必修一复习练习题

合集下载

人教版高一英语必修一 Unit 1 单元基础复习练习题 含答案

人教版高一英语必修一  Unit 1 单元基础复习练习题 含答案

人教版高一英语必修一Unit 1 单元基础复习练习题一、单项选择1. This is the reason ____he explained to me just now.A. whyB. whichC. becauseD. about which2. The reason he is late is there was a breakdown on the railway.A. why; whyB. because; thatC. that; becauseD. why; that3. I will never forget the day _____ we worked together in London.A. whenB. on thatC. whichD. while4. I will never forget the day _____ we spend together.A. whenB. on thatC. whichD. while5. Because he was six, he decided to _____ himself.A. wearB. have onC. dressD. put on6. It was 8 o’clock _____ I went back home last night.A. thatB. whenC. whichD. what7. __________ you missed such a fine lecture?A. How it was thatB. It was how thatC. How was it thatD. Was it how that8. I just wonder _______ that makes you so excited.A. why it doesB. what he doesC. how it isD. what it is9. It was not until she got home __ Mary realized she had lost her keys.A. thatB. whenC. whereD. before10. What do you think ______ cut down the big tree?A. we can'tB. can't weC. that we can'tD. that can't we二、用括号里所给词汇的正确形式填空1. I find the story really worth ______(read).2. Where ____you ___ (be) for the past few years?3. They are practising _______(sing) the new songs.4. What do you think ______ (cause)an apple ______ (fall) to the ground?5. This book deals with questions _________(concern) Anti-Japanese War.三、用方框里所给词汇的正确形式填空join ; join in ; take part in; attend1. Will you ________ the lecture on science?2. Would you like to _______ us ___ playing football?3. After ____________ the League, he often helps others.4. She ______________ the music competition.5. We _______ a country club that year.6. We’re going to visit the flower show tomorrow. Will you ____ us?7. The boy ________ the English Evening and had a good time.8. He didn’t _________ school yesterday because of his illness.四、从方框内选用合适的内容,并用其适当形式完成下面短文(每项限用一次)。

数学必修一复习题及其答案

数学必修一复习题及其答案

数学必修一复习题及其答案一、选择题1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。

A. 0B. 4C. 6D. 82. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个点C. 一个抛物线D. 一个圆3. 函数\( y = \sqrt{x} \)的定义域是:A. \( x < 0 \)B. \( x > 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)二、填空题4. 根据题目1,\( f(x) \)的对称轴方程是_________。

5. 函数\( y = |x-2| \)的图像与x轴的交点坐标是_________。

三、解答题6. 已知函数\( y = x^3 - 6x^2 + 9x - 4 \),求导数\( y' \)。

7. 解不等式:\( |x - 3| < 2 \)。

四、证明题8. 证明:对于任意实数\( a \)和\( b \),不等式\( a^2 + b^2\geq 2ab \)恒成立。

五、应用题9. 一个工厂计划生产一种新产品,已知生产成本为\( C(x) = 10000+ 50x \),销售收入为\( R(x) = 120x - 0.5x^2 \),求工厂的盈利函数,并求出最大盈利。

答案一、选择题1. B(将-1代入函数\( f(x) \)中计算得\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 4 \))2. C3. C二、填空题4. \( x = \frac{3}{4} \)(二次函数的对称轴为\( x = -\frac{b}{2a} \))5. (2,0)(令\( y = 0 \)解得\( x = 2 \))三、解答题6. \( y' = 3x^2 - 12x + 9 \)7. 解得\( 1 < x < 5 \)四、证明题8. 证明:由于\( (a - b)^2 \geq 0 \),展开得\( a^2 - 2ab + b^2 \geq 0 \),移项得证。

必修一化学复习题及答案

必修一化学复习题及答案

必修一化学复习题及答案一、选择题1. 以下哪个元素是人体必需的微量元素?A. 铁(Fe)B. 钙(Ca)C. 钠(Na)D. 氧(O)答案:A2. 根据元素周期表,以下哪个元素属于第ⅥA族?A. 碳(C)B. 氧(O)C. 硫(S)D. 氯(Cl)答案:B3. 化学中的“摩尔”是用来表示什么的数量单位?A. 原子B. 分子C. 离子D. 电子答案:B4. 以下哪个反应是氧化还原反应?A. 2H2O + CO2 → 2H2CO3B. 2H2 + O2 → 2H2OC. 2NaOH + H2SO4 → Na2SO4 + 2H2OD. CaCO3 → CaO + CO2答案:B5. 根据化学键理论,以下哪个化合物是共价化合物?A. NaClB. MgOC. H2OD. CaF2答案:C二、填空题6. 原子序数为6的元素是________,其化学符号为C。

7. 化学方程式2H2 + O2 → 2H2O中,反应物和生成物的摩尔比是________。

8. 根据化学键理论,离子键是由________和________之间的相互吸引形成的。

9. 酸碱中和反应的实质是________和________之间的反应。

10. 溶液的pH值小于7时,表示溶液是________性。

答案:6. 碳7. 1:1:28. 阳离子;阴离子9. 酸;碱10. 酸三、简答题11. 什么是化学平衡?请简述化学平衡的特点。

答案:化学平衡是指在一定条件下,反应物和生成物的浓度保持不变的状态。

化学平衡的特点包括:反应物和生成物的浓度不变,反应速率相等,以及反应可以向正反应和逆反应两个方向进行。

12. 什么是酸碱指示剂?它们在实验中有何作用?答案:酸碱指示剂是一种能够根据溶液的酸碱性改变颜色的化合物。

在实验中,它们用于测定溶液的pH值,通过颜色的变化来判断溶液是酸性、碱性还是中性。

四、计算题13. 已知某溶液中氢离子的浓度为0.001mol/L,求该溶液的pH值。

【人教A版】高中数学必修一第一、二章复习题(含答案)

【人教A版】高中数学必修一第一、二章复习题(含答案)

人教A 版必修一第一、二章阶段性复习试题一、选择题1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则u C A =( )A. {}2,4,6B. {}1,3,6,7C. {}1,3,5,7D. ∅ 2.下列函数中,在区间(0,)+∞上是增函数的是( )A. 21y x =-+B.23y x =-+C. 3log y x =D.1()2x y =3.函数f (x 3log (4)x -的定义域是( )A. ∅ B .()1,4 C. [)1,4 D. (-∞,1) [4,+∞]4.下列四组函数中表示同一函数的是( )(A )f (x )=x ,g (x )=2)x ( (B )f (x )=x 2,g (x )=xx 3(C )f (x )=2x ,g (x )=|x| (D )f (x )=0,g (x )=4x -+x 4-5.若==x x 则,25102( ) A 、51lgB 、5lgC 、5lg 2D 、51lg 2 6.函数223,[0,3]y x x x =-++∈的值域是( )A.(,4]-∞ B [4,)+∞ C.[0,3] D.[0,4]7.⎩⎨⎧>≤=0,log 0,3)(2x x x x f x 则)]41([f f =( )A 、9B 、91C 、1D 、 3 8.已知()bx ax x f +=2是定义在[]a a 2,1-上的偶函数,那么b a +的值是( ) A.31-B.31C.21D.21- 9.三个数为0.233log 0.2,3,0.2a b c ===,则,,a b c 的大小关系为( ) A.a c b >> B.a b c << C. a c b << D. a b c >> 10.已知42()f x ax bx x m =+-+,(2)1f =,则(2)f -=( ) A.5 B.0 C. 3 D. -211.设奇函数()x f 在()0,∞-上为减函数,且()02=f ,则()()023>--xx f x f 的解集为( )A.()()+∞⋃-,20,2B.()()2,02,⋃-∞-C.()()∞+⋃-∞-.22.D.()()2,00,2⋃- 12. 已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是( ) A.0<m ≤4 B.0≤m ≤1 C.m ≥4 D.0≤m ≤4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.幂函数()f x 的图象过点,则()f x 的解析式_____________ 14. 已知()x f 是在R 上的奇函数,当0<x 时,()xx f ⎪⎭⎫⎝⎛=31,那么___________21=⎪⎭⎫⎝⎛f 15.设.__________,12154==+==m ba mb a 则且,. 16.设函数()f x x x bx c =++,给出下列4个命题:①0,0b c =>时,方程()0f x =只有一个实数根;②0c =时,()y f x =是奇函数;③()y f x =的图象关于点()0,c 对称;④方程()0f x =至多有2个不相等的实数根.上述命题中的所有正确命题的序号是 . 三、解答题 17.化简求值(1)10.500.25325277()()()16988----+(2)2(lg 2)lg 2lg50lg 25+•+18. 已知集合A ={x |2-a ≤x ≤2+a },B ={x |x ≤1,或x ≥4}.(1)当a =3时,求A ∩B ;(2)若A ∩B =∅,求实数a 的取值范围.19. 高一(1)班某个研究性学习小组进行市场调查,某生活用品在过去100天的销售量和价格均为时间t 的函数,且销售量近似地满足()()N t t t t g ∈≤≤+-=,1001110.前40天的价格为()()4018≤≤+=t t t f ,后60天的价格为()()10041695.0≤≤+-=t t t f . ⑴试写出该种生活用品的日销售额S 与时间t 的函数关系式; ⑴试问在过去100天中是否存在最高销售额,是哪天?20.已知f (x )=log 2(1+x )+log 2(1-x ).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性,并加以说明; (3)求f ⎝⎛⎭⎪⎫22的值.21. (本小题满分12分)已知函数y =M 。

高一数学必修一全册练习题(解析版)

高一数学必修一全册练习题(解析版)

第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∈a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∈c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∈c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.6解析:选D.∈z=xy,x∈A,y∈B,∈z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∈集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C=____________.解析:∈C={(x,y)|x∈A,y∈B},∈满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∈M B .a ∈M C .{a }∈M D .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个. 解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________. 解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根, ∈a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围. 解:∈a =0时,原方程为-3x +2=0,x =23,符合题意.∈a ≠0时,方程ax 2-3x +2=0为一元二次方程. 由Δ=9-8a ≤0,得a ≥98.∈当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合∈∈,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊 C .2010年考入清华大学的全体学生 D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ∈π∈R ;∈3∈Q ;∈0∈N *;∈|-4|∈N *. A .1 B .2 C .3 D .4 解析:选B.∈∈正确,∈∈错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∈AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()∈教2011届高一的年轻教师;∈你所在班中身高超过1.70米的同学;∈2010年广州亚运会的比赛项目;∈1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以∈不能构成集合;由于∈∈∈中的对象具备确定性、互异性,所以∈∈∈能构成集合.4.若集合M={a,b,c},M中元素是∈ABC的三边长,则∈ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()∈M={(3,2)},N={(2,3)};∈M={3,2},N={2,3};∈M={(1,2)},N={1,2}.A.∈ B.∈C.∈ D.以上都不对解析:选B.∈中M中表示点(3,2),N中表示点(2,3),∈中由元素的无序性知是相等集合,∈中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∈MC .x ∈M ,y ∈MD .x ∈M ,y ∈M 解析:选B.∈x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∈M .7.已知∈5∈R ;∈13∈Q ;∈0={0};∈0∈N ;∈π∈Q ;∈-3∈Z .其中正确的个数为________.解析:∈错误,0是元素,{0}是一个集合;∈0∈N ;∈π∈Q ,∈∈∈正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∈A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∈-3∈A ,∈-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∈12-3=2+3=2+3×1,而2,1∈Z ,∈2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b2b =2a, 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )∈{a ,b }={b ,a };∈{a ,b }∈{b ,a };∈∈={∈};∈{0}=∈;∈∈{0};∈0∈{0}.A .6个B .5个C .4个D .3个及3个以下 解析:选C.∈∈∈∈正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∈B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∈B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∈Δ=9-4(2-a2)=1+4a2>0,∈M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0∈A B.{0}∈AC.∈∈A D.{0}∈A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A∈B解析:选C.利用数轴(图略)可看出x∈B∈x∈A,但x∈A∈x∈B不成立.3.定义A-B={x|x∈A且x∈B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∈,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ∈B },则A 与B 的关系是( ) A .A ∈B B .B ∈A C .A ∈B D .B ∈A解析:选D.∈B 的子集为{1},{2},{1,2},∈, ∈A ={x |x ∈B }={{1},{2},{1,2},∈},∈B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∈B ,故B A .答案:BA8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ∈B ,则a 的值为________. 解析:A ∈B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:∈若⎩⎪⎨⎪⎧a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性, 故a ≠0,c 2-2c +1=0,即c =1; 当c =1时,集合B 中的三个元素也相同, ∈c =1舍去,即此时无解.∈若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∈a ≠0,∈2c 2-c -1=0,即(c -1)(2c +1)=0. 又∈c ≠1,∈c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ∈A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ∈A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∈BA ,∈mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时, 由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时, 由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ∈N B .N ∈M C .M ∩N ={2,3} D .M ∈N ={1,4}解析:选C.∈M={1,2,3},N={2,3,4}.∈选项A、B显然不对.M∈N={1,2,3,4},∈选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)} B.{0,1}C.{y|y≥0} D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∈M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∈B=A,则实数m的取值范围是________.解析:A∈B=A,即B∈A,∈m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∈N=N;Q∈R=R∈Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:选C.只有Z∈N=N是错误的,应是Z∈N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∈A={3,5,6,8},B={4,5,7,8},∈A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∈B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∈a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∈P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3} B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}解析:选A.∈A={x|1≤x≤3},B={x|x>2},∈A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∈T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∈T =R ,∈⎩⎪⎨⎪⎧a +8>5,a <-1.∈-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∈A ∩B ={2,3},∈3∈B ,∈m =3. 答案:38.满足条件{1,3}∈M ={1,3,5}的集合M 的个数是________. 解析:∈{1,3}∈M ={1,3,5},∈M 中必须含有5, ∈M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∈; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∈B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∈A ∩B ={3},∈由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∈B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:∈当a -3≤5,即a ≤8时,A ∈B ={x |x <a -3或x >5}. ∈当a -3>5,即a >8时,A ∈B ={x |x >5}∈{x |x <a -3}={x |x ∈R }=R . 综上可知当a ≤8时,A ∈B ={x |x <a -3或x >5}; 当a >8时,A ∈B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∈,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∈,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∈U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∈U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∈R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∈B ={x |x <1},∈∈R B ={x |x ≥1}, ∈A ∩∈R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∈U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∈U A={x|2≤x≤5},则a=________.解析:∈A∈∈U A=U,∈A={x|1≤x<2}.∈a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∈U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∈U B={3,4,5},∈A∩(∈U B)={3,4}.2.已知全集U={0,1,2},且∈U A={2},则A=()A.{0} B.{1}C.∈ D.{0,1}解析:选D.∈∈U A={2},∈2∈A,又U={0,1,2},∈A={0,1}.3.(2009年高考全国卷∈)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∈B,则集合∈U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∈B={3,4,5,7,8,9},A∩B={4,7,9},∈∈U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∈N=UC.(∈U N)∈M=U D.(∈U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∈U N)∈M ={3,4,5,7},(∈U M)∩N={2,6},M∈N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∈U(A∈B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∈A={1,2},∈B={2,4},∈A∈B={1,2,4},∈∈U(A∈B)={3,5}.6.已知全集U =A ∈B 中有m 个元素,(∈U A )∈(∈U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∈B 中有m 个元素,∈(∈U A )∈(∈U B )=∈U (A ∩B )中有n 个元素, ∈A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∈B )∩(∈U C )=________. 解析:∈A ∈B ={2,3,4,5},∈U C ={1,2,5}, ∈(A ∈B )∩(∈U C )={2,3,4,5}∩{1,2,5}={2,5}. 答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∈U A ={1},则实数a 的值是________. 解析:∈U ={2,3,a 2-a -1},A ={2,3},∈U A ={1}, ∈a 2-a -1=1,即a 2-a -2=0, 解得a =-1或a =2. 答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∈U A )∩B =∈,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∈∈U A ={x |x <-m },∈B ={x |-2<x <4},(∈U A )∩B =∈, ∈-m ≤-2,即m ≥2, ∈m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∈U B )∈P ,(A ∩B )∩(∈U P ).解:将集合A 、B 、P 表示在数轴上,如图.∈A ={x |-4≤x <2},B ={x |-1<x ≤3},∈A ∩B ={x |-1<x <2}. ∈∈U B ={x |x ≤-1或x >3}, ∈(∈U B )∈P ={x |x ≤0或x ≥52},(A ∩B )∩(∈U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∈U A )={2},A ∩(∈U B )={4},U =R ,求实数a ,b 的值.解:∈B ∩(∈U A )={2}, ∈2∈B ,但2∈A .∈A ∩(∈U B )={4},∈4∈A ,但4∈B .∈⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∈a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∈R B ,求实数a 的取值范围.解:∈R B ={x |x ≤1或x ≥2}≠∈, ∈A∈R B ,∈分A =∈和A ≠∈两种情况讨论. ∈若A =∈,此时有2a -2≥a , ∈a ≥2.∈若A ≠∈,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2.∈a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∈ B .∈或{1} C .{1} D .∈或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∈或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =x +103-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∈(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2, 故函数值域为{-1,-2,2}. 答案:{-1,-2,2} 10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值. 解:(1)∈f (x )=11+x ,∈f (2)=11+2=13, 又∈g (x )=x 2+2, ∈g (2)=22+2=6. (2)由(1)知g (2)=6, ∈f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数). ∈ax +1≥0,a <0,∈x ≤-1a ,即函数的定义域为(-∞,-1a ].∈函数在区间(-∞,1]上有意义, ∈(-∞,1]∈(-∞,-1a ],∈-1a ≥1,而a <0,∈-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x=1x1+1x(x ≠0), ∈f (t )=t1+t (t ≠0且t ≠-1),∈f (x )=x1+x(x ≠0且x ≠-1). 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∈2f (2)-3f (1)=5,2f (0)-f (-1)=1,∈⎩⎪⎨⎪⎧ k -b =5k +b =1,∈⎩⎪⎨⎪⎧k =3b =-2,∈f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________. 解析:令2x =t ,则x =t 2,∈f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x2-1. 答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x非负数非正数y1 -1B.x 奇数 0 偶数 y1-1C.x 有理数 无理数 y1-1D.x 自然数 整数 有理数 y1-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∈f (t )=4t -12-1,∈f (12)=16-1=15. 法二:令1-2x =12,得x =14,∈f (12)=16-1=15. 3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∈g (x +2)=2x +3=2(x +2)-1, ∈g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∈f (0)=(0-1)2+c =0, ∈c =-1,∈f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( ) A .y =12x (x >0) B .y =24x (x >0)C .y =28x (x >0) D .y =216x (x >0) 解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x . 7.已知f (x )=2x +3,且f (m )=6,则m 等于________. 解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1, ∈f [1f 3]=f (1)=2. 答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1. 再令-b =x ,即得f (x )=x 2+x +1. 11.已知f (x +1x )=x 2+1x 2+1x ,求f (x ).解:∈x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∈f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x )+1.∈f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∈f (2+x )=f (2-x ),∈f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∈f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∈ax 2-4ax +3=0的两实根的平方和为10, ∈10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a , ∈a =1.∈f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .16解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 20≤x ≤3x 2+6x-2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集. 4.已知f (x )=⎩⎪⎨⎪⎧x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∈f (x )=x 2=3,x =±3,而-1<x <2,∈x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∈⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∈⎝⎛⎭⎫-12,1D.⎝⎛⎭⎫-12,12∈(1,+∞) 解析:选C.f (a )>1∈⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧-1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1∈⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12∈a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∈⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f x -2, x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0. 答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R. 由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∈260÷52=5(小时),260÷65=4(小时),∈s =⎩⎪⎨⎪⎧52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ∈BC ,DH ∈BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ∈当点F 在BG 上时, 即x ∈[0,2]时,y =12x 2;∈当点F 在GH 上时, 即x ∈(2,5]时,y =x +x -22×2=2x -2; ∈当点F 在HC 上时,即x ∈(5,7]时, y =S 五边形ABFED =S 梯形ABCD -S Rt∈CEF=12(7+3)×2-12(7-x )2 =-12(x -7)2+10.综合∈∈∈,得函数解析式为y =⎩⎪⎨⎪⎧12x 2x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8. 2.函数f (x )在R 上是增函数,若a +b ≤0,则有( ) A .f (a )+f (b )≤-f (a )-f (b ) B .f (a )+f (b )≥-f (a )-f (b ) C .f (a )+f (b )≤f (-a )+f (-b ) D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断. ∈a +b ≤0,∈a ≤-b ,b ≤-a . 又∈函数f (x )在R 上是增函数, ∈f (a )≤f (-b ),f (b )≤f (-a ). ∈f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:∈y =x x -1;∈y =x 2+x ;∈y =-(x +1)2;∈y =x1-x +2.其中在(-∞,0)上为减函数的是( )A .∈B .∈C .∈∈D .∈∈∈解析:选A.∈y =x x -1=x -1+1x -1=1+1x -1.其减区间为(-∞,1),(1,+∞).∈y =x 2+x =(x +12)2-14,减区间为(-∞,-12).∈y =-(x +1)2,其减区间为(-1,+∞), ∈与∈相比,可知为增函数.4.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 解析:对称轴x =k 8,则k 8≤5,或k8≥8,得k ≤40,或k ≥64,即对称轴不能处于区间内.答案:(-∞,40]∈[64,+∞)1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞) 解析:选A.根据y =-x 2的图象可得.2.若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( )A .单调递增B .单调递减C .先减后增D .无法判断解析:选D.函数单调性强调x 1,x 2∈[-1,3],且x 1,x 2具有任意性,虽然f (0)<f (1),但不能保证其他值也能满足这样的不等关系.3.已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上解析:选C.由题意知f (x )在A 上是增函数.若y =f (x )与x 轴有交点,则有且只有一个交点,故方程f (x )=0至多有一个根.4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 解析:选D.∈a 2+1-a =(a -12)2+34>0,∈a 2+1>a ,∈f (a 2+1)<f (a ),故选D.5.下列四个函数在(-∞,0)上为增函数的是( ) ∈y =|x |;∈y =|x |x ;∈y =-x 2|x |;∈y =x +x|x |.A .∈∈B .∈∈C .∈∈D .∈∈解析:选C.∈y =|x |=-x (x <0)在(-∞,0)上为减函数; ∈y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;∈y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;∈y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有( )∈若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ∈函数y =x 2在R 上是增函数; ∈函数y =-1x在定义域上是增函数;∈y =1x 的单调递减区间是(-∞,0)∈(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而∈不对;∈y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;∈y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);∈y =1x 的单调递减区间不是(-∞,0)∈(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知 f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∈0<x 1<x 2,∈x 1-x 2<0,x 1x 2>0. ∈b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34 )的大小关系为________.解析:∈a 2-a +1=(a -12)2+34≥34,∈f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________. 解析: y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x x >0x 2-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数. 解:(1)∈f (1)=0,f (3)=0,∈⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∈f (x )=x 2-4x +3, ∈设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3) =(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4), ∈x 1-x 2<0,x 1>2,x 2>2, ∈x 1+x 2-4>0.∈f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∈函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解:由题意可得⎩⎪⎨⎪⎧-1≤x -1≤1-1≤1-3x ≤1,x -1<1-3x即⎩⎪⎨⎪⎧0≤x ≤20≤x ≤23,x <12∈0≤x <12.12.设函数y =f (x )=ax +1x +2在区间(-2,+∞)上单调递增,求a 的取值范围.解:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, ∈f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2 =ax 1+1x 2+2-ax 2+1x 1+2x 1+2x 2+2=x 1-x 22a -1x 1+2x 2+2.∈f (x )在(-2,+∞)上单调递增, ∈f (x 1)-f (x 2)<0. ∈x 1-x 22a -1x 1+2x 2+2<0,∈x 1-x 2<0,x 1+2>0,x 2+2>0, ∈2a -1>0,∈a >12.1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-aD .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 2.函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞)D .[0,+∞)解析:选B.y =x +1-x -1,∈⎩⎪⎨⎪⎧x +1≥0x -1≥0,∈x ≥1.∈y =2x +1+x -1为[1,+∞)上的减函数,∈f (x )max =f (1)=2且y >0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________.解析:y 4=1-x 3,∈0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知, f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.。

高一地理必修一《第一章复习试卷)(含答案)

高一地理必修一《第一章复习试卷)(含答案)

第一章练习题一、单项选择题1.下列物体可称为天体的是()A.返回地面的“神舟”号宇宙飞船B.按航线飞行的飞机C.吉林1号陨石D.卫星2.在上世纪末,多国天文学家通过国际性的合作研究,观测并测量出某一遥远的旋涡星系,该星系与地球的距离为()A.140多亿个天文单位B.140多亿年C.140多亿千米D.140多亿光年3.距离地球最近的自然天体是()A.月球B.太阳C.牛郎星D.水星4.下列属于天体系统的是( )①大熊座、小熊座和狮子座②宇宙中的基本天体——恒星和星云③沿同一轨道运行的流星群或小行星带④总星系和地月系⑤相互吸引的两颗恒星或两颗行星⑥相互吸引且相互绕转的大小天体A. ①②B.③⑥C.④⑥D.②③⑤读“中心天体为太阳的天体运行略图”,回答5~6题:5.图中共包括的天体系统有()A.一级B.二级太阳C.三级D.四级6.图中最低一级的天体系统的中心天体是()A.太阳B.地球C.月球D.恒星7.液态水的存在是地球生命起源和进化的重要条件之一,下列叙述中与地球上有液态水存在有密切关系的是()①地球的质量和体积适中②地球上昼夜更替周期比较适中③地球上大气层白天对太阳辐射有削弱作用,晚上对地面有保温作用④地球与太阳的距离比较适中A.②④B.①④C.②③④D.②③8.太阳的能量主要来源于()A.太阳内部铀等重元素裂变释放的辐射能B.飞离太阳大气层的带电粒子的能量C.氢原子核转变为氦原子核释放的辐射能D.碳原子核裂变释放的辐射能9.太阳大气的外部结构从里向外依次是()A.光球、色球、日冕B.光球、日冕、色球C.色球、日冕、光球D.色球、光球、日冕10.太阳黑子的变化周期大约是()A.10年B.11年C.21年D.111年11.太阳活动强弱的标志是()A.黑子B.耀斑C.日珥D.太阳风的强弱北京时间2003年10月29日14时13分,太阳风暴袭击地球,太阳日冕抛射出的大量带电粒子流击中地球磁场,产生了强磁暴。

高一数学必修一集合复习练习题及单元测试含及解析

高一数学必修一集合复习练习题及单元测试含及解析

集合练习题1.设集合 A = {x|2≤x<4},B={x|3x-7≥8-2x},那么A∪B等于()A. {x|x≥3}B. {x|x ≥ 2}C.{x|2≤x<3}D.{x|x≥4}2.集合A= {1,3,5,7,9},B={0,3,6,9,12},那么A∩ B=()A. {3,5}B.{3,6}C.{3,7}D.{3,9}3. 集合A= {x|x>0},B={x|-1≤x≤2},那么A∪B=()A. {x|x≥-1}B.{x|x≤2 }C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足 M?{,,,} ,且 M∩{,,} = {,} 的集合M 的个数是 () A. 1B .2C .3D.45.集合A= {0,2 , a} , B = {1 ,} .假设 A∪ B= {0,1,2,4,16},那么a的值为() A. 0B.1C.2D.46.设S= {x|2x + 1>0} , T= {x|3x - 5<0} ,那么 S∩ T= ()A. ?B.{x|x<-1/2}C. {x|x>5/3}D.{x|-1/2<x<5/3}7. 50 名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30 名,参加乙项的学生有25 名,那么仅参加了一项活动的学生人数为________ .8.满足 {1,3}∪A={1,3,5}的所有集合 A 的个数是 ________ .9.集合A= {x|x ≤1} , B= {x|x ≥a} ,且 A∪B =R,那么实数 a 的取值范围是________ .10. 集合A= { - 4,2a - 1,} , B= {a - 5,1 - a,9} ,假设 A ∩B= {9} ,求 a 的值...11 .集合A= {1,3,5},B={1,2,-1},假设A∪ B={1,2,3,5},求x 及A∩B.12 . A = {x|2a ≤ x≤a+ 3} , B={x|x<-1或x>5},假设A∩ B=?,求a的取值范围.13 . (10 分 ) 某班有36 名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有 6 人,同时参加物理和化学小组的有 4 人,那么同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10 小题,每题 5 分,共 50 分。

高中化学必修一第一章《物质及其变化》复习题

高中化学必修一第一章《物质及其变化》复习题

一、选择题1.已知在碱性溶液中可发生如下反应:2R(OH)3+3C1O -+4OH -=2RO n-4+3Cl -+5H 2O 。

则RO n-4中n 的数值是A .1B .2C .3D .42.下列离子方程式,正确的是A .单质钠与水的反应:Na+H 2O=Na ++OH -+H 2↑B .过量NaHSO 4溶液与少量Ba(OH)2溶液反应:H ++SO 24-+Ba 2++OH -= BaSO 4↓+H 2OC .含等个数的氢氧化钡溶液与碳酸氢铵溶液混合:Ba 2++2OH -+NH 4++HCO 3-=BaCO 3↓+NH 3·H 2O+H 2OD .氯化钙溶液中通入二氧化碳气体:Ca 2++CO 2+H 2O=CaCO 3↓+2H +3.下列离子方程式中,正确的是A .钠投入冷水中:Na+2H 2O=Na ++2OH - +H 2↑B .将稀硫酸滴在铜片上:Cu+2H +=Cu 2++H 2↑C .醋酸和氢氧化铜反应:Cu(OH)2+2H +=Cu 2++2H 2OD .用烧碱和氯气制取漂白液:Cl 2+2OH - =Cl -+ClO -+H 2O4.准确书写离子方程式是学好化学的基本素养之一,下列离子方程式书写正确的是 A .氢氧化镁与稀硫酸反应: H + +OH - =H 2OB .用饱和氯化铁溶液制取氢氧化铁胶体: Fe 3+ + 3H 2OΔFe(OH)3+3H + C .石灰乳与碳酸钠溶液反应: Ca(OH)2+CO 2-3=CaCO 3+ 2OH -D .向水中加入一小块钠:2Na+2H 2O= Na + +2OH - +H 2 ↑5.已知常温下可用:Co 2O 3制备Cl 2,反应前后存在六种微粒:Co 2O 3、H 2O 、Cl 2、H +、Cl -和Co 2+。

下列叙述不正确的是( )A .氧化产物为Cl 2B .氧化剂与还原剂的物质的量之比为1∶2C .若有1molCl 2生成,则反应前HCl 的物质的量为6molD .当该反应生成4.48LCl 2时,反应中有0.2mol 电子转移6.下列物质的分类正确的一组是酸次氯酸 醋酸 硫酸 硝酸 A .A B .B C .C D .D7.下列离子方程式正确的是A .向碳酸钙加入醋酸溶液:CaCO 3+2H +=Ca 2++CO 2↑+H 2OB .向氨水滴加盐酸:OH -+H +=H 2OC .钠与水反应:Na+H 2O=Na ++OH -+H 2↑D .Ba(OH)2溶液和NaHSO 4溶液混合呈中性:Ba 2++2OH -+2H ++SO 2-4=BaSO 4↓+2H 2O8.下列关于胶体的说法,正确的是A .向稀的NaOH 溶液中逐滴加入56-滴3FeCl 饱和溶液,即可制得3Fe(OH)胶体B .胶体的分散质能通过滤纸孔隙,而浊液的分散质则不能C .丁达尔效应是胶体不同于溶液的本质区别D .氯化铁溶液呈电中性,而3Fe(OH)胶体带电9.从矿物学资料查得一定条件下自然界存在如下反应14CuSO 4+5FeS 2+12H 2O=7Cu 2S+5FeSO 4+12H 2SO 4。

高一数学必修一全册练习题(解析版)

高一数学必修一全册练习题(解析版)

第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0B.2C.3D.6解析:选D.∵z=xy,x∈A,y∈B,∴z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∴集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C =____________.解析:∵C={(x,y)|x∈A,y∈B},∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示()A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合答案:D2.设集合M ={x ∈R |x ≤33},a =26,则()A .a ∉MB .a ∈MC .{a }∈MD .{a |a =26}∈M解析:选B.(26)2-(33)2=24-27<0,故26<3 3.所以a ∈M .3+y =1-y =9的解集是()A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.+y =1-y =9=5=-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴.5.下列集合中,不同于另外三个集合的是()A .{0}B .{y |y 2=0}C .{x |x =0}D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为()A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个.答案:28.已知集合A ∈N |4x -3∈A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________.解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1.答案:m <110.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);(3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A -1312.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是()A .水浒书业的全体员工B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是()①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .4解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素()A .2个B .3个C .4个D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:由x2-5x+6=0,解得x=2或x=3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对解析:选B.①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a+2b(a∈Q、b∈Q)的数组成集合M,对于x=13-52,y=3+2π,则有()A.x∈M,y∈M B.x∈M,y∉MC.x∉M,y∈M D.x∉M,y∉M解析:选B.∅x=13-52=-341-5412,y=3+2π中π是无理数,而集合M中,b∈Q,得x∈M,y∉M.7.已知①5∈R;②13∈Q;③0={0};④0∉N;⑤π∈Q;⑥-3∈Z.其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N;⑤π∉Q,①②⑥正确.答案:38.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的取值是________.解析:当a=2时,6-a=4∈A;当a=4时,6-a=2∈A;当a=6时,6-a=0∉A,所以a=2或a=4.答案:2或49.若a,b∈R,且a≠0,b≠0,则|a|a+|b|b的可能取值组成的集合中元素的个数为________.解析:当a>0,b>0时,|a|a+|b|b=2;当a·b<0时,|a|a+|b|b=0;当a<0且b<0时,|a|a+|b|b=-2.所以集合中的元素为2,0,-2.即元素的个数为3.答案:310.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.解:∵-3∈A,∴-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1,此时集合A含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值.解:根据集合中元素的互异性,有=2a =b2=b 2=2a,=0=1=0=0=14=12.再根据集合中元素的互异性,=0=1=14=12.1.下列六个关系式,其中正确的有()①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A .6个B .5个C .4个D .3个及3个以下解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈AC .存在a 0,满足a 0∈A ,a 0∉BD .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2B.a≤1C.a≥1D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2}D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()A.4B.8C.16D.32解析:选B.在集合A和B中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A*B={0,6,12},因此其子集个数为23=8,选B.6.设B={1,2},A={x|x⊆B},则A与B的关系是()A.A⊆B B.B⊆AC.A∈B D.B∈A解析:选D.∵B的子集为{1},{2},{1,2},∅,∴A={x|x⊆B}={{1},{2},{1,2},∅},∴B∈A.7.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx=1},则A、B间的关系为________.解析:在A中,(0,0)∈A,而(0,0)∉B,故B A.答案:B A8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.解析:A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________.解析:作出数轴可得,要使A B,则必须a+4≤-1或a>5,解之得{a|a>5或a≤-5}.答案:{a|a>5或a≤-5}10.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.+b=ac+2b=ac2,消去b得a+ac2-2ac=0,即a(c2-2c+1)=0.当a=0时,集合B中的三个元素相同,不满足集合中元素的互异性,故a≠0,c2-2c+1=0,即c=1;当c=1时,集合B中的三个元素也相同,∴c=1舍去,即此时无解.+b=ac2+2b=ac,消去b得2ac2-ac-a=0,即a(2c2-c-1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵BA ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =()A .{x |-1<x <1}B .{x |-2<x <1}C .{x |-2<x <2}D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}.2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则()A .M ⊆NB .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4}解析:选C.∵M={1,2,3},N={2,3,4}.∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)}B.{0,1}C.{y|y≥0}D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∴M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:A∪B=A,即B⊆A,∴m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是()A.1B.2C.3D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8}B.{3,6}C.{4,7}D.{5,8}解析:选D.∵A={3,5,6,8},B={4,5,7,8},∴A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∴a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2}B.{1,2}C.{2,3}D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∴P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3}B.{x|x≥1}C.{x|2≤x<3}D.{x|x>2}解析:选A.∵A={x|1≤x≤3},B={x|x>2},∴A∩B={x|2<x≤3}.6.设集合S={x|x>5或x<-1},T={x|a<x<a+8},S∪T=R,则a的取值范围是()A.-3<a<-1B.-3≤a≤-1C.a≤-3或a≥-1D.a<-3或a>-1解析:选A.S∪T=R,+8>5,<-1.∴-3<a<-1.7.(2010年高考湖南卷)已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.解析:∵A∩B={2,3},∴3∈B,∴m=3.答案:38.满足条件{1,3}∪M={1,3,5}的集合M的个数是________.解析:∵{1,3}∪M={1,3,5},∴M中必须含有5,∴M可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:49.若集合A={x|x≤2},B={x|x≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={x|a≤x≤2};当a=2时,A∩B={2}.综上:a=2.答案:210.已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴由9+3c+15=0,解得c=-8.由x2-8x+15=0,解得B={3,5},故A={3}.又a2-4b=0,解得a=-6,b=9.综上知,a=-6,b=9,c=-8.11.已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴如图:①当a-3≤5,即a≤8时,A∪B={x|x<a-3或x>5}.②当a-3>5,即a>8时,A∪B={x|x>5}∪{x|x<a-3}={x|x∈R}=R.综上可知当a≤8时,A∪B={x|x<a-3或x>5};当a>8时,A∪B=R.12.设集合A={(x,y)|2x+y=1,x,y∈R},B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.解:集合A、B的元素都是点,A∩B的元素是两直线的公共点.A∩B=∅,则两直线无交点,即方程组无解.x+y=12x+2y=a,解得(4-a2)x=2-a,-a2=0-a≠0,即a=-2.1.(2010年高考辽宁卷)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}解析:选D.∁U A={3,9},故选D.2.(2010年高考陕西卷)集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴∁R B={x|x≥1},∴A∩∁R B={x|1≤x≤2}.3.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}解析:选A.依题意知A={0,1},(∁U A)∩B表示全集U中不在集合A中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2}B.{5}C.{3,4}D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0}B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M ={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1B.2C.3D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围为________.解析:由已知A={x|x≥-m},∴∁U A={x|x<-m},∵B={x|-2<x<4},(∁U A)∩B=∅,∴-m≤-2,即m≥2,∴m的取值范围是m≥2.答案:{m|m≥2}10.已知全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥5},求A∩B,2(∁U B)∪P,(A∩B)∩(∁U P).解:将集合A、B、P表示在数轴上,如图.∵A={x|-4≤x<2},B={x|-1<x≤3},∴A∩B={x|-1<x<2}.∵∁U B={x|x≤-1或x>3},∴(∁U B)∪P={x|x≤0或x≥52 },(A∩B)∩(∁U P)={x|-1<x<2}∩{x|0<x<52}={x|0<x<2}.11.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(∁U A)={2},A∩(∁U B)={4},U=R,求实数a,b的值.解:∵B∩(∁U A)={2},∴2∈B,但2∉A.∵A∩(∁U B)={4},∴4∈A,但4∉B.2+4a+12b=02-2a+b=0=87=127.∴a,b的值为87,-127.12.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A∁R B,求实数a的取值范围.解:∁R B={x|x≤1或x≥2}≠∅,∵A∁R B,∴分A=∅和A≠∅两种情况讨论.①若A=∅,此时有2a-2≥a,∴a≥2.②若A≠∅a-2<a≤1a-2<aa-2≥2.∴a≤1.综上所述,a≤1或a≥2.第二章基本初等函数1.下列说法中正确的为()A.y=f(x)与y=f(t)表示同一个函数B.y=f(x)与y=f(x+1)不可能是同一函数C.f(x)=1与f(x)=x0表示同一函数D.定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是()A.f(x)=|x|,g(x)=(x)2B.f(x)=|x|,g(x)=x2C.f(x)=|x|,g(x)=x2xD.f(x)=x2-9x-3,g(x)=x+3解析:选B.A、C、D的定义域均不同.3.函数y=1-x+x的定义域是()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}解析:选D.-x≥0≥0,得0≤x≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是()A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是()A .x =y 2+1B .y =2x 2+1C .x -2y =6D .x =y解析:选A.一个x 对应的y 值不唯一.3.下列说法正确的是()A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是()A .A ={-1,0,1},B ={0,1},f :A 中的数平方B .A ={0,1},B ={-1,0,1},f :A 中的数开方C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是()A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z解析:选C.A、B与D对应法则都不同.6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()A.∅B.∅或{1}C.{1}D.∅或{2}解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=∅或{1}.7.若[a,3a-1]为一确定区间,则a的取值范围是________.解析:由题意3a-1>a,则a>1 2 .答案:(12,+∞)8.函数y=x+103-2x的定义域是________.解析:要使函数有意义,+1≠0-2x>0,即x<32且x≠-1.答案:(-∞,-1)∪(-1,32)9.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.解析:当x取-1,0,1,2时,y=-1,-2,-1,2,故函数值域为{-1,-2,2}.答案:{-1,-2,2}10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.解:(1)要使y=-x2x2-3x-2有意义,则必须x≥0,x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23,故所求函数的定义域为{x |x >23}.11.已知f (x )=11+x (x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值;(2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a ].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a ],∴-1a ≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是()解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于()A.11+x(x ≠-1) B.1+xx(x ≠0)C.x1+x(x ≠0且x ≠-1)D .1+x (x ≠-1)解析:选C.f (1x )=11+x =1x 1+1x (x ≠0),∴f (t )=t1+t(t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=()A .3x +2B .3x -2C .2x +3D .2x -3解析:选B.设f (x )=kx +b (k ≠0),∵2f (2)-3f (1)=5,2f (0)-f (-1)=1,-b =5+b =1=3=-2,∴f (x )=3x -2.4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x2-11.下列表格中的x 与y 能构成函数的是()A.x非负数非正数y1-1B.x 奇数0偶数y10-1C.x 有理数无理数y1-1D.x 自然数整数有理数y10-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于()A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4t -12-1,∴f (12)=16-1=15.法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是()A .2x +1B .2x -1C .2x -3D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1,∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为()A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c ,由于点(0,0)在函数图象上,∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为()A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1,∴f [1f 3]=f (1)=2.答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ).解:令a =0,则f (-b )=f (0)-b (-b +1)=1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x =x 2+1x2+1x ,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x)=f (1+1x )=1+1x 2+1x =(1+1x )2-(1+1x )+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称.于是,设f (x )=a (x -2)2+k (a ≠0),则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a ,∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是()解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=+3x >10f x +5x ≤10,则f (5)的值是()A .24B .21C .18D .16解析:选A.f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24.3.函数y =x +|x |x的图象为()解析:选C.y =x +|x |x =+1x >0-1x <0,再作函数图象.4.函数f (x )-x +1,x <1x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为()A.2,0或2B .0,2C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3km(含3km),以后每1km 为1.6元(不足1km ,按1km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为()解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6;当4<x≤5时,y=13.2;…当n-1<x≤n时,y=10+(n-3)×1.6,故选C.3.函数f(x)x-x20≤x≤32+6x-2≤x≤0的值域是()A.R B.[-9,+∞)C.[-8,1]D.[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f(x)+2x≤-1,2-1<x<2x x≥2,若f(x)=3,则x的值是()A.1B.1或32C.1,32或±3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f(x)=x2=3,x=±3,而-1<x<2,∴x= 3.5.已知函数f(x),x为有理数,,x为无理数,g(x),x为有理数,,x为无理数,当x∈R时,f(g(x)),g(f(x))的值分别为()A.0,1B.0,0C.1,1D.1,0解析:选D.g(x)∈Q,f(x)∈Q,f(g(x))=1,g(f(x))=0.6.设f(x)x+12x≤-1,x+1-1<x<1,1x≥1,已知f(a)>1,则实数a的取值范围是()A.(-∞,-2)-1 2,+-1 2,C.(-∞,-2)-12,-12,(1,+∞)解析:选C.f(a)>1⇔≤-1a +12>11<a <1a +1>11>1≤-1<-2或a >01<a <1>-12≥1a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)-12,7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j ,所以密文“nbuj ”破译后为“mati ”.答案:mati8.已知函数f (x )2,x ≤0,x -2,x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x ),x ≥0,1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组+2≥0+x +2·1≤5+2<0+x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )2-1≤x ≤1x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴st 0≤t ≤5,<t+612<t 12.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm 腰长为22cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为ABCD 是等腰梯形,底角为45°,AB =22cm ,所以BG =AG =DH =HC =2cm.又BC =7cm ,所以AD =GH =3cm.①当点F 在BG 上时,即x ∈[0,2]时,y =12x 2;②当点F 在GH 上时,即x ∈(2,5]时,y =x +x -22×2=2x -2;③当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合①②③,得函数解析式为y 2x ∈[0,2]-2x ∈2,5].-12x -72+10x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于()A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8.2.函数f (x )在R 上是增函数,若a +b ≤0,则有()A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断.∵a +b ≤0,∴a ≤-b ,b ≤-a .又∵函数f (x )在R 上是增函数,∴f (a )≤f (-b ),f (b )≤f (-a ).∴f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:①y =x x -1;②y =x 2+x ;③y =-(x +1)2;④y =x1-x +2.其中在(-∞,0)上为减函数的是()A .①B .④C .①④D .①②④解析:选A.①y=xx-1=x-1+1x-1=1+1x-1.其减区间为(-∞,1),(1,+∞).②y=x2+x=(x+12)2-14,减区间为(-∞,-12).③y=-(x+1)2,其减区间为(-1,+∞),④与①相比,可知为增函数.4.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是________.解析:对称轴x=k8,则k8≤5,或k8≥8,得k≤40,或k≥64,即对称轴不能处于区间内.答案:(-∞,40]∪[64,+∞)1.函数y=-x2的单调减区间是()A.[0,+∞)B.(-∞,0]C.(-∞,0)D.(-∞,+∞)解析:选A.根据y=-x2的图象可得.2.若函数f(x)定义在[-1,3]上,且满足f(0)<f(1),则函数f(x)在区间[-1,3]上的单调性是()A.单调递增B.单调递减C.先减后增D.无法判断解析:选D.函数单调性强调x1,x2∈[-1,3],且x1,x2具有任意性,虽然f(0)<f(1),但不能保证其他值也能满足这样的不等关系.3.已知函数y=f(x),x∈A,若对任意a,b∈A,当a<b时,都有f(a)<f(b),则方程f(x)=0的根()A.有且只有一个B.可能有两个C.至多有一个D.有两个以上解析:选C.由题意知f(x)在A上是增函数.若y=f(x)与x轴有交点,则有且只有一个交点,故方程f(x)=0至多有一个根.4.设函数f(x)在(-∞,+∞)上为减函数,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)解析:选D.∵a2+1-a=(a-12)2+34>0,∴a2+1>a,∴f(a2+1)<f(a),故选D.5.下列四个函数在(-∞,0)上为增函数的是()①y =|x |;②y =|x |x ;③y =-x 2|x |;④y =x +x|x |.A .①②B .②③C .③④D .①④解析:选C.①y =|x |=-x (x <0)在(-∞,0)上为减函数;②y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有()①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x④y =1x 的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0.∴b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.解析:∵a 2-a +1=(a -12)2+34≥34,∴f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=x 2+3x x >02-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.解:(1)∵f (1)=0,f (3)=0,+b +c =0+3b +c =0,解得b =-4,c =3.(2)证明:∵f (x )=x 2-4x +3,∴设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3)=(x 21-x 22)-4(x 1-x 2)=(x 1-x 2)(x 1+x 2-4),∵x 1-x 2<0,x 1>2,x 2>2,∴x 1+x 2-4>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.1≤x -1≤11≤1-3x ≤1,-1<1-3xx≤2x≤23,<12∴0≤x<12.12.设函数y=f(x)=ax+1x+2在区间(-2,+∞)上单调递增,求a的取值范围.解:设任意的x1,x2∈(-2,+∞),且x1<x2,∵f(x1)-f(x2)=ax1+1x1+2-ax2+1x2+2=ax1+1x2+2-ax2+1x1+2x1+2x2+2=x1-x22a-1x1+2x2+2.∵f(x)在(-2,+∞)上单调递增,∴f(x1)-f(x2)<0.∴x1-x22a-1x1+2x2+2<0,∵x1-x2<0,x1+2>0,x2+2>0,∴2a-1>0,∴a>12.1.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()A.9B.9(1-a)C.9-a D.9-a2解析:选A.x∈[0,3]时f(x)为减函数,f(x)max=f(0)=9.2.函数y=x+1-x-1的值域为()A.(-∞,2]B.(0,2]C.[2,+∞)D.[0,+∞)解析:选B.y=x+1-x-1+1≥0-1≥0,∴x≥1.∵y=2x+1+x-1为[1,+∞)上的减函数,∴f(x)max=f(1)=2且y>0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为()A .0或1B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2,对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y4=1.则xy 的最大值为________.解析:y 4=1-x 3,∴0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是()A .1B .0C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知,f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )x +6,x ∈[1,2]+7,x ∈[-1,1],则f (x )的最大值、最小值分别为()A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6.3.函数y =-x 2+2x 在[1,2]上的最大值为()A .1B .2C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.4.函数y =1x -1在[2,3]上的最小值为()A .2B.12C.1 3D.-12解析:选B.函数y=1x-1在[2,3]上为减函数,∴y min=13-1=12.5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为() A.90万元B.60万元C.120万元D.120.25万元解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L最大为120万元,故选C.6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为() A.-1B.0C.1D.2解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.∴函数f(x)图象的对称轴为x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=-2,∴f(0)=-2,即a=-2.f(x)max=f(1)=-1+4-2=1.7.函数y=2x2+2,x∈N*的最小值是________.解析:∵x∈N*,∴x2≥1,∴y=2x2+2≥4,即y=2x2+2在x∈N*上的最小值为4,此时x=1.答案:48.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.解析:由题意知f(x)在[1,a]上是单调递减的,又∵f(x)的单调减区间为(-∞,3],∴1<a≤3.答案:(1,3]9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.。

数学必修一练习题汇总(含答案)

数学必修一练习题汇总(含答案)

第一章综合练习一、选择题(每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞)解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快.答案:B8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()①y=f(|x|) ②y=f(-x) ③y=xf(x) ④y=f(x)+xA.①③B.②③C.①④D.②④解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y =f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x=-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( ) A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( ) A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎢⎡⎦⎥⎤f (52)的值是( )A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎢⎡⎦⎥⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f(x)=(m-1)x2+6mx+2是偶函数,∴m=0.∴f(x)=-x2+2.∴f(0)=2,f(1)=1,f(-2)=-2,∴f(-2)<f(1)<f(0).答案:f(-2)<f(1)<f(0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1},(1)当x∈N*时,求A的子集的个数;(2)当x∈R且A∩B=Ø时,求m的取值范围.解:(1)∵x∈N*且A={x|-2≤x≤5},∴A={1,2,3,4,5}.故A的子集个数为25=32个.(2)∵A∩B=Ø,∴m-1>2m+1或2m+1<-2或m-1>5,∴m<-2或m>6.18.(12分)已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠Ø且B⊆A,求a,b的值.解:(1)当B=A={-1,1}时,易得a=0,b=-1;(2)当B含有一个元素时,由Δ=0得a2=b,当B={1}时,由1-2a+b=0,得a=1,b=1当B={-1}时,由1+2a+b=0,得a=-1,b=1.19.(12分)已知函数f(x)=xax+b(a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.解:∵f(x)=xax+b且f(2)=1,∴2=2a+b.又∵方程f(x)=x有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝ ⎛⎭⎪⎫x -a 22+2-2a .(1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2. (2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:于是y 1=8x +1000+(x50+2)×300=14x +1600, y 2=4x +1800+(x100+4)×300=7x +3000. 令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车; ②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3. (2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].第二章综合练习一、选择题(每小题5分,共60分)1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6. 答案:D2.设f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( ) A .x >12 B.12<x <1 C .x <1D .0<x <1解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下() A.0.015克B.(1-0.5%)3克C.0.925克 D.1000.125克解析:设该放射性元素满足y=a x(a>0且a≠1),则有12=a100得a=(12)1100.可得放射性元素满足y=[(12)1100]x=(12)x100.当x=3时,y=(12)3100=100(12)3=1000.125.答案:D6.函数y=log2x与y=log 12x的图象()A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于y=x对称解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y=lg(21-x-1)的图象关于()A.x轴对称B.y轴对称C.原点对称D.y=x对称解析:f(x)=lg(21-x-1)=lg1+x1-x,f(-x)=lg1-x1+x=-f(x),所以y=lg(21-x-1)关于原点对称,故选C.答案:C8.设a>b>c>1,则下列不等式中不正确的是() A.a c>b c B.log a b>log a cC.c a>c b D.log b c<log a c解析:y=x c在(0,+∞)上递增,因为a>b,则a c>b c;y=log a x在(0,+∞)上递增,因为b>c,则log a b>log a c;y=c x在(-∞,+∞)上递增,因为a>b,则c a>c b.故选D.答案:D9.已知f(x)=log a(x+1)(a>0且a≠1),若当x∈(-1,0)时,f(x)<0,则f(x)是()A.增函数B.减函数C.常数函数D.不单调的函数解析:由于x∈(-1,0),则x+1∈(0,1),所以a>1.因而f(x)在(-1,+∞)上是增函数.答案:A10.设a=424,b=312,c=6,则a,b,c的大小关系是()A.a>b>c B.b<c<a C.b>c>a D.a<b<c解析:a=424=12243,b=12124,c=6=1266.∵243<124<66,∴12243<12124<1266,即a<b<c.答案:D11.若方程a x=x+a有两解,则a的取值范围为() A.(1,+∞) B.(0,1)C.(0,+∞) D.Ø解析:分别作出当a>1与0<a<1时的图象.(1)当a>1时,图象如下图1,满足题意.(2)当0<a<1时,图象如上图2,不满足题意.答案:A12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A .(110,1)B .(0,110)∪(1,+∞) C .(110,10)D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12. 答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________. 解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1. 答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12. 当t =3时,y min =12;当t =1时,y max =12×4+12=52. 答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中,得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0,将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0. 解得y =4或y =22. 当y =4时,即2x =4,解得x =2; 当y =22时,2x =22,解得x =-12. 综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ; (2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa . 综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa ,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax ),其中0<a <1. (1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-ax 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎪⎨⎪⎧1-ax >0,①1-ax <a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.第三章综合练习一、选择题(每小题5分,共60分)1.二次函数f(x)=2x2+bx-3(b∈R)的零点个数是() A.0B.1C.2D.4解析:∵Δ=b2+4×2×3=b2+24>0,∴函数图象与x轴有两个不同的交点,从而函数有2个零点.答案:C2.函数y=1+1x的零点是()A.(-1,0) B.-1 C.1 D.0解析:令1+1x=0,得x=-1,即为函数零点.答案:B3.下列给出的四个函数f(x)的图象中能使函数y=f(x)-1没有零点的是()解析:把y=f(x)的图象向下平移1个单位后,只有C图中图象与x轴无交点.答案:C4.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在(-2,2)上仅有一个实数根,则f(-1)·f(1)的值()A.大于0 B.小于0C.无法判断D.等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部.答案:C5.函数f (x )=e x -1x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内. 答案:B6.方程log 12x =2x -1的实根个数是( ) A .0 B .1 C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台解析:设产量为x 台,利润为S 万元,则S =25x -y =25x -(0.1x 2-11x +3000) =-0.1x 2+36x -3000=-0.1(x -180)2+240,则当x =180时,生产者的利润取得最大值. 答案:D8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0D .以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为() 答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:那么方程2x=x2的一个根所在区间为()A.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f(x)=x3-2x-5,则f(2)<0,f(3)>0,f(4)>0,有f(2)f(3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f(x)=ax2-bx+1的零点为-12,13,则a=__________,b=__________.解析:由韦达定理得-12+13=ba,且-12×13=1a.解得a=-6,b=1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l,则这块场地面积y与场地一边长x的关系为________.图1解析:由题意知场地的另一边长为l-2x,则y=x(l-2x),且l-2x>0,即0<x<l2.答案:y=x(l-2x)(0<x<l 2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1% 即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a =10, ∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3. 18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800x m ,于是鱼池与路的占地面积为 y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2. 答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c , 得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0). (3)令p (x )=0,即-12x 2+14x -50=0, 解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~2003年该企业年产量的散点图;(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52, ∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1;f(4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f(x)=32x+52能基本反映产量变化.(3)f(7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.必修1综合练习一、选择题(每小题5分,共60分)1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝ ⎛⎭⎪⎫12的值为( )A .1B .3C .15D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝ ⎛⎭⎪⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7)B .(5,7)C .(-4,-3)∪(5,7)D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C 6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ) A .单调递减无最小值 B .单调递减有最大值 C .单调递增无最大值D .单调递增有最大值解析:2x +1在(-∞,+∞)上递增,且2x +1>0, ∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( ) A .0 B .1 C .2D .3解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( ) A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错; 函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D 错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝ ⎛⎭⎪⎫1102=10,∴H 1=103.答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1) C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1, 解得0<m <12,即m ∈(0,12). 答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎨⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分) 二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫k ⎪⎪⎪0≤k <3415.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数. 证明:设x 1<x 2<0,则g (x 1)-g (x 2)=k x 1-k x 2=k (x 2-x 1)x 1x 2.∵x 1<x 2<0,∴x 1x 2>0,x 2-x 1>0,又∵k <0,∴g (x 1)-g (x 2)<0,即g (x 1)<g (x 2),∴g (x )=kx (k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.解:当Q ≠Ø,且P ∩Q =Ø时,⎩⎪⎨⎪⎧ 2k -1<2,2k -1≥k +1,或⎩⎪⎨⎪⎧k +1>5,2k -1≥k +1.解得k >4;当Q =Ø时,即2k -1<k +1,即k <2时,P ∩Q =Ø.综上可知,当P ∩Q =Ø时,k <2或k >4.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.解:因为函数f (x )为一次函数,所以f (x )在[-1,1]上是单调函数,f (x )在[-1,1]上的最大值为max{f (-1),f (1)}.分别取x =0和x =2,得⎩⎪⎨⎪⎧4f (1)-2f (-1)=18,4f (-1)-2f (1)=24,解得f (1)=10,f (-1)=11,所以函数f (x )在[-1,1]上的最大值为f (-1)=11.又因为f (1)<f (-1),所以f (x )在R 上是减函数,所以f (2007)>f (2008).20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-mx 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上单调递增.故⎩⎪⎨⎪⎧ f (2)=2f (3)=5,即⎩⎪⎨⎪⎧ 4a -4a +2+b =29a -6a +2+b =5,解得⎩⎪⎨⎪⎧a =1b =0 ②当a <0时,f (x )在[2,3]上单调递减.故⎩⎪⎨⎪⎧f (2)=5f (3)=2,即⎩⎪⎨⎪⎧4a -4a +2+b =59a -6a +2+b =2,解得⎩⎪⎨⎪⎧a =-1b =3. (2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2,g (x )=x 2-2x +2-mx =x 2-(2+m )x +2,由题意知2+m 2≤2或2+m2≥4,∴m ≤2或m ≥6. 21.(12分)设函数y =f (x ),且lg(lg y )=lg3x +lg(3-x ). (1)求f (x )的解析式和定义域; (2)求f (x )的值域; (3)讨论f (x )的单调性.解:(1)lg(lg y )=lg[3x ·(3-x )],即lg y =3x (3-x ),y =103x (3-x ).又⎩⎪⎨⎪⎧3x >0,3-x >0,所以0<x <3,所以f (x )=103x (3-x )(0<x <3).(2)y =103x (3-x ),设u =3x (3-x )=-3x 2+9x =-3⎝⎛⎭⎪⎫x 2-3x +94+274=-3(x -32)2+274.当x =32∈(0,3)时,u 取得最大值274,所以u ∈(0,274],y ∈(1,10274].(3)当0<x ≤32时,u =-3⎝ ⎛⎭⎪⎫x -322+274是增函数,而y =10u是增函数,所以在⎝ ⎛⎦⎥⎤0,32上f (x )是递增的;当32<x <3时,u 是减函数,y =10u 是增函数,所以f (x )是减函数.22.(12分)已知函数f (x )=lg(4-k ·2x )(其中k 为实数), (1)求函数f (x )的定义域;(2)若f (x )在(-∞,2]上有意义,试求实数k 的取值范围. 解:(1)由题意可知:4-k ·2x >0,即解不等式:k ·2x <4, ①当k ≤0时,不等式的解为R ,②当k >0时,不等式的解为x <log 24k ,所以当k ≤0时,f (x )的定义域为R ; 当k >0时,f (x )的定义域为(-∞,log 24k ).(2)由题意可知:对任意x ∈(-∞,2],不等式4-k ·2x >0恒成立.得k <42x ,设u =42x , 又x ∈(-∞,2],u =42x 的最小值1.所以符合题意的实数k 的范围是(-∞,1).。

数学必修一复习题及答案

数学必修一复习题及答案

数学必修一复习题及答案一、选择题1. 下列哪个选项不是实数?A. πB. -3C. √2D. i2. 已知函数f(x) = 2x - 1,求f(3)的值。

A. 4B. 5C. 6D. 73. 集合{1, 2, 3}与{3, 4, 5}的交集是什么?A. {1, 2}B. {3}C. {1, 3}D. {4, 5}4. 如果a > 0且a ≠ 1,那么函数y = log_a x的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 9B. 11C. 13D. 15二、填空题6. 函数y = 3x^2 + 2x - 5的顶点坐标是______。

7. 已知等比数列的首项为2,公比为3,求第4项的值是______。

8. 根据题目所给条件,若a + b = 5,a - b = 3,求a和b的值,a = ______,b = ______。

9. 将函数y = sin(x)的图像向左平移π/4个单位,新的函数表达式为______。

10. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,根据勾股定理,三角形ABC是______三角形。

三、解答题11. 证明:如果一个数列是等差数列,那么它的前n项和S_n可以表示为S_n = n/2 * (a_1 + a_n)。

12. 解不等式:2x^2 - 5x + 3 ≤ 0。

13. 已知函数f(x) = x^3 - 3x^2 + 2x,求导数f'(x),并找出函数的极值点。

14. 已知圆的方程为(x - 3)^2 + (y - 4)^2 = 25,求圆心和半径。

15. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]四、答案1. D2. B3. B4. A5. C6. (-1/3, -43/9)7. 548. a = 4, b = 19. y = sin(x + π/4)10. 直角11. 证明略12. x ≤ 3/2 或x ≥ 113. f'(x) = 3x^2 - 6x + 2,极值点为x = 1, x = 2/314. 圆心(3, 4),半径515. 解得 x = 2, y = 3本复习题涵盖了数学必修一的主要内容,包括实数、函数、集合、数列、不等式、导数、圆的方程和方程组等,旨在帮助学生全面复习并掌握相关知识点。

高中生物必修一 复习题

高中生物必修一 复习题

题目老教材必修一(细胞)Ⅰ、一个答题技巧。

例如在问松土对于植物的成长的帮助。

一般简答题要答三点,可以从‘为什么’‘怎么做’‘会怎样’‘反向假设’‘以一推多’这5个方面去考虑。

比如,为什么要松土?松土会怎么样?我们能想到松土有利于空气的流通,可以答出①有利于植物根部进行有氧呼吸从而正常的吸收矿质离子。

从‘反向考虑’,②如果不及时松土,会缺氧,那么会导致无氧呼吸的产物堆积,从而毒害植物根部。

从‘由自身推周围环境’去考虑,松土不仅利于植物的呼吸,也利于微生物的呼吸,③有利于微生物将土壤中有机物分解为可以被植物利用的无机物。

Ⅱ、一个记忆技巧。

在酵母菌呼吸那个实验中CO2导致溴麝酚蓝香草水溶液变色顺序:蓝绿黄。

众所周知,彩虹是赤橙黄绿蓝靛紫。

其中的黄绿蓝倒过来就是蓝绿黄了。

多去将已有的记忆和新的记忆“搭桥”,可以节省时间也不易混淆。

过去我很多次将DNA所需要的3撇端记成了5撇端。

后来想到一个解决办法,那就是将Tap酶和它联系起来,Tap 是三个字母,我就直接记3撇端了。

1.系统是指?2.自由水的4个作用?3.什么是必需氨基酸4.核酸的功能是什么?5.单糖的定义?6.同质量的脂质和糖类燃烧时,脂质所放出的能量远大于糖类,为什么生物体选择以糖类作为主要能源物质?7.细胞中大多数元素、无机盐的存在形式8.结合水和自由水的定义?9.真核和原核生物的统一性表现在哪三个方面?10.胆固醇如何转换为维生素D?11.细胞学说的内容12.胆固醇的两个作用13.磷脂分子的组成(4部分)14.细胞膜具有一定的流动性的原因?15.健那绿染色的原理16.肌质体是什么?17.必修一四个骨架18.细胞质的构成?19.高尔基体的功能20.细胞核是具有双层膜的细胞器吗?21.溶酶体及其内部的水解酶是怎么形成的?22.细胞器膜的两个作用23.核仁与核糖体的形成有关,而原核生物没有核仁,它们是如何合成核糖体的?24.拟核是指?25.细胞核的功能26.结构与功能的关系27.为什么使用健那绿染液观察线粒体的时候不需要额外滴加生理盐水?28.细胞膜是由什么组成的?29.细胞膜的功能?30.什么是分泌蛋白?31.细胞骨架的作用32.自噬作用的意义33.载体蛋白的专一性是指?34.动物细胞和植物细胞等价于“半透膜”的结构分别是什么35.囊性纤维病是什么?36.自由扩散也可以体现出细胞膜的选择透过性37.植物的筛管和导管的区别38.质壁分离和复原的实验中,使用吸水纸吸引的目的是?39.植物细胞质壁分离的内因是?40.什么是①自由扩散②协助扩散③主动运输?41.渗透作用是指?产生的条件是?渗透系统的组成是?42.细胞液是指?43.什么是糖被?作用是?44.蛋白质在脂双层的分布?45.光学显微镜能看到暗亮暗的结构吗?46.胃蛋白酶的最适PH?47.什么是细胞代谢?48.什么是酶?什么是酶活性?酶的专一性是指?49.活化能是什么?50.在测定酶最适作用条件的实验中,缓冲液的两个作用51.什么是胞吞?52.什么是细胞呼吸?什么是有氧呼吸?什么是无氧呼吸?53.有氧呼吸和直接燃烧释放能量的区别?(2条)54.无氧呼吸产物不同的直接原因是?55.什么是光合作用?56.观察有丝分裂的实验中,植物与动物组织分别怎么处理?57.什么是细胞周期?58.探究酶最适温度实验设计的叙述,例50°至80°(背诵)59.恩格尔曼选取水绵和好氧细菌的目的?60.为什么绿藻多分布于海水的浅层,而红藻多分布于海水的深层?61.秋天降温时,有些植物叶片变为红色的原因?62.光合午休的产生原因?63.在探究影响植物光合速率的因素实验中,对照组不宜使用蒸馏水培养的原因?64.摘除果实后,叶肉细胞中光合产物输出减少的原因是?65.什么是化能合成作用?66.使用小鼠为材料观察有丝分裂应选用小鼠哪个部位的细胞?67.细胞最小体积由什么决定?68.细胞分化是指?细胞凋亡是指?69.细胞坏死是指?70.细胞的全能性是指?癌细胞是指?71.有丝分裂的意义?72.原癌基因和抑癌基因分别行使什么功能?为何癌症患者体内的癌胚抗原等物质数量异常?答案老教材必修一(细胞)1.彼此间相互作用、相互依赖的组分有规律地结合而形成的整体。

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一练习题(一)集合(详细答案)

高中数学必修一复习练习(一)班号姓名集合的含义与表示1.下面的结论正确的是( )A .a∈Q ,则a∈NB .a∈Z,则a∈NC.x2 -1=0 的解集是{ -1,1} D .以上结论均不正确2.下列说法正确的是( )A .某班中年龄较小的同学能够形成一个集合B .由1,2,3 和9,1,4组成的集合不相等C.不超过20 的非负数组成一个集合D .方程x2-4=0 和方程|x-1|=1 的解构成了一个四元集3.用列举法表示{( x,y)|x∈N+,y∈N+,x+y=4} 应为( )A .{(1 ,3),(3,1)}B .{(2 ,2)}C.{(1 ,3),(3,1),(2,2)} D .{(4 ,0),(0,4)}4. 下列命题:(1) 方程x-2+|y+2|=0 的解集为{2 ,-2} ;(2) 集合{ y|y=x2-1,x∈R} 与{ y|y=x-1,x∈R} 的公共元素所组成的集合是{0 ,1} ;(3) 集合{ x|x-1<0} 与集合{ x|x>a,a∈R} 没有公共元素.其中正确的个数为( )A .0B .1 C.2 D.35. 对于集合A={ 2,4,6,8},若a∈A,则8-a∈A,则a 的取值构成的集合是.6.定义集合A*B={ x|x=a-b,a∈A,b∈B} ,若A={1 ,2} ,B={0 ,2} ,则A* B 中所有元素之和为.7.若集合A={ -1,2} ,集合B={ x|x2+ax+b=0} ,且A=B,则求实数a,b 的值.8.已知集合A={ a-3,2a-1,a2+1} ,a∈R .(1) 若-3∈A,求实数 a 的值;(2) 当a 为何值时,集合 A 的表示不正确.集合间的基本关系1.下列关系中正确的个数为( )①0∈{0} ;②? {0} ;③{(0 ,1)} ? {(0 ,1)} ;④{( a,b)} ={( b,a)} .A .1B .2 C.3 D .42.已知集合A={ x|-1<x<2} ,B={ x|0<x<1} ,则( )A .A>B B .A B C.B A D.A? B3.已知{1 ,2} ? M {1 ,2,3,4} ,则符合条件的集合M 的个数是( )A .3 B.4 C.6 D .84.集合M={1 ,2,a,a2-3a-1} ,N={ -1,3} ,若3∈M 且N M,则 a 的取值为( )A .-1B .4 C.-1 或-4 D.- 4 或15. 集合 A 中有m 个元素,若在 A 中增加一个元素,则它的子集增加的个数是.6.已知M={ y|y=x2-2x-1,x∈R} ,N={ x|-2≤x≤4} ,则集合M 与N 之间的关系是.7.若集合M={ x|x2+x-6=0} ,N={ x|(x-2)( x-a)=0} ,且N? M,求实数 a 的值.8.设集合A={ x|a-2<x<a+2} ,B={ x|-2<x<3} ,(1) 若A B,求实数 a 的取值范围;(2)是否存在实数 a 使B? A?并集与交集1.A∩B=A,B∪C=C,则A,C 之间的关系必有( )A .A? CB .C? A C.A=CD .以上都不对2.A={0 ,2,a} ,B={1 ,a2} ,A∪B={0 ,1,2,4,16} ,则 a 的值为( )A .0B .1 C.2 D .43.已知全集U =R ,集合M={ x|-2≤x-1≤2}和N={ x|x=2k-1,k∈N*} 的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A .2 个B .3 个C.1 个 D .无穷多个4.设集合M={ x|-3≤x<7} ,N={ x|2x+k≤0} ,若M∩N≠?,则k 的取值范围是( )A .k≤3B .k≥-3 C.k>6 D.k≤65.已知集合M={ x|-3<x≤5} ,N={ x|-5< x<-2 或x>5} ,则M∪N=,M∩N=.6.已知集合A={( x,y)|y=x2,x∈R} ,B={( x,y)|y=x,x∈R } ,则A∩B 中的元素个数为.7.已知集合A={ x|x2+px+q=0} ,B={ x|x2-px-2q=0} ,且A∩B={ -1} ,求A∪B.8.已知A={ x|x<-2 或x>3} ,B={ x|4x+m<0 ,m∈R} ,当A∩B=B 时,求m 的取值范围.集合的补集运算1.已知全集U ={1 ,2,3,4,5,6,7,8} ,M={1 ,3,5,7} ,N={5 ,6,7} ,则?U (M∪N)=( )A .{5 ,7}B .{2 ,4} C.{2 ,4,8} D.{1 ,3,5,6,7}2.已知全集U ={2 ,3,5} ,集合A={2 ,|a-5|} ,若?U A={3} ,则 a 的值为( )A .0B .10 C.0 或10 D .0 或-103.已知全集U =R ,集合A={ x|-2≤x≤3} ,B={ x|x<-1 或x>4} ,那么集合A∩(?U B)等于( )A .{ x|-2≤x<4} B.{ x|x≤3 或x≥4}C.{ x|-2≤x<-1} D.{ x|-1≤x≤3}4.如图所示,U 是全集,A,B 是U 的子集,则阴影部分所表示的集合是( )A .A∩B B .A∪B C.B∩(?U A) D .A∩(?U B)5.已知全集S=R,A={ x|x≤1} ,B={ x|0≤x≤5} ,则(?S A)∩B=.6.定义集合A*B={ x|x∈A,且x?B} ,若A={1 ,2,3,4,5} ,B={2 ,4,5} ,则A* B 的子集的个数是.5} ,7.已知全集U =R ,A={ x|-4≤x≤2} ,B={ x|-1< x≤3} ,P={ x|x≤0 或x≥2(1) 求A∩B;(2)求(?U B)∪P;(3)求(A∩B)∩(?U P).8.已知集合A={ x|2a-2<x<a} ,B={ x|1<x<2} ,且 A ?R B,求a 的取值范围.参考答案集合的含义与表示1.选 C 对于 A ,a 属于有理数,则 a 属于自然数,显然是错误的,对于B,a 属于整数,则a 属于自然数当然也是错的,对于 C 的解集用列举法可用它来表示.故 C 正确.2.选 C A 项中元素不确定; B 项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等; D 项中两个方程的解分别是±2,0,2,由互异性知,可构成一个三元集.3.选 C x=1 时,y=3;x=2 时,y=2;x=3 时,y=1.4.选 A (1)?x-2=0,?x=2,故解集为{(2 ,-2)} ,而不是{2 ,-2} ;|y+2|=0 y=-2.(2) 集合{ y|y=x2-1,x∈R} 表示使y=x2-1 有意义的因变量y 的范围,而y=x2-1≥-1,故{ y|y=x2-1,x∈R} ={ y|y≥-1} .同理集合{ y|y=x-1,x∈R} =R .结合数轴(图1)知,两个集合的公共元素所组成的集合为{ y|y≥-1} ;(3) 集合{ x|x-1<0} 表示不等式x-1<0 的解集,即{ x|x<1} .而{ x|x>a,a∈R } 就是x>a 的解集.结合图2,当a≥1时两个集合没有公共元素;当a<1 时,两个集合有公共元素,形成的集合为{ x|a<x<1} .5.解析:当a=2 时,8-a=6∈A ;a=4 时,8-a=4∈A ;a=6 时,8-a=2∈A;a=8 时,8-a=0? A.∴所求集合为{2 ,4,6} .答案:{2 ,4,6}6.解析:A*B ={1 ,-1,2,0} ,∴A*B 中所有元素之和为1-1+2+0=2. 答案:27.解:由题意知-1,2 是方程2+ax+b=0 的两个根,由根与系数的关系可知有1-a+b=0,4+2a+b=0,故有a=-1,b=-2.8.解:(1)由题意知, A 中的任意一个元素都有等于- 3 的可能,所以需要讨论.当a-3=-3 时,a=0,集合A={ -3,-1,1} ,满足题意;当2a-1=-3 时,a=-1,集合A={ -4,-3,2} ,满足题意;x当a2+1=-3 时,a 无解.综上所述,a=0 或a=-1.(2)若元素不互异,则集合 A 的表示不正确若a-3=2a-1,则a=-2;若a-3=a2+1,则方程无解;若2a-1=a2+1,则方程无解.综上所述,a=-2.集合间的基本关系1.选 C ①、②、③均正确;④不正确.a≠b时,(a,b)与( b,a)是不同的元素.2. C3.选 A 符合条件的集合M 有{1 ,2} ,{1 ,2,3} ,{1 ,2,4} 共3 个.4.选 B (1) 若a=3,则a2-3a-1=-1,即M={1 ,2,3,-1} ,显然N? M ,不合题意.(2)若a2-3a-1=3,即a=4 或a=-1(舍去),当a=4 时,M={1 ,2,4,3} ,满足要求.5.解析:由2m+1-2m=2·2m-2m=2m. 答案:2m6.解析:∵y=(x -1)2-2≥-2,∴M ={y|y ≥-2} ,∴N M. 答案:N M7.解:由x2+x-6=0,得x=2 或x=-3. 因此,M ={2 ,-3} .若a=2,则N={2} ,此时N? M;若a=-3,则N={2 ,-3} ,此时N=M;若a≠2且a≠-3,则N={2 ,a} ,此时N 不是M 的子集,故所求实数 a 的值为 2 或-3.8.解:(1)借助数轴可得, a 应满足的条件为a-2 >-2,或a+2 ≤3,a-2 ≥-2,a+2 < 3,解得0≤a ≤1.(2)同理可得 a 应满足的条件为a-2 ≤-2,a+2 ≥3,得a 无解,所以不存在实数 a 使B? A.并集与交集1.选 A A ∩B= A ? A ? B ,B ∪ C = C? B ? C ,∴ A ? C.2.选 D ∵ A = {0 , 2, a} , B = {1 ,a 2} , A ∪ B ={0 ,1, 2, 4, 16} ,则a =4,∴ a = 4. a 2= 16. 3.选 A M = {x| - 1≤ x ≤ ,3} N = {x|x = 2k -1, k ∈N*} ,∴ M ∩N ={1 , 3} .4.选 D 因为 N = {x|2x + k ≤ 0=} {x|x ≤- k } ,且 M ∩ N ≠? ,所以- k≥- 3? k ≤6. 2 25.解析:借助数轴可知: M ∪N = {x|x> - 5} ,M ∩N = { x |- 3<x<- 2} .答案: { x|x>-5}{ x|- 3<x<-2}6.解析:由 y = x2, 得 y = x , x = 0, 或 y = 0x = 1, y =1.答案: 27.解:因为 A ∩B= { - 1} ,所以- 1∈A 且- 1∈ B ,将 x =- 1 分别代入两个方程,得1-p + q = 01+p - 2q =0,解得 p = 3. 所以 A ={ x|x 2+3x + 2=0} ={ - 1,- 2} , q = 2B = { x|x 2- 3x - 4=0} ={ - 1, 4} ,所以 A ∪ B = { -1,- 2, 4} .m8. 解:由题知, B = {x|x< - 4,m ∈ R} ,因为 A ∩B= B ,所以 A ? B ,所以由数轴 (如图 )可得- m42,所以 m ≥8,即 m 的取值范围是 m ≥ 8.集合的补集运算≤-21.选 C M ∪ N = {1 ,3, 5, 6, 7} .∴ ?U (M ∪ N) = {2 ,4, 8} .2.选 C 由?U A = {3} ,知 3? A , 3∈ U. ∴ |a - 5|= 5,∴ a =0 或 a = 10.3.选 D 由题意可得, ?U B = {x| - 1≤x ≤ 4},A ={ x|- 2≤x ≤ 3,}所以 A ∩(? U B)= { x|- 1≤x ≤3} .端点处的取舍易出错.4.选 C 阴影部分表示集合 B 与集合 A 的补集的交集.因此,阴影部分所表示的集合为B ∩(? U A).5.解析:由已知可得 ?S A = { x|x>1} ,∴ (?S A) ∩B = { x|x>1} ∩{x|0 ≤x ≤ 5=} { x|1<x ≤ 5.}答案: { x|1<x ≤5}6.解析:由题意知 A*B = {1 , 3} .则 A*B 的子集有 22= 4 个.答案: 47.解:借助数轴,如图.(1) A ∩B = { x|- 1< x ≤2} ,5(2) ∵ ?U B = { x|x ≤- 1 或 x>3} , ∴ (?U B)∪P = { x|x ≤0 或 x ≥ } .5 (3) ?U P = { x|0<x<2} . (A ∩B) ∩?(U P)= { x|- 1<x ≤ 2} ∩x {|0< x < 5} = { x|0<x ≤2} .8.解: ?R B = {x|x ≤或1 x ≥ 2} ?≠,∵ A ?R B ,∴分 A =? 和 A ≠? 两种情况讨论.(1)若 A = ?,此时有 2a - 2≥a , ∴ a ≥2.2(2)若A≠?,则有2a-2<a或a≤12a-2<a2a-2≥2. ∴a≤1.综上所述,a≤1 或a≥2.。

高中语文必修一文言文复习题

高中语文必修一文言文复习题

高中语文必修一文言文复习题一、默写1、,不仁;失其所与,;,不武。

2、高渐离击筑,,,士皆垂泪涕泣。

又前而为歌曰:“,!”复为慷慨羽声,,发尽上指冠。

3、大行不顾细谨,。

,,何辞为?二、常见虚词、实词专项练习(一)将加点字正确词意的序号选入相应的括号内1、【而】(连词A、并列 B、递进,可译为“并且”或“而且” C、承接,可译为“就”“接着” D、转折 E、假设 F、修饰,连接状语)⑴若亡郑而.有益于君()⑵朝济而.夕设版焉()今急而.求子()⑶丹不忍以己之私,而.伤长者之意()夜缒而.出()⑷可以解燕国之患,而.报将军之仇者()⑸偏袒扼腕而.进()⑹今日往而.不返()⑺荆轲和而.歌()⑻又前而.为歌()⑼荆轲遂就车而.去()⑽而.得奉守先王之宗庙()⑾图穷而.匕首现()⑿而.为留待()⒀伏尸而.哭()⒁秦王还柱而.走()⒂秦王必喜而.善见臣()⒃而燕国见陵之耻除矣()⒄臣与将军戮力而攻秦()⒅劳苦而功高如此()立而饮之()拔剑切而啖之()2、【以】(A、介,表原因,译为“因为,由于” B、动,认为,以为 C、介,用 D、介,把E、介,在……的时候F、表依据,译为“按照,依照,根据”G、表处所、时间,译为“在、于”H、表示凭借,译为“凭,靠”I、表目的,译为“用来,以致”J、表修饰,相当于“而”K、通“已”已经)⑴以.其无礼于晋()⑵敢以.烦执事()⑶焉用亡郑以.陪邻()⑷若舍郑以.为东道主()⑸樊将军以.穷困来归丹()⑹丹不忍以.己之私()⑺可以.解燕国之患()越国以.鄙远()⑻愿得将军之首以.先秦()⑼使工以.药淬之()⑽日以.尽矣()⑾不敢兴兵以.拒大王()⑾以.次进()⑿而卒惶急无以.击轲()⒀而乃以.手共搏之()⒁遂拔以.击荆轲()⒂必得约契以.报太子()⒃寿毕,请以.剑舞()⒄军中无以.为乐()⒅阙秦以.利晋()⒆以.试人,血濡缕()3、【为】(A、做B、作为,当作(变为、成为)C、认为D、是E、如果,假如F、介,给、替G、介、因为(为了)H、介、被I、句末语气词)⑴且君尝为晋君赐矣()⑵父母宗族,皆为戮没()⑶嘉为先言于秦王()⑷愿举国为内臣()⑸使子婴为相()⑹为击破沛公军()⑺皆为龙虎()客何为者()⑻为之奈何()⑼谁为大王为此计者()()⑽约为婚姻()⑾若属皆且为所虏()君王为人不忍()⑿军中无以为乐()⒀窃为大王不取也()⒁如今人为刀俎,我为鱼肉,何辞为()()()4、【之】(A、到……去B、第三人称代词,他、她、它(们)C、指示代词,这、此D、助,的E、助,用于主谓之间,取消句子独立性F、宾语前置标志G、助词,无实义)⑴是寡人之过也()⑵邻之厚,君之薄也()行李之往来()⑶何厌之有()⑷将焉取之()⑸臣之壮也,犹不如人()⑹亦去之()⑺天下之利匕首太子迟之()顷之未发()⑻为之奈何()⑼项伯乃夜驰之沛公军()⑽珠宝尽有之()⑾吾属今为之虏矣()⑿愿伯具言臣之不敢倍德也()5、【焉】(A、于何,在哪里B、疑问代词,怎么、哪里,什么C、语气助词D、形容词,副词词尾,“……的样子”)⑴子亦有不利焉()⑵焉用亡郑以陪邻()⑶朝济而夕设版焉()⑷将焉取之()⑸然郑亡,子亦有不利焉()(二)解释下列加点词语的意思1、诚.能得樊将军首()燕王诚.振怖大王之威()2、不得持尺兵.()不及召下兵.()秦兵.旦暮渡易水()3、顾.计不知所出耳()终以不顾.()顾.笑武阳()4、樊将军以穷.困来归丹()图穷.而匕首见()5、微.夫人之力不及此()微.太子言,臣愿得谒之()6、然不自意.能先入关破秦()其意.常在沛公()闻大王有意.督过之()7、君安与项伯有故.()今事有急,故.幸来告良()8、不如因.善遇之()项王即日因.留沛公与饮()因.击沛公于坐()沛公起如厕,因.招樊哙出()因.人之力而敝之,不仁()9、沛公不胜.杯杓()刑人如恐不胜.()10、旦日不可不蚤自来谢.项王()哙拜谢.,起,立而饮之()乃令张良留谢.()张良入谢.()11、且.为之奈何()若属皆且.为所虏()臣死且.不避()以其无礼于晋,且.贰于楚也()12、臣死且不避,卮酒安足辞.()今者出,未辞.也()大礼不辞.小让()何辞.为()辞.曰:“臣之壮也……”()13、沛公起如.厕()固不如.也()刑人如.恐不胜()三、翻译下列句子,并掌握加点字词的意思1、晋侯、秦伯围郑,以.其无礼于晋,且贰.于楚也。

高一数学 必修一复习题

高一数学   必修一复习题

高一数学必修一复习题一.选择题(共12小题)1.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢函数的图象的特征,如函数的图象大致是()A.B.C.D.2.已知函数f(x)=,则f(f(2))=()A.﹣4B.﹣C.D.﹣83.集合A={x|y=},B={y|y=2x,x>0},则A∩B=()A.[0,2]B.(1,2]C.[1,2]D.(1,+∞)4.“x≤3”是“x2﹣7x+12≥0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列函数既是偶函数,又在(0,+∞)上为增函数的是()A.y=x B.y=﹣x2C.y=|x|D.6.已知函数f(x)是定义在[1﹣2m,m]上的偶函数,∀x1,x2∈[0,m],当x1≠x2时,[f(x1)﹣f(x2)](x1﹣x2)<0,则不等式f(x﹣1)≤f(2x)的解集是()A.[﹣1,]B.[﹣,]C.[0,]D.[0,]7.命题“∀x∈[﹣1,3],x2﹣3x+2≤0”的否定为()A.∃x0∈[﹣1,3],x02﹣3x0+2>0B.∀x∉[﹣1,3],x2﹣3x+2>0C.∀x∈[﹣1,3],x2﹣3x+2>0D.∃x0∉[﹣1,3],x02﹣3x0+2>08.已知R是实数集,集合A={x|1<x<2},B={{x|0<x<},则阴影部分表示的集合是()A.[0,1]B.(0,1]C.[0,1)D.(0,1)9.已知f(x)是定义在R上的奇函数,当x>0时,f(x)为增函数,且f(3)=0那么不等式xf(x)<0的解集是()A.(﹣3,﹣1)∪(1,3)B.(﹣3,0)∪(3,+∞)C.(﹣3,0)∪(0,3)D.(﹣∞,﹣3)∪(0,3)10.已知集合A={x|≤2},B={x|a﹣2<x<2a+1},若A⊆B,则实数a的取值范围是()A.()B.(]C.[]D.[,1)11.已知,则f(x)的解析式为()A.,且x≠1)B.,且x≠1)C.,且x≠1)D.,且x≠1)12.若集合A={x|(k+2)x2+2kx+1=0}有且仅有1个真子集,则实数k的值是()A.﹣2B.﹣1或2C.﹣1或±2D.﹣1或﹣2二.多选题(共4小题)13.“关于x的不等式x2﹣2ax+a>0对∀x∈R恒成立”的一个必要不充分条件是()A.0<a<1B.0≤a≤1C.0<a D.a≥014.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a﹣b、ab、∈P (除数b≠0)则称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A.数域必含有0,1两个数B.整数集是数域C.若有理数集Q⊆M,则数集M必为数域D.数域必为无限集15.函数y=f(x)的图象关于点P(a,b)成中心对称的充要条件是函数y=f(x+a)﹣b 为奇函数,以下选项正确的有()A.f(x)=2x+1关于中心对称B.f(x)=x3﹣3x2关于(1,﹣2)中心对称C.函数y=f(x)的图象关于x=a成轴对称的充要条件是y=f(x+a)为偶函数D.f(x)=x2﹣2x+5,则f(x﹣1)为偶函数16.对任意两个实数a,b,定义,若f(x)=2﹣x2,g(x)=x2﹣2,下列关于函数F(x)=min{f(x),g(x)}的说法正确的是()A.函数F(x)是奇函数B.方程F(x)=0有两个解C.函数F(x)有4个单调区间D.函数F(x)有最大值为0,无最小值三.填空题(共4小题)17.若∀x∈R,mx2+mx+1>0,则实数m的取值范围为.18.若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合A={﹣1,2},B={x|ax2=2,a≥0},若这两个集合构成“鲸吞”或“蚕食”,则a的取值集合为.19.若集合A={x|x2﹣(a+2)x+2﹣a<0,x∈Z}中有且只有一个元素,则正实数a的取值范围是.20.设集合I={1,2,3,4,5},若非空集合A满足:①A⊆I;②|A|≤min(A)(其中|A|表示集合A中元素的个数,min(A)表示集合A中的最小元素),则称A为I的一个好子集,I的所有好子集的个数为四.解答题(共5小题)21.已知全集U=R,集合A={x|x<﹣4或x>1},B={x|﹣3≤x﹣1≤2}.(1)求A∩B,(∁U A)∪(∁U B);(2)若集合M={x|k﹣1≤x≤2k﹣1}且M∩A=M,求实数k的取值范围.22.已知函数f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若关于x的不等式f(x)≥b的解集为{x|1≤x≤2},求实数a,b的值;(2)解关于x的不等式f(x)>0.23.(1)已知a>b>0,c<d<0,e<0,比较与的大小;(2)已知x>0,y>0,2x+y=1,求的取值范围;24.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示:(1)求函数f(x)(x∈R)的解析式,并在图中补充完整函数f(x)(x∈R)的图象;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围;(3)若函数g(x)=﹣f(x)﹣2ax+2,当x∈[1,2]时,求函数g(x)的最小值.25.已知函数f(x)=.(1)证明:函数f(x)在[1,+∞)上单调递减;(2)解关于x的不等式f(1+2x2)+f(﹣x2+2x﹣4)>0;(3)求函数f(x)的值域.高一数学必修一复习题参考答案一.选择题(共12小题)CDBAC,CABCB,CC二.多选题(共4小题)13. BD.14. AD.15.BC 16.BCD三.填空题(共4小题)17. [0,4).18.{0,,2}.19.(,] 20. 12.二.解答题(共5小题)21.解:(1)因为全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x ﹣1≤2}={x|﹣2≤x≤3},所以A∩B={x|1<x≤3};(∁U A)∪(∁U B)=∁U(A∩B)={x|x≤1,或x>3};(2)由M∩A=M,得M⊆A,①当M=∅时,k﹣1>2k﹣1,k<0.②当M≠∅时,有k﹣1≤2k﹣1,即k≥0,此时只需2k﹣1<﹣4或k﹣1>1,解得k>2.综上:k<0或k>2.22.解:(1)函数f(x)=ax2﹣(4a+1)x+4(a∈R),不等式f(x)≥b化为ax2﹣(4a+1)x+4﹣b≥0,由该不等式的解集为{x|1≤x≤2},所以a<0,且1和2是方程ax2﹣(4a+1)x+4﹣b=0的两根,所以,解得a=﹣1,b=6;(2)不等式f(x)>0,即(ax﹣1)(x﹣4)>0.①当a=0时,不等式为﹣x+4>0,解得x<4;②当a<0时,不等式为(x﹣)(x﹣4)<0,此时<4,解得<x<4;③当a>0时,不等式为(x﹣)(x﹣4)>0,若0<a<,则>4,解得x<4或x>;若a=,则=4,不等式为(x﹣4)2>0,解得x≠4;若a>,则<4,解得x<或x>4;综上知,a=0时,不等式的解集为{x|x<4};a<0时,不等式的解集为{x|<x<4};0<a<时,不等式的解集为{x|x<4或x>};a=时,不等式的解集为{x|x≠4};a>时,不等式的解集为{x|x<或x>4}.23.解:(1)﹣==e•,∵a>b>0,c<d<0,e<0,∴a﹣c>0,b﹣d>0,b﹣a<0,c﹣d<0,又e<0,∴﹣>0,∴>.(2)∵2x+y=1,x>0,y>0,∴+=(+)(2x+y)=3++≥3+2,当且仅当=,即x=1﹣,y=﹣1时等号成立,故的取值范围是[3+2,+∞).24.解:(1)设x>0,则﹣x<0,函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x,∴f(﹣x)=(﹣x)2+2×(﹣x)=x2﹣2x(x>0),即﹣f(x)=x2﹣2x,得f(x)=﹣x2+2x.∴.图象如图:;(2)要使函数f(x)在区间[﹣1,a﹣2]上单调递增,由函数图象可知,解得1<a≤3.故实数的取值范围是(1,3];(3)g(x)=﹣f(x)﹣2ax+2=x2﹣2x﹣2ax+2,对称轴方程为x=a+1,当a+1≤1,即a≤0时,g(1)=1﹣2a为最小值;当1<a+1≤2,即0<a≤1时,g(a+1)=﹣a2﹣2a+1为最小值;当a+1>2,即a>1时,g(2)=2﹣4a为最小值.综上,.25.解:(1)解法一:∵函数f(x)=,∴f′(x)=,故在[1,+∞)上,∴f′(x)=≤0,当且仅当x=1时,f′(x)=0,故函数f(x)在[1,+∞)上单调递减.解法二:设x2>x1≥1,则f(x1)﹣f(x2)=﹣==,由题设可得,x1﹣x2<0,1﹣x1x2<0,∴f(x1)﹣f(x2)<0,即f(x1)>f(x2),故函数f(x)在[1,+∞)上单调递减.(2)由于f(x)满足f(﹣x)=﹣f(x),故f(x)为奇函数,不等式f(1+2x2)+f(﹣x2+2x﹣4)>0,即不等式f(1+2x2)>﹣f(﹣x2+2x ﹣4)=f(x2﹣2x+4).∵1+2x2≥1,x2﹣2x+4>1,函数f(x)在[1,+∞)上单调递减,∴1+2x2 <x2﹣2x+4,求得﹣3<x<1,故原不等式的解集为(﹣3,1).(3)当x=0时,f(x)=0;当x>0时,f(x)=≤,即f(x)∈(0,].根据f(x)为奇函数,可得当x<0时,f(x)∈[﹣,0).综上可得,f(x)的值域为[﹣,].。

数学必修一参考复习题答案

数学必修一参考复习题答案

数学必修一参考复习题答案一、选择题1. 已知集合A={1, 2, 3},B={2, 3, 4},求A∩B。

答案:A∩B={2, 3}。

2. 函数f(x)=2x-1在x=3处的导数是多少?答案:f'(x)=2,所以f'(3)=2。

3. 已知等差数列的首项a1=5,公差d=3,求第10项a10。

答案:a10=a1+9d=5+9*3=32。

4. 一个圆的半径为5,求其面积。

答案:圆的面积A=πr²=π*5²=25π。

5. 已知直线y=2x+3与x轴的交点坐标是什么?答案:当y=0时,0=2x+3,解得x=-3/2,所以交点坐标为(-3/2, 0)。

二、填空题6. 函数g(x)=x²+3x+2的顶点坐标是________。

答案:(-3/2, -1/4)7. 已知等比数列的首项a1=2,公比q=2,求第5项a5。

答案:a5=a1*q⁴=2*2⁴=328. 一个三角形的三边长分别为3, 4, 5,判断它是否为直角三角形。

答案:是直角三角形,因为3²+4²=5²。

9. 已知一个函数f(x)=x³-6x²+11x-6,求f(2)的值。

答案:f(2)=2³-6*2²+11*2-6=-210. 一个正方体的体积为27,求其边长。

答案:边长为3,因为3³=27。

三、解答题11. 解不等式:3x²-5x+2>0。

答案:首先求出该二次不等式的根,通过因式分解或求根公式,得到x₁=1,x₂=2/3。

然后根据二次函数的图像,不等式的解集为x<2/3或x>1。

12. 证明:若a,b,c是正整数,且a²+b²=c²,则a,b,c中必有两个数是偶数。

答案:假设a,b,c中有两个奇数,不妨设a和b为奇数。

那么a²和b²都是奇数,它们的和也是奇数。

数学 必修一 复习题 含答案

数学 必修一 复习题 含答案

高一数学综合复习题(一)一、选择题(每小题5分,共60分)1、设全集S={a 、b 、c 、d 、e},M={a 、c 、d},N={b 、d 、e},那么(C S M )∩(C S N)= A 、Φ B 、{d} C 、{a 、c} D 、{b 、e}2、给出下列四个对应,其中构成映射的是:A 、(1)、(2)B 、(1)、(4)C 、(1)、(3)、(4)D 、(3) 、(4) 3、下列函数中,在区间(0,1)上为增函数的是: A 、y=2x 2-x+3B 、y=x)31(C 、y=32x D 、xy 21log=4、下列函数中是偶函数的是: A 、y=-x 3B 、y=x 2+2 x ∈(-3,3]C 、y=x -2D 、y=|log 2x| 5、已知函数f(x)=ax 3+bx -2,且f(-2)=10,则f(x)= A 、-14 B 、-12 C 、-10 D 、106、函数y=2-|x|的示意图是:A 、B 、C 、D 、7、设P 、Q 为两个非空实数集合,定义集合P+Q={a+b| a ∈P ,b ∈Q},若P={0,2,5},Q={1,2,6},则P+Q 中元素的个数是A 、9B 、8C 、7D 、6 8、若函数21)(Xx f -=的定义域为是: A 、(-∞ ,0)B 、[0,+∞])C 、(-∞ ,0]D 、(-∞,+∞)9、f(log 2x)=x ,则f(21)= A 、21B 、41C 、1D 、210、定义运算a b *,a a b b⎧*=⎨⎩()()a b a b ≤>,例如121*=,则函数12x y =*的值域为A 、(0,1)B 、(-∞,1)C 、[1,)+∞D 、(0,1]11、下列根式,分数指数幂互化中正确的是:A 、)0()(21>-=-x x xB 、3162y y=(y <0) C 、4343)1(xx=-(x ≠0)D 、331xx-=-(x ≠0)12、在xy )21(=,y=log 2x ,y=x 2,32xy=四个函数中,当0<x 1<x 2<1时,使)2(21x x f +>2)()(21x f x f +恒成立的函数个数是:A 、0B 、1C 、2D 、3二、填空题(每小题4分,共24分)13、函数y=)35(log 21-x 的定义域为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一复习练习题
1、某无色酸性溶液中,则该溶液中一定能够大量共存的离子组是()
A.Fe2+、Ba2+、NO3-、Cl-B.Na+、NH4+、SO42-、Cl-C.Na+、K+、SO32-、NO3-D.Na+、K+、MnO4-、Br-
2.下列反应的离子方程式书写正确的是()
A.用FeCl3溶液腐蚀印刷电路板:Fe3++Cu=Fe2++Cu2+
B.氯气跟水反应:Cl2 + H2O=H++ Cl-+ HClO
C.钠与水的反应:Na+H2O=Na++OH-+H2↑
D.AlCl3溶液中加入足量的氨水:Al3++ 3OH-══ Al(OH)3↓
3. a mol O2气体和a mol O3气体相比较,下列叙述一定正确的是()
A.体积相同 B.原子数相等 C.分子数相等D.质量相等
4.用N A代表阿伏加德罗常数的值,下列有关说法正确的是()A.3mol NO2与足量H2O反应,转移的电子数为N A
B.常温常压下,22.4L氦气含有N A个氦原子
C.标准状况下,22.4L单质溴所含有的原子数目不为2N A
D.钠在氧气中燃烧,1 mol O2作氧化剂时得到的电子数为4N A
5、为检验一种氮肥的成分,某学习小组的同学进行了以下实验:错误!未找到引用源。

加热氮肥样品生成两种气体,其中一种气体能使湿润的红色石蕊试纸变蓝,另一种气体能使澄清石灰水变浑浊。

错误!未找到引用源。

取少量该氮肥样品溶于水,并加入少量BaCl2溶液,没有明显变化。

由此可知该氮肥的主要成分是()
A.NH4HCO3B.NH4Cl C.(NH4)2CO3D.NH4NO
6.用N A表示阿伏加德罗常数的值,下列说法中正确的是()
A.1 mol N2所含有的原子数为N A
B.标准状况下,22.4 L水中含有的水分子数为N A
C.标准状况下,22.4 L氯化氢所含的原子数为N A
D.24 g O2分子和24 g O3分子所含的氧原子数目相等
7.下列离子方程式的书写正确的是()
A.铁和稀硫酸反应:2Fe + 6H+ =2Fe 3+ +3H 2↑
B.NaHCO3溶液与NaOH溶液反应:OH―+ HCO3―=CO32―+ H2O
C.钠和冷水反应Na+2H2O=Na++2OH +H2↑
D.氯化铝溶液中加入过量的氨水Al3+ + 4NH3·H2O =AlO2-+ 4NH4++ 2H2O
8.某同学对一无色透明溶液进行分析得出该溶液中含有下列某组离子,你认为该组离子应该是()
A.Al3+、NO3―、K+、SO42ˉ B.Ca2+、H+、CO32ˉ、AlO2―
C.OHˉ、SO42ˉ、NH4+、Al3+ D.Fe3+、Mg2+、NO3ˉ、Clˉ
9.某盐的混合物中含有0.2 mol/L Na+、0.4 mol/L Mg2+、0.4 mol/L Clˉ,则SO42ˉ为()。

A.0.1 mol/L B.0.2 mol/L C.0.3 mol/L D.0.4 mol/L
10.用0.1 mol/L的Na2SO3溶液30 mL,恰好将2×10-3 mol XO4-还原,则元素X在还原产物中的化合价是()
A.+4 B.+3 C.+2 D.+1
11.(16分)下图的各方框表示有关的一种反应物或生成物(某些物质已经略去),其中常温下A、C、D为无色气体,C能使湿润的红色石蕊试纸变蓝。

(1)写出下列各物质的化学式:
X:;B:;F:;G:。

(2)写出下列变化的反应方程式:
A→D:;
G→E:。

(3)实验室里,常用加热的混合物的方法制取气体C,常采用法来收集。

相关文档
最新文档