届中考数学专题复习卷方程组与不等式组
中考数学知识点复习 第二章 方程(组)与不等式(组)
![中考数学知识点复习 第二章 方程(组)与不等式(组)](https://img.taocdn.com/s3/m/b2af085d6f1aff00bfd51e46.png)
中考数学知识点复习 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·杭州)设x ,y ,c 是实数,(B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c,则2x =3y 2.(2017·深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程(D )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.若关于x 的方程2x -m =x -2的解为x =3,则m 的值为(B )A .-5B .5C .-7D .7 4.(2017·天津)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3C.⎩⎪⎨⎪⎧x =4y =8D.⎩⎪⎨⎪⎧x =3y =65.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8C.12x -3=8D.12x +3=8 6.(2017·随州)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.已知方程|x |=2,那么方程的解是(C )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =48.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =3m -5,x -y =m -1,若x +y >3,则m 的取值范围是(D )A .m >1B .m <2C .m >3D .m >5二、填空题(本大题共7小题 ,每小题3分,共21分)9.(2017·金华)若a b =23,则a +b b =__53__. 10.(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.11.我们规定一种运算:a *b =2a -3b ,则方程x *2=3*x 的解为__x =125__. 12.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为__4__元.13.若(a -1)x 2-|a |-3=0是关于x 的一元一次方程,则a 的值为__-1__.14.若x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =__2__.15.(2017·荆门)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.三、解答题(本大题共6小题 ,共42分)16.(5分)(2017·武汉)解方程:4x -3=2(x -1).解:4x -3=2(x -1),4x -3 =2x -2,4x -2x =-2+3,2x =1,x =12.17.(5分)解方程:6x +1=3(x +1)+4.解:去括号得:6x +1=3x +3+4,移项合并得:3x =6,解得:x =2.18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得:x =4,把x =4代入①得:y =1,则方程组的解为⎩⎪⎨⎪⎧x =5,y =1.19.(7分)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,求a +b 的值. 解:∵⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21,解得 ⎩⎪⎨⎪⎧x =1,y =12, ∴a =1,b =12,∴a +b =13.20.(9分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?解:该店有客房8间,房客63人.21.(10分)(2018·原创)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)解:(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请甲组需要的费用:300×12=3600元,单独请乙组需要的费用:24×140=3360元,答:单独请乙组需要的费用少;(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲、乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;∵5120<6000<8160,∴甲、乙合作损失费用最少.答:甲、乙合作施工更有利于商店.第6讲 一元二次方程(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·嘉兴)用配方法解方程x 2+2x -1=0时,配方结果正确的是(B )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=32.(2017·广东)如果2是方程x 2-3x +k =0的一个根,则常数k 的值为(B )A .1B .2C .-1D .-23.(2017·苏州)关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为(A )A .1B .-1C .2D .-24.(2017·绵阳)关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为(C )A .-8B .8C .16D .-165.(2017·江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是(D )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是(A )A .(2-3x )(1-2x )=1B.12(2-3x )(1-2x )=1 C.14(2-3x )(1-2x )=1 D.14(2-3x )(1-2x )=2 7.下列关于x 的一元二次方程中,有两个相等实数根的是(D )A .x 2+1=0B .x 2+x -1=0C .x 2+2x -3=0D .4x 2-4x +1=08.(2017·烟台)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D )A .-1或2B .1或-2C .-2D .1二、填空题(本大题共5小题 ,每小题3分,共15分)9.方程(x -2)2=3x (x -2)的解为__x =2或x =-1__.10.(2017·大连)关于x 的方程x 2+2x +c =0有两个不相等的实数根,则c 的取值范围为__c <1__.11.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是__k >-1且k ≠0__.12.(2017·菏泽)关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,则k 的值是__0__.13.(2017·成都)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =__214__. 三、解答题(本大题共7小题 ,共48分)14.(5分)(2017·丽水)解方程:(x -3)(x -1)=3.解:方程化为x 2-4x =0,x (x -4)=0,∴x 1=0,x 2=4.15.(5分)解方程:3x 2+5(2x +1)=0.解:3x 2+5(2x +1)=0,整理得:3x 2+10x +5=0,∵a =3,b =10,c =5,∴b 2-4ac =100-60=40>0,∴x =-10±2106=-5±103, 则原方程的解为x 1=-5+103,x 2=-5-103. 16.(5分)解方程:x 2-6x -4=0.解:移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=±13,∴x1=3+13,x2=3-13.17.(7分)(2017·玉林)已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.(1)证明:在方程x2-(t-1)x+t-2=0中,b2-4ac=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.18.(8分)(2017·绥化)已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根, ∴b 2-4ac =(2m +1)2-4(m 2-4)=4m +17>0, 解得m >-174.∴当m >-174时,方程有两个不相等的实数根;(2)设方程的两根分别为a 、b ,根据题意得:a +b =-2m -1,ab =m 2-4. ∵2a 、2b 为边长为5的菱形的两条对角线的长,∴a 2+b 2=(a +b )2-2ab =(-2m -1)2-2(m 2-4)=2m 2+4m +9=52=25, 解得m =-4或m =2.∵a >0,b >0,∴a +b =-2m -1>0, ∴m =-4.∴若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为-4.19.(9分 )新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?解:每件玩具的售价定为32元时,月销售利润恰为2520元.20.(9分)(2017·襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)这两年该企业年利润平均增长率为20%;(2)该企业2017年的利润能超过3.4亿元.第7讲分式方程(时间50分钟满分80分)一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·哈尔滨)方程2x+3=1x-1的解为(C)A.x=3 B.x=4 C.x=5 D.x=-52.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)3.(2017·成都)已知x =3是分式方程kxx -1-2k -1x =2的解,那么实数k 的值为(D )A .-1B .0C .1D .24.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B )A.420x -420x -0.5=20B.420x -0.5-420x =20C.420x -420x -20=0.5D.420x -20-420x =0.55.(2017·聊城)如果解关于x 的分式方程mx -2-2x 2-x=1时出现增根,那么m 的值为(D )A .-2B .2C .4D .-4 6.(2016·十堰)用换元法解方程x 2-12x-4xx 2-12=3时,设x 2-12x=y ,则原方程可化为(B )A .y -1y -3=0B .y -4y-3=0C .y -1y +3=0D .y -4y+3=07.(2017·龙东地区)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是(C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(本大题共4小题 ,每小题3分,共12分) 8.(2017·南京)方程2x +2-1x =0的解是__x =2__.9.(2017·泸州)若关于x 的分式方程x +mx -2+2m2-x=3的解为正实数,则实数m 的取值范围是__m <6且m ≠2__.10.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:__160x =200x +5__.11.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走__30__步.三、解答题(本大题共6小题 ,共40分) 12.(5分)解方程:x -3x -2+1=32-x.解:方程两边同乘以(x -2), 得:x -3+(x -2)=-3, 解得x =1,检验:x =1时,x -2≠0, ∴x =1是原分式方程的解.13.(5分)(2017·宁夏)解方程:x +3x -3-4x +3=1.解:去分母得(x +3)2-4(x -3)=(x -3)(x +3), 去括号得x 2+6x +9-4x +12=x 2-9, 合并同类项得2x =-30, 系数化为1得x =-15, 当x =-15时,(x -3)(x +3)≠0, ∴原分式方程的解为x =-15.14.(5分)(2017·上海)解方程:3x 2-3x -1x -3=1.解:方程两边同乘x (x -3)得3-x =x 2-3x , ∴x 2-2x -3=0, ∴(x -3)(x +1)=0, 解得x =3或x =-1, 经检验x =3是原方程的增根, ∴原方程的解为x =-1.15.(7分)(2017·广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里;(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里, 根据题意得:605x -808x =20,解得:x =0.1,经检验,x =0.1是原方程的解, ∴8x =8×0.1=0.8.答:乙队平均每天筑路0.8公里.16.(8分)(2017·通化)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:汽车出发后第1小时内的行驶速度是80千米/小时.17.(10分)某公司计划对面积为1800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成的绿化面积是乙队每天能完成的绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天时间.(1)求甲、乙两工程队每天能完成的绿化面积;(2)若公司每天需付给甲队的绿化费用为0.4万元,付给乙队的绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,则至少应安排甲队工作多少天?解:(1)甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)至少应安排甲队工作10天.第8讲不等式(组)及其应用(时间60分钟满分100分)A卷一、选择题(本大题共10小题,每小题4分,共40分) 1.(2017·杭州)若x+5>0,则(D)A.x+1<0 B.x-1<0C.x5<-1 D.-2x<122.一元一次不等式x+1≥2的解在数轴上表示为(A)3.(2017·株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为(D) A.a>b B.a+2>b+2C.-a<-b D.2a>3b4.(2017·西宁)不等式组⎩⎪⎨⎪⎧-2x +1<3,x ≤1的解集在数轴上表示正确的是(B )5.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A )A .16个B .17个C .33个D .34个6.(2017·恩施州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值范围为(A )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <07.(2017·大庆)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为(D )A .2B .3C .4D .58.不等式组⎩⎪⎨⎪⎧3(x +2)>2x +5,x -12≤x 3的最小整数解是(B )A .-1B .0C .1D .29.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;乙:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y .其中正确的是(D )A .甲B .乙C .丙D .丁10.(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解是x <5,则m 的取值范围是(A )A .m ≥5B .m >5C .m ≤5D .m <5二、填空题(本大题共7小题 ,每小题3分,共21分) 11.(2016·陕西)不等式-12x +3<0的解集是__x >6__.12.(2017·哈尔滨)不等式组⎩⎪⎨⎪⎧5-2x ≤1,x -3<0的解集是__2≤x <3__.13.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是__a >1__.14.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为__10__元/千克.15.(2017·烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.16.(2017·宜宾)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.17.定义一种法则“⊕”如下:a ⊕b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ),例如:1⊕2=2,若(-2m -5)⊕3=3,则m 的取值范围是__m ≥-4__.三、解答题(本大题共3小题,共19分)18.(6分)(2017·北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x .解:⎩⎪⎨⎪⎧2(x +1)>5x -7①,x +103>2x ②,由①式得x <3,由②式得x <2, ∴不等式组的解集是x <2.19.(6分)解不等式组:⎩⎪⎨⎪⎧x +2>0,3(x -1)+2≥2x ,并判断-1,3这两个数是否为该不等式组的解.解:解不等式x +2>0,得x >-2, 解不等式3(x -1)+2≥2x ,得x ≥1, ∴不等式组的解集为x ≥1, ∵-1<1,3>1,∴3是该不等式组的解.20.(7分)(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?解:(1)每个篮球和每个足球的售价分别为100元,120元; (2)最多可购买25个足球.B 卷1.(3分)(2017·百色)关于x 的不等式组⎩⎪⎨⎪⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是(B )A .3B .2C .1 D.232.(3分)已知,关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,2-x >0的整数解共有两个,那么a 的取值范围是__-1≤a <0__.3.(5分)(2017·天津)解不等式组⎩⎪⎨⎪⎧x +1≥2 ①,5x ≤4x +3②,请结合题意填空,完成本题的解答. (1)解不等式①,得__x ≥1__; (2)解不等式②,得__x ≤3__;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为__1≤x≤3__.解:(3)把不等式①和②的解集在数轴上表示出来:4.(9分)(2017·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?解:(1)该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元; (2)设能购进的学生用电脑m 台,则能购进的教师用笔记本电脑为(15m -90)台,依题意得:0.19m +0.3×(15m -90)≤438,解得m ≤1860.∴15m -90=15×1860-90=282(台). 答:至多能购进的学生用电脑1860台,教师用笔记本电脑为282台.第二章 方程(组)与不等式(组)自我测试(时间60分钟 满分105分)一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·常州)若3x >-3y ,则下列不等式中一定成立的是(A ) A .x +y >0 B .x -y >0 C .x +y <0 D .x -y <02.(2017·安徽)不等式4-2x >0的解集在数轴上表示为(D )3.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为(A ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=34.不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )5.(2017·岳阳)解分式方程2x -1-2xx -1=1,可知方程的解为(D )A .x =1B .x =3C .x =12D .无解6.(2017·宜宾)一元二次方程4x 2-2x +14=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断7.(2017·安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(D )A .16(1+2x )=25B .25(1-2x )=16C .16(1+x )2=25D .25(1-x )2=168.(2017·内江)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是(B )A .4B .5C .6D .79.(2017·娄底)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是(A )A.⎩⎪⎨⎪⎧x +y =60x -7y =4B.⎩⎪⎨⎪⎧x +y =60y -7x =4C.⎩⎪⎨⎪⎧x =60-y x =7y -4D.⎩⎪⎨⎪⎧y =60-x y =7x -4 10.(2017·凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a的值为(B )A .0B .-1C .2D .-3二、填空题(本大题共7小题 ,每小题3分,共21分) 11.方程(2a -1)x 2+3x +1=4是一元一次方程,则a =__12__.12.(2017·襄阳)不等式组⎩⎪⎨⎪⎧2x -1>x +1,x +8≥4x -1的解集为__2<x ≤3__.13.(2017·乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是__100__元.(导学号 35694137)14.(2017·枣庄)已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是__a >-1且a ≠0__.15.(2017·包头)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为__1__.16.(2017·北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__.17.(2017·西宁)若x 1,x 2是一元二次方程x 2+3x -5=0的两个根,则x 12x 2+x 1x 22的值是__15__.三、解答题(本大题共6小题,共44分)18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.19.(6分)解方程1-x x -2+1=x2x -4.解:方程两边同乘以2(x -2),得:2(1-x )+2x -4=x , 解得x =-2,把x =-2代入原分式方程中,方程两边相等, 经检验x =-2是分式方程的解.20.(7分)(2017·长沙)解不等式组⎩⎪⎨⎪⎧2x ≥-9-x5x -1>3(x +1),并把它的解集在数轴上表示出来.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如解图.21.(7分)(2017·广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?答:男生志愿者有12人,女生志愿者有16人.22.(9分)(2017·日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解:(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.23.(9分)(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?解:(1)甲种商品的销售单价为900元,乙种商品的销售单价为600元;(2)至少销售甲种商品2万件.第31 页共31 页。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
![中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用](https://img.taocdn.com/s3/m/d49a5be0185f312b3169a45177232f60ddcce7ec.png)
1.(2021·常德).-5a<-5b
ab C.c>c
D.a+c>b+c
( C)
2.(2021·湖州)不等式 3x-1>5 的解集是
A.x>2
B.x<2
4 C.x>3
4 D.x<3
( A)
2x+1>0, 3.(2021·永州)在一元一次不等式组x-5≤0 的解集中,整数解的个
数是
( C)
A.4
B.5
C.6
D.7
x+3≥2,
4.(2021·济宁)不等式组x-2 1-x>-2的解集在数轴上表示正确的是 ( B)
4+x x+2
3
>
2
,
5.若关于 x 的不等式组x+2 a<0
的解集是 x<2,则 a 的取值范围是
( D)
A.a≥2
B.a<-2
C.a≥-2
D.a≤-2
6.(2021·青海)已知点 A(2m-5,6-2m)在第四象限,则 m 的取值范围 是 m>m>33. 7.(2021·苏州)若 2x+y=1,且 0<y<1,则 x 的取值范围为
-2x+3≤1,①
11.(2021·无锡)解不等式组:x-1<x3+1.② 解:解不等式①,得 x≥1, 解不等式②,得 x<3, ∴不等式组的解集为 1≤x<3.
3(x-1)>x①,
12.(2021·湘西州)解不等式组:1-2x≥x-2 3②,并在数轴上表示它的 解集.
解:解不等式①,得 x>32, 解不等式②,得 x≤1, 在数轴上表示不等式的解集为:
买 40 张门票反而更合算.
x+4≥3,① 10.(2021·天津)解不等式组6x≤5x+3.②请结合题意填空,完成本题 的解答. (1)解不等式①,得__xx≥≥--1_1_; (2)解不等式②,得__xx≤≤33__; (3)把不等式①和②的解集在数轴上表示出来:
九年级数学中考复习专题——方程与不等式(附答案)
![九年级数学中考复习专题——方程与不等式(附答案)](https://img.taocdn.com/s3/m/35dae211da38376bae1fae92.png)
知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。
(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。
(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。
知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。
中考数学方程与不等式(组)复习专题训练精选试题及答案
![中考数学方程与不等式(组)复习专题训练精选试题及答案](https://img.taocdn.com/s3/m/92288add84254b35eefd3436.png)
一次方程及方程组专题训练一、填空题:(每题 3 分,共 36 分) 1、方程 2x -3=1 的解是____。
2、已知 2x -y =1,用含 x 的代数式表示 y =____。
3、“某数与 6 的和的一半等于 12”,设某数为 x ,则可列方程______。
4、方程 2x +y =5 的所有正整数解为______。
5、若x =1y =2是方程 3ax -2y =2 的解,则 a =____。
6、当 x =____时,代数式 3x +2 与 6-5x 的值相等。
7、试写出一个解为 x =-18、方程组 x +y =32x -3y =-4的解是______。
9、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要____场比赛,则 5 名同学一共需要____比赛。
10、如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。
11长为 12cm ,那么小矩形的周长为____cm 。
12、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。
二、选择题:(每题 4 分,共 24 分)1、下列方程中,属于一元一次方程的是( )A 、x =y +1B 、1x=1 C 、x 2=x -1 D 、x =12、已知 3-x +2y =0,则 2x -4y -3 的值为( )A 、-3B 、3C 、1D 、03、用“加减法”将方程组2x -3y =92x +4y =-1中的 x 消去后得到的方程是( )A 、y =8B 、7y =10C 、-7y =8D 、-7y =104、某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为( )A 、280 元B 、300 元C 、320 元D 、200 元5、小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法( )A 、一种B 、两种C 、三种D 、四种 6、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树 1 亩需资金 200 元,种草 1 亩需资金 100 元,某组农民计划在一年内完成 2400 亩绿化任务,在实施中由于实际情况所限,植树完成 了计划的 90%,但种草超额完成了计划的 20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树 x 亩,种草 y 亩,则可列方程组为()A、x+y=2400x-90%+y (1-20%)=2400B、x+y=2400(1-90%) x+(1+20%) y=2400C、x+y=2400(1+90%) x+(1+20%) y=2400D、x+y=240090%x+(1+20%) y=2400三、解下列方程(组):(每题 6 分,共 36 分)1、12x-1=13(x-2) 2、x-30.2-x+40.1=5 3、72[53(65x-3)-1]=10x 4、3x+y=25x-y=65、x-3y=52x+5y=-126、x+23+y-12=3x+23+1-y2=1四、解答题:(每题 8 分,共 32 分)1、当 x 为何值时,代数式x+12的值比5-x3的值大 1。
中考数学总复习 第二章 方程与不等式综合测试题(含答案)
![中考数学总复习 第二章 方程与不等式综合测试题(含答案)](https://img.taocdn.com/s3/m/aa2ad48fa300a6c30c229fd3.png)
方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。
中考数学《方程与不等式》专题训练50题(含参考答案)
![中考数学《方程与不等式》专题训练50题(含参考答案)](https://img.taocdn.com/s3/m/0e8d723d15791711cc7931b765ce05087632759b.png)
中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。
2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)
![2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)](https://img.taocdn.com/s3/m/74c4a92f58eef8c75fbfc77da26925c52cc5918a.png)
2023年广东中考数学专题复习——方程(组)与不等式(组)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为( )A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x-2-xx-2的结果是( )A.0 B.1 C.x D.-15.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为( ) A.1 B.-1 C.2 D.-26.不等式x≥2的解集在数轴上表示为( )A BC D7.已知方程组{2x+y=4,x+2y=5,则x+y的值为( )A.-1 B.0 C.2 D.38.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>-1 B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是( )A .1 440x -100-1 440x =10B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是 .12.一元二次方程x 2-3x =0的根是 .13.已知a|a |+b|b |=0,则ab|ab |的值为 .14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b = .15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2= .三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.18.解方程:2xx-2=1-12-x.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x-2x-1÷(x+1-3x-1),其中x=3-2.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?23.关于x的一元二次方程(m-1)x2-2mx+m+1=0.(1)求方程的根;(2)m为何整数时,此方程的两个根都为正整数?2023年广东中考数学专题复习——方程(组)与不等式(组) 答案版(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是(C)A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为(B)A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为(A)A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x -2-xx -2的结果是(D )A .0B .1C .xD .-15.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为(A )A .1B .-1C .2D .-26.不等式x≥2的解集在数轴上表示为(C )AB CD 7.已知方程组{2x +y =4,x +2y =5,则x +y 的值为(D )A .-1 B .0 C .2 D .38.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是(D )A .k>-1B .k<1且k≠0C .k≥-1且k≠0D .k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是(B )A .1 440x -100-1 440x=10 B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10 D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为(B )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是x≠1.12.一元二次方程x 2-3x =0的根是x 1=0,x 2=3.13.已知a|a |+b|b |=0,则ab|ab |的值为-1.14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=3或-3.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.解:方法一(配方法):将方程x 2-10x +9=0变形为x 2-10x =-9,配方,得x 2-10x +25=-9+25,整理,得(x -5)2=16,解得x 1=1,x 2=9.方法二(求根公式法):因为a =1,b =-10,c =9,Δ=100-36=64>0,由求根公式解得x 1=1,x 2=9.方法三(因式分解法):将方程x 2-10x +9=0变形为(x -1)(x -9)=0,解得x 1=1,x 2=9.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.解:{9x +5<8x +7, ①43x +2>1-23x , ②解不等式①得x<2,解不等式②得x>-12.把①②的解集表示在数轴上,如图.故原不等式组的解集是-12<x<2.其整数解是0和1.18.解方程:2x x -2=1-12-x.解:方程的两边同时乘(x -2),得2x =x -2+1,解得x =-1.检验:当x =-1时,x -2≠0,故x =-1是原方程的解.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x -2x -1÷(x +1-3x -1),其中x =3-2.解:原式=x -2x -1÷(x 2-1x -1-3x -1)=x -2x -1×x -1(x +2)(x -2)=1x +2.当x =3-2时,原式=33.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:(1)设该车队载重为8吨和10吨的卡车分别有x 辆、y 辆,根据题意得{x +y =12,8x +10y =110,解得{x =5,y =7.故该车队载重为8吨的卡车有5辆,载重为10吨的卡车有7辆;(2)设载重为8吨的卡车增加了z 辆,依题意得8(5+z)+10(7+6-z)>165,解得z<52.∵z≥0且为整数,∴z =0,1,2;∴6-z =6,5,4,∴车队共有3种购车方案:①载重为8吨的卡车不购买,载重为10吨的卡车购买6辆;②载重为8吨的卡车购买1辆,载重为10吨的卡车购买5辆;③载重为8吨的卡车购买2辆,载重为10吨的卡车购买4辆.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.(1)证明:∵Δ=[-(2k+1)]2-4×1×(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:∵由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,∴x1=k,x2=k+1.即AB,AC的长为k,k+1,当AB=BC时,即k=5,满足三角形构成条件;当AC=BC时,k+1=5,解得k=4,满足三角形构成条件.综上所述,k=4或k=5.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设前4个月自行车销量的月平均增长率为x,根据题意列方程,得64(1+x)2=100,解得x1=-225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).故该商城4月份卖出125辆自行车.(2)设购进B 型车x 辆,则购进A 型车30 000-1 000x 500辆,根据题意得不等式组2x≤30 000-1 000x 500≤2.8x ,解得12.5≤x≤15,因为自行车辆数为整数,所以13≤x≤15,销售利润W =(700-500)×30 000-1 000x 500+(1 300-1 000)x.整理得W =-100x +12 000,因为W 随着x 的增大而减小,所以当x =13时,销售利润W 有最大值,此时,30 000-1 000×13500=34,所以该商城应购进A 型车34辆,B 型车13辆.23.关于x 的一元二次方程(m -1)x 2-2mx +m +1=0.(1)求方程的根;(2)m 为何整数时,此方程的两个根都为正整数?解:(1)方法一:根据题意得m≠1.Δ=(-2m)2-4(m -1)(m +1)=4.∴x 1=2m +22(m -1)=m +1m -1,x 2=2m -22(m -1)=1.方法二:根据题意得m≠1.原方程可化为(x -1)[(m -1)x -(m +1)]=0,∴x 1=m +1m -1,x 2=1.(2)由(1)知x 1=m +1m -1=1+2m -1,∵方程的两个根都是正整数,∴2m -1是正整数,∴m -1=1或2.∴m =2或3.。
九年级中考数学复习不等式组与分式方程综合含参专题附答案
![九年级中考数学复习不等式组与分式方程综合含参专题附答案](https://img.taocdn.com/s3/m/fd9e28f577a20029bd64783e0912a21614797f17.png)
九年级中考数学复习不等式组与分式方程综合含参专题附答案✈姓名:✈完成时间:✈完成题数:✈正确题数:一、难点突破解集为。
(同大/同小)例1.若关于x的不等式组的解集为x≥2,则m的取值范围是.例2.若关于x的不等式组的解集是x<2,则a的取值范围是.有解/无解例1.若不等式组有解,则a的取值范围是.例2.若不等式组无解,则m的取值范围为.不等式组含参:整数解问题例1.关于x的不等式组恰有4个整数解,则a的取值范围是.例2.关于x的不等式组至少有4个整数解,则a的取值范围是.例3.关于x的不等式组最多有4个整数解,则a的取值范围是.例4.关于x的不等式组有解且最多有4个整数解,则a的取值范围是.例5.关于x的不等式组恰有4个奇数解,则a的取值范围是.例6.关于x的不等式组恰有4个偶数解,则a的取值范围是.例7.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.例8.若关于x的不等式组至少有6个整数解,则整数a的最小值是是.解集为。
(同大/同小)练1.不等式组的解集是x>3,则m的取值范围是.练2.若关于x的不等式组的解集是x≤a,则a的取值范围是.有解/无解练1.若不等式组有解,则实数a的取值范围是.练2.若关于x的不等式组无解,则a的取值范围是.不等式组含参:整数解问题练1.关于x的不等式组有且只有4个整数解,则m的取值范围是.练2.关于x的不等式组至少有4个整数解,则m的取值范围是.练3.关于x的不等式组至多有4个整数解,则m的取值范围是.练4.关于x的不等式组有解且至多有4个整数解,则m的取值范围是.练5.关于x的不等式组有且只有4个奇数解,则m的取值范围是.练6.关于x的不等式组有且只有4个偶数解,则m的取值范围是.练7.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.练8.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是.综合巩固作业✈姓名:✈完成时间:✈完成题数:✈正确题数:方程与不等式综合含参1.关于x的不等式组恰有三个整数解,那么m的取值范围为.2.关于x的不等式组至少三个整数解,那么m的取值范围为.3.关于x的不等式组至多三个整数解,那么m的取值范围为.4.关于x的不等式组有解且至多三个整数解,那么m的取值范围为.5.关于x的不等式组恰有三个奇数解,那么m的取值范围为.6.关于x的不等式组恰有三个偶数解,那么m的取值范围为.7.若关于y的不等式组的所有整数解的和是5,则a的取值范围为.8.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是.二、分式方程与不等式综合含参问题1.(2022·重庆市育才中学二模)若关于x 的一元一次不等式组91331x x x a +⎧+≥⎪⎨⎪>+⎩的解集为3x ≥,且关于y 的分式方程122+=---y a y y有正整数解,则所有满足条件的整数a 的值之和是()A .10B .12C .18D .202.(2022·重庆八中九年级阶段练习)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是()A .﹣6B .﹣5C .﹣4D .﹣33.(2022·重庆·二模)若关于x 的方程111a x ax x ++=+-的解为负数,且关于y 的不等式组21131()02y y y a -⎧-≥⎪⎪⎨⎪-->⎪⎩无解.则所有满足条件的整数a 的值之积是()A .3B .2C .1D .04.如果关于x 的不等式组24533464x x x a +⎧≤⎪⎨⎪->-⎩有且只有四个整数解,且关于y 的分式方程127844ay y y -+=---的解为非负数,则符合条件的所有整数a 的个数为().A .1B .2C .3D .45.(2022·重庆市育才中学一模)若关于x 的不等式组()32212x a x x -≤⎧⎨->+⎩至少有两个正整数解,且关于x 的分式方程(1)5155a x x x-+=---有正整数解,则符合条件的所有整数a 的和为()A .15B .16C .18D .196.已知关于x 的不等式组4(21)784x xx a -<⎧⎨-≥⎩恰有3个整数解,且关于y 的分式方程343222y ay y y y --=---的解为正数,则符合条件的所有整数a 的和为()A .4-B .5-C .4D .57.(2022·重庆八中一模)已知关于x 的分式方程412222m x x -=--的解为整数,且关于y 的不等式组43323m y y y +<⎧⎨+>-+⎩有解且至多有2个整数解,则符合条件的整数m 的和为()A .﹣20B .﹣16C .﹣12D .﹣10分式方程与不等式综合含参参考答案与试题解析一、难点突破解集为。
【中考复习】2022-2023年人教版中考数学专题复习 不等式与不等式组
![【中考复习】2022-2023年人教版中考数学专题复习 不等式与不等式组](https://img.taocdn.com/s3/m/c4fac8090166f5335a8102d276a20029bd646319.png)
2023年中考数学专题复习--不等式与不等式组一.选择题(共10小题)1.如果a>b,那么下列不等式中正确的是()A.a﹣2>b+2B.C.ac<bc D.﹣a+3<﹣b+3 2.若a>b,则下列式子中正确的是()A.B.a﹣3<b﹣3C.﹣3a<﹣3b D.a﹣b<03.关于x、y的方程组的解为整数,关于m的不等式组有且仅有一个偶数解,则所有满足条件的整数a的和为()A.﹣4B.﹣6C.﹣14D.﹣164.若m>n,则下列各式中错误的是()A.m+3>n+3B.﹣6m>﹣6n C.5m>5n D.5.已知a<b,则下列式子错误的是()A.a+1<b+1B.2a<2b C.﹣3a<﹣3b D.a<b+16.如图,小明想到A站乘公交车,发现他与公交车的距离为720m.假设公交车的速度是小明速度的5倍.若要保证小明不会错过这辆公交车,则小明到A站之间的距离最大为()A.100m B.120m C.180m D.144m7.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5 8.对于三个数a、b、c的最小的数可以给出符号来表示,我们规定min{a,b,c}表示a、b、c这三个数中最小的数,例如:min{0,﹣2,3}=﹣2,min{1,﹣2,﹣2}=﹣2.若min{3x+4,2,4﹣2x}=2,则x的取值范围是()A.﹣<x<1B.﹣≤x≤1C.﹣1≤x≤1D.1<x<29.若a<b,则下列式子中一定成立的是()A.a+2<b+2B.2﹣a<2﹣b C.ac<bc D.am2<bm2 10.若a>b,则下列不等式成立的是()A.a﹣1<b﹣1B.﹣3a<﹣3b C.a+m<b+m D.<二.填空题(共5小题)11.若不等式(m﹣1)x+1<m的解是x>1,则m的取值范围是.12.用不等式表示“x的3倍与2的和小于1”.13.不等式2x﹣1<7的解集是.14.不等式13﹣4x≥3x﹣8的非负整数解有个.15.若m与7的和是正数,则可列出不等式.三.解答题(共6小题)16.解不等式,并将解集在数轴上表示出来.(1)4x﹣1>3x;(2).17.解下列不等式(组),并把解在数轴上表示出来.(1);(2).18.解下列方程组或不等式组:(1);(2).19.解不等式﹣3+x≥2x﹣4,并把解在已画好的数轴上表示出来.20.解下列不等式,并写出该不等式的非正整数解.2﹣5x≤8﹣2x21.解下列不等式,并把解表示在数轴上.(1)3x+1<2(x+1);(2)<6﹣.2023年中考数学专题复习--不等式与不等式组参考答案与试题解析一.选择题(共10小题)1.如果a>b,那么下列不等式中正确的是()A.a﹣2>b+2B.C.ac<bc D.﹣a+3<﹣b+3【分析】根据不等式的性质逐项计算可判定求解.【解答】解:A.不妨设a=2,b=1,掌握a﹣2<b+2,故A不符合题意.B.根据不等式的性质,由a>b,得,故B不符合题意.C.根据不等式的性质,由a>b,当c>0,得ac>bc;当c=0时,ac=bc;当a<0时,ac<bc,故C不符合题意.D.根据不等式的性质,由a>b,得﹣a<﹣b,进而推断出﹣a+3<﹣b+3,那么D正确,故D符合题意.故选:D.【点评】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.2.若a>b,则下列式子中正确的是()A.B.a﹣3<b﹣3C.﹣3a<﹣3b D.a﹣b<0【分析】根据不等式的性质进行判断.【解答】解:A、不等式a>b的两边同时除以2,不等式仍成立,即>,故本选项不符合题意;B、不等式a>b的两边同时减去3,不等式仍成立,即a﹣3>b﹣3,故本选项不符合题意;C、不等式a>b的两边同时乘﹣3,不等式仍成立,即﹣3a<﹣3b,故本选项符合题意;D、不等式a>b的两边同时减去b,不等式仍成立,即a﹣b>0,故本选项不符合题意.故选:C.【点评】本题主要考查了不等式的性质,运用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3.关于x、y的方程组的解为整数,关于m的不等式组有且仅有一个偶数解,则所有满足条件的整数a的和为()A.﹣4B.﹣6C.﹣14D.﹣16【分析】由方程组的解为整数,可得a是偶数,由不等式组有且仅有一个偶数解,知这个偶数解为m=﹣4,从而﹣6<≤﹣4,可得﹣10<a≤﹣6,即可得到答案.【解答】解:由方程组可得,∵方程组的解为整数,∴a是偶数,由不等式组可得≤m<﹣2,∵不等式组有且仅有一个偶数解,∴这个偶数解为m=﹣4,∴﹣6<≤﹣4,∴﹣10<a≤﹣6,∴a可取﹣6,﹣8,∴所有满足条件的整数a的和为﹣6+(﹣8)=﹣14,故选:C.【点评】本题考查二元一次方程组和一元一次不等式组,解题的关键是根据已知求出a 的范围,从而得到a的值.4.若m>n,则下列各式中错误的是()A.m+3>n+3B.﹣6m>﹣6n C.5m>5n D.【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:A.不等式m>n的两边都加上3,不等号的方向不变,原变形正确,故本选项不符合题意;B.不等式m>的两边都乘以﹣3,不等号的方向改变,原变形错误,故本选项符合题意;C.不等式m>n的两边都乘5,不等号的方向不变,原变形正确,故本选项不符合题意;D.不等式m>n的两边都除以2,不等号的方向不变,原变形正确,故本选项不符合题意.故选:B.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5.已知a<b,则下列式子错误的是()A.a+1<b+1B.2a<2b C.﹣3a<﹣3b D.a<b+1【分析】根据不等式的性质对各选项进行逐一分析即可.【解答】解:∵a<b,∴a+1<b+1,2a<2b,a<b+1,,故A,C,D不符合题意;∵a<b,∴﹣3a>﹣3b,故C符合题意.故选:C.【点评】本题考查的是等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解题的关键.6.如图,小明想到A站乘公交车,发现他与公交车的距离为720m.假设公交车的速度是小明速度的5倍.若要保证小明不会错过这辆公交车,则小明到A站之间的距离最大为()A.100m B.120m C.180m D.144m【分析】设小明到A站之间的距离为xm,小明的速度为vm/s(v>0),则公交车到A站之间的距离为(720﹣x)m,公交车的速度为5vm/s,利用时间=路程÷速度,结合小明不会错过这辆公交车,即可得出关于x的一元一次不等式,解之取其中的最大值,即可得出结论.【解答】解:设小明到A站之间的距离为xm,小明的速度为vm/s(v>0),则公交车到A站之间的距离为(720﹣x)m,公交车的速度为5vm/s,根据题意得:≤,即5x≤720﹣x,解得:x≤120,∴小明到A站之间的距离最大为120m.故选:B.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.7.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5【分析】分别求出每一个不等式的解集,根据不等式组的整数解情况可得a的范围.【解答】解:由x﹣a≥0得x≥a,由2+x<0,得:x<﹣2,∵不等式组整数解共有3个,∴不等式组的整数解为﹣3、﹣4、﹣5,∴﹣6<a≤﹣5,故选:C.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.对于三个数a、b、c的最小的数可以给出符号来表示,我们规定min{a,b,c}表示a、b、c这三个数中最小的数,例如:min{0,﹣2,3}=﹣2,min{1,﹣2,﹣2}=﹣2.若min{3x+4,2,4﹣2x}=2,则x的取值范围是()A.﹣<x<1B.﹣≤x≤1C.﹣1≤x≤1D.1<x<2【分析】先根据新定义列出关于x的不等式组,再解之即可.【解答】解:根据题意,得:,解不等式3x+4≥2,得:x≥﹣,解不等式4﹣2x≥2,得:x≤1,∴﹣≤x≤1,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.若a<b,则下列式子中一定成立的是()A.a+2<b+2B.2﹣a<2﹣b C.ac<bc D.am2<bm2【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式两边都加2,得a+2<b+2,故A符合题意;B、不等式的两边都乘以﹣1,再两边都加2,得2﹣a>2﹣b,故B不符合题意;C、不等式的两边都乘以c,c可正可负可为0,所以不等号的方向不确定,故C不符合题意;D、不等式的两边都乘以m2,m2可正可为0,所以不等号的方向不确定,故D不符合题意;故选:A.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.10.若a>b,则下列不等式成立的是()A.a﹣1<b﹣1B.﹣3a<﹣3b C.a+m<b+m D.<【分析】根据不等式的性质逐一判断即可.【解答】解:A.由a>b,得a﹣1>b﹣1,故本选项不合题意;B.由a>b,得﹣3a<﹣3b,故本选项符合题意;C.由a>b,得a+m>b+m,故本选项不合题意;D.由a>b,得,故本选项不合题意.故选:B.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二.填空题(共5小题)11.若不等式(m﹣1)x+1<m的解是x>1,则m的取值范围是m<1.【分析】先移项得(m﹣1)x<m﹣1,结合不等式的解集为x>1,知m﹣1<0,解之即可.【解答】解:∵(m﹣1)x+1<m,∴(m﹣1)x<m﹣1,∵不等式的解集为x>1,∴m﹣1<0,则m<1,故答案为:m<1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.用不等式表示“x的3倍与2的和小于1”3x+2<1.【分析】先表示出x的3倍,然后根据题意即可得出不等式.【解答】解:根据题意可得:3x+2<1.故答案为:3x+2<1.【点评】本题考查由实际问题抽象一元一次不等式的知识,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.不等式2x﹣1<7的解集是x<4.【分析】利用不等式的基本性质,把常数移到不等式的右边,然后同时除以系数就可得到不等式的解集.【解答】解:2x﹣1<7,2x<8,x<4.故答案为:x<4.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.不等式13﹣4x≥3x﹣8的非负整数解有4个.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:13﹣4x≥3x﹣8,移项得,﹣4x﹣3x≥﹣8﹣13,合并同类项得,﹣7x≥﹣21,系数化为1得,x≤3.∴不等式的非负整数解为0,1,2,3共4个,故答案为:4.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15.若m与7的和是正数,则可列出不等式m+7>0.【分析】根据“m与7的和是正数”,即可得出关于m的一元一次不等式,此题得解.【解答】解:根据题意得m+7>0.故答案为:m+7>0.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共6小题)16.解不等式,并将解集在数轴上表示出来.(1)4x﹣1>3x;(2).【分析】(1)先移项,再合并得到x>1,然后利用数轴表示其解集;(2)先去分母、去括号得到6x﹣3﹣2﹣2x≥12,,再移项、合并得到4x≥17,接着系数化为1得x≥,然后利用数轴表示其解集.【解答】解:(1)4x﹣1>3x,移项得4x﹣3x>1,合并得x>1,用数轴表示为:(2),去分母得3(2x﹣1)﹣2(1+x)≥12,去括号得6x﹣3﹣2﹣2x≥12,移项得6x﹣2x≥12+3+2,合并得4x≥17,系数化为1得x≥,用数轴表示为:【点评】本题考查了解一元一次不等式:灵活运用不等式的性质是解决问题的关键.也考查了数轴.17.解下列不等式(组),并把解在数轴上表示出来.(1);(2).【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵,∴3(2+x)≥4(2x﹣1),6+3x≥8x﹣4,3x﹣8x≥﹣4﹣6,﹣5x≥﹣10,∴x≤2,将不等式的解集表示在数轴上如下:(2)由2x﹣4<0,得:x<2,由(x+8)﹣2>0,得:x>﹣4,则不等式组的解集为﹣4<x<2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.解下列方程组或不等式组:(1);(2).【分析】(1)利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1),①×2+②,得:7x=7,解得x=1,将x=1代入①,得:2﹣y=3,解得:y=﹣1,则方程组的解为;(2)由t≥2t,得t≤0,由﹣3≤t,得:t≥﹣7,则不等式组的解集为﹣7≤t≤0.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.解不等式﹣3+x≥2x﹣4,并把解在已画好的数轴上表示出来.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵﹣3+x≥2x﹣4,∴x﹣2x≥﹣4+3,﹣x≥﹣1,则x≤1,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.解下列不等式,并写出该不等式的非正整数解.2﹣5x≤8﹣2x【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非正整数即可.【解答】解:2﹣5x≤8﹣2x,移项,得2x﹣5x≤8﹣2,合并同类项,得﹣3x≤6,系数化为1,得x≥﹣2.故不等式的非正整数解为﹣2,﹣1,0.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.21.解下列不等式,并把解表示在数轴上.(1)3x+1<2(x+1);(2)<6﹣.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)∵3x+1<2(x+1),∴3x+1<2x+2,3x﹣2x<2﹣1,x<1,将不等式的解集表示在数轴上如下:(2)∵<6﹣,∴x﹣3<24﹣2(3﹣4x),x﹣3<24﹣6+8x,x﹣8x<24﹣6+3,﹣7x<21,则x>﹣3,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.。
中考数学《方程与不等式》专题训练50题含答案
![中考数学《方程与不等式》专题训练50题含答案](https://img.taocdn.com/s3/m/387088def71fb7360b4c2e3f5727a5e9856a27b2.png)
中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.关于x ,y 的方程组24x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⎩■,其中y 的值被■盖住了,但不影响求出m 的值,则m 的值是( ) A .12B .12-C .13D .13-2.已知关于x 的方程290x a +-=的解是x =-2,则a 的值是( ) A .5 B .-5C .12D .13【答案】D【分析】把方程的解2x =-代入方程290x a +-=可得到关于a 的方程,解关于a 的方程即可.【详解】解:∵2x =-是方程290x a +-=的解, ∵2(2)90a ⨯-+-=. 解得:13a =. 故选:D .【点睛】本题考查了一元一次方程的解的应用,正确得到新的方程是解题关键. 3.已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,则它的另一个根和m 的值分别是( ) A .3和1 B .2和3C .3和4D .4和1【答案】A【分析】先根据方程有一根为0,代入方程求出m 的值,然后把m 的值代入方程解一元二次方程即可.【详解】解:关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0, ∵-m =-1, ∵m =1,把m =1代入方程得()()()()211311x x x x -+=+-, 整理得:230x x -=, 因式分解得()30x x -=, 解得x x 1203,,∵另一个为3x =,m =1, 故选A .【点睛】本题考查方程的解,与解一元二次方程,掌握解方程的解概念,与一元二次方程的解法是关键.4.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) A .1m > B .1m < C .m>2 D .2m <【答案】B【分析】由方程有两个不相等的实数根,利用根的判别式可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:∵方程220x x m -+=有两个不相等的实数根, ∵()2240m ∆=-->, 解得:1m <, 故选:B .【点睛】本题考查了根的判别式,牢记“当方程有两个不相等的实数根时,0∆>”是解题的关键.5.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,甲、乙两队合作,可比规定时间提前14天完成任务,依题意列方程为( ) A .111104014x x x +=--+B .111104014x x x +=++- C .111104014x x x -=++- D .111104014x x x +=-+-6.若(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11,则m 的值为( ) A .4 B .5C .6D .7【答案】D【分析】先根据同底数幂的乘法法则把左侧化简,然后列出关于m 的方程求解即可. 【详解】∵(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11, ∵(a ﹣b )m +4=(a ﹣b )11, ∵ m +4=11, 解得:m =7, 故选:D .【点睛】本题考查了同底数幂的乘法,以及一元一次方程的解法,根据题意列出一元一次方程是解答本题的关键.7.若m 是关于x 的方程2420x nx m ++=的根()0m ≠,则4m n +的值为( ) A .-1 B .1C .-2D .2【答案】C【分析】根据一元二次方程的根的定义代入即可求解,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】m 是关于x 的方程2420x nx m ++=的根()0m ≠, ∴2420m mn m ++=,0m ≠,420m n ∴++=,即42m n +=-, 故选C .【点睛】本题考查了一元二次方程的根的定义,将方程的解代入求解是解题的关键. 8.方程3214x y +=在自然数范围内的解共有_____个 A .1 B .2C .3D .4【答案】C【分析】根据二元一次方程3x+2y=14,可知在自然数范围内的解有哪几组,从而可以解答本题.【详解】解:二元一次方程3x+2y=14在自然数范围内的解是:24x y =⎧⎨=⎩,41x y =⎧⎨=⎩,7x y =⎧⎨=⎩, 即二元一次方程3x+2y=14在自然数范围内的解的个数是3个. 故选C .【点睛】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=14在自然数范围内的解有哪几组.9.从正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是248cm ,则原来的正方形铁片的面积是( ) A .281cm B .264cmC .254cmD .252cm【答案】B【分析】可设正方形的边长是x cm ,根据余下的面积是248cm ,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x -2,根据矩形的面积公式即可列出方程求解. 【详解】解:设正方形的边长是x cm , 根据题意得()248x x -=, 解得16x =-(舍去),28x =, ∵原正方形铁片的面积是8×8=64cm². 故选B .【点睛】本题考查了一元二次方程的应用,找到等量关系准确的列出方程是解决问题的关键,解题过程中要注意根据实际意义进行值的取舍.10.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ) A .13x y -= B .12y x += C .253x y -=D .213x y --=11.方程247236x x ---=-去分母得( ) A .22(24)(7)x x --=-- B .122(24)7x x --=-- C .12(24)(7)x x --=-- D .122(24)(7)x x --=--122247,x x 从而可得答案.122247,x x【点睛】本题考查的是解一元一次方程的步骤,去分母,掌握12.下列方程一定是一元二次方程的是( )A .3x 2+2x﹣1=0B .5x 2﹣6y ﹣3=0C .ax 2﹣x +2=0D .3x 2﹣2x ﹣1=0【答案】D【详解】解:A 、是分式方程,故A 错误; B 、是二元二次方程,故B 错误; C 、a =0时,是一元一次方程,故C 错误; D 、是一元二次方程,故D 正确; 故选:D .【点睛】本题考查一元二次方程的识别,熟知一元二次方程的定义是解题的关键. 13.一元二次方程()371x x x +=-化为一般形式为( ) A .2470x x --= B .2270x x --=C .2470x x -+=D .2270x x -+=【答案】A【分析】根据一元二次方程的一般形式判断即可. 【详解】解:∵()371x x x +=-, ∵237x x x +-=, ∵2370x x x ---=, ∵2470x x --=,一元二次方程()371x x x +=-化为一般形式为:2470x x --=,故A 正确. 故选:A .【点睛】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.14.不等式364x x -+≤-的解集在数轴上表示正确的是( ) A . B .C .D .【答案】A【分析】首先移项、合并同类项、未知数系数化1解不等式,再在数轴上表示解集即可.【详解】解:364x x -+≤-346x x -+≤-22-≤-x1x ≥,在数轴上表示为:,故选:A .【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:∵去分母;∵去括号;∵移项;∵合并同类项;∵化系数为1.15.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( ) A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501 故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.将二次三项式267x x ++进行配方,正确的结果应为( ) A .2(3)2x ++ B .2(3)2x -+ C .2(3)2x +- D .2(3)2x --【答案】C【分析】x 2+6x+7中x 2+6x+9即是(x+3)2,因而x 2+6x+7=(x+3)2-2 【详解】解:∵x 2+6x+7=x 2+6x+9-9+7, x 2+6x+7=(x+3)2-2. 故选C .【点睛】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1. 17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( )A.15B.25C.35D.4518.若一元二次方程式241211470x x+-=的两根为a、b,且a b>,则3a b+之值为何?()A.22B.28C.34D.4019.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【答案】C【分析】根据二元一次方程的根的判别式列出不等式进行求解即可.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∵0k 0∆⎧⎨≠⎩,即4400k k +⎧⎨≠⎩,解得:k ≥﹣1且k ≠0. 故答案为C .【点睛】本题考查了一元二次方程根的判别式,解题的关键在于:∵当∵=0时,方程有两个相等的实数根;∵当∵>0时,方程有两个不相等的实数根;∵当∵<0时,方程没有实数根. 20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题21.不等式﹣3x >6的解是_______. 【答案】x <﹣2【分析】系数化为1并根据不等式的性质:∵不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进行解答即可.【详解】解:系数化为1得:x <﹣2, 故答案是:x <﹣2.【点睛】本题主要考查不等式的性质,根据不等式的性质转换不等式的符号是解题的关键.22.方程2150b ax x -+=是关于x 的一元一次方程,则2a b +=____________. 【答案】2【详解】根据一元一次方程的定义可知x 的次数为1, 则ax 2=0且b-1=1,即a=0且b=2, 则2a+b=2×0+2=2. 故答案为2.23.某种商品原价每件40元,经两次降价,现售价每件32.4元,则该种商品平均每次降价的百分率是______. 【答案】10%【分析】设降价百分率为x ,根据售价从原来每件40元经两次降价后降至每件32.4元,可列方程求解.【详解】解:设降价百分率为x , 列方程:40(1﹣x )2=32.4.解得x 1=0.1,x 2=1.9(不合题意舍去). 故答案为:10%.【点睛】本题主要考查一元二次方程的实际应用,找准等量关系,根据题意列出方程是解题的关键.24.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).则这个茶园的AB 的长为_________.【答案】20m【分析】设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据茶园的面积为2600m ,列出方程并解答即可.【详解】解:设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据题意,得:()6912600x x +-=,整理,得:2353000x x -+=,解得115x =,220x =,当15x =时,70240>35x -=,不符合题意舍去;当=20x 时,70230x -=,符合题意,故这个茶园的AB 为20m .故答案为:20m .【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键. 25.甲、乙二人分别从相距20km 的A ,B 两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是x km/h ,乙的速度是y km/h ,根据题意所列的方程组是______,1.5x y +=______.【答案】 ()20.52201120x y x y ⎧++=⎨++=⎩11 【分析】设甲的速度是x km/h ,乙的速度是y km/h ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,两式相加即可得解.【详解】解:设甲的速度是x km/h ,乙的速度是y km/h ,依题意,得:()20.52201120x y x y ⎧++=⎨++=⎩, 两式相加得:1.511x y +=,故答案为:()20.52201120x y x y ⎧++=⎨++=⎩,11. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.26.关于x 的方程(m +5)x 2﹣2mx ﹣4=0是一个一元二次方程,那么m 的取值范围是___. 【答案】m ≠﹣5【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,其中二次项系数不为0,可得m 的取值范围.【详解】解:因为(m +5)x 2﹣2mx ﹣4=0是关于x 的一元二次方程,所以m +5≠0,解得:m ≠﹣5,故答案为:m ≠﹣5.【点睛】本题考查了一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.27.对于x ,y 定义一种新运算“* ”,xy ax by =+,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,则11*的值为______. 【答案】11- 【分析】根据3515*=,4728*=列出二元一次方程组35154728a b a b +=⎧⎨+=⎩①②,求得a 、b ,再根据新运算的定义求解即可.【详解】解:根据题中的新定义化简得:35154728a b a b +=⎧⎨+=⎩①②, ∵4⨯-∵3⨯得:24b -=-,解得:24b =,把24b =代入∵得:35a =-,则1111a b *=+=-.故答案为:11-.【点睛】此题主要考查了二元一次方程组的求解,理解题意列出二元一次方程组和加减法解二元一次方程组是解决此题的关键.28.若213111x M N x x x -=+-+-则M =_______ ,N =_______ .∵31M N N M +=-⎧⎨-=⎩, 解得:21M N =-⎧⎨=-⎩. 故答案为:-2,-1.【点睛】本题考查分式的混合运算,解二元一次方程组.掌握分式的混合运算法则是解题关键.29.若2m +1 的值同时大于 3m -2和 m+2的值,且m 为整数,则 3m -5 =____. 【答案】1【分析】先根据题意列出不等式组求出m ,再求出代数式的值.【详解】依题意得2132212m m m m +-⎧⎨++⎩>> 解得31m m ⎧⎨⎩<> ∵m 为整数,∵m=2∵3m -5=6-5=1故答案为:1.【点睛】此题主要考查不等式组的应用,解题的关键是根据题意求出m 的值.30.不等式组11327x x x -≥+⎧⎨-<⎩的解集是______. 【答案】20x -<≤【分析】先分别求出两个不等式的解集,再找出解集的公共部分即可.【详解】解:11327x x x -≥+⎧⎨-<⎩①② 解不等式∵得,0x ≤,解不等式∵得,2x >-,则原不等式组的解集为:20x -<≤.故答案为:20x -<≤.【点睛】本题考查了解不等式组,要掌握解不等式组的步骤和方法是解题的关键. 31.如图,一块长为m a 宽为m b 的长方形土地的周长为16m ,面积为215m .现将该长方形土地的长、宽都增加2m ,则扩建后的长方形土地的面积是____________.【答案】35m 2【分析】根据题意列出关于a ,b 的方程,用含有a 的式子表示b ,可得关于a 的一元二次方程,求出a ,b 的值,即可得出答案.【详解】根据题意,得2()1615a b ab +=⎧⎨=⎩①②, 由∵得8b a =-∵,将∵代入∵,得(8)15a a -=,即28150a a -+=, 解得5a =或3a =(舍),将5a =代入∵,得3b =.长和宽都增加2m ,得7m ,5m ,所以扩建后的长方形土地的面积是7×5=35(cm 2).故答案为:35 cm 2.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键. 32.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为_________________.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.33.已知A ∠是ABC 的一个内角,并且方程24sin 102A x x -+=1,则A ∠=______.【答案】90︒##90度 sin 12A x +=)1sin 102A +=, 34.已知355x y a b +-和7332y x a b -是同类项,则x +y 的值是______. 【详解】-35.已知2x =是不等式ax-3a+2≥0的解,且1x =不是这个不等式的解,那么a 的取值范围是__________.【答案】12a <≤【分析】根据x=2是不等式ax-3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=2是不等式ax-3a+2≥0的解,∵2-a≥0,解得:a≤2,∵x=1不是这个不等式的解,∵1-a<0,解得:a>1,∵1<a≤2,故答案为:1≤a≤2.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.36.规定11a ba b⊕=+,若232(1)(1)1xx xx++⊕-=-,则x的值是_____.37.阅读下面计算113⨯+135⨯+157⨯+…+1911⨯的过程,然后填空.解:∵113⨯=12(11-13),135⨯=12(13-15),…,1911⨯=12(19-111),∴113⨯+135⨯+157⨯+…+1911⨯=12(11-13)+12(13-15)+12(15-17)+…+12(19-111)=12(11-13+13-15+15-17+…+19-111)=12(11-111)=5 11.以上方法为裂项求和法,请参考以上做法完成:(1)124⨯+146⨯=______;(2)当113⨯+135⨯+157⨯+ (x)613时,最后一项x=______.38.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.39.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .【答案】8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∵3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∵AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.三、解答题40.解不等式组()101432x x ->⎧⎪⎨+<⎪⎩.41.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.(结果保留整数)42.解不等式组:102132x x x -≤⎧⎪⎨+-<⎪⎩①②,并把解集在数轴上表示出来.【答案】21x -<≤,见解析【分析】先分别解两个不等式 ,在数轴上标出解集,然后写出解集即可.【详解】解:解不等式∵得,1x ≤,解不等式∵得,2x >-,在数轴上分别表示这两个不等式的解集如图∵不等式组的解集为:21x -<≤.【点睛】本题考查不等式组的解集,准确掌握解集的求法是解题的关键. 43.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若()()25A B A B +-+的值与y 的取值无关,求x 的值.44.x 的一元二次方程()2420x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.)证明:(m ∆=+方程总有两个不相等的实数根;)解:根据题意得12x x +=12x x ++(4m ∴-+解得=1m 即m 的值为【点睛】本题考查了根与系数的关系:若45.(1)解方程:11322x x x-+=-- (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪++⎩> 【答案】(1)无解;(2)24x -<【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:13(2)1x x +-=-,解得:2x =,检验:把2x =代入得:20x -=,2x ∴=是增根,分式方程无解;12632x x +>+①2x -,4x <,不等式组的解集为24x <.【点睛】此题考查了解分式方程,以及解一元一次不等式组,解题的关键是熟练掌握各自的解法.46.用配方法解方程:212302x x --= 2210=-【分析】根据配方法解一元二次方程即可47.解方程:35136x x -=-. 48.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金840元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金1380元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于5520元且不少于5280元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若甲型口罩的售价为每箱450元,乙型口罩的售价为每箱420元.为了促销,无论采取哪种进货方案,公司决定每售出一箱乙型口罩,返还顾客现金a 元,而甲型口罩售价不变,要使(2)中所有方案获利相同,直接写出a 的值. 【答案】(1)甲、乙型号口罩每箱的进价分别为300元,240元(2)有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱;方案二:购进甲型口罩9箱,则购进乙型口罩11箱;方案三:购进甲型口罩10箱,则购进乙型口罩10箱;方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)a =30【分析】(1)设甲型号口罩每箱进价为m 元,乙型号口罩每箱进价为n 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意建立不等式组,求出其解就可以得出结论;(3)由题意得出w =(a -30)x + 3600- 20a ,根据“(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.(1)设甲、乙型号口罩每箱的进价分别为m 元,n 元,由题意得:2840321380m n m n +=⎧⎨+=⎩解得:300240m n =⎧⎨=⎩ 答:甲、乙型号口罩每箱的进价分别为300元,240元(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意得:300240(20)5520300240(20)5280x x x x +-≤⎧⎨+-≥⎩解得:812x ≤≤x 非负整数∴x =8或9或10或11或12∵有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱方案二:购进甲型口罩9箱,则购进乙型口罩11箱方案三:购进甲型口罩10箱,则购进乙型口罩10箱方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)设获得的总利润为ww =(450- 300)x +(420-240-a )(20-x )=150x +(180-a )(20-x )= 150x + 20(180-a ) -(180-a )x=(150-180+a )x + 3600-20a=(a -30)x + 3600- 20a要使(2)中所有方案获利相同∵a -30=0即a =30∵当a =30时,(2)中所有方案获利相同即w =3600-20×30=3600-600= 3000(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,整式的加减无关类型,根据题意列出方程组,不等式组,代数式是解题的关键.49.解二元一次方程(1)3728x y x y -=⎧⎨+=⎩; (2)()()3212158y x x y ⎧-=+⎪⎨-=-⎪⎩.。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
![中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用](https://img.taocdn.com/s3/m/6d145b8f1b37f111f18583d049649b6648d709ff.png)
13.(2021·毕节适应性考试)如图,点 A 在数轴上表示的数是-16.点 B 在数轴上表示的数是 8.若点 A 以 6 个单位长度/秒的速度向右匀速运动, 同时点 B 以 2 个单位长度/秒的速度向左匀速运动,问:当 AB=8 时,运 动时间为__2或4 __秒.
14.(2021·贺州)为了提倡节约用水,某市制定了两种收费方式:当每 户每月用水量不超过 12 m3时,按一级单价收费;当每户每月用水量超过 12 m3 时,超过部分按二级单价收费. 已知李阿姨家五月份用水量为 10 m3, 缴纳水费 32 元,七月份因孩子放假在家,用水量为 14 m3,缴纳水费 51.4 元. (1)问该市一级水费,二级水费的单价分别是多少? (2)某户某月缴纳水费为 64.4 元时,用水量为多少?
1 y=4 的一个解,则 a 的值为 2 .
7.(2020·南京)已知
x,y
x+3y=-1, 满足方程组2x+y=3, 则
x+y
的值为__11__.
8.(2020·牡丹江)某种商品每件的进价为 120 元,标价为 180 元.为了
拓展销路,商店准备打折销售.若使利润率为 20%,则商店应打__88__折.
解:(1)-1;5. (2)设铅笔的单价为 m 元,橡皮的单价为 n 元,日记本的单价为 p 元,依 题意,得 20m+3n+2p=32,① 39m+5n+3p=58,② 由 2×①-②可得 m+n+p=6, ∴5m+5n+5p=5×6=30. 答:购买 5 支铅笔、5 块橡皮、5 本日记本共需 30 元.
15.(2020·扬州)阅读感悟: 有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于 未知数的代数式的值,如以下问题: 已知实数 x,y 满足 3x-y=5①,2x+3y=7②,求 x-4y 和 7x+5y 的值. 本题常规思路是将①②两式联立组成方程组,解得 x,y 的值再代入欲求 值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方 程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式 的值,如由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19.这样 的解题思想就是通常所说的“整体思想”.
中考数学专题复习《方程与不等式》测试卷-附带答案
![中考数学专题复习《方程与不等式》测试卷-附带答案](https://img.taocdn.com/s3/m/434bfe2b178884868762caaedd3383c4bb4cb4f4.png)
中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
中考数学方程与不等式(组)试题
![中考数学方程与不等式(组)试题](https://img.taocdn.com/s3/m/081a323c5b8102d276a20029bd64783e09127dda.png)
第二单元 方程与不等式(组)第5课 一次方程(组)1.由11χ-9y -6=0,用χ表示y ,得y=_____ , y 表示χ,则χ= _____ .2.若 59x y =⎧⎨=⎩是方程k χ-2y=1的解,则k= ______.3.方程2χ+y=8的正整数解是_____________ . 4.如果333221035m n m n x y +--+-=是关于χ,y 的二元一次方程,则m= ___ ,n=___ .5.已知3334x y z x y z-=⎧⎨-=⎩, 则::x y z =_________.6.若关于x 与y 的方程组431()3x y ax a y +=⎧⎨+-=⎩的解x 与y 相同,则a=___. 7320x x y --=,那么23x y +=___.8.若23213(242)x y x y +-=--+,则x y +=___.9.下列方程根据等式性质1进行变形正确的是( ).A .235x --=-变形为253x =-+B .2(1)4x -=-变形为142x -=--C .35x =-变形为35x +=D .35x =-变形为53x =-+10.已知直线y=kx+b 与直线y=3x -1交于y 轴同一点,则b 的值是( )A .1B .-1C .13 D .-13 11. 解方程16110312=+-+x x 时,去分母后正确的结果是( ). A . 4x+1-10x+1=1 B .4x+2-10x -1 =1C .4x+2―10x ―1=6D .4x+2-10x+1=612.一份数学试卷,只有25个选择题,做对一题得4分,做错或不选每题扣1分,某同学做了全部试卷,得了70分,他一共做对了( ) .A .17题B .18题C .19题D .20题13.已知12x y =⎧⎨=⎩与2x y c =⎧⎨=⎩都是0ax by +=的解,则c 的值是( ). A .1 B .2 C .3 D .414.若()()235x m x x x n ++=-+,则m n +的值为( ). A .-32 B .9 C .8 D .-915.已知x=-2是方程2x -∣k -1∣=-6的解,求k 的值.16.若()6321=---a x a 是关于x 的一元一次方程,求aa 12--的值.17.解关于的方程: (1) ()431231=--x (2) x -31⎥⎦⎤⎢⎣⎡--)9(31x x =91(x -9)+2,(3) 2+-=+ab x b x a ()b a ≠.20.某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?第6课 实际问题与一次方程(组)1.如果一个两位数上的十位数是个位数的一半,两个数位上的数之和为9,则这两位数是____.2.如图(1):CB 切⊙O 于点C ,OB 交⊙O 于点D ,∠B=30˚,BD=6cm ,则OD 的长度是________.C AO BD B D C图1 图(2)3. 如图(2):∠C=90˚,BD=20,∠B=30˚,∠ADC=45˚,则AC=________.4. 三个连续的偶数和是18,则它们的积是____________.5.已知绿豆生成豆芽后,重量增加6.5倍,要得这样的豆芽130千克,设所需绿豆x 千克,则可列方程( ).A .x-6.5x=130B .6.5x=130C. 6.5x-x=130D. x+6.5x=1306.根据下列条件,能列出方程的是( ).A .一个数的2倍比1小3B .a 与1的差的41 C .甲数的3倍与乙数的21的和 D .a 与b 的和的53 7.某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ) .A .不赚不赔B .赚9元C .赔18元D .赚18元8.小祥在日历的某列画出相邻的三个数,算出它们的和,其中肯定不对的是( ).A .20B . 33C . 45D . 549.在2000年时,小明10岁,他爸爸35岁,问那一年小明的年龄是他爸爸年龄的一半?10.甲、乙两站间的路程为450千米,上午9点钟,一列快车从甲站开往乙站,每小时行驶85千米;9点30分,一列慢车从乙站开往甲站,每小时行使65千米,问两车几点几分相遇?11.初一年级王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只看到:“甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,__________________________________________?请将这道作业题补充完整并列方程解答.12.某乡决定对一段公路进行改造.已知由甲工程队单独施工需要40天完成;如果由乙工程队先单独施工10天,那么剩下的工程还需要两工程队合作20天才能完成.(1)求乙工程队单独完成这项工程要的天数?(2)求两工程队合作完成这工程要的天数?13.在某月的日历上,用一个2 3的长方形圈出六个数,使它们的和是69,求这6天分别是几号?14.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元,而低于4000元的应缴纳超过800元那部分稿费的14%的税;(3)稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,试根据上述纳税的计算方法作答:①若王老师获得的稿费为2400元,则应纳税________元,若王老师获得的稿费为4000元,则应纳税________元.②若王老师获稿费后纳税420元,求这笔稿费是多少元?第7课 一次不等式(组)(含实际应用)1.已知关于x 的不等式45x m ->的解集如图所示,则m 的值为 . 2. 不等式组315(2)4332x x x x +>-⎧⎨-≤-⎩的解集是 . 3.不等式组:52(1)1113x x x >-⎧⎨->-⎩ 的整数解的和是 .4.已知关于x 的不等式组221230x x x a +-⎧>⎪⎨⎪->⎩无解,则a 的取值范围是 .5.50x k ++=有实数解,则k 的范围是 .6.若|x-y|=y-x,是则x y ; 若x ≠y,则x 2+|y|_________0.7.若不等式的5x+n>0解集是x>2,则不等式5x+n<0的解集是 .8.小王的家到公司的路程是40千米,如果他七点十分离家开摩托车去公司,要在7:50至8点之间到达公司,则小王开车的速度范围是 . 9.不等式组233142x x ->-⎧⎪⎨->⎪⎩的解集在数轴上表示,正确的是( ).10. 若11|1|-=--x x ,则x 的取值范围是( ). A.x >1 B.x ≤1 C. x ≥1 D.x <111.某人从一个水果摊上买了三斤苹果,平均每斤a 元,他又从另一个水果摊上买了两斤苹果,平均每斤b 元,后来,他以2b a +元的价格把苹果全部卖掉,结果赔了钱,原因是( ).A.a>bB.a<bC.a=bD.与a 、b 的大小无关12.已知不等式组4335a x a x -<<+⎧⎨<<⎩的解集为3<x<a+3,则a 的取值范围为( ). A.a>0 B.7a ≤ C.a>0 或 a ≤7 D.0<2a ≤13.设〇、□、△分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个〇、□、△这样的物体,按质量从小到大的顺序为( ).A.〇、□、△B. 〇、△、□C. □、〇、△D. △、□、〇14.k 为何值时,等式|-24+3a|+0232=⎪⎭⎫ ⎝⎛--b k a 中的b 是负数?15.(盐城) 国家为了关心广大农民群众抵御大病风险的能力,积极推行农村医疗保险制度,某市根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定,享受医保的农民可以在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销,医疗费的报销比例标准如下:费用范围 500元以下(含500元) 超过500元且不超过10000元的部分超过10000元的部分报销比例标准 不予报销 70% 80%(1)假设某农民一年的实际医疗费为x 元(10000500≤x ),试求y 与x 的函数关系式;(2)若某农民一年内付医疗费为2600元(自付医疗费=实际医疗费—按标准报销的金额).则农民当年实际费用为多少元?(3)若某农民一年内自付医疗费不少于4100元,则该农民当年实际费用为多少元?第8课 二次方程1.当m 时,方程(m -1)x 2-(2m -1)x+m=0是关于x 的一元二次的方程.2.一元二次方程x 2-2x -2=0解是 .3.方程x 2 +(3+2)x+6=0的解是 .4.方程x 2+x -1=0的解是 _ .5.方程(2y+1)(2y -3)=0的解是______________.6.方程x (x -1)=0的解是 _ .7.若使代数式 x 2-2的值为7,则x 值一定是( ).A .3B . 3或-3C .-3D .38.方程x 2=1的实数根有( ).A . 0个B . 1个C . 2个D .无数个9.方程2x (x -1)=5(x -1)的根是( ).A . x=25B . x=1C . x 1=25,x 2=1 D . x 1=52,x 2=1 10.若多项式x 2-3x+3的值等于7,则x 的值为( ).A .4B .-1C . 4或-1D . 111.方程(m+2)x 2+3mx+1=0是关于x 的一元二次的方程,则m 的值为( ).A .m= 2B .m= -2C .m=2或-2D . m ≠-212.要使9a n -n 42+6与3a n 是同类项,则n 值一定是( ).A . 3B .±3C .2或3D .±313.x 2+x -2=014.(x+3)2=16x 15.x2+12x+27=0 16.(x-2)2=3 17.(x-1)(x+2)=7018.x2-12x-28=0第9课实际问题与二次方程1.已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均的增长率是.2.三个连续正整数中,前面两个数的平方和等于第三个数的平方,则这三个数从小到大依次是.3.抛物线y=x2-2x-3与x轴的交点坐标为.4.写一个以-1为一个根的一元二次方程是.5.某公司2004年缴税60万元,2006年缴税80万元,设该公司这两年缴税的年平均增长率为x,则得到方程().A.60+2x=8 B.60(1+x)=80 C.60x2=80 D.60(1+x)2=806.某种商品的进价为800元,标价为1200元,后来由于该商品积压,商品准备打折出售,但要保持利润不低于5%,则至少打().A.6折 B.7折 C.8折 D.9折7.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本().A. 8.5% B. 9% C. 9.5% D. 10%8.一项工程,甲、乙两人合做2天完成,已知乙单独完成此项工程比甲单独完成此项工程多用3天,那和甲单独完成此项工程需()A. 2天 B. 3天 C.4天 D. 5天9.某水果经营户以2元/千克的价格购进一批小型水果,以3元/千克的价格出售.每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现这种小型水果每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型水果的售价降低多少元?10.某工程队在我市实施棚户区改造过程中,承包了一项拆迁工程,原计划每天拆迁1250 m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始该工程队加快了拆迁速度,第三天拆迁了1440 m2.求:(1)该工程队第一天拆迁的面积;(2)若该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.11.机械加工需用油进行润滑以减小摩擦.某企业加工一台大型机械设备润滑油用量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油的用量下降到70千克,用油的重复利用率仍然为60%.问:甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑油用油量每减少1千克,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问:乙车间技术革新后,加工一台大型机械设备的润滑油用油量是多少千克?用油的重复利用率是多少?第10课 一元二次方程的判别式与根与系数的关系1.方程0922=+-mx x 有两个相等的实数根,则________=m .2.设41≥m ,且2≠m ,方程0)12()2(2=+---m x m x m 的根的情况是 . 3.若方程032=-+k x x 没有实数根,则k 的最大整数值是 .4.关于x 的方程x 2+2k x+1=0有两个不相等的实数根,则k 的取值范围为 .5.一元二次方程032=--a ax x 的两根之和为12-a ,则两根之积为_________.6.在一元二次方程02=++c bx x 中)(c b ≠,若系数b 、c 可在1、2、3、4、5中取值,则其中有实数解的方程的个数是 .7.下列方程中有两个相等实数根的是 ( )A .035422=++x xB .x x 212=+C .1)1(2-=-xD .1452=+x x 8.关于x 的一元二次方程()2()04a c ab x ac x -++-+=有两个相等的实数根,那么以a ,b ,c 为三边的三角形是 ( )A .以a 为斜边的直角三角形B .以c 为斜边的直角三角形C .以b 为底边的等腰三角形D .以c 为底边的等腰三角形9.若a x x ++3142为完全平方式,则a 的值为 ( ) A .61 B .121 C .361 D .144110.如果方程022=++m x x 有两个同号的实数根,则m 的取值范围是( )A .m >3B .0<m ≤1C .2≤m <3D .m <011.证明关于x 的方程1)2(2-=+-x m mx 必有实数根.12.已知关于x 的方程0)2(222=+--m x m x ,问:是否存在实数m ,使方程的两个实数根的平方和等于56?若存在,求出m 的值;若不存在,请说明理由.13.探索与创新:如图,某校广场有一段25米长的旧围栏,现打算利用该围栏的一部分(或全部)为一边,围成一块100平方米的长方形草坪(如图CDEF ,CD <CF )已知整修旧围栏的价格是每米1.75元,建新围栏的价格是每米4.5元.(1)若计划修建费为150元,能否完成该草坪围栏修造任务?(2)若计划修建费为120元,能否完成该草坪围栏修建任务?若能完成,请算出利用旧围栏多少米;若不能完成,请说明理由.问题二图F E D C B A第二单元 方程与不等式(组)检测卷(总分100分,时间60分钟)一.选择题(共12小题,每小题3分)1.已知a>b>0,则下列不等式不一定成立的是 ( )A .ab>b 2B .a+c>b+cC . 1a <1bD .ac>bc 2.一元二次方程x 2-6x -7=0的两根为 ( )A . x 1=1,x 2=7B .x 1=-1,x 2=7C .x 1=-1,x 2=-7D .x 1=1,x 2=-73.不等式组()⎪⎩⎪⎨⎧〈--〈-011221x x 的解集是( )A . 2<x<5B . 0<x<5C .2<x<3D .x<24.关于x 的方程kx 2+3x -1=0有实数根,则k 的取值范围是( )A .k ≤-94B .k ≥-94,且 k ≠0 C .k ≥-94 D .k ≥-32,且 k ≠0 5.若方程组⎩⎨⎧=-=+k y x k y x 2中,x>y, 则k 的取值范围是( ) A .k>0 B .k<0 C .k 为一切实数 D .k>16.满足“两个实数根之和等于3”的一个方程是( )A .x 2-3x -2=0B .x 2+2x -3=0C .x 2+3x -2=0D .x 2-2x +3=07.若10〈〈x ,则32,,x x x 的大小关系是( )A .32x x x <<B .23x x x <<C .x x x <<23D .x x x <<328.两圆半径R .r 分别是方程x 2-3x +2=0的两根,且圆心距为2,则两圆的位置关系是( )A .外切B .内切C .外离 (D)相交9.如图,将正方形ABCD 的一角折叠,折痕为AE ,∠BAD 比∠BAE大48°,设∠BAE 和∠BAD 的度数分别是x 和y ,那么x, y 所适合的一个方程组是( )A .⎩⎨⎧=+=-9048x y x yB .⎩⎨⎧==-x y x y 248C .⎩⎨⎧=+=-90248x y x yD .⎩⎨⎧=+=-90248x y y x 10.方程组⎩⎨⎧-=+-+=-1221222y x y x y x 的实数解个数为( )A .0B .1C .2D .411.若方程1116=---x m x 有增根,则它的增根是( ) A .0 B .1 C .-1 D .±112.某商店老板销售一种商品,他要以不低于进价20%的价格才能出售,但为了获得更多的利,他以高出进价的80%标价,若你买下标价为360元的这种商品,最多降价( ),商店老板才肯出售.A .80元B .100元C .120元D .160元二.填空题(共10小题,每小题2分)13.请你写一个有⎩⎨⎧==21y x 这个解且未知数的系数不为1的二元一次方程___________.14.方程x 2=3x 的解是_____________.15.等腰三角形的底和腰是方程x 2-6x +8=0的两根,则这个三角形的周长是________.16.如果的值为2x -4的值是5,那么4x 2-16x +16的值是__________.17.设方程x 2-2x -2=0了两实数根为x 1 ,x 2,则1x 1 +1x 2=________. 18.若不等式的-3x +n>0解集为x<2,则不等式-3x +n<0的解集______.19.分式方程1x -1-x 2x=1去分母后,所得方程是____________. 20.不等式组⎩⎨⎧≥-<-0302x x 的所有整数解的和是___________.21.某市政府切实为残疾人办实事,在市区道路改造中为盲人修建一条长3000米的盲道,根据规划和要求,该市工程队在施工时增加了施工人员,每天修建的盲道比原计划增加50%,结果提前2天完成,则实际每天修建盲道_____________米.22.一次函数y 1=-x -1与反比例函数y 2=-2x交于两点A , B ,若y 1>y 2,则x 的取值范围是___________.三、简答题(共44分)23.解方程(2小题,每小题5分)(1)2x 2-5x -1=0 (2)2-x x-3 =1-13-x24.(8分)云南省是我国花卉产业大省,一年四季都有大量鲜花销往全国各地,花卉产业已成为云南省许多地区经济发展的重要项目,近年来某镇的花卉的产业不断增加,年花卉的产值是640万元,年花卉的产值是1000万元,(1) 求,年花卉产值的年平均增长率是多少?(2) 若年花卉产值继续稳步增长(即年增长率与前两年相同),那么请你估年这个镇花卉产值将达到多少万元?25.(8分)已知关于x的一元二次方程x2+kx-1=0,(1)求证:方程有两个不相等的实数根.(2)设方程两根分别为x1、x2,且满足x1+x2=x1x2,求k的值.26.(8分)已知A=2a2-a+2,B=2,C=a2-2a+4,其中a>1,(1)求证:A-B>0(2)试比较A、B、C三者之间的大小关系,并说明理由.27.(10分)用大小两种货车运送360台机械设备,有三种运输方案:方案一:设备的二分之一用大货车运送,其余用小货车运送,需货车27辆;方案二:设备的三分之一用大货车运送,其余用小货车运送,需货车28辆;方案三:设备的三分之二用大货车运送,其余用小货车运送,需货车26辆;问:(1)每辆大、小货车各可运送多少台机械设备?(2)如果每辆大货车的运费比每小货车的运费高m%(m>0),请你选择一种方案,使运费最低,并说明理由.。
中考数学《数与式》+《方程(组)与不等式(组)》专题测试卷
![中考数学《数与式》+《方程(组)与不等式(组)》专题测试卷](https://img.taocdn.com/s3/m/15399329cdbff121dd36a32d7375a417866fc1fd.png)
2022年中考数学专题测试卷【一】《数与式》+《方程(组)与不等式(组)》(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分) 1.下列各数中是有理数的是( )A.πB.0C. 2D.35 2.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( )A. 0.69×107B. 69×105C. 6.9×105D. 6.9×106 3.在实数|-3|,-2,0,π中,最小的数是( )A.|-3|B.-2C.0D.π 4.下列等式成立的是( )A.x 2+3x 2=3x 4B.0.00028=2.8×10-3C.(a 3b 2)3=a 9b 6D.(-a +b)(-a -b)=b 2-a 25.世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 以下所列方程中正确的选项是〔 〕A .128)% 1(1682=+aB .128)% 1(1682=-aC .128)% 21(168=-aD .128)% 1(1682=-a6.假设函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),那么当函数值y =8时,自变量x 的值是〔 〕A 6B .4C 6或4D .46 7.函数x y =1,34312+=x y .当21y y >时, x 的范围是〔 〕 A .x <-1 B .-1<x <2 C .x <-1或者x >2 D .x >2 8.已知x 2-3x -4=0,则代数式xx 2-x -4的值是( )A.3B.2C.13D.129.已知方程0120212=+-x x 的两个根分别为x 1,x 2,则2212021x x -的值为( ) A.1 B.-1 C.2021 D.-202110.已知a ≥2,m 2-2am +2=0,n 2-2an +2=0,m ≠n ,则(m -1)2+(n -1)2的最小值是( )A.6 B .3 C .-3 D .0 二、填空题(每小题3分,共18分)11.一个正数的平方根分别是x +1和x -5,则x =12.定义新运算:a ※b =a 2+b ,例如3※2=32+2=11,已知4※x =20,则x = 13.关于x 的分式方程的解为正实数,则k 的取值范围是________14.若a -1a =6,则a 2+1a2的值为 .15.假设关于x 的不等式325m x -<的解集是2x >,那么实数m 的值是____________ 16.已知a 1=t t -1,a 2=11-a 1,a 3=11-a 2,…,a n +1=11-a n(n 为正整数,且t≠0,1),则a 2016=___________(用含有t 的代数式表示) 三、解答题(本题含9道小题,共72分) 17.(6分)计算:(1)-|4-12|-(π-3.14)0+(1-cos30°)×(12)-2.(2)计算:|1﹣|﹣×+﹣()﹣2;18.(12分)解方程〔组〕、不等式〔组〕(1)x 2-4x-12=0 (2)13321++=+x xx x(3)34194x y x y +=⎧⎨-=⎩ (4)110334(1)1x x +⎧-⎪⎨⎪--<⎩≥19.(1)(8分)先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=1 2 .(2)先化简,再求值:(x+1x2-x-xx2-2x+1)÷1x,其中x=2+1.20.(6分)已知1x-1y=3,求分式2x-14xy-2yx-2xy-y的值.21.(6分)已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.(1)mn; (2)m2+n2.22.(8分)用※定义一种新运算:对于任意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.23.(6分)若数a 使关于x 的不等式组⎩⎨⎧x 3-2≤14x -7,6x -2a>51-x有且仅有三个整数解,且使关于y 的分式方程1-2y y -1-a1-y =-3的解为正数,则所有满足条件的整数a 的值之和是多少?24. (10分)君实机械厂为青扬公司消费A 、B 两种产品,该机械厂由甲车间消费A 种产品, 乙车间消费B 种产品,两车间同时消费.甲车间每天消费的A 种产品比乙车间每天消费的B 种产品多2件,甲车间3天消费的A 种产品与乙车间4天消费的B 种产品数量一样. (1)求甲车间每天消费多少件A 种产品?乙车间每天消费多少件B 种产品?(2)君实机械厂消费的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现 青扬公司需一次性购置A 、B 两种产品一共80件,君实机械厂甲、乙两车间在没有库存的情况下只消费8天,假设青扬公司按出厂价购置A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购置方案.25. (10分)近年来,政府大力HY 改善的办学条件,并实在加强对学生的平安管理和平安 教育.某中学新建了一栋教学大楼,进出这栋教学大楼一共有2道正门和2道侧门,其中两道正门大小一样,两道侧门大小也一样.平安检查中,对4道门进展了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟可以通过840名学生.(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.平安检查规定:在紧 急情况下,全大楼的学生应在5分钟内通过这4道门平安撤离.假设这栋教学大楼的教 学室里最多有1500名学生,试问建造的这4道门是否符合平安规定?请说明理由.。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
![中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用](https://img.taocdn.com/s3/m/6f9dd11b66ec102de2bd960590c69ec3d5bbdba1.png)
8.(2021·聊城)若-3<a≤3,则关于x的方程x+a=2解的取值范围为 ( A)
A.-1≤x<5 B.-1<x≤1 C.-1≤x<1 D.-1<x≤5
价格降价出售,则该护眼灯最多可降价 32 元. -x+a<2,
12.★(2022·达州)关于x的不等式组3x2-1≤x+1恰有3个整数解,则a 的取值范围是 2≤a<.
3
13.(2021·山西)下面是小明同学解不等式的过程,请认真阅读并完成 相应任务. 2x3-1>3x2-2-1 解:2(2x-1)>3(3x-2)-6 …… 第一步 4x-2>9x-6-6 ………………… 第二步 4x-9x>-6-6+2 ……………… 第三步 -5x>-10 ………………………… 第四步 x>2 ………………………………… 第五步
解:设购进“冰墩墩”摆件x个,“冰墩墩”挂件y个,依题意得
x+y=180,
x=80,
80x+50y=11 400,解得y=100.
答:购进“冰墩墩”摆件80个,“冰墩墩”挂件100个.
(2)该商店计划将“冰墩墩”摆件售价定为100元/个,“冰墩墩”挂件 售价定为60元/个,若购进的180个“冰墩墩”摆件和挂件全部售完,且 至少盈利2 900元,求购进的“冰墩墩”挂件不能超过多少个?
②
解:解不等式①,得x>1, 解不等式②,得x<4, ∴该不等式组的解集为1<x<4.
2x≥x-1,① 6.(2022·天津)解不等式组x+1≤3, ② 请结合题意填空,完成本题的解答. (1)解不等式①,得 x≥-1 ; (2)解不等式②,得 x≤2 ; (3)把不等式①和②的解集在如图所示的数轴上表示出来:
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
![中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用](https://img.taocdn.com/s3/m/ff01eb3bf02d2af90242a8956bec0975f565a464.png)
4.(2021·荆门第 15 题 3 分)关于 x 的不等式组1+32x≥x-1 恰有 2 个
整数解,则 a 的取值范围是 5≤5a≤<a<6. 6
2x≥x-1, ① 5.(2021·武汉第 17 题 8 分)解不等式组4x+10>x+1 ②请按下列步骤 完成解答. (1)解不等式①,得 x≥x≥--11; (2)解不等式②,得 x>x>--33;
3x-2≥1, (2021·通辽)若关于 x 的不等式组2x-a<5 有且只有 2 个整数 解,则 a 的取值范围是-1-<a1<a≤≤11..
【思路点拨】先求出不等式组的解集(用含字母 a 的代数式表示),再根 据不等式组有且只有 2 个整数解,可推出 a 的取值范围.
解含参不等式(组)的 8 个“母题”: (1)若不等式 ax>a 的解集是 x>1,则 a>0; (2)若不等式 x>a 的解集是 x>2,则 a=2;
第四节 一元一次不等式(组) 及其应用
命题点 1:一元一次不等式组的解法及解集表示(近 3 年考查 18 次)
x-1<-3, 1.(2020·黄石第 6 题 3 分)不等式组2x+9≥3 的解集是
(
C)
A.-3≤x<3
B.x≥-2
C.-3≤x<-2
D.x≤-3
x-4≤2(x-1),
某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和 篮球,用于学校球类比赛活动,每个足球的价格都相同,每个篮球的价 格也相同,已知篮球的单价比足球单价的 2 倍少 30 元,用 1 200 元购买 足球的数量是用 900 元购买篮球数量的 2 倍.
(1)足球和篮球的单价各是多少元? (2)根据学校实际情况,需一次性购买足球和篮球共 200 个,但要求足球 和篮球的总费用不超过 15 500 元,学校最多可以购买多少个篮球?
中考数学复习《方程(组)与不等式(组》测试题(含答案)
![中考数学复习《方程(组)与不等式(组》测试题(含答案)](https://img.taocdn.com/s3/m/e75030545bcfa1c7aa00b52acfc789eb172d9e1b.png)
中考数学复习《方程(组)与不等式(组》测试题(含答案)一、选择题1.下列数值中不是不等式5x ≥2x +9的解的是( ) A. 5 B. 4 C. 3 D. 22.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( ) A. -1 B. -3 C. 1 D. 34.已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2x C. ⎩⎪⎨⎪⎧x +2y =7x =2y D. ⎩⎪⎨⎪⎧2x +y =7y =2x5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A. m <92 B. m <92且m ≠32 C. m >-94 D. m >-94且m ≠-347.定义新运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 无关8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +5 9.如图,某小区有一块长为18 m ,宽为 6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m ,则可列出关于x 的方程是( )A. x 2+9x -8=0 B. x 2-9x -8=0 C. x 2-9x +8=0 D. 2x 2-9x +8=010.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )31二、填空题11.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元. 12.分式方程1x -2=3x的解是________. 13.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.14.不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.15.若方程(x -m )(x -n )=3(m ,n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________. 16.已知⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.17.已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是________.三、解答题18.解方程组⎩⎪⎨⎪⎧9x 2-4y 2=36x -y =2.19.解方程:2x +3=1x -1.20.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1)12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.21.解不等式组⎩⎪⎨⎪⎧5x -3<4x4(x +1)+2≥x ,并把它们的解集在数轴上表示出来.22.关于x 的两个不等式①3x +a2<1与②1-3x >0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.23.已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.24.某校学生利用双休时间去距学校10 km 的炎帝故里参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.25.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?26.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.27.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元?28.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求量的比例购买这2000件物品,需筹集资金多少元?29.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?30.如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.方程(组)与不等式(组)阶段测评1. D 【解析】不等式5x ≥2x +9的解集是x ≥3,因此2不是这个不等式的解,故选D.2. D 【解析】3x -2<1,解得x <1,故选D.3. D 【解析】设方程的另一个根为x 2,则根据根与系数关系有-1+x 2=2,解得x 2=3.4. A【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y,故选A.5. D 【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,∴方程为x 2-7x +12=0,解得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3m x -3=3,解得x =9-2m 2,解方程组⎩⎨⎧9-2m2>09-2m2≠3,得m <92且m ≠32,故选B.7. A 【解析】∵a ,b 是方程x 2-x +14m =0的两根,∴a 2-a =-14m ,b 2-b =-14m ,∴b ★b -a ★a=b (1-b )-a (1-a )=b -b 2-a +a 2=-(b 2-b )+(a 2-a )=14m -14m =0.8. B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.9. C 【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.10. B 【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.11. 180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.12. x =3 【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 80 【解析】设这辆汽车原来的速度是x km /h ,根据题意得:160x -160(1+25%)x =0.4,解得x =80,经检验x =80是原方程的根.14. 3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.15. a <m <n <b 【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.16. -8 【解析】⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,即⎩⎪⎨⎪⎧3a -2b =3 ①3b -2a =-7 ②,①+②得a +b =-4,①-②得5a -5b =10,则a -b =2,∴(a +b)(a -b)=-4×2=-8.17. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.18. 【思路分析】利用代入消元法,将方程②变为y =x -2,将此方程代入方程①求x ,进而求出y.解:⎩⎪⎨⎪⎧9x 2-4y 2=36①x -y =2 ②,将②变形为y =x -2 ③,将③代入①得:9x 2-4(x -2)2=36, 化简得:5x 2+16x -52=0,将方程左边因式分解得:(x -2)(5x +26)=0, 解得x =2或x =-265,将x =2代入方程②得y =0; 将x =-265代入方程②得y =-365.综上所述,原方程组的解为⎩⎪⎨⎪⎧x =2y =0或⎩⎨⎧x =-265y =-365.19. 解:去分母,得2(x -1)=x +3, 去括号、移项、合并同类项,得x =5, 经检验,x =5是原方程的根. ∴原方程的解为x =5.20. 解:⎩⎪⎨⎪⎧5x +2>3(x -1) ①12x ≤8-32x +2a ②, 解不等式①得x >-52,解不等式②得x ≤a +4,由不等式组的解集有四个整数解,得1≤a +4<2, ∴-3≤a <-2.21. 解:解不等式5x -3<4x 得x<3, 解不等式4(x +1)+2≥x 得x ≥-2, ∴不等式组的解集为-2≤x<3. 解集在数轴上表示如解图所示:22. 解:解不等式①,得x<2-a3,解不等式②,得x<13.(1)∵两个不等式的解集相同, ∴2-a 3=13, ∴a =1.(2)∵不等式①的解都是不等式②的解, ∴2-a 3≤13, ∴a ≥1.23. (1)解:将x =1代入x 2+mx +m -2=0,得 12+1×m +m -2=0, 解得m =12.(2) 证明:一元二次方程x 2+mx +m -2=0的根的判别式为: b 2-4ac =m 2-4(m -2)=m 2-4m +8=(m -2)2+4. ∵不论m 取何实数,(m -2)2≥0, ∴(m -2)2+4>0,即b 2-4ac >0,∴不论m 取何实数,原方程都有两个不相等的实数根.24. 解:设骑车学生的速度为x km /h ,则汽车的速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验x =15是原方程的解,汽车的速度为:2x =2×15=30 km /h ,答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h . 25. 解:设甲队单独完成此项工程需x 天,则乙队需(x +5)天, 依据题意可以列方程: 1x +1x +5=16, 解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得: 6y +6(y -4000)=385200, 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500,∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.⎪⎧2x +3y =270解得⎩⎪⎨⎪⎧x =30y =70,答:甲种商品每件进价为30元,乙种商品每件进价为70元. (2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a ≥4(100-a), 解得a ≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000, ∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元. 27. 解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得: 6000(x +1)2=8640,解得x 1=-2.2(舍去),x 2=0.2答:这两年该县投入教育经费的年平均增长率为20%. (2)2017年该县投入教育经费为: 8640×(0.2+1)=10368(万元),答:预算2017年该县将投入教育经费为10368万元.28. 解:(1)设乙种救灾物品每件x 元,则甲种救灾物品每件(x +10)元,由题意得: 350x +10=300x, 解得x =60,经检验x =60是原方程的解,∴x +10=70(元).答:甲、乙两种救灾物品每件的价格分别为70元、60元. (2)70×2000×14+60×2000×34=125000(元).答:需筹集资金125000元.29. 解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意得:⎩⎪⎨⎪⎧x +y =50310x +460y =20000, 解得⎩⎪⎨⎪⎧x =20y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意得: 310z +460(50-z)≤18000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34.答:A 种型号健身器材至少要购买34套.11 重叠部分的面积”, 列方程求解即可.解:设配色条纹的宽度为x 米,由题意得5x ×2+4x ×2-4×x 2=1780×4×5, 解得:x =14或x =174(不合题意舍去). 答:配色条纹的宽度为14米. (2)解:由题意得地毯的总造价为:1780×4×5×200+(1-1780)×4×5×100=850+1575=2425(元), 答:地毯的总造价为2425元.。
中考复习2、方程(组)与不等式(组)2023年中考数学练习题
![中考复习2、方程(组)与不等式(组)2023年中考数学练习题](https://img.taocdn.com/s3/m/4825142053ea551810a6f524ccbff121dd36c53b.png)
中考复习2、方程(组)与不等式(组)2023年中考数学练习题一、单选题1.2x =是下列哪个方程的解( ) A .237x -=B .237x +=C .237x +=-D .237x -=-2.某车间有33名工人,每人每天可以生产1200个螺钉或1800个螺母,1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x 名工人生产螺钉,则下列方程错误的是( ) A .1200:1800(33)1:2x x -= B .()21200180033x x ⨯=- C .1200180033-x)=12x ( D .()180********x x =⨯-3.根据等式的性质,下列各式变形正确的是( ) A .若27x =,则27x =B .若22x x =-,则22x x =- C .若287x +=,则278x =-D .若113x x --=,则113x x --= 4.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x 尺,木长y 尺,所列方程组正确的是( )A . 4.521x y x y -=⎧⎨+=⎩B . 4.5112x y x y -=⎧⎪⎨+=⎪⎩C . 4.521y x x y -=⎧⎨-=⎩D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩5.方程组241x y x y +=⎧⎨-=-⎩的解是( )A .20x y =⎧⎨=⎩ B .12x y =⎧⎨=⎩ C .12x y =⎧⎨=-⎩ D .32x y =⎧⎨=-⎩ 6.若关于x 的一元二次方程()()222440m x x m +++-=有一个根为0,则实数m 的值为( ) A .2 B .2- C .2-或2 D .1-或07.2020年全国儿童、青少年近视调查结果显示,2020年全国儿童、青少年总体近视率为53.6%,其中小学生近视率为36%,初中生近视率为71.6%,高中生近视率为81%.设从小学到高中平均每个学段的近视率的增长率为x ,根据题意可列方程为( ) A .()36%1281%x +=B .1281%x +=C .()236%1181%x x ⎡⎤+++=⎣⎦D .()236%181%x +=8.下列一元二次方程中,有实数根0的是( )A .2210x x +-=B .2210x x -+=C .20x x -=D .2220x x +=-9.2022年12月,我国疫情防控进入新阶段,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( ) A .6000600052x x =- B .6000600052x x =- C .6000600052x x =-+ D .6000600052x x=-+ 10.若关于x 的一元一次不等式组1133x x x a -⎧+>⎪⎨⎪+<⎩有解,且关于y 的分式方程1122y a y y -+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .6 D .711.若关于x 的不等式组()32112123x a x x x ⎧->-⎪⎨-+≥-⎪⎩的解集为1x ≥,关于y 的分式方程111y a y y +=+-有整数解,则满足条件的整数a 的个数是( ) A .1个 B .2个 C .3个 D .4个12.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.设搭配A 种造型x 个,你认为下列符合题意的不等式组是( )A .()()70405026603080503000x x x x ⎧+-≤⎪⎨+-≤⎪⎩B .()()70405026603080503000x x x x ⎧+-<⎪⎨+-<⎪⎩C .()()70405026603080503000x x x x ⎧+-≥⎪⎨+-≥⎪⎩D .()()70405026603080503000x x x x ⎧+->⎪⎨+->⎪⎩二、填空题13.已知7x =是方程()212x a x --=+的解,则=a ___________. 14.若2(21)a b -+325a b --=a ____,b =____.15.嘉兴某玩具城计划购进A 、B 、C 三种玩具,其进价和售价.如下表: 玩具名称 进价(元/件) 售价(元/件) A4050B70100C 80120现在6800元购买100件玩具,若销售完这些玩具获得的最大利润是3000元,则A 玩具最多购进_______件. 16.已知关于x 的分式方程3122m x x+=--的解是非负数,则m 的取值范围是___. 17.若关于x 的分式方程1122x a xx x -+=--无解,则a =________. 18.不等式21502x --≤的非负整数解共有______个. 三、解答题19.解下列方程 (1)2(3)3(3)x x +=- (2)432.50.20.05x x ---=20.解方程:24111x x x =+-- 21.解下列方程: (1)230x x -= (2)2210x x +-=22.解方程组:(1)32735m n m n -=⎧⎨-=⎩ (2)1123324x y x y +⎧-=⎪⎨⎪+=⎩23.2022年夏季,重庆市出现百年难遇的干旱天气,到处引发森林火灾,几十年的树木干枯,农民伯伯的蔬菜也被活活干死,给人们的生产生活带来严峻的挑战.张大伯为保障蔬菜基地种植用水,需要修建灌溉水渠.计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?24.某校为增加学生的体育课活动,决定购买一批体育用品,若购买10个足球和4个篮球需要400元,购买5个足球和9个篮球需要550元.(1)求篮球、足球的单价;(2)如果需要购买篮球、足球共20个,且费用不超过880元,则最多可以购买多少个篮球?25.威宁火腿是贵州的传统特产,距今已有600多年的历史,早就闻名海内外.某火腿经销商统计了某款威宁火腿4月份到6月份的销售量,该款火腿4月份销售量为150kg,6月份销售量为216kg,且从4月份到6月份销售量的月增长率相同.(1)求该款火腿销售量的月增长率;(2)若该款火腿的进价为120元/kg,经在市场中测算,当售价为160元/kg时,月销售量为200kg,若在此基础上售价每上涨1元/kg,则月销售量将减少2kg,为使月销售利润达到9800元,则该款火腿的实际售价应定为多少?(利润=售价-进价)26.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A种图书花费了3000元,购买B种图书花费了1600元,A种图书的单价是B 种图书的1.5倍,购买A种图书的数量比B种图书多20本,求A和B两种图书的单价分别为多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
届中考数学专题复习卷方程组与不等式组Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】方程(组)与不等式(组)一、填空题(本大题共4小题,每小题5分,共20分)1.已知|x﹣2y|+(3x﹣4y﹣2)2=0,则xy=.2.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.3.对于实数a,b定义一种新运算“?”:a?b=,例如,1?3==﹣.则方程x?2=﹣1的解是.4.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88”为一次操作.如果操作进行了两次就停止,则x的取值范围是.二、选择题(本大题共10小题,每小题4分,共40分)5.将方程﹣=1去分母得()A.2x﹣(x﹣2)=6 B.2x﹣x﹣2=6 C.2x﹣(x﹣2)=1 D.2x﹣x ﹣2=16.已知x,y是方程组的解,则x﹣y的值是()A.1 B.2 C.3 D.47.下列方程中是关于x的一元二次方程的是()A.x2++1=0 B.ax2+bx+c=0C.(x﹣2)(x+3)=1 D.2x2﹣2xy+y2=08.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14 B.(x﹣4)2=18 C.(x+4)2=14 D.(x+4)2=189.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或610.下列不等式的变形不正确的是()A.若a>b,则a+3>b+3 B.若﹣a>﹣b则a<b:C.若﹣x<y,则x>﹣2y D.若﹣2x>a,则x>﹣a11.若关于x,y的方程组满足1<x+y<2,则k的取值范围是()A.0<k<1 B.﹣1<k<0 C.1<k<2 D.0<k<12.为了绿化校园,某班学生参与共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A. B.C.D.13.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=54014.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣100三、解答题(本大题共2小题,每小题8分,满分16分)15.解下列方程:(1)x2﹣2x=2(2)(2x﹣1)2=4x﹣216.解不等式组并将解集在数轴上表示.四、解答题(本大题共2小题,每小题8分,满分16分)17.当x为何值时,1+和的值相等.18.关于x的一元二次方程x2﹣3x﹣k=0有两个不相等的实数根.(1)求k的取值范围;(2)当k=4时,求方程的根.五、解答题(本大题共2小题,每小题10分,满分20分)19.依法纳税是公民应尽的义务.修订后的新《个税法》于2019年1月1日起全面施行,相关税率表如下:例如:某人1月份应纳税所得额为3500元,应纳税:3000×3%+500×10%=140元.(1)若甲1月份应纳税所得额为x元,且8000≤x≤12000时,则甲其应纳税元;(用含x的代数式表示并化简)(2)若小明的父母1月份应纳税所得额共计4400元(父亲应纳税所得额超过母亲),且二人分别纳税共计202元,求小明父母1月份的应纳税所得额分别为多少元级别全月应纳税所得额税率1不超过3000元的部分3%2超过3000元至12000元的部分10%20%3超过12000元至25000元的部分4超过25000元至35000元的部25%分30%5超过35000元至55000元的部分6超过55000元至80000元的部35%分7超过80000元的部分45%20.重百商场销售A、B两款羽绒服,A款成本每件1000元,B款成本每件1200元,B款售价是A款售价的倍.今年一月份A款羽绒服比B款羽绒服多卖10件,且两款羽绒服一月份的销售额都刚好到达6万元.(1)请问A、B两款羽绒服的售价分别为多少元(2)今年二月份恰逢春节,商场为了促销,A款羽绒服的售价降低了,结果A款羽绒服的销量在一月份销量的基础上增加了,B款羽绒服的售价打九折,结果B款羽绒服的销量在一月份销量的基础上增加了m%,最终商场二月份销售A、B两款羽绒服的总利润为38000元,求m的值.六、解答题(本大题满分12分)21.某商家预测一种应季衬衫能畅销市场,就用16800元购进了一批这种村衫,面市后果然供不应求,商家又用36400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批村衫是多少件(2)若两批村衫按相同的标价销售,最后剩下50件按六折优惠卖出,如果两批衬衫全部售完后利润不低于20%(不考虑其他因素),那么每件衬衫的标价至少是多少元七、解答题(本题满分12分)22.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少最少资金是多少八、解答题(本题满分14分)23.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C 以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2参考答案1.2.2.k>0且k≠1.3.x=5.4.<x≤49.5.A.6.A.7.C.8.A.9.D.10.D.11.A.12.B.13.B.14.B.15.解:(1)x2﹣2x+1=3,(x﹣1)2=3,x﹣1=±,所以x1=1+,x2=1﹣;(2)(2x﹣1)2﹣2(2x﹣1)=0,(2x﹣1)(2x﹣1﹣2)=0,2x﹣1=0或2x﹣1﹣2=0,所以x1=,x2=.16.解:,解①得x>﹣6,解②得x≤2,所以不等式组的解集为﹣6<x≤2,用数轴表示为.17.解:根据题意得:1+=,方程两边同时乘以15得:15+5(x﹣3)=3(x+4),去括号得:15+5x﹣15=3x+12,移项得:5x﹣3x=12+15+15,合并同类项得:2x=12,系数化为1得:x=6,即当x为6时,1+和的值相等.18.解:(1)∵方程x2﹣3x﹣k=0有两个不相等的实数根,∴△=(﹣3)2﹣4×1×(﹣k)>0,解得:k>﹣;(2)将k=4代入方程,得:x2﹣3x﹣4=0,则(x+1)(x﹣4)=0,∴x+1=0或x﹣4=0,解得:x1=4,x2=﹣1.19.解:(1)当8000≤x≤12000时,甲其应纳税3000×3%+10%(x﹣3000)=﹣210,故答案为:(﹣210);(2)设父亲应纳税所得额为x元,母亲应纳税所得额为(4400﹣x)元,∵父亲应纳税所得额超过母亲,∴x>2200,4400﹣x<2200,①当2200<x<3000时,4400×3%=132,不合题意,舍去;②当x>3000时,(4400﹣x)×3%+﹣210=202,解得:x=4000,∴4400﹣x=400,答:小明父母1月份的应纳税所得额分别为4000元和400元.20.解:(1)设A款羽绒服的售价为x元/件,则B款羽绒服的售价为x元/件,依题意,得:﹣=10,解得:x=1500,经检验,x=1500是原方程的解,且符合题意,∴x=2000.答:A款羽绒服的售价为1500元/件,B款羽绒服的售价为2000元/件.(2)由(1)得,一月份A款羽绒服销售了40件,B款羽绒服销售了30件,依题意,得:[1500(1﹣m%)﹣1000]×40(1+m%)+(2000×﹣1200)×30(1+m%)=38000,整理,得:m2﹣40m=0,解得:m1=40,m2=0.答:m的值为40.21.解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有+10=,解得x=140,经检验,x=140是原方程的解,且符合题意.答:该商家购进的第一批衬衫是140件.(2)3x=3×140=520,设每件衬衫的标价y元,依题意有(520﹣50)y+50×≥(16800+36400)×(1+20%),解得y≥.答:每件衬衫的标价至少是元.22.解:(1)设A、B两种型号的扫地车每辆每周分别可以处理垃圾a吨、b吨,,解得,,答:(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾40吨,30吨;(2)设购买A型扫地车m辆,B型扫地车(40﹣m)辆,所需资金为y元,,解得,20≤m≤22,∵m为整数,∴m=20,21,22,∴共有三种购买方案,方案一:购买A型扫地车20辆,B型扫地车20辆;方案二:购买A型扫地车21辆,B型扫地车19辆;方案三:购买A型扫地车22辆,B型扫地车18辆;∵y=25m+20(40﹣m)=5m+800,∴当m=20时,y取得最小值,此时y=900,答:方案一:购买A型扫地车20辆,B型扫地车20辆所需资金最少,最少资金是900万元.23.解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)?2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)?2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,n2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1cm2.。