高中数学复数基础部分练习题
高中复数练习题及讲解基础
高中复数练习题及讲解基础1. 选择题:- 题目:下列哪个选项中的名词是复数形式?A. The book is on the table.B. The books are on the table.C. The cat sleeps.D. The cats sleep.- 答案:B, D2. 填空题:- 题目:请将下列句子中的单数名词改为复数形式。
- (1) I have a pen. (改为复数)- (2) She sees a cat. (改为复数)- (3) There is a car in the street. (改为复数)- 答案:- (1) I have pens.- (2) She sees cats.- (3) There are cars in the street.3. 改错题:- 题目:下列句子中有一个错误,请找出并改正。
- (1) The childrens are playing in the park. - (2) The sheeps are grazing in the field.- (3) The deers are running in the forest.- 答案:- (1) The children are playing in the park.- (2) The sheep are grazing in the field.- (3) The deer are running in the forest.4. 翻译题:- 题目:请将下列中文句子翻译成英文,并注意名词的单复数。
- (1) 我有一本书。
- (2) 她看到了一只猫。
- (3) 公园里有很多孩子。
- 答案:- (1) I have a book.- (2) She saw a cat.- (3) There are many children in the park.5. 完形填空:- 题目:阅读下面的短文,从括号内选择合适的词填空,注意名词的单复数。
高中数学复数练习题附答案
高中数学复数练习题附答案一、单选题1.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( ) AB .5C D .22.已知复数1i z =-,则2i z z -=( ) A.2 B .3 C .D .3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)- B .(1,2)C .(2,1)-D .(1,2)--4.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1 D .15.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .AB C =B .A B =C .()S A B ⋂=∅D .SSABC6.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i +B .24i -C .33i +D .24i +7.已知a R ∈,“实系数一元二次方程2904x ax ++=的两根都是虚数”是“存在复数z 同时满足2z =且1z a +=”的( )条件. A .充分非必要 B .必要非充分 C .充分必要 D .既非充分又非必要 8.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .29.设复数21iz =-+,则z 在复平面内对应的点的坐标为( ) A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)10.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i --B .2i -+C .2i -D .2i +11.已知复数324i 1iz +=-,则z =( )A B C .D .12.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+13.已知复数23i z =-,则()1i z +=( ) A .3i -B .3+3i -C .3i +D .3i -+14.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12- B .1i 2C .32-D .3i 2-15.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2-B .1-C .1D .216.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件17.若5i2iz =+,则||z =( )A.2 B C .D .318.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3 C.D .919.已知z1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C .2 D .20.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1)C .(,0)-∞D .(1,)-+∞二、填空题21.复数121i,22i z z =+=-,则12_________.z z -=22.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.23.若i(,)i+∈a b a b R 与3+4i 互为共轭复数,则a b -=___________.24.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.若复数z 满足i 3i=iz -+,则z =________. 27.复数2ii 1+-的共轭复数是_______. 28.写出一个在复平面内对应的点在第二象限的复数z =__________. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.已知复数()()211i z a a =-+-()a R ∈是纯虚数,则=a ___________.31.计算:112i2i-=+___________. 32.已知复数z 满足()1i 42i -=+z ,则z =_________. 33.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 34.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.35.若2z =,arg 3z π=,则复数z =________.36.已知m R ∈,复平面内表示复数()3i m m --的点位于第三象限内,则m 的取值范围是____________ 37.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.38.已知z =,则22022z z z ++⋅⋅⋅+=___________. 39.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 40.已知复数1i z =+,则2z z+=____________三、解答题41.已知复数z 满足:i 1i z +=-. (1)求z ; (2)求1iz+的模. 42.数列{}n a 满足1112,1n n na a a a +-==+,试研究数列{}n a 的周期性.43.已知1z ,2z ∈C,1z =2=z12z z +=12z z -. 44.根据复数的几何意义证明:121212z z z z z z -≤+≤+.45.复数()()11i z m m =++-对应的点在直线40x y +-=上,求实数m 的值.【参考答案】一、单选题 1.A 2.D 3.D 4.C 5.D 6.A 7.D 8.C 9.D 10.B 11.B 12.D 13.B 14.C 15.A 16.A 17.B 18.C 19.D20.A 二、填空题 212223.1 24.1 25.四 2627.13i 22-+28.1i -+(答案不唯一)2930.1-31.43i -##3i 4-+ 32.13i +33.-1+2i##2i -1 34.[)2,+∞35.11+ 36.()0,3 37.③ 38.039.22i +##2i 2+ 40.三、解答题41.(1)12i +【解析】 【分析】(1)先求出12z i =-,再求出z ;(2)先利用复数除法法则化简得1i 2i 321z --=+,从而求出模长. (1)12z i =-,12i z =+(2)()()()()2212i 1i 12i 13i 2i 13i 13i 1i 1i 1i 1i 222----+--====--++--,故 22119101i 223442z ⎛⎫⎛⎫=-+-=+=⎪ ⎪+⎝⎭⎝⎭. 42.周期为4 【解析】 【分析】根据通项公式,写出特征方程为210x +=,由方程根的情况求出数列{}n a 的周期. 【详解】数列{}n a 的递归函数为()11x f x x -=+,其特征方程为210x +=. 因为Δ=01440-⨯=-<,解得:i,i m k ==-()1i 36arg arg arg i 1i 24a mc a kc ππ--⎛⎫⎛⎫==-== ⎪ ⎪-+⎝⎭⎝⎭所以数列{}n a 是周期4T =的周期函数. 43.2 【解析】 【分析】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,利用余弦定理可得6cos 4OAC ∠=-,再利用余弦定理即可得出答案. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=, 则222(22)(2)(3)23OAC =+-∠, 解得6cos OAC ∠= ∴6cos AOB ∠=2212(2)(3)223cos 2z z BA AOB ∴-==+-⨯⨯∠.44.证明详见解析 【解析】 【分析】结合三角形两边的和大于第三边、两边的差小于第三边来证得不等式成立. 【详解】当12,z z 方向相同时,121212z z z z z z -<+=+;当12,z z 方向相反时,121212z z z z z z -=+<+;当12,z z 不共线时,1212,,z z z z +满足三角形的三边,根据三角形两边的和大于第三边、两边的差小于第三边可知:121212z z z z z z -<+<+.综上所述,不等式121212z z z z z z -≤+≤+成立. 45.2m = 【解析】 【分析】求得z 对应的点的坐标并代入直线40x y +-=,由此求得m 的值. 【详解】z 对应点为()1,1m m +-,将()1,1m m +-代入直线40x y +-=得1140,2m m m ++--==.。
(完整word版)高中数学复数练习题
1 / 3高中数学《复数》练习题一.基本知识:复数的基本观点( 1)形如 a b i 的数叫做复数(此中 a , b R );复数的单位为 i ,它的平方等于- ,即i 21.+ 1此中 a 叫做复数的实部, b 叫做虚部实数:当 b = 0 时复数 a + b i 为实数 虚数:当 b时的复数 ab 为虚数;+ i纯虚数:当 a = 0 且 b 0时的复数 a + b i 为纯虚数( 2)两个复数相等的定义:a bi c dia c 且b d (此中, a ,b ,c ,d , R )特别地 a bi 0 a b 0( 3)共轭复数 : z abi 的共轭记作 za bi ;( 4)复平面 : z a bi ,对应点坐标为 p a,b ;(象限的复习) ( )复数的模 :关于复数 za bi ,把za 2b 2叫做复数 z 的模;5二.复数的基本运算: 设 z 1 a 1 b 1i , z 2 a 2 b 2i( 1) 加法: z 1 z 2a 1 a 2b 1 b 2 i ;( 2) 减法: z 1 z 2 a 1 a 2b 1 b 2 i ;( 3) 乘法: z 1 z 2a 1a 2 bb 12a 2b 1 a 1b 2 i特别 z z a 2b 2 。
( 4)幂运算: i 1i i 21 i 3i i 4 1 i 5 i i 61三.复数的化简zcdi( a, b 是均不为 0 的实数);的化简就是经过分母实数化的方法将分母化为实数:a bi zc di c di a bi acbdad bc ia bi abi a bia 2b 2四.例题剖析【例 1】已知 z a 1b 4 i ,求(1)当 a, b 为什么值时 z 为实数( 2)当 a, b 为什么值时 z 为纯虚数(3)当 a,b 为什么值时 z 为虚数( 4)当 a, b 知足什么条件时 z 对应的点在复平面内的第二象限。
【变式 1】若复数 z (x 2 1) (x 1)i 为纯虚数,则实数 x 的值为A .1B.C1D . 或11 【例 2】已知 z 1 3 4i ; z2 a3 b4 i ,求当 a,b 为什么值时 z 1 =z 2【例 3】已知 z1 i ,求 z , z z ;2 / 3【变式 1】 复数 z 知足 z2i,则求 z 的共轭 z1 i【变式 2】 已知复数 z3 i,则 z ? z =(13i )211A.B.42【例 4】已知 z 1 2 i , z 2 3 2i(1)求 z 1z 2 的值;( 2)求 z 1 z 2 的值;( 3)求 z 1 z 2 .【变式 1】已知复数 z 知足 z 2 i 1 i ,求 z 的模 .【变式 2】若复数 1ai 2 是纯虚数,求复数 1 ai 的模 .【例 5】若复数 za 3i a R (i 为虚数单位),1 2i(1) 若 z 为实数,求 a 的值 (2) 当 z 为纯虚,求 a 的值 .【变式 1】设 a 是实数,且 a1 i是实数,求 a 的值 ..1 i2【变式 2】若 z y 3i x, y R 是实数,则实数 xy 的值是.1 xi ( 1 i )4等于 (【变式 3】 i 是虚数单位 , )1-iA .iB .-iC.1D . -1【变式 4】已知Zi =2+i, 则复数 z=()+1(A )-1+3i (B)1-3i(C)3+i(D)3-i【变式 5】 i 是虚数单位,若17i a bi (a, b R) ,则乘积 ab 的值是2 i(A )- 15( B )- 3( C ) 3(D )15【例 6】复数 z7 i =()3 i(A ) 2 i(B) 2 i (C) 2 i(D) 2 i【变式 1】已知 i 是虚数单位, 2i 3()1 iA 1 iB 1 iC 1 iD. 1 i【变式 2】. 已知 i 是虚数单位,复数13i =()1 iA2 i B2 iC 1 2iD 12i【变式 3】已知 i 是虚数单位,复数1 3i()1 2i(A)1 +i (B)5 +5i(C)-5-5i (D)-1- i【变式 4】. 已知 i 是虚数单位,则 i 3i 1()i 1(A) 1(B)1(C)i(D)i练习题设复数z a bi (a, b R) ,则z 为纯虚数的必需不充足条件是____________。
复数(基础+复习+习题+练习)
课题:复数考纲要求:(Ⅰ)复数的概念:①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义;(Ⅱ))复数的四则运算:①会进行复数的代数形式的四则运算;②了解复数代数形式的加、减运算的几何意义.教材复习 1.虚数单位i :()1它的平方等于1-,即 21i =-;()2实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.i 与-1的关系: i 就是1-的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -.3.i 的周期性:41n i i +=, 421n i +=-, 43n i i +=-, 41n i =.4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部.全体复数所成的集合叫做复数集,用字母C 表示5.复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a bi+的形式,叫做复数的代数形式.6.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当0b =时,复数(,)a bi a b R +∈是实数a ;当0b ≠时,复数z a bi =+叫做虚数;当0a =且0b ≠时,z bi =叫做纯虚数;当且仅当0a b ==时,z 就是实数07.复数集与其它数集之间的关系:N Z Q R C 苘苘8.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a ,b ,c ,d R ∈,那么a bi c di +=+⇔a c =,b d = 9. 复平面、实轴、虚轴:复数(,)z a bi a b R =+∈与有序实数对(),a b 是一一对应关系.建立一一对应的关系.点Z 的横坐标是a纵坐标是b ,复数(,)z a bi a b R =+∈可用点(),Z a b 表示,这个 建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数.对于虚轴上的点要除原点外,因为原点对应的有序实数对为()是000z i =+=表示是实数.故除了原点外,虚轴上的点都表示纯虚数.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.10.复数1z 与2z 的和的定义:12z z +=()()a bi c di +++=()()a c b d i +++11.复数1z 与2z 的差的定义:12z z -=()()a bi c di +-+=()()a c b d i -+- 12.复数的加法运算满足交换律:1221z z z z +=+13.复数的加法运算满足结合律: 123123()()z z z z z z ++=++ 14.乘法运算规则:设1z a bi =+,2z c di =+(a 、b 、c 、d R ∈)是任意两个复数,那么它们的积()()()()12z z a bi c di ac bd bc ad i =++=-++其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成1-,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.15.乘法运算律:(1)()()123123z z z z z z = ()2123123()()z z z z z z ⋅⋅=⋅⋅()3()1231213z z z z z z z +=+3.复数除法定义:满足()()()c di x yi a bi ++=+的复数x yi +(x 、y R ∈)叫复数a bi +除以复数c di +的商,记为:()()a bi c di +÷+或者dic bia ++ 16.除法运算规则:①设复数a bi + (a 、b R ∈),除以c di + (c ,d R ∈),其商为x yi +(x 、y R ∈),即()()a bi c di x yi +÷+=+∵()()()()x yi c di cx dy dx cy i ++=-++ ∴()()cx dy dx cy i a bi -++=+由复数相等定义可知⎩⎨⎧=+=-.,b cy dx a dy cx 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧+-=++=.,2222d c ad bc y d c bd ac x于是有: ()()a bi c di +÷+2222ac bd bc adi c d c d +-=+++②利用()()22c di c di c d +-=+于是将dic bia ++的分母有理化得:原式22()()[()]()()()a bi a bi c di ac bi di bc ad ic di c di c di cd ++-+⋅-+-===++-+ 222222()()ac bd bc ad i ac bd bc adi c d c d c d ++-+-==++++.∴(()()a bi c di +÷+=i dc adbc d c bd ac 2222+-+++ 点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c di +与复数c di -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()22c di c di c d +-=+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法.17.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。
复数基础练习题
一、复数选择题1.设复数1i z i =+,则z 的虚部是( ) A .12 B .12i C .12- D .12i - 2.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9iB .46i -C .9D .46- 4.212i i+=-( ) A .1B .−1C .i -D .i 5.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .z 的实部是1B .z 的虚部是1C .5z =D .复数z 在复平面内对应的点在第四象限6.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B .5C .5-D .5i7.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )A .6B .6C .5D .5 8.已知复数31i z i -=,则z 的虚部为( ) A .1 B .1- C .i D .i -9.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i +10.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A 2B .2C .2D .811.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i -12.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 13.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )A .22z +=B .22z i +=C .24z +=D .24z i +=14.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .815.已知i 为虚数单位,则43i i =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 二、多选题16.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -17.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点 18.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 19.已知1z ,2z 为复数,下列命题不正确的是( )A .若12z z =,则12=z zB .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z > 20.已知i 为虚数单位,以下四个说法中正确的是( ).A .234i i i i 0+++=B .3i 1i +>+C .若()2z=12i +,则复平面内z 对应的点位于第四象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线21.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:()()()n cos sin co i s s nn n z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( )A .22z z =B .当1r =,3πθ=时,31z =C .当1r =,3πθ=时,122z =-D .当1r =,4πθ=时,若n 为偶数,则复数n z 为纯虚数22.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =23.下列命题中,正确的是( )A .复数的模总是非负数B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限D .相等的向量对应着相等的复数24.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 27.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数28.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题1.A【分析】根据复数除法运算整理得到,根据虚部定义可得到结果.【详解】,的虚部为.故选:.解析:A【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果.【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12. 故选:A .2.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B3.C【分析】应用复数相乘的运算法则计算即可.【详解】解:所以的虚部为9.故选:C.解析:C【分析】应用复数相乘的运算法则计算即可.【详解】解:()()()32351223469i i i i +=-++=-+所以()323i +的虚部为9.故选:C. 4.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D5.C【分析】利用复数的除法运算求出,即可判断各选项.【详解】,,则的实部为2,故A 错误;的虚部是,故B 错误;,故C 正;对应的点为在第一象限,故D 错误.故选:C.解析:C【分析】利用复数的除法运算求出z ,即可判断各选项.【详解】()13i z i +=+,()()()()3132111i i i z i i i i +-+∴===-++-, 则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;z ==,故C 正; 2z i =+对应的点为()2,1在第一象限,故D 错误.故选:C.6.B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】,所以,故选:B解析:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】(2)21z i i i =+=-,所以|z |=故选:B7.C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】,,所以,,故选:C.解析:C【分析】利用复数代数形式的乘除运算化简,再由复数模的公式得答案.【详解】2z i =-,(12)(2)(12)43z i i i i ∴⋅+=-+=+,所以,5z =,故选:C.8.B【分析】化简复数,可得,结合选项得出答案.【详解】则,的虚部为故选:B解析:B【分析】化简复数z ,可得z ,结合选项得出答案.【详解】()311==11i i z i i i i i--=-=+- 则1z i =-,z 的虚部为1-故选:B9.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .10.B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知,,则,故.故选:B.解析:B【分析】根据复数的几何意义,求两个复数,再计算复数的模.【详解】由图象可知1z i =,22z i =-,则1222z z i -=-+,故12|22|z z i -=-+==故选:B .11.C【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出.【详解】,故.故选:C.解析:C【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z .【详解】()()()()421426231112i i i i z i i i i +-+-====-++-,故3z i =+. 故选:C.12.B【分析】先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数,由得,所以,解得,因为时,不能满足,舍去;故,所以,其对应的解析:B【分析】先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.【详解】设复数(),z x yi x R y R =+∈∈, 由22z z i +=得222x yi i +=,所以2022x y ⎧⎪+=⎨=⎪⎩,解得1x y ⎧=⎪⎨⎪=⎩,因为1x y ⎧=⎪⎨⎪=⎩时,不能满足20x =,舍去;故31x y ⎧=-⎪⎨⎪=⎩,所以3z i =-+,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.13.B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数对应的点为,所以,满足则故选:B解析:B【分析】利用复数模的计算公式即可判断出结论.【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B14.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+= 故选:D15.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】 对43i i-的分子分母同乘以3i +,再化简整理即可求解. 【详解】 ()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C二、多选题16.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题. 解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.17.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.18.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.19.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】 因为两个复数之间只有等与不等,不能比较大小 解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等,比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.20.AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.,则A 正确;虚数不能比较大小,则B 错误;,则,解析:AD【分析】根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.【详解】234110i i i i i i +++=--+=,则A 正确;虚数不能比较大小,则B 错误;()221424341z i i i i =++=+-+=,则34z i =--,其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣,=,解得0x =则z 在复平面内对应的点的轨迹为直线,D 正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.21.AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数,可判断C 选项的正误;计算出,可判断D 选项的正误.【详解】对于A 选项,,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A 选项的正误;利用复数的棣莫弗定理可判断B 选项的正误;计算出复数z ,可判断C 选项的正误;计算出4z ,可判断D 选项的正误.【详解】对于A 选项,()cos sin z r i θθ=+,则()22cos2sin 2z r i θθ=+,可得()222cos 2sin 2z r i r θθ=+=,()222cos sin z r i r θθ=+=,A 选项正确;对于B 选项,当1r =,3πθ=时,()33cos sin cos3sin3cos sin 1z i i i θθθθππ=+=+=+=-,B 选项错误;对于C 选项,当1r =,3πθ=时,1cos sin 332z i ππ=+=+,则12z =,C 选项正确;对于D 选项,()cos sin cos sin cos sin 44n n n n z i n i n i ππθθθθ=+=+=+, 取4n =,则n 为偶数,则4cos sin 1z i ππ=+=-不是纯虚数,D 选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.22.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.23.ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数,对于A ,,故A 正确.对于B ,复数对应的向量为,且对于平面内以原点为起点的任一向量,其对应的复数为,故复数集与解析:ABD【分析】根据复数的几何意义逐项判断后可得正确的选项.【详解】设复数(),z a bi a b R =+∈,对于A ,0z =≥,故A 正确.对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内以原点为起点的任一向量(),m n α=,其对应的复数为m ni +, 故复数集与复平面内以原点为起点的所有向量组成的集合一一对应,故B 正确. 对于B ,复数z 对应的向量为(),OZ a b =,且对于平面内的任一向量(),m n α=,其对应的复数为m ni +,故复数集中的元素与复平面内以原点为起点的所有向量组成的集合中的元素是一一对应,故B 正确.对于C ,如果复数z 对应的点在第一象限,则与该复数对应的向量的终点不一定在第一象限,故C 错.对于D ,相等的向量的坐标一定是相同的,故它们对应的复数也相等,故D 正确. 故选:ABD .【点睛】本题考查复数的几何意义,注意复数(),z a bi a b R =+∈对应的向量的坐标为(),a b ,它与终点与起点的坐标的差有关,本题属于基础题.24.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确.【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.27.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 28.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误. 故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
(完整版)复数基础练习题附答案
(完整版)复数基础练习题附答案一、单选题1.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.设复数21iz =-+,则z 在复平面内对应的点的坐标为( ) A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.5.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2C .3D .47.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭8.已知复数z 满足()1i 1z +=,则z 的虚部为( ) A .12- B .1i 2-C .12D .1i 29.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限10.2243i 4i a a a a --=+,则实数a 的值为( )A .1B .1或4-C .4-D .0或4-11.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( ) A .1 B .15 C .3 D .16 14.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3- B .2- C .2 D .3 15.已知12z i =-,则(i)z z -的模长为( )A .4BC .2D .1016.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A .10B .5 CD.17.已知i 为虚数单位,则复数1i -+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限18.若复数4i1iz =-,则复数z 的模等于( ) AB .2C.D .419.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-20.复数3i(43i )-在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题21i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 23.已知复数z 满足24(1i)(12i)z --=-,则||z =________.24.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 25.写出一个在复平面内对应的点在第二象限的复数z =__________. 26.计算:3i1i+=-___________.27.若复数2(1i)34iz +=+,则z =__________.28.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.已知复数z 满足()()1i 2i z t t +=∈R ,若z =,则t 的值为___________. 31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______. 32.已知4cos isin 1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 33.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.34.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.35.i 是虚数单位,则1i1i+-的值为__________. 36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.37.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________.38.已知z =,则22022z z z ++⋅⋅⋅+=___________. 39.设i 是虚数单位,复数z =,则z =___________. 40.已知复数z 满足()1i 42i -=+z ,则z =_________. 三、解答题41.设复数3cos isin z θθ=+.求函数()tan arg 02y z πθθ⎛⎫=-<< ⎪⎝⎭的最大值以及对应的θ值.42.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限; (2)位于第四象限;(3)位于直线x -y -3=0上.43.(1)解方程()20x x x C +=∈;(2)已知32i -+是方程()220,x px q p q R ++=∈的一个根,求实数,p q 的值.44.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.45.如图,向量OZ 与复数1i -+对应,把OZ 按逆时针方向旋转120°,得到OZ .求向量OZ '对应的复数(用代数形式表示).【参考答案】一、单选题 1.B 2.A 3.D 4.D 5.C 6.B 7.A 8.A 9.D 10.C 11.A 12.D 13.B14.B 15.B 16.B 17.B 18.C 19.B 20.B 二、填空题21.1-1- 22.12i -##2i+1- 23.22425.1i -+(答案不唯一)2627.825i 625- 28.72930.2或2- 31.i - 32.2312π3334.2i +##i 2+ 35.1 36.③ 37.12 38.039.40.13i + 三、解答题41.3πθ=时,函数y【解析】 【分析】由3cos isin z θθ=+求得()1arg 3tg z tg θ=,再由两角差的正切建立关于tg θ的函数,()2arg 3y tg z tg tg θθθ=-=+,再由基本不等式法求解. 【详解】 解:解:由02πθ<<得0tg θ>.由3cos isin z θθ=+得sin 1(arg )3cos 3tg z tg θθθ==. 故213(arg )113tg tg y tg z tg θθθθ-=-=+23tg tg θθ=+∵3tg tg θθ+≥∴23tg tg θθ≤+当且仅当302tg tg πθθθ⎛⎫=<< ⎪⎝⎭时,即tg θ=时,上式取等号. 所以当3πθ=时,函数y42.(1)-3<x <2 (2)2<x <5 (3)x =-2 【解析】 【分析】根据复数的几何意义即可求解. (1)当实数x 满足22602150x x x x ⎧+-<⎨--<⎩,即-3<x <2时,点Z 位于第三象限; (2)当实数x 满足22602150x x x x ⎧+->⎨--<⎩ ,即2<x <5时,点Z 位于第四象限; (3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上;综上,(1)()3,2x ∈- ,(2)()2,5x ∈ ,(3)2x =- . 43.(1)0x =或i x =±;(2)12,26p q ==. 【解析】 【分析】(1)设出()i ,x a b a b =+∈R ,带入等式,再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案.(2)将32i -+带入()220,x px q p q R ++=∈,化简后再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案. 【详解】(1)设()i ,x a b a b =+∈R ,由20x x +=,得222i 0a b ab -+,所以220,0,a b ab ⎧⎪-=⎨=⎪⎩当0a =时,1,1,0b =-; 当0b =时,0a =. 所以0x =或i x =±.(2)因为32i -+是方程()220,x px q p q ++=∈R 的一个根,所以()22(32i)32i 0p q -++-++=,整理,得()310212i 0q p p -++-=, 即()2120,3100p q p ⎧-=⎨-+=⎩解得12,26p q ==. 【点睛】本题考查复数的运算,属于基础题.解本类题型的关键在于利用两复数相等:实部等于实部,虚部等于虚部. 44.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得cos cos ,sin sin 3333n n ππππ==-, ∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈. 45.1313i 22-+- 【解析】 【分析】复数的旋转用相应的三角函数公式即可. 【详解】如上图,将Z 逆时针旋转到'Z ,即是向量'OZ 对应的复数:()()()1313131i cos120isin1201i 2︒︒⎛⎫-+-++=-+-= ⎪ ⎪⎝⎭, 1313-+.。
(完整版)复数基础练习题附答案
(完整版)复数基础练习题附答案一、单选题1.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( ) A .22i --B .22i +C .22i -+D .22i +或22i -+2.已知复数1i z =-,则2i z z -=( ) A .2 B .3 C.D.3.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--4.已知复数z 满足()2i 32i +=+z 则||z =( ) ABCD5.复数(2i 的虚部为( ) A .2 B.C.2-D .06.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2-B .1-C .1D .27.向量1OZ ,2OZ ,分别对应非零复数z 1,z 2,若1OZ ⊥2OZ ,则12Z Z 是( ) A .负实数 B .纯虚数C .正实数D .虚数a +b i(a ,b ∈R ,a ≠0) 8.设复数z 满足i 3i z z --=,则z 的虚部为( )A .2i -B .2iC .2-D .2 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( )A .2-B .2C .i -D .1-10.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 11.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i12.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( )A .75B .-115C .-185D .513.已知12z i =-,则(i)z z -的模长为( ) A .4 BC .2D .10 14.已知i 为虚数单位,则复数1i -+在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限15.已知复数z 满足()43i 5i z +=,则z =( ) A .1BC .15D .516.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +17.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-18.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A .1i - B .1i +C .2i +D .2i -19.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限20.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .4二、填空题21.已知复数z 满足1z =,则22z i +-的最大值为______. 22.若复数z 满足i 3i=iz -+,则z =________. 23.若复数2iiz -=-,则z =_______. 24.若()1i 1i z +=-,则z =_______ 25.已知复数z =,则复数z 的虚部为__________. 26.设z C ∈,且1i 0z z +--=,则i z +的最小值为________.27.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________. 28.设复数z 满足()1i 22i z +=-(i 为虚数单位),则z =______.29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______.30.若复数2(1i)34iz +=+,则z =__________.31.设i是虚数单位,复数z =,则z =___________. 32.若存在复数z 同时满足i 1z -=,33i z t -+=,则实数t 的取值范围是_______.33.若z 1=a +2i ,z 2=3-4i ,且12z z 为纯虚数,则实数a 的值为________.34.计算cos 40isin 40cos10isin10________.35.方程()()2223256i 0x x x x --+-+=的实数解x =________.36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.37.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________. 38.已知复数z 满足2i z +∈R ,4zz-是纯虚数,则z 的共轭复数z =______. 39.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.40.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________. 三、解答题41.已知复数z满足||z =z 2的虚部为2. (1)求复数z ;(2)设22,,z z z z -在复平面上的对应点分别为A 、B 、C ,求△ABC 的面积.42.若43i 3i m m -+(m ∈R)为纯虚数,求42i 2i m m +⎛⎫⎪-⎝⎭的值. 43.已知复数z 1i ,z 2=12-+ (1)求|z 1|及|z 2|并比较大小;(2)设C z ∈,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形?44.(1)解方程()20x x x C +=∈;(2)已知32i -+是方程()220,x px q p q R ++=∈的一个根,求实数,p q 的值.45.(1)已知设方程α,β是方程220x x a ++=的两根,其中a R ∈,则||||αβ+的值;(2)关于x的方程243i0∈,求||a的最小值,并求取+++=有实根,其中a Cx ax得最小值时方程的根.【参考答案】一、单选题1.D2.D3.D4.A5.C6.B7.B8.C9.D10.C11.D12.B13.B14.B15.A16.B17.B18.A19.C20.B二、填空题21.12223.12i-24.i25.26. 27.1 28.229.12i -##2i+1- 30.825i 625-31.32.[]4,6 33.833412i 35.2 36.③ 37.1238.22i +##2i 2+ 39.3 40.-2 三、解答题41.(1)1i z =+或1i z =-- (2)1 【解析】 【分析】(1)设()i ,R z x y x y =+∈,根据已知条件列方程求得,x y ,由此求得z . (2)求得,,A B C 的坐标,从而求得三角形ABC 的面积. (1)设()i ,R z x y x y =+∈,222x y +=①,2222i z x y xy =-+的虚部为2,所以22,1xy xy ==②,由①②解得11x y =⎧⎨=⎩或11y x =-⎧⎨=-⎩. 所以1i z =+或1i z =--.(2)当1i z =+时,22i z =,21i z z -=-, 所以()()()1,1,0,2,1,1A B C -,2AC =,所以三角形ABC 的面积为11212⨯⨯=. 当1i z =--时,22i z =,213i z z -=--, 所以()()()1,1,0,2,1,3A B C ----,2AC =,所以三角形ABC 的面积为12112⨯⨯=.42.【解析】 【分析】由题可得21230130m m ⎧-=⎨-≠⎩,进而即得.【详解】因为243i (43i)(3i)3i 9m m m m m ---=++=22(123)13i 9m m m --+是纯虚数, 所以21230130m m ⎧-=⎨-≠⎩,,解得m =±2.于是当m =2时,4442i 22i 1i 2i 22i 1i m m +++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭=i 4=1; 当2m =-时,4442i 22i 1i 2i 22i 1i m m +--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭=4(i)-=1. 综上,42i 2i m m +⎛⎫⎪-⎝⎭=1.43.(1)12122,1,z z z z ==>(2)以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周) 【解析】 【分析】(1)根据复数模的计算公式可求得1||z ,2||z 的值; (2)根据复数几何意义可解决此问题. (1)解:(1)13i z =+,212z =-,1||2z ∴,2||1z =,∴12z z >; (2)解:由21||||||z z z ≤≤,得1||2z ≤≤,根据复数几何意义可知复数z 对应的点到原点的距离, 所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合, |z |≤2表示|z |=2所表示的圆内部所有点组成的集合,所以复数z 对应的点Z 的轨迹是以原点O 为圆心,以1和2为半径的圆之间的部分(包括两边界).44.(1)0x =或i x =±;(2)12,26p q ==. 【解析】 【分析】(1)设出()i ,x a b a b =+∈R ,带入等式,再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案.(2)将32i -+带入()220,x px q p q R ++=∈,化简后再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案. 【详解】(1)设()i ,x a b a b =+∈R ,由20x x +=,得222i 0a b ab -+,所以220,0,a b ab ⎧⎪-=⎨=⎪⎩当0a =时,1,1,0b =-; 当0b =时,0a =. 所以0x =或i x =±.(2)因为32i -+是方程()220,x px q p q ++=∈R 的一个根,所以()22(32i)32i 0p q -++-++=,整理,得()310212i 0q p p -++-=, 即()2120,3100p q p ⎧-=⎨-+=⎩解得12,26p q ==. 【点睛】本题考查复数的运算,属于基础题.解本类题型的关键在于利用两复数相等:实部等于实部,虚部等于虚部.45.(1)()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩;(2)min ||a =3i)+或3i)+.【解析】 【分析】(1)求出判别式4(1)a ∆=-,对a 分类讨论:当01a 时,当0a <时,当1a >时三种情况,分别求出||||αβ+;(2)设0x 为方程的实根,代入原方程,表示出a ,利用基本不等式求出||a 的最小值,并求取得最小值时方程的根. 【详解】(1)判别式444(1)a a ∆=-=-, ①若0∆,即1a ,则α,β是实根,则2αβ+=-,a αβ=,则2222(||||)2||()22||422||a a αβαβαβαβαβαβ+=++=+-+=-+,故||||αβ+,当01a 时,||||2αβ+=, 当0a <时,||||αβ+=②若∆<0,即1a >,则α,β是虚根,1α=-,1β=-,故||||αβ+==综上:()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩.(2)设0x 为方程的实根,则20043i 0x ax +++=, 所以00043i a x x x =---,则20020004325||2()2()2818a x x xx x =++=++, 当202025x x =即0x =||min a =当0x =3i)+,当0x =3i)+.。
高中数学复数试卷专项训练11套含答案
一、选择题1、若Z,与Z2互为共轴虚数,则满足条件Z-Z1|2-|Z-Z2|2=Z-Z2|2的复数z在平面上表示的图形是(A)双曲线(B)平行于x轴的直线(C)平面于y轴的直线(D)一个点2、设z是纯虚数,则()(A)z2=z2(B)z12=-z2(C),=-z2(D)z2=-z23、已知全集C={复数},Q={有理数},S={无理数},R={实数},P={虚数},那么&U产为()(A)S(B)C(C)R(D)Q4、已知M={1,2,m2-3m-l+(m2-5m-6)i},N={T,3},MClN={3},则实数m为(A)-l或6(B)-l或4(C)-l(D)4翰林5、若(m2-3m-4)+(m2-5tn-6)i是纯虚数,则实数m的值为()(A)-l(B)4(C)T或4(D)不存在6、设集合C={复数},R={实数},畛{纯虚数},其中C为全集,则()(A)MUR=C(B)RU&=C(c)MnR={o}(D)cn2?=m7、在复平面内,与复数z=-l-i的共轴复数对应的点位于()(A)第一象限(B)第二角限(C)第三象限(D)第四象限8、如果用C、R和I分别表示复数集、实数集和纯虚数集,其中C为全集,则(A)&=crn(B)Rni={o}(c)Rni=f(D)C=RUT19、复数(i-1)3的虚部是(A)-8(B)-8i(C)8(D)010、设z为复数,且(z-l)2=|z-H2那么z是()(A)纯虚数(B)实数(C)虚数(D)l11、在复平面内,复数z满足l<|z|<2,则z所对应的点P的集合构成的图形是(A)圆(B)直线(C)线段(D)圆环12、下列命题中正确的是()(A)每个复数都有唯一的模和唯一的辐角主值(B)复数与复平面内的点是一一对应的(C)共轴虚数的n次方仍是共轴复数(D)任何两个复数都不能比较大小113>设复数z=sin50°-icos50°则arg i等于(A)10°(B)80°(C)260°(D)350°14、已知7r<e<2,复数Z=|cos0|+i IsinO|的辐角主值是()(A)n-0(B)n+。
完整版)高中数学复数练习题
完整版)高中数学复数练习题高中数学《复数》练题一、基本知识:复数的基本概念1.形如a+bi的数叫做复数(其中a,b∈R);复数的单位为i,它的平方等于-1,即i²=-1.其中a叫做复数的实部,b叫做虚部。
2.实数:当b=0时复数a+bi为实数;虚数:当b≠0时的复数a+bi为虚数;纯虚数:当a=0且b≠0时的复数a+bi为纯虚数。
3.两个复数相等的定义:a+bi=c+di⟺a=c且b=d(其中,a,b,c,d,∈R)。
特别地a+bi=0⟺a=b=0.4.共轭复数:z=a+bi的共轭记作z=a-bi;5.复平面:z=a+bi,对应点坐标为p(a,b);(象限的复)6.复数的模:对于复数z=a+bi,把z²=a²+b²叫做复数z的模;二、复数的基本运算:设z1=a1+b1i,z2=a2+b2i1.加法:z1+z2=(a1+a2)+(b1+b2)i;2.减法:z1-z2=(a1-a2)+(b1-b2)i;3.乘法:z1·z2=(a1a2-b1b2)+(a2b1+a1b2)i。
特别z·z=a²+b²。
4.幂运算:i¹=i,i²=-1,i³=-i,i⁴=1,i⁵=i,i⁶=-1……以此类推。
三、复数的化简把c+di(a,b是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:z=(a+bi)/(c+di)=(ac+bd)+(ad-bc)i/(c²+d²)四、例题分析例1】已知z=a+1+(b-4)i,求1) 当a,b为何值时z为实数2) 当a,b为何值时z为纯虚数3) 当a,b为何值时z为虚数4) 当a,b满足什么条件时z对应的点在复平面内的第二象限。
变式1】若复数z=(x²-1)+(x-1)i为纯虚数,则实数x的值为A。
-1 B。
1 C。
0 D。
-1或1例2】已知z1=3+4i,z2=(a-3)+(b-4)i,求当a,b为何值时z1=z2例3】已知z=1-i,求z,z·z;变式1】复数z满足z=(2-i)/(1-i),则求z的共轭z变式2】已知复数z=3+i,则z·z=?例4】已知z1=2-i,z2=-3+2i1) 求z1+z22) 求z1·z22.已知复数 $z$ 满足 $(z-2)i=1+i$,求 $|z|$。
(完整版)复数基础练习题附答案
(完整版)复数基础练习题附答案一、单选题1.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3- B .2- C .2 D .32.已知复数5i1iz -=+(i 为虚数单位),则z 的共轭复数z =( ) A .23i + B .24i - C .33i + D .24i + 3.设||(12i)34i z -=+,则z 的共轭复数对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限4.3i3i-+=+( ) A .43i 55+ B .43i 55-+C .43i 55D .43i 55--5.设i 为虚数单位,则)10i的展开式中含2x 的项为( )A .6210C x - B .6210C x C .8210C x -D .8210C x 6.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .2 7.设复数z 1=1+i ,z 2=x +2i(x ∈R),若z 1z 2∈R ,则x 等于( ) A .-2 B .-1 C .1 D .28.设z 的共轭复数是z ,若4i z z -=,8z z ⋅=,则z =( )A .22i --B .22i +C .22i -+D .22i +或22i -+9.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32-B .32C .6-D .610.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-11.向量a =(-2,1)所对应的复数是( ) A .z =1+2i B .z =1-2i C .z =-1+2i D .z =-2+i 12.已知12z i =-,则(i)z z -的模长为( )A .4BC .2D .1013.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限14.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +15.已知复数z 满足()21i 24i z -=-,其中i 为虚数单位,则复数z 的虚部为( ) A .2 B .1 C .2- D .i16.若复数4i1iz =-,则复数z 的模等于( ) AB .2C.D .417.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-18.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( ) A .3 B .4CD19.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .920.已知复数23i z =-,则()1i z +=( ) A .3i - B .3+3i - C .3i + D .3i -+二、填空题21.若复数1z ,2z 满足112i z =-,234i z =+(i 是虚数单位),则12z z ⋅的虚部为___________.22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 23.若复数31i 2iz a -=-为实数,则实数a 的值为_______.24.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示).25.已知i是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.26.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 27.已知i34i z =+,求|z |=___________28.复数1i z =+(其中i 为虚数单位)的共轭复数z =______. 29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.设m ∈R ,复数z =(2+i )m 2-3(1+i )m -2(1-i ),若z 为非零实数,则m =________. 31.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 32.若复数2(1i)34iz +=+,则z =__________.33.已知关于x 的方程,()()()221i i 0,,R x x ab a b a b ++++++=∈总有实数解,则a b +的取值范围是__________.34.若2z =,arg 3z π=,则复数z =________.35.复数1515cos77isin ππ+的辐角主值是________.36i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.37.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 38.方程()()2223256i 0x x x x --+-+=的实数解x =________.39.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______.40.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 三、解答题41.已知复数z 和它的共轭复数z 满足232i z z +=+. (1)求z ;(2)若z 是关于x 的方程()20,x px q p q R ++=∈的一个根,求复数()4i zp q +-的模.42.已知复数z 是纯虚数,212iz -+为实数. (1)求复数z ;(2)若m ∈R ,复数()22m z z --在复平面内对应的点位于第二象限,求m 的取值范围. 43.定义运算ab ad bc c d=-,如果()()32i 3i 1x y x y x y++++=-,求实数x ,y 的值.44.若复数()()()22223i z m m m m m R =+-+--∈的共轭复数z 对应的点在第一象限,求实数m 的集合.45.复数()()11i z m m =++-对应的点在直线40x y +-=上,求实数m 的值.【参考答案】一、单选题1.B2.A3.D4.B5.A6.A7.A8.D9.A10.C11.D12.B13.D14.B15.B16.C17.B18.C19.C20.B二、填空题21.-222.12i-##2i+1-23.2-24.13i+##3i+1 2526.27.15##0.228.1i-##i+1-2930.1 31.2i -+ 32.825i 625- 33.[)2,+∞34.11+ 35.7π36.1-1- 37.2 38.2 39.040三、解答题41.(1)12z i =+; (2)1. 【解析】 【分析】(1)设()i ,z a b a b R =+∈,根据复数的运算以及复数相等,即可求得结果; (2)将(1)中所求z 代入方程,根据复数相等求得,p q ,结合复数的运算,即可求得()4i zp q ++及其模长. (1)设()i ,z a b a b R =+∈,则i z a b =-,()()22i i 3i 32i z z a b a b a b +=++-=+=+, 所以332a b =⎧⎨=⎩,即12a b =⎧⎨=⎩,所以i 12z =+.(2)将i 12z =+代入已知方程可得()()212i 12i 0p q ++++=, 整理可得()()24i 30p p q +++-=,所以24030p p q +=⎧⎨+-=⎩,解得25p q =-⎧⎨=⎩,所以()()()()()12i 2i 12i 5i i 4i 2i 2i 2i 5z p q +--+-====-+--+-+--,又i 1-=, 所以复数()4i zp q +-的模为1.42.(1)4i z =- (2)14-<<m 【解析】 【分析】(1)根据纯虚数的定义设出复数z 的表示形式,再根据复数除法运算法则,结合复数的分类进行求解即可;(2)根据完全平方公式,结合复数在复平面内对应点的特点进行求解即可. (1)因为复数z 为纯虚数, 所以设()i ,0z b b R b =∈≠,则i (5122i 12i 12i (12)(122i)(2i)22(4)i i)b z b b b --+---+===+++++-,又212iz -+为实数 ∴404b b +=⇒=-,即4i z =-; (2)因为m R ∈,4i z =-所以有()222222228i 168i 16(88)i m z z m mz z z m m m m --=-+-=+-+=-++, 又复数()22m z z --在复平面内对应的点位于第二象限, 所以有:2160m -<且880m +>,即14-<<m . 43.1x =-,2y = 【解析】 【分析】根据题意得到()()()3i 32i x y x x y y +++=++,列出方程组求解即可. 【详解】 由定义运算ab ad bc c d=-,得32i 32i 1x y x y y y+=++-,所以()()()3i 32i x y x x y y +++=++因为x ,y 为实数,所以有323x y x yx y +=+⎧⎨+=⎩,解得1x =-,2y =.44.312m m ⎧⎫<<⎨⎬⎩⎭【解析】 【分析】由共轭复数定义可得z ,根据对应点的象限可以构造不等式组求得结果. 【详解】由题意得:()()22223i z m m m m =+----,z 对应的点在第一象限,()2220230m m m m ⎧+->⎪∴⎨--->⎪⎩,解得:312m <<, ∴实数m 的取值集合为312m m ⎧⎫<<⎨⎬⎩⎭.45.2m = 【解析】 【分析】求得z 对应的点的坐标并代入直线40x y +-=,由此求得m 的值. 【详解】z 对应点为()1,1m m +-,将()1,1m m +-代入直线40x y +-=得1140,2m m m ++--==.。
(完整版)复数基础练习题
(完整版)复数基础练习题一、单选题 1.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知复数12z i =-,则z 在复平面内对应的点关于虚轴对称的点是( ) A .(1,2)-B .(1,2)C .(2,1)-D .(1,2)--3.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 4.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-15.下列命题正确的是( )①若复数z 满足2z ∈R ,则z R ∈; ②若复数z 满足i R z∈,则z 是纯虚数;③若复数12,z z 满足12=z z ,则12=±z z ; ④若复数12,z z 满足2121z z z =且10z ≠,则12=z z .A .①③B .②④C .①④D .①③6.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --7.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.复数2i z =-(i 为虚数单位)的虚部为( )A .2B .1C .iD .1- 9.复数z 满足:(2i)5z +=(i 是虚数单位),则复数z 的虚部为( ) A .2- B .2 C .i - D .1- 10.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.在复平面内O 为坐标原点,复数()1i 43i z =-+,27i z =+对应的点分别为12,Z Z ,则12Z OZ ∠的大小为( )A .3πB .23π C .34π D .56π12.已知复数z 满足()43i 5i z +=,则z =( )A .1B C .15D .513.已知复数1i z a =+(a R ∈),则1a =是z = ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件14.若5i2iz =+,则||z =( )A .2 B C .D .3 15.已知复数i(1i)z =-,则其共轭复数z =( ) A .1i -- B .1i -+C .1i -D .1i +16.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .917.已知z 1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C.2D .18.设O 为原点,向量OA ,OB 对应的复数分别为2+3i ,-3-2i ,那么向量BA 对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i 19.若复数z 对应的点在直线y =2x 上,且|z |z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i20.设复数53i--的实部与虚部分别为a ,b ,则a b -=( ) A .2- B .1- C .1 D .2二、填空题21.若i 为虚数单位,复数z 满足42ii 12iz --=+,则z =___________. 22.设i 为虚数单位,若复数(1i)(i)a -+的实部与虚部相等,其中a 是实数,则|1i |-+=a ________.23.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 24.复数2ii 1+-的共轭复数是_______.25.设复数1z ,2z 满足11z =,22z =,121z z -=,则12z z +=________. 26.计算:()()12i 34i 2i-+=+_________.27.化简:i 是虚数单位,复数()2021i 34i z =+=_________.28.若复数()2i m m m -+为纯虚数,则实数m 的值为________.29.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示).30.若()i 1)(,x y x x y R +=-∈,则2x y +的值为__________. 31.已知i 为虚数单位,复数21iz =-的虚部为___________. 32.若复数2(1i)34iz +=+,则z =__________.33.复数121i,22i z z =+=-,则12_________.z z -=34.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________.35.已知复数z 满足()()1i 2i z t t +=∈R ,若z =,则t 的值为___________. 36.复数1077(cosisin )66ππ+表示成代数形式为________.37i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.38.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.39.若复数z 满足|z -i|=3,则复数z 对应的点Z 的轨迹所围成的图形的面积为________.40.设z C ∈,且1i 0z z +--=,则i z +的最小值为________. 三、解答题41.(1)在复数范围内,求方程22340x x ++=的解;(2)若复数1z ,2z 满足12122i 2i 10z z z z ⋅+-+=,且212i z z =-,求出1z ,2z . 42.定义运算ab ad bc c d=-,如果()()32i 3i 1x y x y x y++++=-,求实数x ,y 的值.43.(1)已知a 、b ∈R 且满足(a -i)2-3b i=(1+i)(2-2a i),又z 1=3-a i ,z 2=-3b +2i ,求2212z z z +的模与共轭虚数.(2)i 的正整数指数幂满足41i n +=i ,42i n +=-143i n +,=-i 4i n ,=1(nN ∈).如i=i ,i 2=-1,i 3=-i ,i 4=1.请分析并写出i 的正整数指数幂和、差规律,以此规律计算i+ i 2+ i 3+….+i 2022 ①或i-i 2+ i 3-i 4 +….-i 2022 ②(注:要求只计算①与②之一)44.(1)解方程()20x x x C +=∈;(2)已知32i -+是方程()220,x px q p q R ++=∈的一个根,求实数,p q 的值.45.已知复数()21i z a =+,243i z =-,其中a 是实数. (1)若12i z z =,求实数a 的值;(2)若12z z 是纯虚数,a 是正实数,求23202211112222z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【参考答案】一、单选题 1.D 2.D 3.D 4.C 5.B 6.D 7.D 8.D9.D10.D11.C12.A13.A14.B15.C16.C17.D18.D19.D20.A二、填空题21.12223.四24.13i22-+2526.43i-##3i4-+ 27.-4+3i##3i-4 28.129.13i+##3i+1 30.131.132.825i 6 25 -3334.1##1+ 35.2或2-36.-5i##-5i-37.1-+1-38.339.9π40.2. 三、解答题41.(1)34x =-;(2)13i z =,25i z =-或1i z =-,2i z =-. 【解析】 【分析】(1)利用配方法和2i 1=-进行求解;(2)先利用212i z z =-进行消元,再设出1i z a b =+,利用模长公式、复数的相等进行求解. 【详解】(1)因为22340x x ++=,所以2322x x +=-,所以23923()241616x +=-+=-,所以34x +=,即34x =-±; (2)将212i z z =-代入12122i 2i 10z z z z ⋅+-+=, 得1111(2i)2i 2i(2i)10z z z z ⋅-+--+=, 即211|2i 3|0z z --=,设1i z a b =+,所以22232i=0a b b a +---,所以2223020a b b a ⎧+--=⎨-=⎩,解得03a b =⎧⎨=⎩或01a b =⎧⎨=-⎩,所以13i z =,25i z =-或1i z =-,2i z =-. 42.1x =-,2y = 【解析】 【分析】根据题意得到()()()3i 32i x y x x y y +++=++,列出方程组求解即可. 【详解】由定义运算ab ad bc c d=-,得32i 32i 1x y x y y y+=++-,所以()()()3i 32i x y x x y y +++=++ 因为x ,y 为实数,所以有323x y x yx y+=+⎧⎨+=⎩,解得1x =-,2y =.43.(1)当21,3a b =-=-时,2122+z z z =2122+z z z 的共轭复数为53i 2-.当23,3a b ==-时,2122+z z z 2122+z z z 的共轭复数为12i 2-. (2)①232022i+i i i +++i 1=-;②2342022i i i i i -+-+-=i 1+.【解析】 【分析】(1)化简后根据两复数相等,列出方程组,即可解出a b 、的值,即可计算出答案.(2)根据41424344i i i i 0n n n n +++++++=;41424344i i +i i 0n n n n ++++--=计算即可. 【详解】(1)∵2(i)3i (1i)(22i)a b a --=+-化简得:21(23)i 2222)i a a b a a --+=+--( 21122223223a a a b a b a =-⎧⎧-=+⎪⇒⇒⎨⎨=-+=-⎩⎪⎩或323a b =⎧⎪⎨=-⎪⎩①当21,3a b =-=-时,123i,22i,z z =+=+22122+3+i+22i 5=3+i 22i 2z z z +=+().2122+z z z =2122+z z z 的共轭复数为53i 2-.②当23,3a b ==-时,1233i,22i,z z =-=+22122+33i+22i 1=2+i 22i 2z z z -+=+().2122+z z z ==2122+z z z 的共轭复数为12i 2-.(2)由题意知41424344i i i i 0n n n n +++++++=;41424344i i +i i 0n n n n ++++--=; 所以①232022234201720182019202020212022i+i i i (i+i i i )(i +i i i )+i +i +++=++++++0505i 1i 1=⨯+-=-;②2342022234201720182019202020212022i i i i i (i i i i )(i i i i )+i i -+-+-=-+-++-+--0505i 1i 1=⨯++=+.【点睛】本题考查复数的运算,属于基础题.44.(1)0x =或i x =±;(2)12,26p q ==. 【解析】 【分析】(1)设出()i ,x a b a b =+∈R ,带入等式,再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案.(2)将32i -+带入()220,x px q p q R ++=∈,化简后再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案. 【详解】(1)设()i ,x a b a b =+∈R ,由20x x +=,得222i 0a b ab -+,所以220,0,a b ab ⎧⎪-=⎨=⎪⎩当0a =时,1,1,0b =-; 当0b =时,0a =. 所以0x =或i x =±.(2)因为32i -+是方程()220,x px q p q ++=∈R 的一个根, 所以()22(32i)32i 0p q -++-++=,整理,得()310212i 0q p p -++-=, 即()2120,3100p q p ⎧-=⎨-+=⎩解得12,26p q ==. 【点睛】本题考查复数的运算,属于基础题.解本类题型的关键在于利用两复数相等:实部等于实部,虚部等于虚部. 45.(1)2 (2)1i -+ 【解析】 【分析】(1)利用复数的乘法运算及复数相等的概念求解(2)利用12z z 为纯虚数求a ,从而得12i z z =,然后通过复数的周期性进行求解即可 (1)∵()21i z a =+,243i z =-,12i z z =∴()22i 12i 34i a a a +=-+=+从而21324a a ⎧-=⎨=⎩,解得a =2所以实数a 的值为2. (2)依题意得:()()()()()2212i i 43i 43i 43i 43i a a z z +++==--+ ()()()()2222222222i i 43i 48i 4i 3i 6i 3i 16943i a a a a a a ++++++++==---()()22464383i25a a a a --++-=因为12z z 是纯虚数,所以:2246403830a a a a ⎧--=⎨+-≠⎩,从而a =2或12a =-;又因为a 是正实数,所以a =2.当a =2时,22124648i 3i 3i 25z a a a a z --++-=16i 12i 3ii 25+-==, 因为1i i =,2i 1=-,3i i =-,41i =,……,41i i n +=,42i 1n +=-,43i i n +=-,4i 1n =,(n N ∈)所以23202211112222z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2342022i i i i i =++++⋅⋅⋅+()()()23456789102019202020212022i i i i i i i i i i i i i i =++++++++++⋅⋅⋅++++ 2i i 000=++++⋅⋅⋅+1i =-+所以232022111122221i z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
(完整版)复数基础练习题
(完整版)复数基础练习题一、单选题 1.已知复数12i1iz -=+(i 是虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .筹四象限2.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32-B .32C .6-D .63.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一B .二C .三D .四4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆. 5.复数 21(1)i 1z a a =+--是实数,则实数a 的值为( ) A .1或-1 B .1 C .-1D .0或-16.复数(sin 10°+icos 10°)(sin 10°+icos 10°)的三角形式是( )A .sin 30°+icos 30°B .cos 160°+isin 160°C .cos 30°+isin 30°D .sin 160°+icos 160°7.向量1OZ ,2OZ ,分别对应非零复数z 1,z 2,若1OZ ⊥2OZ ,则12Z Z 是( )A .负实数B .纯虚数C .正实数D .虚数a +b i(a ,b ∈R ,a ≠0) 8.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限10.在复平面中,复数z 对应的点的坐标为(1,2),则复数iz 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.若复数z 对应的点在直线y =2x 上,且|z |z =( )A .1+2iB .-1-2iC .±1±2iD .1+2i 或-1-2i12.复数z 满足(1i)23i z -=-,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限13.已知m 为实数,则“1m =”是“复数()211i z m m =-++为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 14.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( )A .3-B .2-C .2D .315.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限16.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +17.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-18.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A .1i -B .1i +C .2i +D .2i -19.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件20.下列命题:①若i 0a b +=,则0a b ;②i 22i 2x y x y +=+⇔==;③若y R ∈,且()()211i 0y y ---=,则1y =.其中正确命题的个数为( )A .0个B .1个C .2个D .3个二、填空题21.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________.22.已知复数z i =,i 为虚数单位,则z =______ 23.已知z 是复数,3i 13i z z z z +-⋅⋅=-,则复数z =_________ 24.已知复数z 满足211iz -=+,则z 的最小值为___________; 25.复数1i z =+(其中i 为虚数单位)的共轭复数z =______. 26.若()1i 1i z +=-,则z =_______27.已知2i +是关于x 的方程()20,R x ax b a b ++=∈的根,则b a -=________. 28.已知复数z 满足294i z z +=+,则z =___________. 29.已知复数z 满足24(1i)(12i)z --=-,则||z =________. 30.已知23iz-=-i ,则复数z =________. 31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________.32.已知复数12,z z ,满足121z z ==,且12z z +=,则12z z =________.33.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 34.i 是虚数单位,则1i1i+-的值为__________.35.已知z =,则22022z z z ++⋅⋅⋅+=___________. 36.设i 是虚数单位,复数z =,则z =___________. 37.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =___________. 38.已知i 为虚数单位,复数21iz =-的虚部为___________. 39.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______. 40.设z C ∈,且1i 0z z +--=,则i z +的最小值为________. 三、解答题41.已知211i 1z m m =++,21(23)i 2z m =-+,m R ∈,i 为虚数单位.且12z z +是纯虚数.(1)求实数m 的值; (2)求12z z ⋅的值. 42.已知复数64i1im z -=+(,i m ∈R 是虚数单位). (1)若z 是实数,求实数m 的值;(2)设z 是z 的共轭复数,复数4z z -在复平面上对应的点位于第一象限,求实数m 的取值范围.43.已知复数()21i z a =+,243i z =-,其中a 是实数. (1)若12i z z =,求实数a 的值;(2)若12z z 是纯虚数,a 是正实数,求23202211112222z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.44.已知1z ,2z ∈C ,12z =,23z =,124z z +=,求12z z .(提示:()1122cos isin z z z z θθ=+或()1122cos isin z zz z θθ=-,θ是1z ,2z 所表示的向量的夹角.) 45.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.【参考答案】一、单选题 1.C 2.A 3.B 4.D 5.C 6.B 7.B 8.C 9.D10.B 11.D 12.A 13.C 14.B 15.D 16.B 17.B 18.A 19.B 20.B 二、填空题21.-1+2i##2i -122.123.12或12##12-或12241##1-25.1i -##i+1- 26.i 27.9 28.5 29.2 30.3+2i 3132.12- 33.2 34.1 35.036.37.2i -+ 38.1 39.i -40.2. 三、解答题 41.(1)1 (2)3i 4-- 【解析】 【分析】(1)求出12z z +,根据纯虚数的定义求出m 的值即可;(2)求出2z ,再根据复数代数形式的乘法法则计算,从而求出12z z ⋅的值. (1)解:因为211i 1z m m =++,21(23)i 2z m =-+ 所以21211(23)i 12z z mm m ⎛⎫+=+-++ ⎪+⎝⎭,12z z +是纯虚数,∴223011012m m m ⎧+-=⎪⎨+≠⎪+⎩,解得1m =; (2)解:由(1)得111i 2z =+,211i 2z =-+, 则211i 2z =--,∴212111331i 1i 1i i i 22244z z ⎛⎫⎛⎫⎛⎫⎛⎫⋅=+--=-+=-+=-- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 42.(1)32m =- (2)32m > 【解析】 【分析】(1)根据除法运算化简,再由复数为实数建立方程求解即可;(2)根据共轭复数的概念化简复数,再由复数对应的点在第一象限建立不等式求解即可. (1)(64i)(1i)32(32)i (1i)(1i)m z m m --==--++-,因为z 为实数,所以320m +=,解得32m =-. (2)因为z 是z 的共轭复数,所以32(32)i z m m =-++, 所以469(1015)i z z m m -=-++因为复数4z z -在复平面上对应的点位于第一象限, 所以690m ->,同时10150m +>解得32m >. 43.(1)2 (2)1i -+ 【解析】 【分析】(1)利用复数的乘法运算及复数相等的概念求解(2)利用12z z 为纯虚数求a ,从而得12i zz =,然后通过复数的周期性进行求解即可 (1)∵()21i z a =+,243i z =-,12i z z = ∴()22i 12i 34i a a a +=-+=+从而21324a a ⎧-=⎨=⎩,解得a =2所以实数a 的值为2. (2)依题意得:()()()()()2212i i 43i 43i 43i 43i a a z z +++==--+ ()()()()2222222222i i 43i 48i 4i 3i 6i 3i 16943i aa a a a a ++++++++==---()()22464383i25a a a a --++-=因为12z z 是纯虚数,所以:2246403830a a a a ⎧--=⎨+-≠⎩,从而a =2或12a =-;又因为a 是正实数,所以a =2.当a =2时,22124648i 3i 3i 25z a a a a z --++-=16i 12i 3ii 25+-==, 因为1i i =,2i 1=-,3i i =-,41i =,……,41i i n +=,42i 1n +=-,43i i n +=-,4i 1n =,(n N ∈)所以23202211112222z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2342022i i i i i =++++⋅⋅⋅+()()()23456789102019202020212022i i i i i i i i i i i i i i =++++++++++⋅⋅⋅++++2i i 000=++++⋅⋅⋅+1i =-+所以232022111122221i z z z z z z z z ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44.115i 66+或115i 66-【解析】 【分析】算出1z ,2z 所表示的向量的夹角的正、余弦即可. 【详解】设复数1z 对应OA ,2z 对应OB ,OA OB OC +=,则22223431cos 223124OAC +-∠==-=-⨯⨯ 所以1cos 4AOB ∠=,所以15sin AOB ∠=所以122115115346z z ⎛⎫== ⎪ ⎪⎝⎭或121156z z =. 45.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得coscos ,sin sin 3333n n ππππ==-,∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈.。
(完整版)复数基础练习题
复数基础练习题1.12ii +=- ( )A .135i + B .335i+ C .133i+ D .333i+ 2.已知i 为虚数单位,复数z 满足:()z 12i i +=-,则在复平面上复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.复数z 满足()211z i i -=+,则z =( ).A .12B .22C .1D .24.复数z 满足(1)2z i i -=,则复数z =( )A .1i - B .12i C .1i + D .1i -- 5.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ).A . B .C .D .56.若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( )A .1 B .2 C .1或2 D .-1 7.复数的虚部是( )A . B . C . D .18.已知复数满足,则的虚部为( )A .-4 B . C .4 D .9.复数212iz i +=- 的共轭复数是( ).A .35i - B .35i C .i - D .i 10.实数m 取什么数值时,复数分别是:(1)实数? (2)虚数? (3)纯虚数?11.设复数,当为何值时.(Ⅰ)是实数? (Ⅱ)是纯虚数?12.已知是复数,与均为实数.(1)求复数;(2)复数在复平面上对应的点在第一象限,求实数的取值范围.13.已知复数24i1im z +=-(,i m ∈R 是虚数单位).(1)若z 是纯虚数,求m 的值和z ; (2)设z 是z 的共轭复数,复数2z z -在复平面上对应的点位于第三象限,求m 的取值范围.14. 是虚数单位,且.(Ⅰ)求的值;(Ⅱ)设复数,且满足复数在复平面上对应的点在第一、三象限的角平分线上,求.15.已知复数,(,i 是虚数单位) (1).若z 是纯虚数,求m 的值;(2).设是z 的共轭复数,在复平面上对应的点在第四象限,求m 的取值范围.16.已知复数12z a i =+,234z i =-(a R ∈,i 为虚数单位).(1)若12z z 是纯虚数,求a .(2)若复数12z z 在复平面上对应的点在第二象限,且14z ≤,求实数a 的取值范围.17.已知复数21(2)i z m m m =+-,()22131i z m m =+-+-,其中m R ∈.(1)若复数1z 为实数,求m 的取值范围;(2)求12z z +的最小值.参考答案1.A 【解析】 【分析】根据复数的除法运算,可得11325i ii ++=-,即可求解. 【详解】由题意,根据复数的运算,可得()()()()121132225i i i ii i i ++++==--+,故选A. 【点睛】本题主要考查了复数的除法运算,其中解答中熟记复数的除法运算的法则是解答的关键,着重考查了推理与运算能力,属于基础题. 2.D 【解析】 【分析】先求出z 并化简,从而确定复数z 对应的点的坐标为13(,)22-,进而判断其位于第四象限. 【详解】因为2(2)(1)131312222i i i i z i i ----====-+, 所以复平面上复数z 对应的点为13(,)22-,位于第四象限,故选D . 【点睛】本题主要考查了复数的运算,以及复数的几何意义,属于基础题. 3.B 【解析】 【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式,即可求解,得到答案. 【详解】由题意,复数()211z i i -=+,得2211(1)11(1)2222i i i i z i i i i +++⋅====-+---,∴22112||222z ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】本题主要考查了复数代数形式的乘除运算,考查复数模的求法,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题. 4.D 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【详解】 由题意得:()()()2121111i i i z i i i i +===-+--+ 1z i ∴=-- 本题正确选项:D 【点睛】本题考查复数的运算、共轭复数的定义,属于基础题. 5.C 【解析】试题分析:由已知,-2a +i =1-bi ,根据复数相等的充要条件,有a =-,b =-1 所以|a +bi|=,选C考点:复数的代数运算,复数相等的充要条件,复数的模 6.B 【解析】由得12a =或,且101a a -≠≠得, 2a ∴=。
复数(基础复习习题练习).doc
6=0C一之是实数戏复数z= a+ bi<(心磴R)((£^0一正实数H实数0 、旦负实数 '上M纯虚数bi (bHOJGR)咖)考纲要求:(I)复数的概念:①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义:(II))复数的四则运算:①会进行复数的代数形式的四则运算;②了解复数代数形式的加、减运算的几何意义.教材复习1 .虞就单依i;(1)它的平方等于一1,即r=-l;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.i鸟一 1殆耒每:i就是一1的一个平方根,即方程F =一1的一个根,方程〒=一1的另一个根是—i.3. i 舖周期世,•i4n+2 = —1, z4n+3 = —i, i4n = 1.4 .复褻的定丈,•形如a + bi(a,bw R)的数叫复数,a叫复数的实部,b叫复数的虚部.全体复数所成的集合叫做复数集,用字母C表示5.夏就的代就形式;复数通常用字母z表示,即z = a + bi(a,be R),把复数表示成a + bi 的形式,叫做复数的代数形式.6 .夏就鸟实就、虔赦、純应製及0的果系:对于复数a + bi(a,be R),当且仅当b = 0时, 复数a + bi(a,bw R)是实ika;当bHO时,复数z = a + bi叫做處赦;当a = 0且bH0时, z = bi叫做絶虔褻;当且仅当a =b = 0时,z就是实褻0广蛰0一非纯虚数的虚数7 •義农集鸟曳它敎集之同的矣务"W荷Z Q^R C8.鬲个夏就相著的定丈:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等•这就是说,如果a, b , c , d G R ,那么a + bi = c +di <=> a-c 9 b-d9.夏年db、实緘旅袖;复数z = a + bi(a,bw R)与有序实数对仏b)是一一对应关系.建立------- 对应的关系.点Z的横坐标是a ,纵坐标是/?,复数z = a + bi(a,bw R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做负年面,也叫高斯平面,兀轴叫做实轴,y轴叫做度轴,实轴上的点都表示实虬对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0),它所确定的复数ac + bd x =~2 TV , c+d~be 一 ad y=—TV -c 「+d~于是有:ac + bd be-ad .c 2 + J 2 + c 2 +t/2 1②利用(c + c 〃)(c〜)r+d 于是将c + d 严分母有理化甸:是z = O + Oi = 0表示是实数.故除了原点外,疾柚上的点都表示絶虔製.这就是复数的一种见何噫•丈.也就是复数的另一种表示方法,即几何玄斥方法.10. 夏赦 Z[鸟 z?的和的定丈;z, +z 2 = (a +勿) + (c + di) = (c + c) + (b + d)i 11. 夏褻 Z| 鸟 z?的差的定丈;可 _z? = (d + bi)_(c + 〃i) = (d_c) + (b_d)i 12. 夏赦的畑试运篇满足僉换律:Z]+Z2 = Z 2 + Z l13. 夏赦的畑试运篇满足猪合律:(Zj +z 2) + z 3 = z t +(z 2 + z 3) 14. 乗体运算规则,,设Z[=G +勿,z 2=c-^~ di (6/ > b 、c de R )是任意两个复数,那么它们的积 z,z 2 = (a +bi)(c + di) = (ac - bd) + (be + ad) i其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把尸换成一1,并 且把实部与虚部分别合并.两个复数的积仍然是一个复数.15. 乗体运算律,, (1)Z l(Z 2Z 3)= (Z I Z 2)Z 3 (2)(Z,-Z 2)-Z 3=Z I -(Z 2-Z 3)(3)可(Z? + Z3 )=可 Z? + 可 Z3 3.夏象徐注定丈:满足(c + c 〃)(x+ yi) = (a + bi)的复数x+ yi (x > ywR)叫复数f •ci + bi 除以复数c + di 的商,记为:(a + bi)*(c + 〃i)或者 ---- -c + di16 •除体运篇规则,,①设复数 a + bi (a 、be /?),除以 c + di (c, d w R),其商为 x + yi (x 、ye /?), 即(a +bi)*(c + di)=兀+)” T (无 + yi)(c + di) = (cx-6(y) +(6/x + cy)i •\ (ex-dy) +(dxcy)i = a + bi\cx-dy = a.由复数相等定义可知<解这个方程组,得[dx + cy = b.疋 a ci + bi (a + bi)(c 一 di) [ac + bi ・(-di)] + (be 一 ad)i 原式二 ----- r = ------- ------ -- = ------------- ;——石 --------c + di (c + di)(c - di)c~ + d*(ac + bd) + (be - ad)i ac + bd be-ad .c 2^d2(a + bi)十(c + di)(07全国I)珈是实数,且廿+ *是实数,则“C.-D. 2 2在复平面上对应的点位于 Z).第四象限点评;①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有 理化思想方法,而复数c + di 与复数c_di,相当于我们初中学习的V3+V2的对偶式 73-V2 ,它们之积为1是有理数,而(c + di)(c-di) = c 2+d 2是正实数.所以可以分母 实数化.把这种方法叫做今母实超化试.17・¥絕复老U 当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为焕施夏 就。
高中数学复数基础部分练习题
1. 计算:ii 31-=________. 2. 下面四种说法中,正确的是 ( )A. 实数b a =,则()()i b a b a ++-是纯虚数;B. 模相等的复数为共轭复数;C. 如果z 是纯虚数,则z z ≠;D. 任何数的偶次幂不小于零.¥ 3. ii -+11的值为 4. 若复数i m m m m m z )34(3222+-+--+=是纯虚数,则实数=m ¥ 5. 下列命题中,正确的命题是 。
(1)对任意两个复数y x ,,若满足y x >,则y x ,必定都是实数(2)复数),(R b a bi a z ∈+=的虚部是bi(3)当0=a 时,复数),(R b a bi a z ∈+=为纯虚数(4)因为i 表示虚数单位,所以它不是一个虚数¥6. 已知)(2)1(322yi x i i y x -=+-+,其中y x ,都是实数,求复数=+yi x ¥7. 已知i z m z -==2,21,若21z z >,则实数m 的取值范围是8. 已知复数z 满足4=z ,若0Im Re =+z z ,则=z9. 21z z =是21z z =的 条件。
¥10. 复数R m i m m z ∈-++=,)23()1(,求复数z 的模的最小值为11. 若实数z 满足53=+-i z ,则=z12. 已知i a a a z )21()6(21-+--=,i a a a z )22()3(22+-+-=,其中R a ∈,若21z z =,则=a13. 若集合},|2||{},,11|{C z z i z z N C z z z M ∈=-=∈=+=,则=⋂N M ¥14. 已知1,=∈z C z ,求2-z 的取值范围¥15. 若i z +=2,则2z 的共轭复数为16. 计算:=⋅⋅⋅⋅200953i i i i ¥17. 计算:=--+1010)1()1(i i ¥18. 已知2232z z z =++,求复数z ¥ 19. 已知复数1z 满足i i z +=-1)2(1,复数2z 的虚部为2,且21z z ⋅为实数,求复数2z 的模20. 复数课外练习1. 复数34-i 的虚部是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 计算:ii 31-=________. 2. 下面四种说法中,正确的是 ( )A. 实数b a =,则()()i b a b a ++-是纯虚数;B. 模相等的复数为共轭复数;C. 如果z 是纯虚数,则z z ≠;D. 任何数的偶次幂不小于零.¥ 3. ii -+11的值为 4. 若复数i m m m m m z )34(3222+-+--+=是纯虚数,则实数=m ¥ 5. 下列命题中,正确的命题是 。
(1)对任意两个复数y x ,,若满足y x >,则y x ,必定都是实数(2)复数),(R b a bi a z ∈+=的虚部是bi(3)当0=a 时,复数),(R b a bi a z ∈+=为纯虚数(4)因为i 表示虚数单位,所以它不是一个虚数¥6. 已知)(2)1(322yi x i i y x -=+-+,其中y x ,都是实数,求复数=+yi x ¥7. 已知i z m z -==2,21,若21z z >,则实数m 的取值范围是8. 已知复数z 满足4=z ,若0Im Re =+z z ,则=z9. 21z z =是21z z =的 条件。
¥10. 复数R m i m m z ∈-++=,)23()1(,求复数z 的模的最小值为11. 若实数z 满足53=+-i z ,则=z12. 已知i a a a z )21()6(21-+--=,i a a a z )22()3(22+-+-=,其中R a ∈,若21z z =,则=a13. 若集合},|2||{},,11|{C z z i z z N C z z z M ∈=-=∈=+=,则=⋂N M ¥14. 已知1,=∈z C z ,求2-z 的取值范围¥15. 若i z +=2,则2z 的共轭复数为16. 计算:=⋅⋅⋅⋅200953i i i i ¥17. 计算:=--+1010)1()1(i i ¥18. 已知2232z z z =++,求复数z ¥19. 已知复数1z 满足i i z +=-1)2(1,复数2z 的虚部为2,且21z z ⋅为实数,求复数2z 的模20. 复数课外练习1. 复数34-i 的虚部是 。
2. 复数),(R y x yi x ∈+为纯虚数是0=x 的 条件。
3. 若复数i m m m m )252()65(22+-++-R m ∈是纯虚数,求实数m 的值为 。
4. 求适合下列等式的实数x 和y(1)i i y x y x 95)52()3(+=-++ i xyi y x 432)(22+=+-5. 已知4个命题,(1)若)(R a a z ∈=,则a z ±=(2)设i z i z 4,2321=+=,则1z 对应的点1Z 到原点距离小于2z 对应的点2Z 到原点的距离(3)若z z -=,则z 必为实数(4)若z z =,则z 必为正实数,其中真命题为 。
6. 已知复数z 的模为10,虚部为6,求复数=z 。
7. 已知i x x z )12()1(-+-=的模小于10,求实数x 的取值范围 。
8. 设)0,()12()3(≥∈+++=a R a i a a z ,求z 的最小值9. 复数21,z z 的和为实数是21,z z 互相共轭的 条件10. 设z 为复数,则0=+z z 为z 是纯虚数的 条件11. 若2121,2123,2321z z z i z i z +=-=+=,则=z 12. 若xyi y x --+30和yi x i +-60是共轭复数,求实数x 和y13. 设复数满足关系式015=---i z z ,求z14. 求满足i z z z -=-=-21的复数z15. 设复数z 满足234=-+i z ,求z 的最大值和最小值16. 求满足1033=++-z z 和855=+--i z i z 的复数z ¥17. 计算:=-+)32)(1(i i =+-+-)32)(23)(2(i i i=-3)2(i =+++++2010321i i i i 200953i i i i ⋅⋅⋅⋅ =18. 若2121,2123,2321z z z i z i z =-=+=,则=z 19. 若131=z ,i z 1252+=,且21z z 是纯虚数,求复数1z20. 设y x ,是实数,满足)1)((42)(i yi x i i yi x +-=+-+,求y x ,设y x ,是共轭复数,满足i xyi y x 643)(2-=-+,求y x ,21. 已知121==z z ,且321=+z z ,求21z z -的值22. 计算:=++-i i 231416 =⎪⎭⎫ ⎝⎛-+2511i i 23. 831,36,=++=∈i z z z C z ,则=z ¥24. 设a 为实数,且2121+++ai i 的实部与虚部相等,求a 的值 25. 设R b a ∈,,且b a ,不同时为零,求9⎪⎭⎫ ⎝⎛-+ai b bi a 的值 26. 求复数i i i i i i z 2)32)(3)(2321()22)(43(-+---+-+=的模27. 若1=z ,且z 为虚数,求证:21z z -为纯虚数 28. 若3321===z z z ,求321321111z z z z z z ++++ 复数课外练习(二)复数的平方根和立方根 1. 求下列复数的平方根:(1)32-= (2)64i = (3)i 125+-=2. 利用1的立方根,求下列实数的立方根(1)1-= (2)=641 (3)=-125 3. 利用1的立方根性质计算:(1)2010)2321(i +-+2010)2321(i --= (2)⋅+-15)2321(i 15)2321(i --= (3)⋅-)1(i =+-7)2321(i 4. 已知=w )2321(i +-(1)求)1(w -)1(2w -)1(4w -)1(5w -= (2)=+-+-)1)(1(422w w w w ¥实系数一元二次方程 1. 在复数集中解下列方程(1)05322=+-x x (2))1(522-=x x (3)02)3)(1(=+++x x2. 在复数集中分解因式(1)82+x = (2)=+-322x x(3)=-44y x (4)=--5424x x3. 设i -2为实系数二次方程02=++b ax x 的一个根,求系数b a ,的值4. 已知虚数21,z z 是实系数一元二次方程的两个根,且221z z =,求21,z z5. 设βα,是方程)(022R a a x x ∈=++的两个根,求βα+的值¥6. 若关于x 的方程0)2(2=-+-+i m x i x 有实数根,求实数m 的值综合练习1. 已知C z z z ∈321,,,下列命题中(1)11z z =-;(2)若2221z z =,则2211z z z z ⋅=⋅;(3)3322133221z z z z z z ⋅=⋅;(4)若0)()(232221=-+-z z z z ,则321z z z ==;(5)若1≤z ,则11≤≤-z ;正确的命题为 ¥2. 复数z 满足i z i 34)21(+=+,则=z3. 如果复数z 满足2=-++i z i z ,那么1++i z 的最小值是4. 若虚数z 满足83=z ,则=+++2223z z z 5. 若复数z 的虚部大于0,且z z +12和21zz +均为实数,求z6. 已知复数)0(1>--=a i i a z ,复数)(i z z w +=的虚部减去它的实部所得的差等于23,求w7. 设z 是虚数,z z w 1+=是实数,且21<<-w (1)求z 的值及z 的实部的取值范围;(2)设zz u +-=11,求证:u 为纯虚数(3)求2u w -的最小值¥8. 若关于x 的方程03222=-++a a ax x 至少有一个模等于1的根,求实数a 的值¥复数课堂练习(二)1. 复数),(R y x yi x ∈+为纯虚数是0=x 的 条件。
2. =⎪⎭⎫ ⎝⎛-+2511i i 。
3. 求复数i i i i i i z 2)32)(3)(2321()22)(43(-+---+-+=的模4. 设复数z 满足234=-+i z ,求z 的最大值和最小值5. 若i w 2321+-=,则=-++-)1)(1(242w w w w 6. 若131=z ,i z 1252+=,且21z z 是纯虚数,求复数1z7. 求满足i z z z -=-=-21的复数z8. 已知z 为虚数,zz w 16+=,且42<<-w ,求z 的值以及z 的实部的取值范围 9. 若复数z 的虚部大于0,且z z +12和21zz +均为实数,求z10. 若关于x 的方程03222=-++a a ax x 至少有一个模等于1的根,求实数a 的值11. 已知方程)(012R a ax x ∈=+-的两个根为βα,,若1=-βα,求实数a 的值 设复数满足关系式015=---i z z ,求z7. 831,36,=++=∈i z z z C z ,则=z8. 若1=z ,且z 为虚数,求证:21zz -为纯虚数 3. 若w 是1的虚立方根,则=-++-)1)(1(22w w w w 。
设复数z 与它的平方互为共轭复数,求z = 。
已知关于x 的方程03)12(2=-+--i m x i x 有实根,求实数m 的值为 。
设关于x 的方程:03222=-++a a ax x 至少有一个根的模等于1,求实数a 的值为 。
已知复数z 满足1=z 且0212<++z z z ,求z 的值为 。
¥ 11. 已知1-z z 是纯虚数,求z 在复平面内对应点的轨迹¥ 设R y x ∈,,yi x z +=,当1=z 时,求12+-=z z u 的最大值和最小值如果复数)(12R a i ai ∈+-为纯虚数,则()a =如果复数i bi 212+-(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b =。