第三章液压泵和液压马达

合集下载

第三章 液压泵和液压马达

第三章 液压泵和液压马达

第三章 液压泵和液压马达 液压泵和液压马达的工作原理 齿轮泵和齿轮马达 叶片泵和叶片式马达 柱塞泵和柱塞式液压马达超颖工作室 金沐灶§3-1液压泵和液压马达的基本工作原理泵的分类定量泵 齿轮泵 叶片泵泵 变量泵 叶片泵 轴向柱塞泵径向柱塞泵 轴向柱塞泵超颖工作室 金沐灶马达的分类马达定量马达 齿轮马达 径向柱塞马达 轴向柱塞马达 低速液压马达变量马达 轴向柱塞马达超颖工作室 金沐灶一、液压泵的基本工作原理图中为单柱塞泵的工作原理。

图中为单柱塞泵的工作原理。

凸轮由电动机带 动旋转。

当凸轮推动柱塞向上运动时, 动旋转。

当凸轮推动柱塞向上运动时,柱塞和缸体 形成的密封体积减小,油液从密封体积中挤出, 形成的密封体积减小,油液从密封体积中挤出,经 单向阀排到需要的地方去。

单向阀排到需要的地方去。

当凸轮旋转至曲线的下降 部位时, 部位时,弹簧迫使柱塞向 形成一定真空度, 下,形成一定真空度,油 箱中的油液在大气压力的 作用下进入密封容积。

作用下进入密封容积。

凸 轮使柱塞不断地升降, 轮使柱塞不断地升降,密 封容积周期性地减小和增 超颖工作室 金沐灶 泵就不断吸油和排油。

大,泵就不断吸油和排油。

容积式液压泵的共同工作原理如下: 容积式液压泵的共同工作原理如下: (1)容积式泵必定有一个或若干个周期变化的密封容积。

密封容积变小使油液被挤出, 封容积。

密封容积变小使油液被挤出,密封容积变 大时形成一定真空度,油液通过吸油管被吸入。

大时形成一定真空度,油液通过吸油管被吸入。

密 封容积的变换量以及变化频率决定泵的流量。

封容积的变换量以及变化频率决定泵的流量。

配流装置。

(2)合适的配流装置。

不同形式泵的配流装置虽 合适的配流装置 然结构形式不同,但所起作用相同,并且在容积式 然结构形式不同,但所起作用相同, 泵中是必不可少的。

泵中是必不可少的。

容积式泵排油的压力决定于排油管道中油液所 受到的负载。

第三章 液压泵和液压马达

第三章 液压泵和液压马达

二、轴向柱塞式液压马达
轴向柱塞式液压马达的工作原理可参照轴向柱塞泵
斜盘 2-缸体 3-柱塞 4-配流盘 5-轴 6-弹簧
2、结构特点
齿轮马达和齿轮泵在结构上的主要区别如下:
(1)齿轮泵一般只需一个方向旋转,为了减小径向不平衡液压力,
因此吸油口大,排油口小。而齿轮马达则需正、反两个方向旋转,
因此进油口大小相等。
(2)齿轮马达的内
泄漏不能像齿轮泵那样直接引到低压腔去,而必须单独的泄漏通
道引到壳体外去。因为齿轮马达低压腔有一定背压,如果泄漏油
积每转内吸油、压油两次,
称为双作用泵。双作用使
流量增加一倍,流量也相
应增加。
压油
吸油
图3-13 双作用叶片工作原理
2、结构上的若干特点
(1)保持叶片与定子内表面接触
转子旋转时保证叶片与定子内表面接触时泵正常工作的必要 条件。前文已指出叶片靠旋转时离心甩出,但在压油区叶片顶部 有压力油作用,只靠离心力不能保证叶片与定子可靠接触。为此, 将压力油也通至叶片底部。但这样做在吸油区时叶片对定子的压 力又嫌过大,使定子吸油区过渡曲线部位磨损严重。减少叶片厚 度可减少叶片底部的作用力,但受到叶片强度的限制,叶片不能 过薄。这往往成为提高叶片泵工作压力的障碍。
容积式液压泵的共同工作原理如下:
(1)容积式液压泵必定有一个或若干个周期变化的密封容积。密 封容积变小使油液被挤出,密封容积变大时形成一定真空度,油液 通过吸油管被吸入。密封容积的变换量以及变化频率决定泵的流量。 (2)合适的配流装置。不同形式泵的配流装置虽然结构形式不同, 但所起作用相同,并且在容积式泵中是必不可少的。
结束
§3-3 叶片泵和叶片油马达
叶片泵有两类:双作用和单作用叶片泵,双作用 叶片泵是定量泵,单作用泵往往做成变量泵。而马达只 有双作用式。

第三讲.液压泵、马达

第三讲.液压泵、马达
m3/s。
qt=V.n· · · · · · · · · · · · · · · · · · · · · · · · (3-1)
3.2.3容积效率、机械效率和总效率
※引入:由于液压泵存在泄漏和各种摩擦,所以泵在能量转换 过程中是有损失的,即输出功率小于输入功率,两者之间 的差值即为功率损失,功率损失表现为容积损失和机械损 失,功率损失可用效率来表示。 (1)容积效率。容积损失是由于泵存在泄漏(泄漏流量为△q) 所造成的,所以泵的实际流量小于理论流量qt。实际流量可 表示为
1)直轴式(斜盘式)轴向柱塞泵
2)斜轴式轴向柱塞泵
5.液压泵的职能符号 液压泵的职能符号如图2-14所示。
表2-1列出了最常用泵的各种性能值
§3.4液压泵与电动机参数的选用
1.液压泵的选用 ※先根据液压泵的性能要求来选定液压泵的类型, 再根据液压泵所应保证的压力和流量来确定它的 具体规格。 ※液压泵的工作压力是根据执行元件的最大工作压 力来确定的,考虑到压力损失,泵的最大工作压 力可按下式计算: P泵≥K压· P缸 式中:P泵表示液压泵所需提供的压力(Pa);K压表示 系统中压力损失系数,一般取1.3—1.5;P缸表示 液压缸中所需的最大工作压力(Pa)。
※液压泵的输出流量取决于系统所需最大流量及泄漏量,即:
Q泵 ≥ K流Q缸 式中:Q泵表示液压泵所需输出的流量(m3/min); K流表示系统的泄漏系数,一般取1.1---1.3;Q缸表示液压缸 所需提供的最大流量(m3/min)。
※在P泵和Q泵求出以后,就可选择液压泵的规格,选择时应
使实际选用泵的额定压力大于所求出的P泵值,通常大于 25%.泵的额定流量一般略大于或等于所求出的Q泵 值。 2.电动机参数的选择
q= qt。- △q· · · · · · · · · · · · · · · · · · · · · · · · · · (3-2) 容积损失可用容积效率ηv来表示,它等于泵的实际流量与理论

第三章液压泵和液压马达_李清伟

第三章液压泵和液压马达_李清伟

摆线齿形内啮合齿轮泵特点
结构紧凑,尺寸小,排量大, 重量轻,运转平稳,噪声小, 流 量脉动小。但齿形复杂,加工困难, 价格昂贵 。
第三节 叶片泵 分类:双作用式定量叶片泵 单作用式变量叶片泵

单联叶片泵

叶片泵
一、定量叶片泵的工作原理 图3-7为工作原理图。泵的组成:定 子、转子、叶片、配油盘、传动轴和泵体。
二、轴向柱塞泵的工作原理 轴向柱塞泵的组成 配油盘、柱塞、缸体、倾斜盘 轴向柱塞泵特征 柱塞轴线平行或倾斜于缸体的轴线 轴向柱塞泵的分类 按配流方式分:端面配流、阀配流 端面配流的轴向柱塞泵分为:斜盘式、斜 轴式



轴向柱塞泵工作原理 V密形成—柱塞和缸体配合而成 右半周,V密增大,吸 油 V密变化,缸体逆转 < 左半周,V密减小,压 油 吸压油口隔开—配油盘上的封油区及缸体 底部的通油孔。
轴向柱塞泵变量原理 γ= 0 q = 0 大小变化,流量大小变化 γ < 方向变化,输油方向变化 ∴ 斜盘式轴向柱塞泵可作双向变量 泵。

SCY14-1B轴向柱塞泵的结构要点
1、滑履结构 A 滑靴和斜盘
B 柱塞和缸体 球形头部—和斜盘接触为点 接触,接触应力大,易磨损。
齿轮泵压油腔的压力油泄漏到吸油腔有三条途 径: 齿侧泄漏— 约占齿轮泵总泄漏量的 5%
径向泄漏—约占齿轮泵总泄漏量的
20%~25%
端面泄漏* —约占齿轮泵总泄漏量的 75%~80% 总之:泵压力愈高,泄漏愈大。因此要 提高齿轮的压力和容积效率,必须对端面间 隙进行自动补偿。
提高外啮合齿轮泵压力措施
第三章 液压泵和液压马达
液压泵
液压马达
目的任务 了解液压泵主要性能参数分类 掌握泵的工作原理、必要条件、排 流量、叶片泵和齿轮泵的结构、工作 原理、叶片泵的调整方法和减小齿轮 泵困油现象的方法。

第三章 液压马达解读

第三章 液压马达解读

配流轴圆周均布2x 个配流窗口,其中x 个窗口对应于 a段,通高压油,x 个窗口对应于b段,通低压油(x≠z );

输出轴 ,缸体与输出轴连成一体。
13
• 排量公式 v =(πd 2/4)sxyz
– s 为柱塞行程; x 为作用次数; y 为柱塞排数; z 为每排柱塞数 。
• 应用 转矩脉动小,径向力平衡,启 动转矩大,能在低速下稳定运转,普 遍用于工程、建筑、起重运输、煤矿、 船舶、农业等机械中。
接方式被称为差动连接。
27
两腔进油,差动联接
A1 A2
A1 A2
F3 F3
P1
v3
ΔP
等效
P1
v3
q
q
活塞的运动速度为:
(c)差动联接

q 4q v3 v 2 v A1 A2 d
在忽略两腔连通油路压力损失的情况下,差动连 接液压缸的推力为:
2 F3 p1 ( A1 A2 ) m d p1 v 4
24
A1
A2
有杆腔进油
P1 P2
F2
q
v2
(b)有杆腔进油
活塞的运动速度 v2 和推力 F2 分别为:
q 4q v2 v v 2 2 A2 (D d )
2 2 F2 ( p2 A2 p1 A1 ) m [( D d ) p2 D 2 p1 ] m 4
14
液压泵及液压马达的工作特点
液压泵的工作特点
液压泵的吸油腔压力过低将会产生吸油不足、
异常噪声,甚至无法工作。 液压泵的工作压力取决于外负载,为了防止 压力过高,泵的出口常常要采取限压措施。 变量泵可以通过调节排量来改变流量,定量 泵只有用改变转速的办法来调节流量。 液压泵的流量脉动。 液压泵(齿轮泵) “困油现象”。

第三章 液压泵和液压马达

第三章 液压泵和液压马达

第三章液压泵和液压马达一.判断题.1. 因存在泄漏,因此输入液压马达的实际流量大于其理论流量,而液压泵的实际输出流量小于其理论流量.( )2.液压泵的容积效率与液压泵的泄漏量有关,而与液压泵的转速无关.()3. 流量可改变的液压泵称为变量泵.( )4. 定量泵是指输出流量不随泵的输出压力改变的泵.( )5. 当液压泵的进、出口压力差为零时,泵、输出的流量即为理论流量.( )6. 齿轮泵的吸油腔就是轮齿不断进入啮合的那个腔.()7. 齿轮泵多采用变位修正齿轮是为了减小齿轮重合度,消除困油现象.( )8. 双作用叶片泵每转一周,每个密封容积就完成二次吸油和压油.()9. 单作用叶片泵转子与定子中心重合时,可获稳定大流量的输油.()10.对于限压式变量叶片泵,当泵的压力达到最大时,泵的输出流量为零.()11.双作用叶片泵既可作为定量泵使用,又可作为变量泵使用.()12.双作用叶片泵因两个吸油窗口、两个压油窗口是对称布置,因此作用在转子和定子上的液压径向力平衡,轴承承受径向力小、寿命长.( )13.双作用叶片泵的转子叶片槽根部全部通压力油是为了保证叶片紧贴定子内环.( )14.配流轴式径向柱塞泵的排量q与定子相对转子的偏心成正比,改变偏心即可改变排量.( )15.液压泵产生困油现象的充分且必要的条件是:存在闭死容积且容积大小发生变化.( )16.液压马达与液压泵从能量转换观点上看是互逆的,因此所有的液压泵均可以用来做马达使用.( )17. 液压泵输油量的大小取决于密封容积的大小.( )18. 外啮合齿轮泵中,轮齿不断进入啮合的那一侧油腔是吸油腔.( )??二.选择题.1.对于液压泵来说,在正常工作条件下,按实验标准规定连续运转的最高压力称之为泵的 ( )。

( A )额定压力; ( B )最高允许压力; ( C )工作压力。

2.液压泵的理论输入功率( ??)它的实际输山功率;而液压马达的理论输山功率( )其输入功率。

3第三章液压泵及液压马达(1)

3第三章液压泵及液压马达(1)

2. 工作原理
3. 流量
q 2 k z m2 b n V
4. 特点
流量和压力的脉动较小;无困油区,噪声较低; 加工难价格高;轮齿接触应力小,泵的寿命较长。
(二)摆线形内啮合齿轮泵
1 . 主要组成
摆线齿轮泵又称为转子泵,由两齿轮及 前后端盖等组成。且两齿轮相差一个齿。
2. 工作原理
吸油 —— 左半部分,轮齿脱开啮合,容积↑ 压油 —— 右半部分,轮齿进入啮合,容积↓
三 液压泵(马达)的性能参数
液压泵(马达)的性能参数主要有: 压力 转速
排量和流量 功率和效率
一、 排量、流量和压力
1. 压 力
⑴ 工作压力(p) —— 液压泵(或马达)工作时输出液体的实际压力。 其值取决于负载(包括管路阻力)。
(2) 额定压力(p n)—— 油泵(或马达)铭牌上标注的压力值。指在 连续运转情况下所允许使用的工作压力。它能使泵(或马达)具有较高的 容积效率和较长的使用寿命。
轴套 采用浮动轴套的中高压齿轮泵结构图
2. 高压内啮合齿轮泵
➢ 轴向间隙补偿原理
与外啮合齿轮泵浮动侧板的补偿相似,也是利用背压使两侧的浮 动侧板紧贴在小齿轮、内齿环和填隙片端面上;磨损后,也可利用背 压自动补偿。
➢ 径向间隙补偿原理
径向半圆支承块(15)的下面也有两个背压室,各背压室均与压 油腔相同。在背压作用下,半圆支承块推动内齿环,内齿环(6)又 推动填隙片与小齿轮齿顶相接触,形成高压区的径向密封。同时,可 自动补偿各相对运动间的磨损。
qt qm
qm q qm
1
q qm
(6) 马达总效率(ηm)
液压马达的总效率是实际输出功率与实际输入功率的比值,即:
m

第三章液压执行元件

第三章液压执行元件

p1
p2 )D2
p2d 2 ]
v1
q A1
4q
D 2
b)从有杆腔进油时,活塞上所产生的推力
F2和速度v2
F2
A2 p1
A1 p2
4 [( p1
p2 )D2
p1d 2 ]
q
4q
v2 A2 (D 2 d 2 )
C)速度比
v
v2 v1
1 1 (d / D)2
3.差动液压缸——单杆活塞缸的左右两腔同 时通压力油,称为差动液压缸。
(二)液压缸的组成 液压缸的结构基本上可以分为缸筒和
缸盖、活塞和活塞杆、密封装置、缓冲装 置和排气装置五个部分。
1、缸筒与缸盖
2、活塞和活塞杆
3、密封装置 用以防止油液的泄漏(液压缸一般不允许外泄 并要求内泄漏尽可能小)。
4.缓冲装置 目的:使活塞接近终端时,增达回油阻力, 减缓运动件的运动速度,避免冲击。
3.液压马达的转速和低速稳定性
1)转速
n
q V
v
2)爬行现象——当液压马达工作转速过低 时,往往保持不了均匀的速度,进入时动 时停的不稳定状态,这就是所谓爬行现象
• 和其低速摩擦阻力特性有关。
• 另外,液压马达排量本身及泄漏量也在 随转子转动的相位角变化作周期性波动, 这也会造成马达转速的波动
4.调速范围 液压马达的调速范围以允许的最大转速和 最低稳定转速之比表示,即
当E1=E2时,工作部件的机械能全部被缓冲 腔液体所吸收,由上两式得
pc
E2 Ac l c
节流口可调式则最大的缓冲压力即冲击压
力为
pc max
pc
mv02 2 Aclc
5.液压缸稳定性校核 当 l/d ≤15时 一般不用校核 当 l/d ≥15时 必须进行校核,即F<Fk F为活塞杆承受的负载力,Fk为保持工作稳 定的临界负载力

第三章液压泵讲义与液压马达

第三章液压泵讲义与液压马达

2. 困油现象 动画演示
1) 产生原因:


ε> 1,构成闭死容积Vb
2)危害:
Vb由大→小,p↑↑, 油液发 热,轴承磨损。
Vb由小→大,p ↓↓, 汽蚀、 噪声、振动、金属表面剥蚀。
(三)液压马达的转速和容积效率
理论转速:nt= qM /VM 容积效率:
ηMv= qMt / qM =( qM -ql )/ qM = 1- ql / qM
输出转速nM= (qM -ql )/VM= qM /VM ηMv
(四)液压马达的转矩和机械效率
实际输出转矩 TM=TMt-ΔT 理论输出转矩 TMt=Δp VM/ 2π 机械效率ηMm=TM/TMt
q=Vnηv =πDhbnηv =2πzm2bn ηv
三、齿轮泵结构特点
1、泄漏问题
泄漏
齿轮泵存在端面泄漏、径向泄漏和轮齿
啮合处泄漏。其中端面泄漏占80%—85%。
减少泄露的措施:间隙补偿
其中端面间隙补偿采用静压 平衡
在齿轮和盖板之间增加一个 补偿零件,如浮动轴套或浮动侧 板,在浮动零件的背面引入压力 油,让作用在背面的液压力稍大 于正面的液压力,其差值由一层 很薄的油膜承受。
周所排出的液体体积。
2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的
液体体积。
qt =Vn 3.实际流量qp
指液压泵工作时的输出流量。
qp= qt - △ q
4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(四)功率与效率
1.输入功率: Pi=2πnT 2.输出功率: Po=ppqp 3.容积效率: ηpv =qp /qt 4.总效率: ηp =Po /Pi= ppqp/2πnT=ηpm ηpv 5.机械效率: ηpm = η /ηpv

第三章 液压泵与液压马达

第三章  液压泵与液压马达
1.额定转速n 在额定压力下,根据试验结果推荐能长时间连续 运行并保持较高运行效率的转速。 2.最高转速nmax 在额定压力下,为保证使用寿命和性能所允许的 短暂运行的最高转速。 3.最低转速nmin 为保证液压泵可靠工作或运行效率不至过低所 允许的最低转速。
(三)液压泵排量和流量
1.排量Vp (m3/r) 是指在不考虑泄漏的情况下,液压泵主轴每转一 周所排出的液体体积。 2.理论流量qt (m3/s) 是指在不考虑泄漏的情况下,单位时间内排出的 液体体积。 qt =Vn 3.实际流量qp 指液压泵工作时的输出流量。 qp= qt - △ q 4.额定流量qn 指在额定转速和额定压力下泵输出的流量。
(动画) 2、工作原理:
旋转一周,完成二次吸油,二次排油——双作用泵
径向力平衡——平衡式叶片泵(两个吸油区,两个排油区)
3、 流量计算
忽略叶片厚度:
V=2π(R2-r2)B q=Vnηv = 2π(R2-r2)Bn ηv
如考虑叶片厚度: V=2π(R2-r2)B -2BbZ(R-r)/cosθ q=Vnηv = 2π(R2-r2)Bn ηv -2BbZ(R-r)/cosθ nηv
2、液压泵进口压力 p 0 0MPa , 出口压力 pp 32MPa , 实际输出流量q 250 L min,泵输入转矩 T pi 1350N m , 输入转速 n 1000r min ,容积效率 0.96 。试求: (1)泵的输入功率 P i ,(2)泵的输出功率 P o ,(3) 泵的总效率 ,(4) 泵的机械效率 m
第三章 液压泵与液压马达
液压泵--动力元件: 将驱动电机的机械能转换成液体的压力能, 供液压系统使用,它是液压系统的能源。
3-1概

第三章 液压泵与液压马达

第三章  液压泵与液压马达

q max q min q

它是衡量容积式泵流量品质的一个重要指标。在 容积式泵中,齿轮泵的流量脉动最大,并且齿数愈少 ,脉动率愈大。这是外啮合齿轮泵的一个缺点。所以 ,齿轮泵一般用于对工作平稳性要求不高的场合,要 求平稳性高的高精度机械不宜采用齿轮泵。
第二节、外啮合齿轮泵的困油现象
一、困油现象 齿轮泵要平稳地工作,齿轮啮合的重合度必须大于 1,即有两对轮齿同时啮合的时刻,因此,就会有一部 分油液困在两对轮齿所形成的封闭容积之内,如图所示 。这个封闭容积先随齿轮转动逐渐减小(由图(a)到 图(b)),然后又逐渐增大(由图(b)到图(c)) 。
一、径向不平衡力: 在齿轮泵中,液体作用在齿轮外 缘的压力是不均匀的,从低压腔到高 压腔,压力沿齿轮旋转的方向逐齿递 增,因此齿轮和轴受到径向不平衡力 的作用。工作压力越高,径向不平衡 力也越大。径向不平衡力很大时,能 使泵轴弯曲,导致齿顶接触泵体,产 生摩擦;同时也加速轴承的磨损,降 低轴承使用寿命。为了减小径向不平 衡力的影响,常采取缩小压油口的办 法,使压油腔的压力油仅作用在一个 齿到两个齿的范围内;同时适当增大 径向间隙,使齿顶不和泵体接触。
第一节 外啮合齿轮泵工作原理及流量公式
吸排方向取 决于转向, 脱开啮合的 一侧与吸入 管连通,进 入啮合的一 侧与排出管 连通。
一、外啮合齿轮泵工作原理
密封工作腔:泵体、端盖和齿轮的各个齿 间槽组成了若干个密封工作容积。
配流:齿轮啮合线将吸油区和压油区隔开, 起配流作用。 吸油过程:轮齿脱开啮合→V ↑ → p ↓ →吸油; 排油过程:轮齿进入啮合→V ↓ → p ↑ →排油。
(2)输出功率

理论输出功率 Pot qt .p
实际输出功率 Pop q p .p

第3章液压泵和液压马达

第3章液压泵和液压马达
工作压力和额定压力
排量和流量 功率和效率
台州学院
机械工程学院
1、泵的压力
(1)工作压力 pp
- 液压泵工作时输出的实际压力
- pp的大小取决于负载
台州学院
机械工程学院
(2)额定压力 pn
- 泵在正常工作条件下,按试验标准规定连续运转的 最高压力。即泵工作时允许达到的最高压力
- pn的大小受泵本身的结构强度和泄漏决定
台州学院
机械工程学院
消除困油的方法
方法:在泵前后两盖板上开卸荷槽(如图虚线方框),以消
除困油。
吸油腔
压油腔
a
原则:两槽间距a为最小困油容积,隔开吸压油腔(图b)
当密封容积减小, p↑,使之通压油腔(图a) 当密封容积增大,p↓,使之通吸油腔 (图c)
注意:两卸荷槽的间距应确保不使吸、压油腔相通
台州学院

排量
- 轴转过一周泵排出的油液体积
齿槽 轮齿
- 近似为两个齿轮的齿槽容积之和
- 设齿槽容积=轮齿容积,则排量 V=一个齿轮的齿槽容积+轮齿容积
- 则齿轮泵排量(动画):
B
P
A
V

4 2 m2 zb
2 ( z 2) m ( z 2) m b 2
- 实际,齿槽容积>轮齿容积, π取3.33,
台州学院
机械工程学院
一、双作用叶片泵
- 泵轴转一周,完成两次吸油和压油
动画按钮 台州学院
机械工程学院
1、双作用叶片泵的结构组成

定子:内表面椭圆形,包括
- 两段大半径R圆弧 - 两段小半径r圆弧 - 四段过渡曲线
定子 转子

液压泵和液压马达

液压泵和液压马达
液压泵和液压马达
•困油
•闭死容积:
• 留在两对啮合齿间 的液体既不与低压腔 通也不与高压腔通, 称这两对啮合齿间所 形成的封闭空间为 “闭死容积”。
液压泵和液压马达
•困油
困油现象:
在闭死容积中造成油 压急剧变化的现象。
液压泵和液压马达
v 危害:困油现象使泵工作时产生振动和噪声, 产生气穴,并影响泵的工作平稳性和寿命。
液压泵和液压马达
单作用叶片泵特点
1. ∵转子转一转,吸压油各一次。 ∴称单作用式
2. ∵ 吸压油口各半,径向力不平衡。 ∴称非卸荷式
液压泵和液压马达
单作用叶片泵的结构特征
v 1、定子内表面为圆柱面,转子相对于 定子有一偏心距。 v 改变定子和转子间的偏心量e,就可改 变泵的排量(变量泵)。 v 2、叶片泵圆周方向上划分为一个压油 腔和一个吸油腔,转子轴及其轴承受到 很大的不平衡径向力作用。
液压泵和液压马达
5、液压泵的功率和效率 (1)输入功率
理论输入功率 实际输入功率
理论转矩 实际转矩
液压泵和液压马达
(2)输出功率
理论输出功率 实际输出功率
液压泵和液压马达
v 容积损失: 因内泄漏、气穴和油液在 高压下的压缩造成流量上的损失,容积损 失用容积效率表征;
v 机械损失: 因摩擦而造成转矩上的损 失,机械损失用机械效率表征。
v密变化,转子顺转<
上半周,叶片缩回,v密↓,压油
吸压油腔隔开:配油盘上封油区和叶片
液压泵和液压马达
单作用叶片泵的流量
v 理论流量: v 实际流量: v 结论:1) qT = f(几何参数、 n、e) v 2)∵ n = c e变化 q ≠ C v ∴变量泵 e = 0 q = 0 v e :大小变化,流量大小变化 v 方向变化,输油方向变化 v 故 单作用叶片泵可做双向变量泵

第3章 液压泵与液压马达

第3章 液压泵与液压马达
液压马达的主要性能参数
启动性能
液压马达的启动性能主要由启动转矩和启动机械效率来描述。 启动转矩是指液压马达由静止状态启动时液压马达轴上所能输 出的转矩。 启动机械效率是指液压马达由静止状态启动时,液压马达实际 输出的转矩与它在同一工作压差时的理论转矩之比。
3.1 液压泵与液压马达概述
液压马达的主要性能参数
液压泵与液压马达概述 齿轮泵 叶片泵 柱塞泵 液压泵的选用 液压马达
3.1 液压泵与液压马达概述
液压泵的工作原理
1—偏心轮 2—柱塞 3—缸体 4—弹簧 5—压油单向阀 6—吸油单向阀 a—密封油腔 单柱塞容积式泵的工作原理图
• 构成容积式液压泵必须具备三个条件:
• 1.容积式泵必定具有一个或若干个密封工作腔。 • 2.密封工作腔的容积能产生由小到大和由大到小的 变化,以形成吸油、排油过程。 • 3.具有相应的排油机构以使吸油、排油过程能各自 独立完成,该方式称为配流。
3.1 液压泵与液压马达概述
液压马达的主要性能参数
液压马达的主要性能参数有压力、排量和流量、转速和容积效率、 转矩和机械效率、效率与总功率、启动性能、最低稳定转速、制动性能、 工作平稳性及噪声。
压力
为保证液压马达运转的平稳性,一般取液压马达的背压 为(0.5--1)MPa。
3.1 液压泵与液压马达概述
第3章
液压泵与液压马达
液压泵与液压马达,是液压系统中的能量转换装置。 本章主要介绍几种典型的液压泵与液压马达的工作 原理、结构特点、性能参数以及应用。
液压泵
将原动机输出的机械能转换成压力能,属于动力元件, 其功用是给液压系统提供足够的压力油以驱动系统工作。因此,液压 泵的输入参量为机械参量(转矩T和转速n),输出参量为液压参量(压 力p和流量q)。

第三章—液压泵和液压马达

第三章—液压泵和液压马达

第三章 液压泵和液压马达
该泵配油盘上的吸油窗口和压油窗口对泵的中心线是对称的 。如图所示,泵工作时,油泵出口压力经泵内通道作用在小柱塞 面积上,这样柱塞上的作用力 F PA与弹簧的作用力方向相反。 当PA=KSX0时,柱塞上所受的液压力与弹簧初始力相平衡,此时的 压力P称为泵的限定压力,用PB表示则: PB=KSX0/A 系统的压力P< PB 时,则:PA<KSX0 这表明定子不动,最大偏心距保持不变,泵也保持最大流量。 当系统的压力P> PB 时,则: PA>KSX0 这表明压力油的作用力大于弹簧的作用力,使定子向右移动, 弹簧被压缩,偏心距e减小,泵的流量也随之减小。
第三章 液压泵和液压马达
3.5 柱塞式液压泵
柱塞式液压泵按柱塞在转子内排列方式不同,分为径 向柱塞泵和轴向柱塞泵,轴向柱塞泵又可分为斜盘和斜轴两 大类。柱塞泵由于间隙泄露小、构件受力合理,所以可在高、 超高压力下满意地工作,广泛用于高压、大功率的液压传动 系统中。
第三章 液压泵和液压马达
柱塞泵的优点: 1.参数高:额定压力高,转速高,泵 的驱动功率大; 2.效率高,容积效率为95%左右,总效率为90%左 右; 3.寿命长; 4.变量方便,形式多; 5.单位功率的重量轻; 6.柱塞泵主要零件均受压应力,材料强度性能可得 以充分利用;
第三章 液压泵和液压马达
应用举例 限压式变量叶片泵对既要实现快速行 程,又要实现工作进给(慢速移动)的执行元件来说 是一种合适的油源;快速行程需要大的流量,负载压 力较低,正好使用其AB段曲线部分;工作进给时负载 压力升高,需要流量减小,正好使用其BC段曲线部分。 例如组合机床动力滑台的进给系统、定位和加紧系统 等。 机床加工件:未加工之前或回程要求快;加工时 流量小、速度慢。

第三章 液压泵与液压马达

第三章  液压泵与液压马达


2、径向压力不 平衡问题
措施:
减少压油口的
尺寸
开压力平衡槽
3、泄漏问题
齿顶 端面 啮合处 措施: 弹性侧板 浮动轴套
高压齿轮泵
四、内啮合齿轮泵 与外啮合齿 轮泵相比,内 啮合渐开线齿 轮泵具有流量 脉动小,结构 紧凑,重量轻, 噪音小,效率 高,无困油现 象等一系列优 点。
1 T pV m 2
q n V V
3.6.2 叶片马达
叶片马达的工作原理
3.6.3 轴向柱塞马达
1.轴向柱塞式液压马达的工作原理
TZ FT l

4
d 2 ptg R sin i
1 1 2 1 T pVm p d DZtg m pd 2 DZtg m 2 2 4 8
二、轴向柱塞泵
录像
1、工作原理
2、流量计算
V

4
d DZtg 2Fra bibliotekq
4
d DZn V tg
2
3、结构要点 (1)缸体端面间隙自动补偿。 (2)滑履结构:柱塞与滑履为球面接触,滑履与斜 盘为平面接触,改善了受力状态。 (3)变量机构:改变斜盘倾角可以改变其排量。
3.6 液压马达
3.6.1 液压马达的主要性能参数 1.液压马达的转矩 2.液压马达的转速
二、 双作用叶片泵 (动画)
1、工作原理 组成:定子、转子、叶 片、配流盘、泵轴、 泵体等。
2、流量计算
V=2π(R2-r2)b q=Vnηv = 2π(R2-r2)b ηv (忽略叶片厚度) 如考虑叶片厚度 V=2π(R2-r2)b -2bsz(R-r)/cosθ q=Vnηv = 2π(R2-r2)bn ηv -2bsz(R-r)/cosθ nηv

第三章:液压泵和液压马达(含习题答案)

第三章:液压泵和液压马达(含习题答案)

第三章液压泵和液压马达第一节液压泵第二节齿轮泵第三节叶片泵第四节柱塞泵第五节液压马达第六节液压泵和液压马达的选用重点:液压泵和液压马达的工作原理、效率功率计算难点:结构教学目的:理解原理,熟悉结构在液压系统中,液压泵和液压马达都是能量转换装置。

液压泵:把驱动电动机的机械能转换成液压系统中油液的压力能,供系统使用;液压马达:把输来的油液的压力能转换成机械能,使工作部件克服负载而对外做功。

工作原理上,大部分液压泵和液压马达是可逆的。

一、液压泵的工作原理二、液压泵的性能参数三、液压泵的分类一、液压泵的工作原理容积式液压泵:靠密封工作腔的容积变化进行工作,其输出流量的大小由密封工作容积变化的大小来决定。

i P T ω=o V P pq =η=ηV按结构形式分为:齿轮式、叶片式、柱塞式三大类。

按输出(输入)流量分为:定量液压泵和变量液压泵。

第一节液压泵三、液压泵的分类a)单向定量液压泵b)双向定量液压泵c)单向变量液压泵d) 双向变量液压泵液压泵的图形符号作业:3-2齿轮泵优点:结构简单紧凑、体积小、质量轻、工艺性好、价格便宜、自吸能力强、对油液污染不灵敏、维修方便及工作可靠,因此在汽车上得到了广泛的应用。

齿轮泵缺点:泄漏较大,流量脉动大,噪声较高,径向不平衡力大,所能达到的额定压力不够高,目前其最高工作压力30MPa 。

第二节齿轮泵齿轮泵按结构形式分为:①外啮合齿轮泵②内啮合齿轮泵泵的泵体内装有一对相同的外啮合齿轮,齿轮两侧靠端盖密封。

泵体、端盖和齿轮的各个齿间一、外啮合齿轮泵1. 外啮合齿轮泵工作原理第二节齿轮泵槽组成了许多密封的工作腔。

b zm Dhb V 22ππ==排量:b zm V 266.6=排量修正:排量近似计算:假设齿间的工作容积与轮齿的有效体积相等,则齿轮每转排量等于主动齿轮的所有齿间容积及其所有轮齿的有效体积之和(1)困油现象:齿轮泵要平稳而连续地工作,齿轮啮合的重合度系数必须大于1,因此总有两对轮齿同时啮合,并有一部分油液被围困在两对轮齿所形成的封闭容积之间,困油容积由大变小,再由小变大,使油压变化,产生振动和噪声。

经典:第三章-液压泵和液压马达

经典:第三章-液压泵和液压马达

总目录
目录
前一页 后一页
结束12
第二节 齿轮泵
外啮合齿轮泵工作原理及流量计算 外啮合齿轮泵的几个问题 其他类型齿轮泵 齿轮泵结构
总目录
目录
前一页 后一页
结束13
一、齿轮泵结构、工作原理及流量计算
图为外啮合齿轮泵实物照片
总目录
目录
前一页 后ቤተ መጻሕፍቲ ባይዱ页
结束14
1、结构组成(结构)
※ 泵体
※ 前后盖板
※ 一对几何参数完全 相同的齿轮,齿宽 为B,齿数为z
总目录
目录
前一页 后一页
结束8
二、液压泵的压力、流量和排量
工作压力p 泵实际工作时的输出压力。
泵 的 压
额定压力pn
泵按标准条件连续运转时允许 达到的最大压力。

极限压力 泵短时允许达到的最大压力。
吸入压力 泵进口处的压力。(与大气压 比较)
总目录
目录
前一页 后一页
结束9
排量V
理论上泵轴每转所输出油液的体积。
V 2 zm 2b 6.66 zm 2b q Vn v 6.66 zm 2bn v
总目录
目录
前一页 后一页
结束17
二、齿轮泵的几个问题
1、困油 2、泄漏 3、径向力不平衡 4、流量脉动
总目录
目录
前一页 后一页
结束18
困油问题
现象:
动画
齿轮啮合时重叠系数
大于1,在两对轮齿同 时啮合时,它们之间
端面间隙补偿采用静压平衡措施:
在齿轮和盖板之间增加一个 补偿零件,如浮动轴套或浮 动侧板,在浮动零件背面引 入压力油,让作用在背面的 液压力稍大于正面的液压力

第三章 液压泵与液压马达

第三章 液压泵与液压马达
第三章 液压泵和液压 马达
1
本章提要
本章主要内容为 :
① ② ③ 液压泵和液压马达的工作原理与性能参数。 齿轮式、叶片式、柱塞式液压泵。 高速液压马达及低速大扭矩马达。
通过本章的学习,要求掌握这几种泵和马达 的工作原理(泵是如何吸油、压油和配流的,马 达怎样产生转速、转矩)、结构特点、及主要性 能特点;了解不同类型的泵马达之间的性能差异 及适用范围,为日后正确选用奠定基础。
功率损失可以分为容积损失和机械损失两部分: 容积损失是因泄漏、气穴和油液在高压下压缩等造成的 流量损失。 机械损失是指因摩擦而造成的转矩上的损失。
13
泵容积损失
泵的容积损失可用容积效率 v 来表征。
对液压泵来说,输出压力增大时,泵实际输出的流量 q 减 小。设泵的流量损失为 ql ,则 qt q ql。
Tt , n — 液压泵、马达的理论转矩(N.m)和转速(r/min)。 式中: p , qt — 液压泵、马达的压力和理论流量。
理想泵或马达: P qt Tt Tt Tt P Vd ; Vd
实际上,液压泵和液压马达在 能量转换过程中是有损失的,因此
输出功率小于输入功率。
30
3.2.3.3
齿轮泵的泄漏通道及端面间隙的自动补偿
齿轮泵压油腔的压力油可通过三条途经泄漏到吸油腔去: 一是通过齿轮啮合线处的间隙——齿侧间隙 二是通过泵体定子环内孔和齿顶间的径向间隙——齿顶间隙 三是通过齿轮两端面和侧板间的间隙——端面间隙
在这三类间 隙中,端面间隙 的泄漏量最大, 压力越高,由间 隙泄漏的液压油 就愈多。
31
通常采用的自动补偿端面间隙装置有:浮动轴套式和
弹性侧板式两种 。
原理: 引入压力油使轴套或侧板紧贴在齿轮端面上,压力 愈高,间隙愈小,可自动补偿端面磨损和减小间隙。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章液压泵和液压马达3.1概念一.液压泵和液压马达的工作原理 单作用柱塞泵为例原理:液压泵是靠密封油圈容积的变化来进行工作的,所以称为容积式泵。

泵的输油量取决于密封工作油腔的数目以及容积变化的大小和频率。

二.液压泵和液压马达的分类⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩内齿轮泵外螺杆泵定量泵定量叶片泵定量径向柱塞泵泵定量轴向柱塞泵变量叶片泵变量泵变量径向柱塞泵变量轴向柱塞泵 ⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩齿轮定量螺杆叶片,径向,轴向高速叶片变量径向马达轴向径向柱塞式轴向柱塞式低速叶片马达摆线马达三.液压泵和液压马达的基本性能要求性能要求:(1)结构简单、紧凑、体积小、重量轻、维护方便、价格低廉、使用寿命长 (2)摩擦损失小、泄漏小、发热小、效率高 (3)对油污染不敏感 (4)自吸能力强(5)输出流量脉动小、运转平稳、噪声小 主要向性能参数: 1.工作压力和额定压力额定压力:在正常条件下按试验标准规定能连续运转的最高压力。

低压 中压 中高压 高压 超高压5.2≤ 2.5~8 8~16 16~32 〉32 aMp2.液压泵和液压马达的排量和流量 排量v t q =vn理论流量tq 泵t l t l q =q -q =q -k p实际流量q 马达t l t l q =q +q =q +k p其中:lk —泄漏系数或流量损失系数3.液压泵和液压马达的功率和效率理论功率: 泵 t t P pq pvn== 马达2t t t P T nT ωπ== 其中:tT —理论转矩 ω—角速度容积效率:泵:1l v t t q q=q q η=-马达:1t l v q q =q q η=-机械效率:泵:1t l m l T T =T T T η=--转矩损失马达:1l m t tT T=T T T η=--实际转矩输入功率: 泵: 2i p T nTωπ==马达:i P =p q输出功率: 泵: qp P o ⋅= 马达: 2o p nTπ=总效率:泵:222o t v t v m v m i t m tp pq pq pq p nT nT nT ηηηηηηππηπ=====马达:222o t m t v m v m i t v t p nT nT nT p pq pq pq πηππηηηηηη===== 其中:21ttnT pq π=马达输出转矩: 2nT pq πη=12222t v m mpq pq p v n T pv n n n ηηηηηππππ====3.2齿轮泵一.齿轮泵的工作原理二.齿轮泵的流量 排量v 流量q排量:22v D h b z m b ππ==通常取:26.66v z m b = 实际流量:26.66v vQ q n z m b n ηη==流量脉动:max minQ Q Q σ⋅=maxQ ——最大瞬时流量min Q ——最小瞬时流量 Q——平均流量三.低压齿轮泵的结构特点1 固油现象清除办法:开卸荷槽 2 泄漏问题 泄漏量大 ○1齿顶 ○2端面 ○3啮合处 容积效率低 措施: ○1浮性侧板 ○2浮动轴套 使轴向间隙自动补偿 3 径向液压不平衡 措施: ○1减小压油口的尺寸 ○2开压力平衡槽四 齿轮泵的优缺点及应用优点:结构简单,尺寸小,重量轻,制造方便,价格低廉,工作可靠,自吸能力强,对油液污染不敏感。

缺点:容积效率较低,流量脉动和压力脉动大,噪声大,零件磨损后不易修复,互换性差。

应用:(1)低压:机床液压系统,补油润滑、冷却装置以及液压系统中的控制油源。

(2)中高压:主要用于工程机械、农业机械、轧钢设备、航空技术等。

五 内啮合齿轮泵渐开线齿轮泵、摆线齿轮泵(转子泵)两种。

3-3 叶片泵一.双作用叶片泵1.双作用叶片泵的工作原理由转子、定子、叶片、配流盘、泵体等组成。

径向载荷平衡——卸荷式叶片泵 2.双作用叶片泵的结构特点 (1)定子曲线两段长半径R 圆弧、两段外径r 圆弧、四段过渡曲线变加速曲线222r ρθα=+(R-r )02αθ⎛⎫≤≤ ⎪⎝⎭ (1)变减速曲线2r R θρθαα=-+24(R-r )(-)2 2αθα⎛⎫≤≤ ⎪⎝⎭ (2) ρ——曲线的极径α——过渡曲线的中心角θ——极径的坐标极角R 、r ——长、外半径设ω有角速度: t θω=代入(1)后求导得:2dp 4R -r v ==q dt ωα()(径向速度)2222d p 4R -r a ===cost dt ωα() (径向加速度)代入(2)后得:24-4-dp R r R r v q dt ωωαα==-()()2222d 4R -r a ===cost dt ρωα-()由此可导出:叶片径向速度是均匀变化的,不会产生刚性冲击,但在过渡曲线中点C 处,径向加速度仍有突变。

由于α为有限值,故只产生柔性冲击。

(2)叶片倾角叶片在转子槽中的安装并不是沿半径方向,而是将叶片顶部朝转子旋转方向向前倾斜了一个角度θ。

压力角——定子内表面给叶片的作用力沿内表面的法线方向,该力与叶片移动方向的夹角为压力角α前倾的目的是为了减小压力角αβθ=-,一般13θ=︒。

(3)配流盘的三角槽减小流量和压力脉动、降低躁声。

3.双作用叶片泵的流量排量222q R -r b π=() (忽略叶片厚度的影响)22v vQ =qnh =2p R -r bn η()如考虑叶片厚度22cos 2R rq R -r b bszπθ-=-2()s —叶片厚度 z —叶片数目 θ—叶片倾角2[]22vR -rQ bn R -r sz πηθ=()-cos(如果在叶片根部,在吸油区与吸油腔相连,在压油区与压油腔相连,则叶片厚度对流量没有影响。

) 4.高压叶片泵的结构特点要提高叶片泵的压力,则必须减小吸油区叶片对定子表面的压紧力,减小定子曲线的磨损。

措施:(1)双叶片结构 梯形叶片结构(2)子母叶片结构二 单作用叶片泵1.单作用叶片泵的工作原理由转子、定子、叶片、配流盘、泵体等组成。

转子与定子不同心,存在一个偏心量e ,改变e 可 改变共排量,故可作成变量泵。

径向压力不平衡——非卸荷式叶片泵 2.单作用叶片泵的排量和流量12222D d D d b V =p[e ]b =[e ]22222z βππ++-()-()()() 22222D d D d b V =p[e ]b =[e ]22222z βππ----()()()() 2z πβ=排量: 12q V V π=-()z=2beD所以:ηπη=v vQ=qn 2beDn改变偏心距e ,即可改变流量Q 。

由于偏心安置,其容积变化是不均匀的,故有流量脉动。

叶片数为素数时,流量脉动率较小,一般z=13或15。

3. 单作用叶片泵的结构要点(1)为了调节泵的输出流量需要移动定子位置,以改变偏心距e 。

(2)径向液压作用力不平衡,故限制了工作压力的提高。

单作用叶片泵的额定压力不超过7MPa 。

(3)存在困油现象。

通常在配流盘排油窗口边缘开三角形卸荷槽。

(4)叶片后倾。

通常后倾角为24︒,因为单作用叶片泵在吸油区叶片根部不通压力油。

为使叶片在吸油区能在离心力的作用下顺利甩出——后倾安放。

e 较小,故压力角不大,不会卡死。

三 外反馈限压式变量叶片泵 1.工作原理泵的流量可根据共出口压力的大小自动调节。

当x spA F <时,弹簧把定子推向最右端,此时,偏心距为最大maxe ,流量最大,当x spA F >时,反馈力将克服弹簧的预紧力把定子向左推移,xe 减小,流量也相应的减小,压力愈高,xe 愈小,输出流量亦愈小。

当泵的偏心距减小后,所产生的流量只够用来补偿泄漏时,泵的输出为零。

这是,不管负载再怎样增大,泵的出口压力不会再升高,即泵的最大输出功率是受限制的,故称为限压式变量泵。

2.限压式变量泵的优缺点和应用缺点:○1结构复杂、尺寸大、相对运动的机件多 ○2径向压力不平衡,存在固油现象,故容积效率低,压力脉动和噪声大,工作压力的提高受限制。

6.3aMp优点:流量可随负载的大小自动调节,故功率损失小,可节省能源,减小发热 应用:适合驱动快速推力小,慢速推力大的工作机构。

如:组合机床动力滑台 快进—进—快退3. 限压式变量叶片泵的流量—压力特性p k e k q l x Q -=qk ——单位偏心距新产生的理论流量 2Q k Dbnπ=l k ——泄漏系数xe ——转子与定子间的偏心距当s x F pA <时,maxe e x = 故pk e k Q l Q -=max (1)当sx F pA >时,弹簧附加压缩量xe e x -=maxmax ()x f S s x pA F F k e e =+-fF ——滑块支撑处的摩擦力。

如令定子内壁承受液压的投影面积为yA ,摩擦系数f ,则fpA F y f ⋅=sk ——弹簧刚度max 1()x x y s se e pA pAf F k =--max max 1[()]()()q x y s l sQQ s ls s xy ssQQ k e pA pA f F k p k k k k k F k e A A f p k k k =---+⋅-⋅+(2)方程1、2联立解得:sC z y F p A A f=maxmax s s s lx y QF k e p k kA A f k +=+由上式可得出:1) 调节sF ,可调节m axp p c ,使BC 段曲线左右平移2) 若更换弹簧,sk 改变,可改变BC 段斜率,sk 值上升使BC 段缓和maxp 值增大,sk 值减小使BC 段陡峭maxp 值减小3) 调节m axe 可改变maxQ 使AB 段上下平移,但BC 段斜率不变,故cp 的位置可发生变化。

m axe 值减小使cp 值增大,m axe 值减小使sF 值增大、cp 值增大4) 叶片泵的使用要点○1转速必须符合产品规定。

太低,叶片不能压紧定子表面;太高则会造成吸空现象。

粘度要合适。

○2注意过滤 ○3叶片有安装倾角,故不能反转3.4柱塞泵一.径向柱塞泵 1.工作原理由定子、转子、配流轴、衬套、柱塞等组成。

2. 流量计算22V VQ q n d e z n πηη=⋅⋅=⋅⋅⋅⋅e ——偏心距, Z ——柱塞数,一般为奇数时流量脉动小 3.结构特点;(1)径向尺寸大,结构复杂,自吸能力差。

(2)配流轴受到径向不平衡液压力的作用。

易于磨损,因而限制了工作压力的提高。

(3)移动定子改变偏心距e ,可改变流量的大小。

当e 从正值变为负值时,则吸、压油腔互换,因此可作为单向或双向变量泵。

相关文档
最新文档