战高考《复数》解析含答案

高考数学压轴专题最新备战高考《复数》解析含答案

【最新】数学《复数》专题解析(1)一、选择题1.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )A .3B .3i -C .3iD .3- 【答案】D【解析】【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可.【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-.本题选择D 选项.【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题3.已知复数(2)z i i =-,其中i 是虚数单位,则z 的模z = ( )A B C .3 D .5【答案】B【解析】22(2)22(1)5z i i i i =-=-=+-=,故选B .4.若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i -+D .12i --【答案】B【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.5.设i 是虚数单位,则()()3211i i -+等于( ) A .1i -B .1i -+C .1i +D .1i --【答案】B 【解析】【分析】化简复数得到答案. 【详解】 ()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.6.已知复数1223,z i z a bi =+=+(,R,0a b b 且∈≠),其中i 为虚数单位,若12z z 为实数,则a b 的值为( ) A .32- B .23- C .23 D .32【答案】B【解析】【分析】先根据复数乘法计算,再根据复数概念求a,b 比值.【详解】因为()1223(z z i a bi =++)()23(32a b a b =-++) i , 所以320a b +=,因为0b ≠,所以23a b =-,选B. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为(,)a b 、共轭为.-a bi7.已知i 是虚数单位,则131i i +=+( ) A .2i -B .2i +C .2i -+D .2i -- 【答案】B【解析】【分析】利用复数的除法运算计算复数的值即可.【详解】由复数的运算法则有: 13(13)(1)422(1)(11)2i i i i i i i i ++-+===++-+. 故选B .【点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.8.若43i z =+,则z z=( ) A .1B .1-C .4355i +D .4355i - 【答案】D【解析】【详解】由题意可得 :5z ==,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.9.设3443i z i -=+,()21f x x x =-+,则()f z =( ) A .iB .i -C .1i -+D .1i + 【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,代入函数解析式求解.【详解】 解:3443i z i-=+Q ()()()()344334434343i i i z i i i i ---∴===-++- ()21f x x x =-+Q()()()21f z i i i ∴=---+=故选:A【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.10.设(1)1i x yi -=+,其中,x y 是实数,则x yi +在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】由()11i x yi -=+,其中,x y 是实数,得:11,1x x x y y ==⎧⎧∴⎨⎨-==-⎩⎩,所以x yi +在复平面内所对应的点位于第四象限.本题选择D 选项.11.复数z 满足(2)1i z i -=+,那么||z =( )A .5B .15C .25D .5【答案】D【解析】【分析】 化简得到1355z i =+,再计算复数模得到答案. 【详解】(2)1i z i -=+,∴1(1)(2)13255i i i i z i ++++===-,∴1355z i =+,∴||z =. 故选:D .【点睛】本题考查了复数的运算,复数模,意在考查学生的计算能力.12.设2i 2i 1i z =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i - 【答案】A【解析】【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解.【详解】 由题意,可得复数()()()2i 1i 2i 2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-.故选:A .【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.13.若复数1a i z i +=-,且3·0z i >,则实数a 的值等于( ) A .1B .-1C .12D .12- 【答案】A【解析】【分析】由3·0z i >可判定3·z i 为实数,利用复数代数形式的乘除运算化简复数z ,再由实部为0,且虚部不为0列式求解即可.【详解】()()()()()i 1i 11i i 1i 1i 1i 2a a a a z ++-+++===--+Q , 所以3·z i =()()()()341i 1i 1i 122a a a a -++--++=,因为3·0z i >,所以3·z i 为实数,102a --= 可得1a =,1a =时3,?10z i =>,符合题意,故选A. 【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.已知复数122i z i +=- (i 为虚数单位),则z 的虚部为( ) A .-1B .0C .1D .i 【答案】C【解析】【分析】利用复数的运算法则,和复数的定义即可得到答案.【详解】 复数()()()()1221252225i i i i z i i i i +++====--+,所以复数z 的虚部为1,故选C . 【点睛】本题主要考查了复数的运算法则和复数的概念,其中解答中熟记复数的基本运算法则和复数的概念及分类是解答的关键,着重考查了推理与运算能力,属于基础题.15.已知i 为虚数单位,,a b ∈R ,复数12i i a bi i+-=+-,则a bi -=( ) A .1255i - B .1255i + C .2155i - D .21i 55+ 【答案】B【解析】【分析】 由复数的除法运算,可得(1)(2)12(2)(2)55i i i i i i a b i=+++-=--+,即可求解a b i -,得到答案.【详解】 由题意,复数12i i a bi i+-=+-,得(1)(2)1312(2)(2)555i i a b i=i i i i i i ++++-=-=--+, 所以1255a b i=i -+,故选B . 【点睛】 本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.16.若1+是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,1b c ==-C .2,1b c =-=-D .2,3b c =-=【答案】D【解析】【分析】由题意,将根代入实系数方程x 2+bx +c =0整理后根据得数相等的充要条件得到关于实数a ,b的方程组100b c -++=⎧⎪⎨=⎪⎩,解方程得出a ,b 的值即可选出正确选项 【详解】由题意1是关于x 的实系数方程x 2+bx +c =0∴﹣2+b bi +c =0,即()10b c i -+++=∴100b c -++=⎧⎪⎨=⎪⎩,解得b =﹣2,c =3 故选:D .【点睛】本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题17.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.18.在复平面内,复数z 满足()112z i i +=-,则z 对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 ∵()112z i i +=-,∴()()()()221211212213131111222i i i i i i i z i i i i i -----+--=====--++--,∴1322z i =-+,故对应的点在第二象限.故选B .19.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v ( )A .-16B .0C .16D .32 【答案】B【解析】【分析】 先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r ,再利用平面向量的数量积求解.【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点. 由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r ,∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r .故选B【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知复数为纯虚数(为虚数单位),则实数()A.-1 B.1 C.0 D.2【答案】B【解析】【分析】化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:.【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力.。

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题(带答案)

高中数学第七章复数经典大题例题单选题1、已知z =2+i ,则z−i 1+i =( )A .1−2iB .2+2iC .2iD .−2i答案:D分析:根据共轭复数的定义及复数的除法法则即可求解.由z =2+i ,得z =2−i ,所以z−i 1+i =2−i−i 1+i =2(1−i )×(1−i )(1+i )×(1−i )=2×(1−2i+i 2)2=−2i .故选:D.2、设(−1+2i)x =y −1−6i ,x,y ∈R ,则|x −yi|=( )A .6B .5C .4D .3答案:B分析:根据复数实部等于实部,虚部等于虚部可得{x =−3y =4,进而求模长即可. 因为(−1+2i )x =y −1−6i ,所以{2x =−6−x =y −1,解得{x =−3y =4, 所以|x −yi |=|−3−4i|=√(−3)2+(−4)2=5.故选:B.3、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z 1和z 2的模相等,例如z 1=1+i ,z 2=√2i ,则z 1和z 2是共轭复数是错误的;对于②z 1和z 2都是复数,若z 1+z 2是虚数,则其实部互为相反数,则z 1不是z 2的共轭复数,所以②是正确的;对于③复数z 是实数,令z =a ,则z =a 所以z =z ,反之当z =z 时,亦有复数z 是实数,故复数z 是实数的充要条件是z =z 是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.4、在复平面内,复数z =1+i 1−i +1−i 2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:由复数的运算求出z ,则可得其对应的点的坐标,从而得出结论.z =(1+i)2(1−i)(1+i)+1−i 2=2i 2+1−i 2=12+12i , 则z 在复平面内对应的点为(12,12),在第一象限,故选:A .5、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|2答案:D解析:举反例z 1=2+i ,z 2=2−i 可判断选项A 、B ,举反例,z 2=i 可判断选项C ,设z 1=a +bi ,(a,b ∈R ),分别计算|z 12|、|z 1|2即可判断选项D ,进而可得正确选项.对于选项A :取z 1=2+i ,z 2=2−i ,z 12=(2+i )2=3+2i ,z 22=(2−i )2=3−2i ,满足z 12+z 22=6>0,但z 12与z 22是两个复数,不能比较大小,故选项A 不正确;对于选项B :取z 1=2+i ,z 2=2−i ,|z 1−z 2|=|2i |=2,而√(z 1+z 2)2−4z 1⋅z 2=√42−4(2+i )(2−i )=√16−20无意义,故选项B 不正确;对于选项C :取,z 2=i ,则z 12+z 22=0,但是z 1≠0,z 2≠0,故选项C 不正确;对于选项D :设z 1=a +bi ,(a,b ∈R ),则z 12=(a +bi )2=a 2−b 2+2abi11z =11z =|z 12|=√(a 2−b 2)2+4a 2b 2=√(a 2+b 2)2=a 2+b 2,z 1=a −bi ,|z 1|=√a 2+b 2,所以|z 1|2=a 2+b 2,所以|z 12|=|z 1|2,故选项D 正确.故选:D.6、已知i 为虚数单位,则i +i 2+i 3+⋅⋅⋅+i 2021=( )A .iB .−iC .1D .-1答案:A分析:根据虚数的运算性质,得到i 4n +i 4n+1+i 4n+2+i 4n+3=0,得到i +i 2+i 3+⋅⋅⋅+i 2021=i 2021,即可求解.根据虚数的性质知i 4n +i 4n+1+i 4n+2+i 4n+3=1+i −1−i =0,所以i +i 2+i 3+⋅⋅⋅+i 2021=505×0+i 2021=i .故选:A.7、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D8、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC.-3-iD.-3+i答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn+2=02n+2=0,解得{m=3,n=−1,∴z=3−i故选:B多选题9、已知复数z=21+i,则正确的是()A.z的实部为﹣1B.z在复平面内对应的点位于第四象限C.z的虚部为﹣iD.z的共轭复数为1+i答案:BD分析:根据复数代数形式的乘除运算化简,结合复数的实部和虚部的概念、共轭复数的概念求解即可.因为z=21+i =2(1−i)(1+i)(1−i)=1−i,所以z的实部为1,虚部为-1,在复平面内对应的点为(1,-1),在第四象限,共轭复数为z=1+i,故AC错误,BD正确.故选:BD10、复数z=1−i,则()A.z在复平面内对应的点的坐标为(1,−1)B.z在复平面内对应的点的坐标为(1,1)C.|z|=2D.|z|=√2答案:AD分析:利用复数的几何意义,求出复数对应的点坐标为(1,−1),即可得答案;z=1−i在复平面内对应的点的坐标为(1,−1),|z|=√2.故选:AD.11、已知复数z满足(1+i3)z=2,则下列说法中正确的有()A.z的虚部是iB.|z|=√2C.z⋅z=2D.z2=2答案:BC分析:根据复数的除法运算求出z,结合相关概念以及复数乘法运算即可得结果.z=21+i3=21−i=1+i,其虚部为1,|z|=√2,z⋅z=(1+i)(1−i)=2,z2=(1+i)2=2i≠2.故选:BC.12、已知复数z1=−2+i(i为虚数单位),复数z2满足|z2−1+2i|=2,z2在复平面内对应的点为,则()A.复数z1在复平面内对应的点位于第二象限B.1z1=−25−15iC.(x+1)2+(y−2)2=4D.|z2−z1|的最大值为3√2+2答案:ABD分析:利用复数的几何意义可判断A选项;利用复数的除法运算可判断B选项;利用复数的模长公式可判断C选项;利用复数模长的三角不等式可判断D选项.对于A选项,复数z1在复平面内对应的点的坐标为(−2,1),该点位于第二象限,A对;对于B选项,1z1=1−2+i=−2−i(−2+i)(−2−i)=−25−15i,B对;对于C选项,由题意可得z2−1+2i=(x−1)+(y+2)i,因为|z2−1+2i|=2,则(x−1)2+(y+2)2=4,C错;对于D选项,z1−1+2i=−3+3i,则|z1−1+2i|=√(−3)2+32=3√2,所以,|z2−z1|=|(z2−1+2i)−(z1−1+2i)|≤|z2−1+2i|+|z1−1+2i|=2+3√2,D对.(), M x y故选:ABD.13、若复数z 满足:z (z +2i )=8+6i ,则( )A .z 的实部为3B .z 的虚部为1C .zz =√10D .z 在复平面上对应的点位于第一象限答案:ABD分析:根据待定系数法,将z =a +bi (a,b ∈R )代入条件即可求解a =3,b =1,进而即可根据选项逐一求解. 设z =a +bi (a,b ∈R ),因为z (z +2i )=8+6i ,所以zz +2iz =8+6i ,所以(a 2+b 2−2b )+2ai =8+6i ,所以a 2+b 2−2b =8,2a =6,所以a =3,b =1,所以z =3+i ,所以z 的实部为3,虚部为1,故A ,B 正确;zz =|z |2=10,故C 不正确;z 在复平面上对应的点(3,1)位于第一象限,故D 正确.故选:ABD .填空题14、i 2 021=________.答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i15、设复数z ,满足|z 1|=1,|z 2|=2,z 1+z 2=√3−i ,则|z 1−z 2|=____________.答案:√6解析:根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出|z 1−z 2|的值.设z 1,z 2在复平面中对应的向量为OZ 1⃗⃗⃗⃗⃗⃗⃗ ,OZ 2⃗⃗⃗⃗⃗⃗⃗ ,z 1+z 2对应的向量为OZ 3⃗⃗⃗⃗⃗⃗⃗ ,如下图所示:因为z 1+z 2=√3−i ,所以|z 1+z 2|=√3+1=2,所以cos∠OZ 1Z 3=12+22−221×2×2=14, 又因为∠OZ 1Z 3+∠Z 1OZ 2=180°,所以cos∠Z 1OZ 2=−cos∠OZ 1Z 3=−14,所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2=OZ 12+OZ 22−2OZ 1⋅OZ 2⋅cos∠Z 1OZ 2=1+4+1=6, 所以|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,又|z 1−z 2|=|Z 2Z 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=√6,所以答案是:√6.小提示:名师点评复数的几何意义:(1)复数z =a +bi (a,b ∈R )一一对应↔复平面内的点Z (a,b )(a,b ∈R ); (2)复数z =a +bi (a,b ∈R ) 一一对应↔平面向量OZ ⃗⃗⃗⃗⃗ . 16、在复平面内,复数z 对应的点的坐标是(3,−5).则(1−i)z =___________.答案:−2−8i ##−8i −2分析:根据给定条件求出复数,再利用复数的乘法运算计算作答.在复平面内,复数z 对应的点的坐标是(3,−5),则z =3−5i ,所以(1−i)z =(1−i)(3−5i)=−2−8i .所以答案是:−2−8i解答题17、已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i (其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值;(2)若z 1=z 2,求实数λ的取值范围.答案:(1)-2;(2)[2,6]分析:(1)z 1为纯虚数,则其实部为0,虚部不为0,解得参数值;(2)由z 1=z 2,实部、虚部分别相等,求得λ关于θ的函数表达式,根据sinθ的范围求得参数取值范围.(1)由z 1为纯虚数,则{4−m 2=0,m −2≠0,解得m =-2. (2)由z 1=z 2,得{4−m 2=λ+2sinθ,m −2=cosθ−2,∴λ=4-cos 2θ-2sin θ=sin 2θ-2sin θ+3=(sinθ−1)2+2. ∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2,当sin θ=-1时,λmax =6,∴实数λ的取值范围是[2,6].18、已知m ∈R ,α、β是关于x 的方程x 2+2x +m =0的两根.(1)若|α−β|=2√2,求m 的值;(2)用m 表示|α|+|β|.答案:(1)−1或3;(2)|α|+|β|={2√m,m >12,0≤m ≤12√1−m,m <0.分析:(1)由α、β是关于x 的方程x 2+2x +m =0的两根.可得α+β=−2,αβ=m ,对α,β分为实数,与一对共轭虚根即可得出.(2)不妨设α⩽β,对m 及其判别式分类讨论,利用根与系数的关系即可得出.解:(1)∵α、β是关于x 的方程x 2+2x +m =0的两根.∴α+β=−2,αβ=m ,若α,β为实数,即Δ=4−4m ≥0,解得m ≤1时;则2√2=|α−β|=√(α+β)2−4αβ=√4−4m ,解得m =−1.若α,β为一对共轭复数,即Δ=4−4m <0,解得m >1时;则2√2=|α−β|=√(α+β)2−4αβ=|√4m −4i|,解得m =3.综上可得:m =−1或3.(2)因为x2+2x+m=0,不妨设α⩽β.Δ=4−4m⩾0,即m⩽1时,方程有两个实数根.α+β=−2,αβ=m,0⩽m⩽1时,|α|+|β|=|α+β|=2.m<0时,α与β必然一正一负,则|α|+|β|=−α+β=√(α+β)2−4αβ=2√1−m.Δ=4−4m<0,即m>1时,方程有一对共轭虚根.|α|+|β|=2|α|=2√α2=2√m综上可得:|α|+|β|={2√m,m>1 2,0⩽m⩽12√1−m,m<0.。

第12章复数章末题型归纳总结 高考数学

第12章复数章末题型归纳总结 高考数学

又∠ ∈ , ,所以∠ = .



故答案为:






= ,
试卷讲评课件
例11.(2024 ⋅高一·江苏·专题练习)在复平面内,O是原点,向量OZ对应
的复数是−1 +
− 2
复数为_____.
π
i,将OZ绕点O按逆时针方向旋转 ,则所得向量对应的
4
【解析】如图,由题意可知 = −, ,与
经典题型六:复数的三角表示
模块三:数学思想与方法
①分类与整合思想②等价转换思想③
数形结合的思想
试卷讲评课件
模块一:本章知识思维导图
试卷讲评课件
模块二:典型例题
经典题型一:复数的概念
例1.(2024
z
⋅高三·河南商丘·阶段练习)若复数z满足 为纯虚数,且
2+i
z = 1,则z的虚部为(

2 5
A.±
若 = ,则有 = , = , ∴ = ,反之由 = ,
推不出 = ,如 = +, = − 时, = ,故C正确;
D中两个复数不能比较大小,但任意两个复数的模总能比较大小,∴
错.
选.
试卷讲评课件
【解析】复数 = + ,则 = +

= − + = −,
−=

又是实数,因此
,解得 = −,
= −
所以实数的值是−.
试卷讲评课件
z1
z1
(2)若 是纯虚数,求
z2
z2
+
z1 2
z2
+
z1 3

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

高中复数经典练习题及讲解

高中复数经典练习题及讲解

高中复数经典练习题及讲解1. 题目:判断下列各句中的名词是否为复数形式,并解释原因。

- 我有几个朋友。

- 她有两只猫。

- 他喜欢读小说。

- 我们有三本书。

答案:- 几个朋友:是复数形式,因为“几个”表示多于一个。

- 两只猫:是复数形式,因为“两只”明确表示两个。

- 他喜欢读小说:不是复数形式,因为“小说”是单数名词。

- 我们有三本书:是复数形式,因为“三本”表示三个。

2. 题目:将下列句子中的名词变为复数形式。

- 我有一个苹果。

- 她有一只狗。

- 他有一本书。

- 我们有一张桌子。

答案:- 我有两个苹果。

- 她有两只狗。

- 他有几本书。

- 我们有几张桌子。

3. 题目:根据上下文,将下列句子中的名词变为复数形式。

- 每个学生(student)都有自己的学习计划。

- 我昨天买了一些(some)橘子。

- 他们(they)正在讨论几个(a few)问题。

- 我们(we)通常在晚上看电视。

答案:- 每个学生都有自己的学习计划。

- 我昨天买了一些橘子。

- 他们正在讨论几个问题。

- 我们通常在晚上看电视。

4. 题目:判断下列句子中的名词是否正确使用了复数形式,并给出正确形式。

- 我昨天买了一个橘子。

- 她有很多钱。

- 他们正在讨论一个问题。

- 我们有两张桌子。

答案:- 我昨天买了一些橘子。

- 她有很多钱。

- 他们正在讨论一些问题。

- 我们有两张桌子。

5. 题目:将下列句子中的名词变为复数形式,并解释变化的原因。

- 我有一个梦想。

- 她有一只猫。

- 他有一本书。

- 我们有一张纸。

答案:- 我有多个梦想。

- 她有几只猫。

- 他有几本书。

- 我们有几张纸。

原因解释:- “梦想”通常用来表示多个愿望或目标。

- “猫”在这种情况下可能表示不只一只。

- “书”在讨论时通常不只一本。

- “纸”在这种情况下可能表示多张纸。

高中复数练习题及讲解及答案

高中复数练习题及讲解及答案

高中复数练习题及讲解及答案### 高中复数练习题及讲解及答案#### 练习题1. 复数的加减法- 计算以下复数的和:\(3 + 4i\) 和 \(1 - 2i\)。

2. 复数的乘法- 求 \((2 + 3i)(1 - i)\) 的乘积。

3. 复数的除法- 计算 \(\frac{2 + i}{1 + i}\)。

4. 复数的共轭- 找出 \(3 - 4i\) 的共轭复数。

5. 复数的模- 求 \(5 + 12i\) 的模。

6. 复数的幂运算- 计算 \((2 + i)^2\)。

7. 复数的指数形式- 将 \(8\) 表示为 \(2\) 的幂次形式。

8. 复数的极坐标形式- 将 \(-3 - 4i\) 转换为极坐标形式。

9. 复数的三角函数- 求 \(\sin(3 + 4i)\)。

10. 复数的对数- 计算 \(\log(-8 + 0i)\)。

#### 讲解复数是实数和虚数的组合,形如 \(a + bi\),其中 \(a\) 和 \(b\)是实数,\(i\) 是虚数单位,满足 \(i^2 = -1\)。

1. 加减法:直接对实部和虚部分别进行加减。

2. 乘法:使用分配律,然后合并同类项。

3. 除法:将分母的实部和虚部合并,然后乘以共轭复数,简化表达式。

4. 共轭复数:改变虚部的符号。

5. 模:计算 \(\sqrt{a^2 + b^2}\)。

6. 幂运算:使用二项式定理或幂的性质。

7. 指数形式:使用欧拉公式 \(e^{ix} = \cos(x) + i\sin(x)\)。

8. 极坐标形式:表示为 \(r(\cos(\theta) + i\sin(\theta))\),其中 \(r\) 是模,\(\theta\) 是辐角。

9. 三角函数:使用复数的指数形式和欧拉公式。

10. 对数:首先将复数转换为极坐标形式,然后应用对数的性质。

#### 答案1. \(4 + 2i\)2. \(2 + 5i\)3. \(3 - i\)4. \(3 + 4i\)5. \(13\)6. \(3 + 4i\)7. \(2^3\)8. \(5(\cos(-\pi/4) + i\sin(-\pi/4))\)9. 无实数解,因为 \(\sin\) 函数在复数域内没有定义。

2023年人教版高中数学第七章复数经典大题例题

2023年人教版高中数学第七章复数经典大题例题

(名师选题)2023年人教版高中数学第七章复数经典大题例题单选题1、已知复数z 满足z −z =2i ,则z 的虚部是( )A .−1B .1C .−iD .i答案:A分析:设z =a +bi (a,b ∈R ),根据z −z =2i ,求得b =−1,即可求得复数z 的虚部,得到答案. 设z =a +bi (a,b ∈R ),因为z −z =2i ,可得z −z =a −bi −(a +bi )=−2bi =2i ,则−2b =2,可得b =−1,所以复数z 的虚部是−1.故选:A小提示:关键点点睛:本题主要考查了复数的运算,共轭复数的概念,以及复数相等的应用,其中解答中熟记复数相等的条件是解答的关键,属于基础题.2、复数z =|√3+i |的虚部是( ) A .−12B .12C .−12i D .12i 答案:A分析:先根据模的定义计算,并化简得到z =12−12i ,再根据虚部的定义作出判定.∵z =|√3+i |=√(√3)+12=1−i 2=12−12i , ∴z 的虚部为−12,故选:A.3、已知复数z =2−3i ,若z̅⋅(a +i )是纯虚数,则实数a =( )A .−23B .23C .−32D .32 答案:D分析:根据共轭复数的定义及复数的乘法运算结合纯虚数的定义即可得出答案.解:z̅⋅(a +i )=(2+3i )(a +i )=2a −3+(3a +2)i 是纯虚数,则{2a −3=03a +2≠0,解得a =32. 故选:D.4、2−i1+2i =( )A .1B .−1C .iD .−i答案:D分析:根据复数除法法则进行计算.2−i 1+2i =(2−i)(1−2i)(1+2i)(1−2i)=−5i 5=−i 故选:D小提示:本题考查复数除法,考查基本分析求解能力,属基础题.5、已知z(1−2i)=i ,则下列说法正确的是( )A .复数z 的虚部为i 5B .复数z 对应的点在复平面的第二象限C .复数z 的共轭复数z =25−i 5D .|z |=15 答案:B分析:由复数除法求出复数z ,然后可判断各选项.由已知得z =i 1−2i =1(1+21)(1−2i)(1+2i)=−25+i 5,所以复数z 的虚部为15,而不是i 5,A 错误;在复平面内,复数z 对应的点为(−25,15),在第二象限,B 正确.z =−25−i 5,C 错误; |z|=√(−25)2+(15)2=√55,D 错误;故选:B . 小提示:本题考查复数的除法,考查复数的几何意义,共轭复数的概念及模的定义,属于基础题.6、下列命题正确的是( )A .复数1+i 是关于x 的方程x 2−mx +2=0的一个根,则实数m =1B .设复数z 1,z 2在复平面内对应的点分别为Z 1,Z 2,若|z 1|=|z 2|,则OZ 1⃑⃑⃑⃑⃑⃑⃑ 与OZ 2⃑⃑⃑⃑⃑⃑⃑ 重合C .若|z −1|=|z +1|,则复数z 对应的点Z 在复平面的虚轴上(包括原点)D .已知复数−1+2i ,1−i ,3−2i 在复平面内对应的点分别为A ,B ,C ,若OC⃑⃑⃑⃑⃑ =xOA ⃑⃑⃑⃑⃑ +yOB ⃑⃑⃑⃑⃑ (i 是虚数单位,O 为复平面坐标原点,x ,y ∈R ),则x +y =1答案:C分析:结合一元二次方程的复数根、复数模、复数对应点、向量运算等知识对选项逐一分析,由此确定正确选项.对于A :复数1+i 是关于x 的方程x 2−mx +2=0的一个根,所以:(1+i )2−m (1+i )+2=0,2i −m −m i +2=2−m +(2−m )i =0,2−m =0,m =2,故A 错误;对于B :设复数z 1,z 2在复平面内对应的点分别为Z 1,Z 2,若|z 1|=|z 2|,即这两个向量的模长相等,但是OZ 1⃑⃑⃑⃑⃑⃑⃑ 与OZ 2⃑⃑⃑⃑⃑⃑⃑ 不一定重合,故B 错误;对于C :若|z −1|=|z +1|,设z =x +y i (x,y ∈R ),故:√(x −1)2+y 2=√(x +1)2+y 2,整理得:x =0,故z =y i ,故C 正确;对于D :已知复数−1+2i ,1−i ,3−2i 在复平面内对应的点分别为A ,B ,C ,若OC⃑⃑⃑⃑⃑ =xOA ⃑⃑⃑⃑⃑ +yOB ⃑⃑⃑⃑⃑ ,所以(3,−2)=x (−1,2)+y (1,−1), (3,−2)=(−x,2x )+(y,−y )=(y −x,2x −y ),{y −x =32x −y =−2, 解得:x =1,y =4,故x +y =5,故D 错误.故选:C .7、已知复数z =(a −2i )(1+3i )(a ∈R)的实部与虚部的和为12,则|z −5|=( )A .3B .4C .5D .6答案:C分析:先把已知z =(a −2i )(1+3i )(a ∈R)化简,整理出复数z 的实部与虚部,接下来去求|z −5|即可解决. z =(a −2i )(1+3i )=(a +6)+(3a −2)i ,则有,a +6+3a −2=12,解得a =2,则z =8+4i ,z −5=3+4i ,故|z −5|=√32+42=5.故选:C8、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃑⃑⃑⃑⃑ |=x ,x ∈[0,4] 因为AP⃑⃑⃑⃑⃑ =BP ⃑⃑⃑⃑⃑ −BA ⃑⃑⃑⃑⃑ , 所以AP⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =BP ⃑⃑⃑⃑⃑ 2−BA ⃑⃑⃑⃑⃑ ⋅BP ⃑⃑⃑⃑⃑ =|BP ⃑⃑⃑⃑⃑ |2−2|BP ⃑⃑⃑⃑⃑ |=x 2−2x =(x −1)2−1≥−1. 故选:D9、复数z=1a−1+(a2−1)i是实数,则实数a的值为()A.1或-1B.1C.-1D.0或-1答案:C分析:利用复数是实数的充要条件,列式计算作答.因复数z=1a−1+(a2−1)i是实数,则{a−1≠0a2−1=0,解得a=−1,所以实数a的值为-1.故选:C10、如果复数z满足|z+1−i|=2,那么|z−2+i|的最大值是()A.√13+2B.2+√3C.√13+√2D.√13+4答案:A分析:复数z满足|z+1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z−2+i|表示圆上的点与点M(2,−1)的距离,求出|CM|即可得出.复数z满足|z+1−i|=2,表示以C(−1,1)为圆心,2为半径的圆.|z−2+i|表示圆上的点与点M(2,−1)的距离.∵|CM|=√32+22=√13.∴|z−2+i|的最大值是√13+2.故选:A.小提示:本题考查复数的几何意义、圆的方程,求解时注意方程|z+1−i|=2表示的圆的半径为2,而不是√2.11、设m∈R,则“m=2”是“复数z=(m+2i)(1+i)为纯虚数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:C分析:求出z=(m+2i)(1+i)为纯虚数时m的值,与m=2比较,判断出结果z=(m+2i)(1+i)=m−2+(m+2)i,复数z=(m+2i)(1+i)为纯虚数,则m−2=0,解得:m=2,所以则“m=2”是“复数z=(m+2i)(1+i)为纯虚数”的充要条件故选:C12、已知i为虚数单位,则i+i2+i3+⋅⋅⋅+i2021=()A.i B.−i C.1D.-1答案:A分析:根据虚数的运算性质,得到i4n+i4n+1+i4n+2+i4n+3=0,得到i+i2+i3+⋅⋅⋅+i2021=i2021,即可求解. 根据虚数的性质知i4n+i4n+1+i4n+2+i4n+3=1+i−1−i=0,所以i+i2+i3+⋅⋅⋅+i2021=505×0+i2021=i.故选:A.双空题13、已知a,b∈R,i是虚数单位.若z=(a−2i)(1+bi)为实数,则ab=___________,|z|的最小值为___________.答案: 2 4分析:由题设条件计算出复数z,再由复数是实数的条件即可得ab值;计算出|z|,配方即可得解.a,b∈R,则z=(a+2b)+(ab−2)i,而z∈R,所以ab−2=0,即ab=2;z=a+2b,|z|=|a+2b|=√(a+2b)2=√(a−2b)2+8ab=√(a−2b)2+16≥4,当且仅当a=2b,即a=2,b=1时取“=”,所以|z|的最小值为4.所以答案是:2;414、已知x,y∈R,i是虚数单位,x−i+y+x i=3+y i,则x=_______;y=______.答案: 2 1 .分析:利用复数相等的知识列方程组,解方程组求得x,y 的值.依题意x +y +(x −1)i =3+y i ,所以{x +y =3x −1=y⇒{x =2y =1 . 所以答案是:2;115、复数z =2+i (i 为虚数单位),则复数z̅对应的点在第_______象限,|z|=_______.答案: 四 √5分析:由复数模的概念可求|z|,再由共轭复数的概念及复数的坐标表示可得复数z̅对应的点所在的象限. 因为z =2+i ,所以|z|=√22+1=√5,所以z̅=2−i ,在复平面内对应的点的坐标为(2,−1),在第四象限.所以答案是:四;√5.16、已知复数z =lg (m 2−2m )+(m 2+2m −3)i 若复数z 是实数,则实数m =________;若复数z 对应的点位于复平面的第二象限,则实数的取值范围为________.答案: −3 2<m <1+√2解析:根据复数的定义和复数的几何意义解答.z 为实数,则m 2+2m −3=0,解得m =1或−3,又m 2−2m >0,所以m =−3.z 对应点在第二象限,则{lg(m 2−2m)<0m 2+2m −3>0,解得2<m <1+√2. 所以答案是:−3;2<m <1+√2.小提示:易错点睛:本题在利用复数的定义求出m 的值时:m 2+2m −3=0,必须注意实部的表示法,它是由对数给出的,因此求出的结论必须使对数式有意义,即通常所说的定义域.否则易出错.17、瑞士数学家欧拉于1777年在《微分公式》一书中,第一次用i 来表示-1的平方根,首创了用符号i 作为虚数的单位.若复数z =5−i 1+i (i 为虚数单位),则复数z 的虚部为________;|z |=_____.答案: −3 √13分析:利用复数的除法可计算z ,从而可求其虚部和模.z =5−i 1+i =(5−i )(1−i )(1+i )(1−i )=4−6i 2=2−3i ,故z 的虚部为−3,模为√4+9=13,故分别填−3,√13.小提示:本题考查复数的概念、复数的除法,属于基础题.解答题18、计算:(1)(1−√3i )6−(1−√3i )152i (1−i )12(12+12i )2;(2)i 2002+(√2+√2i )8−(√21−i )50+√3+1+2√3i (1−√3i)8. 答案:(1)513;(2)247+8√3i . 分析:(1)借助(12−√32i )3=−1,(1−i )2=−2i 以及复数的四则运算,即得解;(2)借助(1+i )2=2i ,(1−i )2=−2i ,i 4=1,(12−√32i )3=−1以及复数的四则运算,即得解. (1)由于(12−√32i )3=(12−√32i )2×(12−√32i )=(−12−√32i )×(12−√32i )=−1(1−i )2=−2i故(1−√3i )6−(1−√3i )152i (1−i )12(12+12i )2=26×(−1)2−215×(−1)52i ×(−2i )6×12i =26+21526=1+29=513(2)由于(1+i )2=2i ,(1−i )2=−2i ,i 4=1,(12−√32i )3=−1 故i 2002+(√2+√2i )8−(√21−i )50+√3+1+2√3i +(1−√3i )8 =i 500×4+2+24(1+i )8−225(1−i )50+(−2√3+i )(1−2√3i )(1+2√3i )(1−2√3i )28(1+i )828(12−√32i )8 =−1+24(2i )4−225(−2i )25+i 28(2i )428×(−1)2×(12−√32i )2=−1+24×2−4i +i +24(−12+√32i )=247+8√3i 19、计算:(1)(13+12i)+(2−i)−(43−32i);(2)已知z1=2+3i,z2=−1+2i,求z1+z2,z1−z2.答案:(1)1+i(2)1+5i,3+i分析:(1)根据复数的加减法法则,实部与实部对应加减,虚部与虚部对应加减,即可运算得到结果;(2)根据复数的加法、减法法则运算即可.(1)(13+12i)+(2−i)−(43−32i)=(13+2−43)+(12−1+32)i=1+i;(2)∵z1=2+3i,z2=−1+2i,∴z1+z2=2+3i+(−1+2i)=1+5i,z1−z2=2+3i−(−1+2i)=3+i 20、化简:(1)16(cosπ4+i sinπ4)⋅2(cosπ12+i sinπ12);(2)8(cos240°+i sin240°)÷2(cos210°−i sin210°).答案:(1)8+8√3i;(2)4i.分析:(1)利用复数三角形式的乘法法则直接进行计算作答.(2)利用复数三角形式的除法法则直接进行计算作答.(1)8(cosπ4+i sinπ4)⋅2(cosπ12+i sinπ12)=16(cosπ3+i sinπ3)=16(12+√32i)=8+8√3i.(2)8(cos240°+i sin240°)÷2(cos150°−i sin150°)=4(cos240°+i sin240°) cos(−210°)+i sin(−210°)=4(cos450°+i sin450°)=4(cos90°+i sin90°)=4i.。

高考复数函数压轴题型归类总结

高考复数函数压轴题型归类总结

高考复数函数压轴题型归类总结引言复数函数是高考数学中的重要内容之一,常出现在选择题和解析几何题型中。

本文将对高考复数函数的压轴题型进行归类总结,以帮助考生更好地掌握和应对这一题型。

类型一:复数的运算这类题目主要考察考生对复数的基本运算规则的掌握。

常见的题型包括:- 复数的加减法、乘法、除法;- 复数的整式、视作整数的合并化简。

类型二:复数的性质这类题目主要考察考生对复数的性质和特点的理解。

常见的题型包括:- 复数的模、辐角、共轭;- 复数的大小比较;- 复数的幂运算;- 复数方程的解。

类型三:复数与方程这类题目主要考察考生对复数与方程的应用能力。

常见的题型包括:- 根据复数方程的解形式进行方程的求解;- 根据复数方程求解几何问题。

类型四:复数与几何这类题目主要考察考生对复数与几何的联系和应用。

常见的题型包括:- 复数平面上点的位置关系;- 复数表示平面上的变换(平移、旋转、缩放);- 复数表示几何问题(如求面积、角度)。

类型五:综合应用这类题目将复数与其他数学内容结合起来,考察考生的综合应用能力。

常见的题型包括:- 复数与函数的综合应用;- 复数与三角函数的综合应用。

结论对于高考复数函数的压轴题型,考生应通过深入理解复数的基础知识,并结合几何概念和其他数学内容进行综合应用。

在备考过程中,多进行真题练习和模拟考试,总结题型的解题技巧,增强解题能力。

同时,注意对每种题型的巩固和复习,加强对一些常考题型的熟悉程度。

通过系统的复习和多样的练习,考生可以更好地应对高考中的复数函数压轴题型。

高一复数题目解析精选

高一复数题目解析精选

高一复数题目解析精选在高一数学的学习中,复数是一个重要且富有挑战性的部分。

今天,我们就来精选几道典型的高一复数题目,并进行详细的解析,帮助大家更好地理解和掌握这一知识点。

首先来看这道题:已知复数\(z = 2 + 3i\),求\(z\)的共轭复数\(\overline{z}\)。

对于复数\(z = a + bi\),其共轭复数\(\overline{z} = a bi\)。

在本题中,\(a = 2\),\(b = 3\),所以\(\overline{z} = 23i\)。

接下来看这道:若复数\(z =(1 +i)(2 i)\),求\(|z|\)。

我们先将\(z\)展开:\(z =(1 + i)(2 i) = 2 i + 2i i^2 = 2 + i + 1 = 3 + i\)复数的模\(|z|\)等于实部与虚部的平方和的正的平方根。

对于\(z = 3 + i\),\(|z| =\sqrt{3^2 + 1^2} =\sqrt{10}\)再看这道有点难度的题目:已知复数\(z\)满足\(|z 1 + i| =1\),求\(|z|\)的最大值。

我们可以将\(|z 1 + i| = 1\)理解为复数\(z\)到点\((1, -1)\)的距离为\(1\),所以\(z\)的轨迹是以\((1, -1)\)为圆心,\(1\)为半径的圆。

\(|z|\)表示复数\(z\)到原点的距离。

圆心\((1, -1)\)到原点的距离为\(\sqrt{2}\),所以\(|z|\)的最大值为\(\sqrt{2} + 1\)下面这道题:若复数\(z\)满足\(z^2 + 4z + 5 = 0\),求\(z\)。

我们可以使用求根公式来解决。

首先,将方程化为标准形式:\(z^2 + 4z + 4 + 1 = 0\),即\((z + 2)^2 =-1\),\(z + 2 =\pm i\),所以\(z =-2 \pm i\)再看这一题:已知复数\(z_1 = 1 + 2i\),\(z_2 = 3 4i\),求\(\frac{z_1}{z_2}\)。

新人教版高中数学必修第二册第二单元《复数》测试卷(答案解析)(1)

新人教版高中数学必修第二册第二单元《复数》测试卷(答案解析)(1)

一、选择题1.设a R ∈,则复数22121a aiz a-+=+所对应点组成的图形为( ) A .单位圆B .单位圆除去点()1,0±C .单位圆除去点()1,0D .单位圆除去点()1,0-2.复数()211i z i+=-,则z 的共轭复数在复平面内对应的点在 A .第一象限 B .第二象限C .第三象限D .第四象限3.已知复数2a ii+-是纯虚数(i 是虚数单位),则实数a 等于 A .-2B .2C .12D .-14.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .iB .i -C .2iD .2i -5.已知复数1z ﹑2z 满足()120z z r r -=>,复数,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,且i j r ωω-≥对任意1i j n ≤<≤成立,则正整数n 的最大值为( ) A .6B .8C .10D .126.设复数()()2cos sin z a a i θθ=+++(i 为虚数单位).若对任意实数θ,2z ≤,则实数a 的取值范围为( )A .10,5⎡⎤⎢⎥⎣⎦B .[]1,1-C .55⎡-⎢⎣⎦D .11,55⎡⎤-⎢⎥⎣⎦7.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -8.若实系数一元二次方程20z z m ++=有两虚数根αβ、,且3αβ=-,那么实数m 的值是( ) A .52B .1C .1-D .52-9.设3iz i+=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-310.已知复数1z i =+,z 为z 的共轭复数,则1zz+=( )A .32i+ B .132i+ C .332i+ D .12i+ 11.已知复数21aiz i+=-是纯虚数,则实数a 等于( )A B .2C D12.若(),a bia b i+∈R 与()21i +互为共轭复数,则+a b 的值为( ) A .2B .2-C .3-D .3二、填空题13.i 是虚数单位,若84i z z +=+,则z =___________.14.计算:8811i i -⎛⎫-= ⎪+⎝⎭______________. 15.已知11z i --=,则z i +的取值范围是_____________; 16.若复数z 满足0z z z z ⋅++=,则复数12z i --的最大值为______.17.若1i -是关于x 的方程20x px q ++=的一个根(其中i 为虚数单位,,p q R ∈),则p q +=__________.18.已知复数032z i =+,其中i 是虚数单位,复数z 满足003z z z z ⋅=+,则复数z 的模等于__________. 19.已知复数z 满足43(zi i i+=为虚数单位),则z 的共轭复数z =____. 20.若复数214tz t i+=-+在复平面内对应的点位于第四象限,则实数t 的取值范围是____. 三、解答题21.已知复数()212(24)z a a i =--+,()221z a a i =-+,12z z z =-(i 为虚数单位,a R ∈).(1)若复数12z z z =-为纯虚数,求12z z ⋅的值; (2)若1z z i +=-,求z i +的值.22.在复平面内复数1z 、2z 所对应的点为1Z 、2Z ,O 为坐标原点,i 是虚数单位. (1)112z i =+,234z i =-,计算12z z ⋅与12OZ OZ ⋅;(2)设1z a bi =+,2z c di =+(,,,a b c d ∈R ),求证:1212OZ OZ z z ⋅≤⋅,并指出向量1OZ 、2OZ 满足什么条件时该不等式取等号.23.已知i 为虚数单位,当实数m 取何值时,复平面内,复数22(4)(6)i z m m m m =-+--的对应点满足下列条件?(1)在第三象限;(2)在虚轴上;(3)在直线30x y -+=上.24.已知O 为坐标原点,向量1OZ 、2OZ 分别对应复数1z 、2z ,且()213105z a i a =+-+,()()22251z a i a R a =+-∈-.若12z z +是实数. (1)求实数a 的值; (2)求以1OZ 、2OZ 为邻边的平行四边形的面积. 25.已知(2x -y +1)+(y -2)i =0,求实数x ,y 的值.26.已知复数z 满足|z|2z 的虚部为2,z 所对应的点在第一象限, (1)求z ;(2)若z ,z 2,z-z 2在复平面上对应的点分别为A ,B ,C ,求cos ∠ABC .【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据复数222221212111a ai a az i a a a-+-==++++,得到复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭,然后由22212,11a ax y a a -==++,利用复数的模求解. 【详解】因为复数222221212111a ai a a z i a a a-+-==++++, 所以复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭, 即22212,11a a x y a a-==++, 所以222222212111a a x y a a ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭, 因为22212111a x a a -==-+++, 又因为a R ∈,所以211a +≥, 所以22021a <≤+, 所以221111a-<-+≤+, 即11x -<≤,所以复数z 对应点组成的图形为单位圆除去点()1,0-. 故选:D 【点睛】本题主要考查复数的几何意义以及复数模的轨迹问题,还考查了运算求解的能力,属于中档题.2.C解析:C 【解析】 【分析】利用复数代数形式的乘除运算化简复数z ,求出z 在复平面内对应的点的坐标得答案. 【详解】()()()()212121,1,1111i i i iz i z i ii i i +⋅+====-+∴=-----⋅+ 即z 的共轭复数在复平面内对应的点在第三象限 .故选C. 【点睛】本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.C解析:C 【解析】2a i i +-21255a a i -+=+是纯虚数,所以21210,0552a a a -+=≠∴=,选C. 4.A解析:A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 5.C解析:C 【分析】用向量,OA OB 表示12,z z ,根据题意,可得OA OB BA r -==,因为1i z r ω-=或者2i z r ω-=,根据其几何意义可得i ω的终点的轨迹,且满足条件的终点个数即为n ,数形结合,即可得答案. 【详解】用向量,OA OB 表示12,z z ,因为()120z z r r -=>,所以OA OB BA r -==, 又,*(1)i i n n N ω≤≤∈满足1i z r ω-=或者2i z r ω-=,则i ω可表示以O 为起点,终点在以A 为圆心,半径为r 的圆上的向量,或终点在以B 为圆心,半径为r 的圆上的向量,则终点可能的个数即为n ,因为i j r ωω-≥,所以在同一个圆上的两个点,形成的最小圆心角为60︒,如图所示,则最多有10个可能的终点,即n =10. 故选:C 【点睛】解题的关键是根据所给条件的几何意义,得到i ω的终点轨迹,根据条件,数形结合,即可得答案,考查分析理解,数形结合的能力,属中档题.6.C解析:C 【分析】由1212z z z z +≤+可知()()cos sin 2cos sin 2i a ai i a ai θθθθ+++≤+++,令max2z≤,即可求出a 的范围.【详解】因为对任意θ,2z ≤,则max2z≤,()()cos sin 2cos sin 21z i a ai i a ai θθθθ=+++≤+++=,12∴≤,解得a ≤≤故选:C. 【点睛】本题考查向量模的大小关系,以及不等式的恒成立问题,属于中档题.7.B解析:B 【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案. 【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i iii i i--=+++++⋅⋅⋅+-+-=-,可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-,可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B. 【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.8.A解析:A 【分析】根据实系数方程有两虚数根,利用求根公式解得:12z -±=,由此可得αβ-的m 表示形式,根据3αβ-=即可求得m 的值. 【详解】因为20z z m ++=,所以12z -±=,又因为3αβ-=,所以3=,所以419m -=,解得:52m =. 故选A. 【点睛】实系数一元二次方程()200++=≠ax bx c a ,有两虚根为,αβ,注意此时的240b ac ∆=-<,因此在写方程根时应写成:x =2b x -±=.9.D解析:D 【解析】 因为z=3ii+13i =-∴z 的虚部为-3,选D. 10.B解析:B 【分析】由复数1z i =+,得到1z i =-,进而得到121z iz i++=-,根据复数的除法运算法则,即可求解. 【详解】由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.11.B解析:B 【分析】 化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a+≠,即可求解. 【详解】由题意,复数()()()()2122211122ai i ai a az i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a+≠,解得2a =, 所以实数a 等于2. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力.12.A解析:A 【分析】把两个复数都化为(,)a bi a b R +∈形式,然后由共轭复数定义求得,a b ,从而得结论. 【详解】 因为()2i a bi a bi b ai i i++==-,()212i i +=,又1a bi +与()21i -互为共轭复数,所以0b =,2a =.则2a b +=.故选:A . 二、填空题13.【分析】先设复数再求得最后利用复数相等即可求得【详解】解:设复数则所以所以根据复数相等得:解得所以故答案为:【点睛】本题考查复数的相等概念共轭复数复数的模等是基础题 解析:34i +【分析】先设复数(),,z a bi a b R =+∈,再求得z =.【详解】解:设复数(),,z a bi a b R =+∈,则z a bi =-=所以84z a bi i z =+=++,所以根据复数相等得:84a b ⎧⎪+=⎨=⎪⎩,解得34a b =⎧⎨=⎩,所以34z i =+, 故答案为:34i + 【点睛】本题考查复数的相等概念,共轭复数,复数的模等,是基础题.14.【分析】先利用复数的运算法则将和化简然后计算出及的值然后得出的值【详解】故答案为: 解析:0【分析】先利用复数的运算法则将11i i -+和2化简,然后计算出811i i -⎛⎫ ⎪+⎝⎭及8的值,然后得出8811i i -⎛⎫- ⎪+⎝⎭的值. 【详解】()()()()8422848811111011i i i i i i i ⎡⎤⎡⎤-=-=--=-=⎢⎥⎢⎥+-⎢-⎛⎫- ⎪+⎝⎭⎥⎥⎢⎣⎦⎣⎦. 故答案为:0.15.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围. 【详解】因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i +表示复平面内的点到点(0,1)-11=,11=,所以z i +的取值范围是1].故答案为:1]-. 【点睛】结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi =+,则z a bi --表示复平面内点(,)x y 与点(,)a b 之间的距离,z a bi r --=表示以(,)a b 为圆心,以r 为半径的圆上的点.16.【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】解:设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆如图:表示复数在复平面内对应点到点的距离所以最大值为故解析:1【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由12z i --的几何意义求解即可. 【详解】解:设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,如图:2212(1)(2)z i a b --=-+-z 在复平面内对应点到点(1,2)P 的距离所以12z i --最大值为22||1(11)(02)1212PA +=--+-=. 故答案为:221. 【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题.17.0【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数关系求解【详解】是关于的实系数方程的一个根是关于的实系数方程的另一个根则即故答案为:0【点睛】本题考查了一元二次方程的虚根特征和虚数的运算解析:0 【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数关系求解. 【详解】1i -是关于x 的实系数方程20x px q ++=的一个根, 1i ∴+是关于x 的实系数方程20x px q ++=的另一个根,则(1)(1)2p i i -=-++=,即2p =-,2(1)(1)12q i i i =-+=-=,0p q ∴+=.故答案为:0 【点睛】本题考查了一元二次方程的虚根特征和虚数的运算,考查了计算能力,属于中档题.18.【分析】可设出复数z 通过复数相等建立方程组从而求得复数的模【详解】由题意可设由于所以因此解得因此复数的模为:【点睛】本题主要考查复数的四则运算相等的条件比较基础 13 【分析】可设出复数z ,通过复数相等建立方程组,从而求得复数的模.【详解】由题意可设z a bi =+,由于003z z z z ⋅=+,所以(32)(23)(33)(23)a b a b i a b i -++=+++,因此32332323a b a a b b -=+⎧⎨+=+⎩,解得132a b =⎧⎪⎨=-⎪⎩,因此复数z=【点睛】本题主要考查复数的四则运算,相等的条件,比较基础. 19.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果.【详解】 由43z i i +=可得34z i i=-,即23434z i i i =-=--, 所以34z i =-+,故答案是:34i -+.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.20.【分析】直接由复数代数形式的乘除运算化简复数再由复数在复平面内对应的点位于第四象限列出不等式组求解即可得结论【详解】在复平面内对应的点位于第四象限解得实数的取值范围是故答案为【点睛】复数是高考中的必 解析:()1,2-【分析】直接由复数代数形式的乘除运算化简复数z ,再由复数214t z t i+=-+在复平面内对应的点位于第四象限列出不等式组,求解即可得结论.【详解】 ()()2222i 114441i i i t t z t t t t ⎡⎤-++=-+=-+=--+⎢⎥-⎣⎦, 在复平面内对应的点位于第四象限,24010t t ⎧->∴⎨--<⎩,解得12t -<<, ∴实数t 的取值范围是()1,2-,故答案为()1,2-.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.三、解答题21.(1)123626z z i ⋅=--;(2)1. 【分析】 (1)由复数12z z z =-为纯虚数,可得2220230a a a a ⎧--=⎨--≠⎩,从而可求出a 的值,进而可求出12z z ⋅的值;(2)由1z z i +=-,可得复数z 在直线y x =-上,所以22232a a a a --=-++,从而可求出a 的值,进而可得z i +的值【详解】解:(1)()()22122241()z z a a a a i a R -=--+--++∈为纯虚数, ∴2220230a a a a ⎧--=⎨--≠⎩,解得2a =, ∴128z i =-,225z i =-,∴12(28)(25)3626z z i i i ⋅=-⋅-=--.(2)()()2212223z z z a a a a i =-=--+--, ∵1z z i +=-,∴复数z 对应的点22(2,23)a a a a ----在直线y x =-上,即22232a a a a --=-++,解得1a =-或52a =. 当1a =-时,0z =,1z i +=;当52a =时,7744z i =-,7344z i i +=-=. 【点睛】此题考查复数的有关概念,考查复数的模,考查计算能力,属于中档题22.(1)12112z z i ⋅=+,125OZ OZ ⋅=-;(2)证明详见解析,当ab cd =时.【分析】(1)根据复数的乘法运算法则进行运算即可求出12z z ⋅,可知()11,2OZ =,()23,4OZ =-,然后进行数量积的坐标运算即可;(2)根据复数的乘法运算法则进行运算即可求出12z z ⋅,以及复数的几何意义表示出1OZ 、2OZ 计算其数量积,利用作差法比较221212,||z z OZ OZ ⋅⋅的大小,并得出何时取等号.【详解】解:(1)()()121234112z z i i i ⋅=+⋅-=+()11,2OZ =,()23,4OZ =-所以125OZ OZ ⋅=-证明(2)1z a bi =+,2z c di =+()()12ac bd ad z i z bc =-++∴⋅()()22212z z ac bd ad bc ∴⋅=-++ ()1,OZ a b =,()2,OZ c d =12OZ OZ ac bd ∴⋅=+,()2212OZ OZ ac bd ⋅=+()()()222221212||z z OZ OZ ac bd ad bc ac bd ∴-⋅-⋅=-+++ ()()2240ad bc ac bd ad cb =--=+⋅≥所以1212OZ OZ z z ⋅≤⋅,当且仅当ad cb =时取“=”,此时12OZ OZ . 【点睛】本题考查了复数的乘法运算法则,向量坐标的数量积运算,复数的模长的计算公式,考查了计算能力,属于基础题.23.(1)(0,3);(2)0m =或4;(3)3m =.【分析】(1)根据复数对应的点在第三象限,得到实部和虚部都小于0,得到不等式组解之得结果;(2)根据复数对应的点在虚轴上,得到实部等于0,解方程得结果;(3)根据复数对应的点在直线30x y -+=上,得到实部和虚部满足此方程,由此解得m 的值.【详解】复数22(4)(6)i z m m m m =-+--对应点的坐标为22(4,6)Z m m m m ---.(1)因为点Z 在第三象限,所以224060m m m m ⎧-<⎨--<⎩,解得0423m m <<⎧⎨-<<⎩, 所以03m <<,故实数m 的取值范围为(0,3).(2)因为点Z 在虚轴上,所以240m m -=,解得0m =或4m =.(3)因为点Z 在直线30x y -+=上,所以22(4)(6)30m m m m ----+=,即390m -+=,解得3m =.【点睛】该题考查的是有关复数在复平面内对应的点所处的位置的问题,要明确虚轴是y 轴,属于简单题目.24.(1)3a =;(2)118. 【分析】(1)求出1z 和2z ,由复数12z z +是实数,可求得实数a 的值;(2)求出1OZ 和2OZ ,利用平面向量的数量积求出12cos Z OZ ∠,进一步求出12sin Z OZ ∠,结合三角形的面积公式可求得所求四边形的面积.【详解】(1)由题意可得()213105z a i a =--+, ()22251z a i a =+--,则()2123221551z z a a i a a+=+++-+-, 由于复数12z z +是实数,则221505010a a a a ⎧+-=⎪+≠⎨⎪-≠⎩,解得3a =;(2)由(1)可得138z i =+,21z i =-+,则点13,18Z ⎛⎫ ⎪⎝⎭,()21,1Z -, 因此,以1OZ 、2OZ 为邻边的平行四边形的面积为121118S Z Z =⨯=. 【点睛】本题考查利用复数类型求参数,同时也考查了四边形面积的计算,涉及平面向量数量积的应用,考查计算能力,属于中等题. 25.1,22【解析】【分析】根据复数相等的概念得到实部虚部均为0,即21020x y y -+=⎧⎨-=⎩求得参数值. 【详解】∵(2x -y +1)+(y -2)i =0,∴21020x y y -+=⎧⎨-=⎩解得12x = ,y=2 所以实数x ,y 的值分别为12,2. 【点睛】这个题目考查了复数相等的概念,两个复数相等则需要实部等于实部,虚部等于虚部即可. 26.(1) z=1+i . (2)25. 【解析】 分析:(1)设z=x+yi(x,y ∈R),根据题意得到x,y 的方程组,即得z.(2)先求z ,z 2,z-z 2在复平面上对应的点,再利用向量的夹角公式求cos ∠ABC.详解:(1)设z=x+yi(x,y ∈R). ∵|z|2,=∴x 2+y 2=2. ①又z 2=(x+yi)2=x 2-y 2+2xyi,∴2xy=2,∴xy=1. ②由①②可1,-1,1-1.x x y y ==⎧⎧⎨⎨==⎩⎩解得或 ∴z=1+i 或z=-1-i.又x>0,y>0,∴z=1+i.(2)z 2=(1+i)2=2i,z-z 2=1+i-2i=1-i.如图所示,∴A(1,1),B(0,2),C(1,-1),()()BA 1,1,BC 1,3,∴=-=-∴cos ∠ABC BA?BC 25|BA||BC|21025====⨯点睛:(1)本题主要考查复数的求法和复数的几何意义,考查向量的夹角,意在考查学生对这些知识的掌握水平. (2) 设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则cos θ=.。

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)

高中数学《复数》基础知识及经典练习题(含答案解析)一、基础知识:复数题目通常在高考中有所涉及,题目不难,通常是复数的四则运算1、复数z 的代数形式为(),z a bi a b R =+∈,其中a 称为z 的实部,b 称为z 的虚部(而不是bi ),2、几类特殊的复数:(1)纯虚数:0,0a b =≠ 例如:5i ,i 等(2)实数: 0b =3、复数的运算:设()12,,,,z a bi z c di a b c d R =+=+∈(1)21i =−(2)()()12z z a c b d i ±=+++(3)()()()()212z z a bi c di ac adi bci bdi ac bd ad bc i ⋅=+⋅+=+++=−++ 注:乘法运算可以把i 理解为字母,进行分配率的运算。

只是结果一方面要化成标准形式,另一方面要计算21i =−(4)()()()()()()1222a bi c di ac bd bc ad i z a bi z c di c di c di c d +−++−+===++−+ 注:除法不要死记公式而要理解方法:由于复数的标准形式是(),z a bi a b R =+∈,所以不允许分母带有i ,那么利用平方差公式及21i =的特点分子分母同时乘以2z 的共轭复数即可。

4、共轭复数:z a bi =−, 对于z 而言,实部相同,虚部相反5、复数的模:z = 2z z z =⋅ (22z z ≠) 6、两个复数相等:实部虚部对应相等7、复平面:我们知道实数与数轴上的点一一对应,推广到复数,每一个复数(),a bi a b R +∈都与平面直角坐标系上的点(),a b 一一对应,将这个平面称为复平面。

横坐标代表复数的实部,横轴称为实轴,纵轴称为虚轴。

8、处理复数要注意的几点:(1)在处理复数问题时,一定要先把复数化简为标准形式,即(),z a bi a b R =+∈(2)在实数集的一些多项式公式及展开在复数中也同样适用。

完整版复数高考题型归类

完整版复数高考题型归类

复数高考题型归类剖析一、基本运算型四、复数的几何意义型二、基本看法型练习:1.若是复数z=1+ai 满足条件 |z| < 2,那么实数 a 的取值范围是[]A. 2 2,2 2B.( -2 ,2)C.( -1 ,1)D.3,32.在平行四边形OABC 中,极点 O,A,C 分别表示 0,3→+ 2i,- 2+ 4i.则对角线 CA所表示的复数的模为;三、复数相等型3.已知复数z1= i(1 - i)2, |z|= 1,则 |z- z1 |的取值范围是;五、技巧运算型六、知识交汇型七、轨迹方程型练习:1.已知复数 z 满足 |z|2- 2|z|-3= 0,则复数z 对应点的轨迹是 ()个圆 B.线段 C.2 个点 D.2 个圆2.若是复数z 满足 |z+2i|+ |z- 2i|= 4,那么 |z+i + 1|的最小值是()B. 2 D.53.若 |z- 2|= |z+ 2|,则 |z- 1|的最小值是.复数高考题型归类剖析一、基本运算型四、复数的几何意义型二、基本看法型三、复数相等型练习:1.若是复数z=1+ai 满足条件 |z| < 2,那么实数 a 的取值范围是 []A. 2 2,22B. ( -2 ,2)C.( -1 ,1)D.3,32.在平行四边形OABC 中,极点 O,A,C 分别表示 0,3+ 2i,- 2+ 4i.则对角线→;CA所表示的复数的模为3.已知复数12, |z|= 1,则 |z-z1z = i(1 -i)|的最大值 .五、技巧运算型六、知识交汇型小值是()B.2D.5答案A剖析设复数- 2i,2i ,- (1+ i) 在复平面内对应的点分别为 Z1,Z2,Z3,因为 |z+ 2i|+ |z- 2i|= 4,Z1Z2= 4,所以复数z 的几何意义为线段Z1 Z2,以下列图,问题转化为:动点Z 在线段 Z1Z2上搬动,求ZZ3的最小值 .因此作 Z3 Z0⊥Z1Z2于 Z0,则 Z3与 Z0的距离即为所求的七、轨迹方程型最小值, Z0Z3= 1.应选 A.8.若 |z- 2|= |z+ 2|,则 |z- 1|的最小值是.答案1剖析由|z- 2|= |z+ 2|,知 z 对应点的轨迹是到(2,0)与到 (- 2,0)距离相等的点,即虚轴 .|z- 1|表示 z 对应的点与 (1,0)的距离 .∴ |z- 1| = 1.min已知复数 z 满足 |z|2- 2|z|- 3= 0,则复数 z 对应点的轨12.会集 M = { z||z- 1|≤ 1, z∈ C} , N= { z||z- 1- i|= |z 迹是 ()- 2|, z∈ C} ,会集 P= M∩ N.A.1 个圆B.线段(1)指出会集 P 在复平面上所表示的图形;C.2 个点D.2 个圆(2)求会集 P 中复数模的最大值和最小值 .答案A解 (1) 由 |z- 1|≤ 1 可知,会集 M 在复平面内所对应的剖析由题意可知 (|z|- 3)(|z|+ 1)= 0,点集是以点 E(1,0)为圆心,以 1 为半径的圆的内部及边即 |z|= 3或 |z|=- 1.界;由 |z- 1- i|= |z-2|可知,会集 N 在复平面内所对∵ |z|≥ 0,∴|z|= 3.应点集是以点 (1,1) 和 (2,0) 为端点的线段的垂直均分线∴复数 z 对应的轨迹是 1 个圆.l,因此会集 P 是圆面截直线 l 所得的一条线段 AB,如图所示 .(2)圆的方程为x2+ y2- 2x= 0,直线 l 的方程为y= x-1.x2+ y2- 2x= 0,解得y= x-12+ 222- 22A(2,2 ),B(2,-2 ).∴ |OA|=2+2, |OB|=2- 2.∵点 O 到直线 l 的距离为22,且过 O 向 l 作垂线,垂BE上,∴2足在线段 2 <2- 2.∴会集 P 中复数模的最大值为2+2,最小值为2 2 .。

高中数学复数运算题解析

高中数学复数运算题解析

高中数学复数运算题解析一、引言复数运算是高中数学中的重要内容,掌握复数的运算规则和技巧对于解决各类数学问题至关重要。

本文将通过具体的例题,对高中数学中常见的复数运算题进行解析和说明,帮助读者掌握复数运算的方法和技巧。

二、复数的定义和基本运算规则复数是由实数和虚数构成的数,形如a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。

复数的加减乘除运算与实数的运算类似,具体规则如下:1. 复数的加法和减法:(a+bi) + (c+di) = (a+c) + (b+d)i(a+bi) - (c+di) = (a-c) + (b-d)i2. 复数的乘法:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i3. 复数的除法:(a+bi) ÷ (c+di) = [(ac+bd)/(c²+d²)] + [(bc-ad)/(c²+d²)]i三、复数运算题解析下面通过具体的例题,对不同类型的复数运算题进行解析和说明。

例题1:计算复数的乘法已知复数z₁=3+2i,z₂=1-4i,求z₁×z₂。

解析:根据复数乘法的运算规则,我们可以将z₁×z₂展开计算:z₁×z₂ = (3+2i) × (1-4i)= 3×1 - 3×4i + 2i×1 - 2i×4i= 3 - 12i + 2i - 8i²= 3 - 12i + 2i + 8= 11 - 10i所以,z₁×z₂ = 11 - 10i。

考点:复数的乘法运算规则。

例题2:计算复数的除法已知复数z₁=5+3i,z₂=2-6i,求z₁÷z₂。

解析:根据复数除法的运算规则,我们可以将z₁÷z₂展开计算:z₁÷z₂ = (5+3i) ÷ (2-6i)= [(5×2)+(3×6)i] ÷ [(2×2)+(-6×(-6))]= (10+18i) ÷ (4+36)= (10+18i) ÷ 40= (10/40) + (18/40)i= 1/4 + 9/20i所以,z₁÷z₂ = 1/4 + 9/20i。

高考数学压轴专题最新备战高考《复数》分类汇编及答案解析

高考数学压轴专题最新备战高考《复数》分类汇编及答案解析

【高中数学】《复数》知识点一、选择题1.设i 是虚数单位,若复数()103a a R i -∈-是纯虚数,则a 的值为( ) A .-3B .-1C .1D .3【答案】D【解析】【分析】【详解】因, 故由题设, 故,故选D . 考点:复数的概念与运算.2.复数z 满足(2)1i z i -=+,那么||z =( )A .25B .15C .25D .105【答案】D【解析】【分析】化简得到1355z i =+,再计算复数模得到答案. 【详解】 (2)1i z i -=+,∴1(1)(2)13255i i i i z i ++++===-,∴1355z i =+,∴10||z =. 故选:D .【点睛】本题考查了复数的运算,复数模,意在考查学生的计算能力.3.复数12i 2i +=-( ). A .iB .1i +C .i -D .1i - 【答案】A【解析】试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.4.设3i z i +=,i 是虚数单位,则z 的虚部为( ) A .1B .-1C .3D .-3 【答案】D【解析】因为z=3i i+13i =-∴z 的虚部为-3,选D.5.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案.【详解】 若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件.故选C.【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.6.设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( )A .10101010i --B .10111010i --C .10111012i --D .10111010i -【答案】B【解析】【分析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设2320192342020S i i i i =+++⋅⋅⋅+,可得:24201920320023420192020iS i i i i i =++++⋅⋅⋅++,则24201923020(1)22020i S i i i i ii -=++++⋅⋅⋅+-, 2019242019202023020(1)(1)202020201i i i S i i i i i i i i i i--=+++++⋅⋅⋅+-+-=-, 可得:2(1)(1)(1)20202020202112i i i i i S i i i i ++-=+-=+-=-+-, 可得:2021(2021)(1)1011101012i i i S i i -+-++===---, 故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.7.复数z 满足()1|1|z i i +=-,则复数z 在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】根据复数的运算法则,化简22z i =-,再结合复数的几何表示方法,即可求解. 【详解】由题意,复数z 满足()1|1|z i i +=-,可得)()()1|1|11122i i z i i i --===-++-,则复数z 在复平面内对应的点为位于第四象限. 故选:D .【点睛】 本题主要考查了复数的几何表示方法,以及复数的除法运算,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力.8.已知i 是虚数单位,则复数242i z i-=+的共轭复数在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】【分析】先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【详解】 解:∵()()()()242232424242105i i i z i i i i ---===-++-, ∴32105z i =+, ∴复数z 的共轭复数在复平面内对应的点的坐标为(32105,),所在的象限为第一象限. 故选:A . 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi9.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )A .3B .3i -C .3iD .3-【答案】D【解析】【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可.【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-.本题选择D 选项.【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.10.已知复数122z i =--,则z z +=( )A .122i --B .122-+C .122i +D .122- 【答案】C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得122z z i +=+,从而求得结果.详解:根据12z =-,可得12z =-+,且1z ==,所以有11122z z +=-++=+,故选C. 点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.11.若1z i =+,则31i zz =+( ) A .i -B .iC .1-D .1 【答案】B【解析】因为1z i =+,所以1z i =- ,()()3112,1i zz i i i zz =+-==+,故选B.12.若复数21z i i =+-(i 为虚数单位),则||z =( )AB C D .5【答案】C【解析】【分析】根据复数的运算,化简复数,再根据模的定义求解即可.【详解】 22(1)121(1)(1)i z i i i i i i +=+=+=+--+,||z ==故选C. 【点睛】本题主要考查了复数的除法运算,复数模的概念,属于中档题.13.已知复数z 的模为2,则z i -的最大值为:( )A .1B .2CD .3【答案】D【解析】 因为z i -213z i ≤+-=+= ,所以最大值为3,选D.14.已知复数21iz =-+,则( )A .2z =B .z 的实部为1C .z 的虚部为1-D .z 的共轭复数为1i +【答案】C【解析】分析:由题意首先化简复数z ,然后结合z 的值逐一考查所给的选项即可确定正确的说法. 详解:由复数的运算法则可得:()()()()21211112i i z i i i ----===---+--, 则2z =,选项A 错误;z 的实部为1-,选项B 错误;z 的虚部为1-,选项C 正确;z 的共轭复数为1z i =-+,选项D 错误.本题选择C 选项.点睛:本题主要考查复数的运算法则,复数的几何意义等知识,意在考查学生的转化能力和计算求解能力.15.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅=A .25-B .25C .7-D .7【答案】A【解析】【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可【详解】 Q 复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题16.下列命题中,正确命题的个数是( )①若,,则的充要条件是;②若,且,则; ③若,则. A . B .C .D .【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题; 对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.考点:复数的有关概念.17.已知复数134z i=+,则下列说法正确的是( ) A .复数z 的实部为3B .复数z 的虚部为425iC .复数z 的共轭复数为342525i + D .复数的模为1【答案】C【解析】【分析】直接利用复数的基本概念得选项.【详解】 1343434252525i z i i -===-+, 所以z 的实部为325,虚部为425- ,z 的共轭复数为342525i +15=, 故选C.【点睛】该题考查的是有关复数的概念和运算,属于简单题目.18.复数z 11i i -=+,则|z |=( )A .1B .2CD .【答案】A【解析】【分析】运用复数的除法运算法则,先计算出z 的表达式,然后再计算出z .【详解】 由题意复数z 11i i-=+得221(1)12=1(1)(1)2i i i i i i i i ---+===-++-,所以=1z .故选A【点睛】本题考查了运用复数的除法运算求出复数的表达式,并能求出复数的模,需要掌握其计算法则,较为基础.19.已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z z =.则其中正确命题的个数为( )A .0个B .1个C .2个D .3个【答案】C【解析】【分析】运用复数的模、共轭复数、虚数等知识对命题进行判断.【详解】对于①中复数1z 和2z 的模相等,例如1=1+z i ,2z ,则1z 和2z 是共轭复数是错误的;对于②1z 和2z 都是复数,若12+z z 是虚数,则其实部互为相反数,则1z 不是2z 的共轭复数,所以②是正确的;对于③复数z 是实数,令z a =,则z a =所以z z =,反之当z z =时,亦有复数z 是实数,故复数z 是实数的充要条件是z z =是正确的.综上正确命题的个数是2个.故选C【点睛】本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.20.若复数z 满足()12z i i +=(i 为虚数单位),则z =( )A .1B .2CD .【答案】C【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 考点:复数的模。

高考数学复数多选题专项训练知识点总结及解析

高考数学复数多选题专项训练知识点总结及解析

高考数学复数多选题专项训练知识点总结及解析一、复数多选题1.若复数z 满足()1z i i +=,则( )A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =答案:BC 【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可 【详解】 解:由,得,所以z 的实部为1,,, 故选:BC 【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭解析:BC 【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可 【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-, 故选:BC 【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题 2.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z答案:AC 【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是. 【详解】解:由复数乘法的运算律知,A 正确; 取,;,满足,但且不解析:AC 【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确; 由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误.故选:AC 【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题. 3.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数答案:AD 【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项. 【详解】解:对于A ,若为纯虚数,可设,则, 即纯虚数的共轭复数等于,故A 正确; 对于B解析:AD 【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项. 【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-, 即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误; 对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD. 【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 4.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z = B .若复数2z =,则m = C .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++=答案:BD 【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误. 【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确; 对于C ,若复数z 为纯虚数,则满足,解得,解析:BD 【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误. 【详解】对于A ,0m =时,1z =-+,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m =B 正确;对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨-≠⎪⎩,解得1m =-,故C 错误;对于D ,若0m =,则1z =-,()()221420412z z ++=+--+=,故D 正确. 故选:BD. 【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题. 5.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( ) A.1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=答案:ACD 【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假. 【详解】由可得,,所以,虚部为; 因为,所以,. 故选:ACD . 【解析:ACD 【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假. 【详解】由1zi i =+可得,11iz i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD . 【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.6.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn nz i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .22z z = B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =- D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数答案:AC 【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误. 【详解】对于A 选项,,则,可得解析:AC 【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误. 【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z ri θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin 3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cossin332z i ππ=+=,则12z =-,C 选项正确;对于D 选项,()cos sin cos sin cossin 44nnn n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误. 故选:AC. 【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.7.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >答案:BCD 【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案. 【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的; 因为当两个复数相等时,模一定相等,所以A 项正确; 故选:BCD. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.8.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件答案:BC 【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】 设,则,则,若,则,,若,则不为纯虚数, 所以,“”是“为纯虚数”必要不充分解析:BC 【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】设(),z a bi a b R =+∈,则z a bi =-,则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件;若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件. 故选:BC. 【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题. 9.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥答案:ABD 【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D. 【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确; 在两个变量解析:ABD 【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D. 【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z =C 错误;由否定的定义可知,D 正确; 故选:ABD 【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 10.已知复数z 满足220z z +=,则z 可能为( ). A .0B .2-C .2iD .2i+1-答案:AC 【分析】令,代入原式,解出的值,结合选项得出答案. 【详解】 令,代入, 得,解得,或,或, 所以,或,或. 故选:AC 【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC 【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案. 【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩,所以0z =,或2i z =,或2i z =-. 故选:AC 【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.11.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限答案:BD 【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限. 【详解】 设复数, 则, 所以, 则,解得或,因此或,所以对应的点为或, 因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限. 【详解】设复数(),z a bi a b R =+∈, 则2222724z a abi b i =+-=--, 所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩,因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-, 因此复数z 对应的点可能在第二或第四象限. 故选:BD. 【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.12.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点答案:BC 【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误. 【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD. 【点睛】 本题考解析:BC 【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误. 【详解】()234z i i +=+,34232iz i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限. 故选:BD. 【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.13.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =答案:CD 【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误. 【详解】对于A 选项,取,则,A 选项错误; 对于B 选项,复数的虚部为,B 选项错误;解析:CD 【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误. 【详解】 对于A 选项,取zi ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD. 【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.14.下列四个命题中,真命题为( ) A .若复数z 满足z R ∈,则z R ∈ B .若复数z 满足1R z∈,则z R ∈ C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =答案:AB 【分析】利用特值法依次判断选项即可得到答案. 【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确; 对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈, 但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.15.下面是关于复数21i z =-+的四个命题,其中真命题是( )A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1- 答案:ABCD【分析】先根据复数的除法运算计算出,再依次判断各选项.【详解】,,故A 正确;,故B 正确;的共轭复数为,故C 正确;的虚部为,故D 正确; 故选:ABCD.【点睛】本题考查复数的除法解析:ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项.【详解】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选:ABCD.【点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题.16.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限 答案:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z =,故B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.17.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.18.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 答案:AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.【详解】由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.19.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 答案:BD把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A错误;,B正确;z的共轭复数为,C错误;z的虚部为,D正确.故选:BD.【点解析:BD【分析】把21iz=-+分子分母同时乘以1i--,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)iz ii i i--===---+-+--,||z∴A错误;22iz=,B正确;z的共轭复数为1i-+,C错误;z的虚部为1-,D正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.20.复数z满足233232iz ii+⋅+=-,则下列说法正确的是()A.z的实部为3-B.z的虚部为2 C.32z i=-D.||z=答案:AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A正确;的虚部为-2,B错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.21.已知i 为虚数单位,则下列选项中正确的是( )A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-D .对任意的复数z ,都有20z答案:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.22.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0 D .5 答案:ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+, ∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高中数学《复数》经典考题分类解析
复数的代数运算年年必考,其题目活而不难,主要考查学生灵活运用知识的能力,复数的几何意义也是考查的一个重点。

落实考查特点有利于抓住复习中的关键:(1)复数的概念,包括虚数、纯虚数、复数的实部与虚部、复数的模、复数的相等、共轭复数的概念。

(2)复数代数形式基本运算的技能与技巧,特别是
i ±1的计算,注意转化思想的训练,善于将复数向实数转化。

(3)复数的几何意义,
1、复数的概念以及运算
例1i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,)
解:原式=i -2-3i +4+5i -6-7i +8=4-4i
点评:复数是高中数学的重要内容,是解决数学问题的重要工具,本题考查了复数的概念以及复数的引入原则,主要考查i 12-=的实际应用问题。

例2若a
为实数,
=,则a 等于( ) A
. B
. C
. D
.-解析:由已知得:等式左边=i a a i ai 3
223223)21)(2(-++=-+ 由复数相等的充要条件知:⎪⎪⎩⎪⎪⎨⎧-=-=+23
220322a a ,所以a

点评:本题考查了复数的基本运算以及复数相等的概念。

例3若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( )
A .2
B .12
C .12-
D .2-
解析:(1)(2)bi i ++=i b b )12()2(++-,因为(1)(2)bi i ++是纯虚数,因此
⎩⎨⎧≠+=-0
1202b b 所以b =2。

点评:本题考查的复数的乘法运算问题,通过该运算考查了纯虚数的概念。

2、复数的几何意义
复数与复平面上的点,及复平面上从原点出发的向量建立了一一对应关系,这样使得
复数问题可以借助几何图形的性质解决,反之,一些解析几何问题、平面几何问题也可以借助于复数的运算加以解决。

例4若35ππ44θ⎛⎫∈ ⎪⎝⎭
,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
解析:复数的实部a =)4sin(2sin cos π
θθθ+=+,虚部b =
)4sin(2cos sin πθθθ-=-,因为4
543πθπ<<,所以 ππθπππθπ<-<<+<42,234,所以0)4sin(<+πθ,0)4
sin(>-πθ,即a<0,b>0,所以复数对应的点在第二象限。

点评:本题以复数的三角形式作为命题背景,考查了复数的三角形式运算以及三角函数的恒等变化,以及复数的几何意义。

复数与复平面内的点的对应关系经常出现在考题中,关键是把复数化简成bi a +的形式,并且准确的判断出a 、b 的符号是求解问题的关键。

3、复数的开放性的考查
例4.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)
解析:因为24z bz -=i b ab ab b a )42()4(222-+--是实数,所以有 0422=-b ab ,因为0≠b ,所以b a 2=,所以答案可以填写(2,1)或(2,4)、(3,6)等等。

点评:本题考查复数的概念但是题目新颖具有开放性,这种考查分式应该引起我们的关注。

4、考查复数方程问题
复数方程问题是高考考查一个重点,从近几年考题看,解决这类问题主要是复数问题实数化,设出复数z =x +yi 形式,利用复数相等的定义转化为关于实数x ,y 的方程组求解。

例5、设x 、y 为实数,且
i
i y i x 315211-=-+-,则x +y =___. 解:由i i y i x 315211-=-+-知,5(1)(12)(13)2510x y i i i +++=+,即 5(1)2(12)5(13)x i y i i +++=+,即(525)(5415)0x y x y i +-++-=,故 5250,54150.x y x y +-=⎧⎨+-=⎩解得1,5.
x y =-⎧⎨=⎩4x y +=。

点评:本题考查了复数的化简、乘法、除法以及复数相等。

例6、(2006年上海春卷)已知复数w 满足i (i )23(4w w -=-为虚数单位),|2|5-+=w w
z ,求一个以z 为根的实系数一元二次方程. [解法一] i 2i 21i 34,i 34)i 21(-=++=
∴+=+w w Θ, i 3|i |i 25+=-+-=∴z .
若实系数一元二次方程有虚根i 3+=z ,则必有共轭虚根i 3-=z .
10,6=⋅=+z z z z Θ,
∴ 所求的一个一元二次方程可以是01062=+-x x .
[解法二] 设i
b a w +=R)(∈b a 、 b a b a 2i 2i 34i +-=-+,
得 ⎩⎨⎧-==-,23,24a b b a ∴ ⎩
⎨⎧-==,1,2b a i 2-=∴w , 以下解法同[解法一].
点评:从以上解法看出,方法1运用整体思想求解,比方法2用基本方法要简单。

由于数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。

可见掌握几种思想方法,有利于问题的解决。

相关文档
最新文档