数学模型姜启源-第三章(第五版)

合集下载

传染病模型和sars的传播数学建模姜启源

传染病模型和sars的传播数学建模姜启源

传染病模型和sars的传播数学建模姜启源
传染病模型是一种数学模型,用于描述传染病的传播和蔓延过程。

传染病传播的数学建模可以帮助我们更好地理解疾病的传播机制,评估和预测疫情的发展趋势,指导疾病的控制和预防措施的制定。

SARS(严重急性呼吸综合征)是2002年至2003年期间爆发的一种严重急性呼吸道疾病,由一种名为SARS冠状病毒引起。

姜启源等研究人员在SARS爆发期间进行了一些数学建模研究,以对疾病的传播进行评估和预测。

姜启源等人基于传染病数学建模的经典理论和方法,开展了SARS传播的数学建模研究。

他们考虑了人际传播和环境传播两种传播方式,并建立了相应的动力学模型。

通过模型分析和数值模拟,他们可以估计SARS的传播速度、传播距离和传染性等参数,并通过对不同控制措施的模拟推断出最有效的控制策略。

研究结果显示,人际传播是SARS的主要传播途径,而环境传播的影响较小。

他们还发现,SARS传播速度受到接触感染率和感染者的平均潜伏期的影响。

他们的研究为SARS的疫情控制提供了重要的科学依据,并对其他传染病的传播数学建模研究提供了参考。

总的来说,姜启源等人的研究为我们对传染病的传播和控制机制有了更深入的理解,为疫情的预测和防控提供了重要的科学依据。

这些研究对于应对类似疫情的
发生和传播至关重要。

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

数学建模介绍 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

数学建模介绍 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制

阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
人口增长到一定数量后,增长率下降的原因: 人口增长到一定数量后,增长率下降的原因: 资源、 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数 是 的减函数
r(x) = r − sx (r, s > 0)
评注和思考 建模的关键 ~ θ和 f(θ), g(θ)的确定 的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
1.3.2 商人们怎样安全过河
问题(智力游戏) 问题(智力游戏)
随从们密约, 随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货. 人多, 就杀人越货. 但是乘船渡河的方案由商人决定. 但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 商人们怎样才能安全过河
模型是为了一定目的, 模型是为了一定目的,对客观事物的一部分 是为了一定目的 进行简缩、抽象、提炼出来的原型 原型的替代物 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征 模型集中反映了原型中人们需要的那一部分特征 集中反映了原型
你碰到过的数学模型——“航行问题” “航行问题” 你碰到过的数学模型
数学建模的具体应用
• 分析与设计 • 预报与决策 • 规划与管理

控制与优化
数学建模
如虎添翼
模示例
1.3.1 椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 四条腿一样长,椅脚与地面点接触, 连线呈正方形; 连线呈正方形 • 地面高度连续变化,可视为数学上的连续 地面高度连续变化, 曲面; 曲面 • 地面相对平坦,使椅子在任意位置至少三 地面相对平坦, 只脚同时着地。 只脚同时着地。

(完整版)数学模型姜启源-第三章(第五版)

(完整版)数学模型姜启源-第三章(第五版)
每天费用5000元 • 10天生产一次, 每次1000件,贮存费900+800+…+100 =4500元,准备费5000元,总计9500元.
平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元.
平均每天费用2550元
c2 t1x x
c3 x
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
dC 0 dx
x
c t 2 2c t
11
21

2c 2
3
结果解释 x c1t12 2c2t1

2c32
dB
dt
/ 是火势不继续蔓延的最少队员数
x
x 0.45
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
空杯质量w2取决于材料 (纸杯、塑料杯、玻璃杯).
设w2=150g 半升啤酒杯w1=500g a=0.3 x=0.3245
一杯啤酒约剩1/3时重心最低,最不容易倾倒!
问题分析与模型假设 x
w1 ~ 啤酒 (满杯) 质量
1
w2 ~空杯侧壁质量, w3 ~空杯底面质量
啤酒杯重心s(x)由啤酒重心和空杯 重心合成.
• s2=1/2 •xs(x) 液面 • s1=x/2 0
液面高度x时啤酒质量w1x, 啤酒重心位置 s1=x/2
忽略空杯底面质量w3 空杯重心位置 s2=1/2

数学模型课后答案姜启源

数学模型课后答案姜启源

数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。

安全渡河条件下的状态集合为允许状态集合,记作s。

以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。

允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。

模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。

把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。

如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。

二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。

数学模型姜启源答案

数学模型姜启源答案

数学模型姜启源答案【篇一:姜启源课后习题】xt>第1章建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n名商人带n名随从过河,船每次能渡k人过河,试讨论商人们能安全过河时,n与k应满足什么关系。

(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。

问人、狗、鸡、米怎样过河?1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。

问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的logistic模型为dn11dt?25n?25?106n2,如果不考虑该市的流动人口的影响以及非正常死亡。

设该市1990年人口总数为8000000人,试求该市在未来的人口总数。

当t??时发生什么情况。

1.7 假设人口增长服从这样规律:时刻t的人口为x(t),最大允许人口为xm,t到t??t时间内人口数量与xm?x(t)成正比。

试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。

1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间?1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层?1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。

水库的水可以通过河床的渗透和水面的蒸发流失。

如果要你建立一个数学模型来预测任何时刻水塔的水位,你需要哪些信息?第2章初等模型2.1 学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍。

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲-公选课

《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。

通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。

通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。

并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。

【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。

第二节数学建模的重要意义基本要求:了解数学建模的重要性。

第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。

第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。

第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。

第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。

第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。

第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。

难点:建立模型的过程。

第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。

第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。

第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。

数学模型课件(2007-03-07)

数学模型课件(2007-03-07)

1228年的《算经》修订版载有著名的《兔子问题》:
某人在一处有围墙的地方养了一对兔子,假定这对兔子每月生一对小 兔,而小兔出生后两个月就能生育。问从这对兔子开始一年内能繁殖成多 少对兔子。 对这个问题的回答导致了著名的菲波那契数列的产生。《算经》可以 看作是欧洲数学在经历了漫长的黑夜之后走向复苏的号角。
五、历史上成功的建立数学模型的例 子
阅 读
说到数学模型的建立或数学建模,似乎是一个新 东西、新名词,其实是古已有之的。一个最典型也最 成功的数学建模的例子是行星运动规律的发现。开普 勒根据他的老师第谷近30年天文观测的大量数据,用 了10年时间总结出行星运动的三个规律,但当时还只 是经验的规律,只有确认这些规律,找到它们内在的 根据,才能有效地加以运用。牛顿提出与距离平方成 反比的万有引力公式,利用运动三大定律证明了开普 勒的结论,严格推导出行星运动的三大定律,成功地 解释并预测了行星运动规律,也证明了他建立的数学 模型的正确性。这是数学建模取得光辉成功的一个著 名的例子。
模 型 构 成
椅脚连线为正方形ABCD(如右图)。
t ~椅子绕中心点O旋转角度 f(t)~A,C两脚与地面距离之和 g(t)~B,D两脚与地面距离之和 f(t), g(t) 0
C‘ B‘ C
B t O
A‘
A x D‘
D
模型构成 由假设1,f 和 g都是连续函数 由假设3,椅子在任何位置至少有三只脚 同时着地:对任意t ,f(t)和g(t)中至少有 一个为0。当t=0时,不妨设g(t)=0,f(t)>0,原 题归结为证明如下的数学命题:
通过数学方法对模型进行分析求解,最后再解释和验证所得 的解,进而为解决现实问题提供数据支持和理论指导,这个过程 称为数学建模。

数学模型姜启源初等模型

数学模型姜启源初等模型

空艇重w0(kg)
种类 1 2 3 4 平均 (米) (米) l/b 浆手数n
单人 7.16 7.25 7.28 7.17 7.21 7.93 0.293 27.0 16.3
双人 6.87 6.92 6.95 6.77 6.88 9.76 0.356 27.4 13.6 四人 6.33 6.42 6.48 6.13 6.32 11.75 0.574 21.0 18.1 八人 5.87 5.92 5.82 5.73 5.84 18.28 0.610 30.0 14.7
“2秒准则”应修正为 “t 秒准
车速(英里/小则时”) 0~10
10~40 40~60
t(秒)
1
2
3
60~80 4
第25页/共67页
2.5 划艇比赛的成绩

对四种赛艇(单人、双人、四人、八人)4次国际大赛冠 军的成绩进行比较,发现与浆手数有某种关系。试建立
题 数学模型揭示这种关系。
赛艇 2000米成绩 t (分) 艇长l 艇宽b
车速 (英里/小时) (英尺/秒)
20
29.3
30
44.0
40
58.7
50
73.3
60
88.0
70
102.7
80
117.3
实际刹车距离 (英尺) 42(44) 73.5(78) 116(124) 173(186) 248(268) 343(372) 464(506)
计算刹车距离 (英尺) 39.0 76.6 126.2 187.8 261.4 347.1 444.8
第10页/共67页
右轮转速不是常数
模型假设 • 录像带的运动速度是常数 v ; • 计数器读数 n与右轮转数 m成正比,记 m=kn; • 录像带厚度(加两圈间空隙)为常数 w; • 空右轮盘半径记作 r ; • 时间 t=0 时读数 n=0 .

《数学模型》(第五版)-姜启源-第2章

《数学模型》(第五版)-姜启源-第2章
第二章
初等模型
• 研究对象的机理比较简单
• 用静态、线性、确定性模型即可达到建模目的
可以利用初等数学方法来构造和求解模型
如果用初等和高等的方法建立的模型,其应用效果
差不多,那么初等模型更高明,也更受欢迎.
尽量采用简单的数学工具来建模







双层玻璃窗的功效
划艇比赛的成绩
实物交换
汽车刹车距离与道路通行能力

T2

T1 Ta
Ta Tb k Tb T2
Q1 k1
k2
1
d
d
l
T1 T2
k1
l
Q1 k1
, sh , h
d ( s 2)
k2
d
建模 记单层玻璃窗传导的热量Q2
T1 T2
T1 T2
Q1 k1
Q2 k1
d ( s 2)
2d


T1
2d
Q2
Q1
1
l

, h
Q2 8h 1
d
取 h=l/d=4, 则 Q1/Q2
即双层玻璃窗与同样多材
料的单层玻璃窗相比,可
减少97%的热量损失.
结果分析
Q1/Q2
0.06
0.03
0.02
O
2
4
Q1/Q2所以如此小,是由于层间空气的热传导系
数k2极低, 而这要求空气非常干燥、不流通.
房间通过天花板、墙壁、…损失的热量更多.
vm
vm=vf/2 ~最大流量时的速度
0
km
kj
密度k
0

数学建模姜启源第五章微分方程模型

数学建模姜启源第五章微分方程模型

提高阈值1/ 降低 被传染人数比例 x
5.2 经济增长模型
增加生产 发展经济 增加投资 增加劳动力 提高技术
• 建立产值与资金、劳动力之间的关系 • 研究资金与劳动力的最佳分配,使投资效益最大
• 调节资金与劳动力的增长率,使经济(生产率)增长
1. 道格拉斯(Douglas)生产函数
产值 Q(t)
资金 K(t) 劳动力 L(t) 技术 f(t) = f0
Q
KQK LQL Q
~ 资金在产值中的份额 1- ~劳动力在产值中的份额
更一般的道格拉斯(Douglas)生产函数 Q(K, L) f0K L , 0 , 1, f0 0
2)资金与劳动力的最佳分配(静态模型)
资金来自贷款,利率 r 劳动力付工资 w
资金和劳动力创造的效益 S Q rK wL
• 本节讨论二室模型——中心室(心、肺、肾等)和 周边室(四肢、肌肉等)
模型假设

模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
的估计
提高 r0
s0 i0 r0 1
s0
i0
s
1
ln s s0
0
忽略i 0
群体免疫
ln s0 ln s
模型 假设
• 每方战斗减员率取决于双方的兵力和战斗力 • 每方非战斗减员率与本方兵力成正比 • 甲乙双方的增援率为u(t), v(t)
x(t) f (x, y) x u(t), 0
模型
y (t )
g(x,
y)

数学模型..姜启源共127页

数学模型..姜启源共127页

66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
数学模型..姜启源ቤተ መጻሕፍቲ ባይዱ
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元. 试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小.
要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系.
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元. • 每天生产一次, 每次100件,无贮存费,准备费5000元.
一周期
贮存费
c2
T1 q(t)dt
0
c2 A
一周期
缺货费
c3
T T1
q(t ) dt
c3B
一周期总费用
C

c1
c2
QT1 2
c3
r(T
T1)2 2
允许缺货的存贮模型
一周期总费用
C
c1

1 2 c2QT1

1 2 c3r(T
T1 )2
每天总费用 平均值
C(T ,Q) C c1 c2Q2 c3 (rT Q)2
建立数学模型——描述啤酒杯的重心变化的规律, 找出重心最低点的位置,讨论决定最低点的因素.
问题分析与模型假设
x
最简单的啤酒杯 ~ 高度为1的圆柱体.
1
假设:啤酒和杯子材料均匀.
沿中轴线建立坐标轴x,倒酒时 液面高度从x=0到x=1.
重心位置沿x轴变化,记作s(x).
xs(x) 液面 0
w1 ~ 啤酒 (满杯) 质量
经济批量订货公式(EOQ公式)
不允许缺货的存贮模型
允许缺货的存贮模型
q
当贮存量降到零时仍有需求r, Q
出现缺货,造成损失. 原模型假设:贮存量降到零时
r A
Q rT1
Q件立即生产出来(或立即到货). O T1B T
t
现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足.
周期T, t=T1贮存量降到零
重心最低位置x由比值a决定
x
x 0.45
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
空杯质量w2取决于材料 (纸杯、塑料杯、玻璃杯).
设w2=150g 半升啤酒杯w1=500g a=0.3 x=0.3245
存贮模型
• 存贮模型(EOQ公式)是研究批量生产计划的 重要理论基础, 也有实际应用.
• 建模中未考虑生产费用, 为什么?在什么条件下 可以不考虑?
• 建模中假设生产能力为无限大(生产时间不计), 如果生产能力有限(是大于需求量的常数), 应作 怎样的改动?
问题
3.2 森林救火
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
C(T ) C~ c1 c2rT TT 2
模型求解 求 T 使C(T ) c1 c2rT min
T2
dC 0 dT
模型解释
T 2c1 rc2
Q rT 2c1r c2
定性分析 c1 T,Q
c2 T,Q
r T ,Q
敏感性分析 参数c1,c2, r的微小变化对T,Q的影响
x
1
x =0.35
啤酒杯重心模型一
a = w2/w1
微分法求解s极值问题
x
0.45
0.4
0.35
0.3
0.25
x
0.2
0.15
0.1
0.05 0 0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
x 由质量比a决定
液面高度为x时啤酒杯重心处于最低位置.
结果分析
(a = w2/w1)
模 型 建 立 离散问题连续化
q
贮存量表示为时间的函数 q(t)
t=0生产Q件,q(0)=Q, q(t)以
Q r
需求速率r递减,q(T)=0.
A
=QT/2
Q rT
0
T
t
一周期贮存费为
c2
T 0
q(t)dt

c2
QT 2
一周期 总费用
C~

c1

c2
QT 2

c1

c2
rT 2 2
每天总费用平均 值(目标函数)
一系列数值备查.
评注
• 模型可决定队员数量 x
• 在风力的影响较大时“森林烧毁速度dB/dt 与 t 成正比”的假设需要重新考虑.
• 队员灭火速度应该与开始救火时的火势有关.
3.3 倾倒的啤酒杯
不平坦处满杯啤酒容易倾倒. 重心太高! 满杯时重心在哪里? 杯子中央稍下一点的位置. 空杯时重心在哪里? 与满杯时重心相同. 饮酒时重心先降低,再升高,回到中央. 倒酒时重心先升高,再降低,回到中央. 重心有一个最低点 ~ 啤酒杯容易放稳的位置.
x
c t 2 2c t
11
21

2c 2
3
结果解释 x c1t12 2c2t1

2c32
dB
dt
/ 是火势不继续蔓延的最少队员数
b
x
O
t1
t2 t
c1~烧毁单位面积损失费, c2~每个队员单位时间灭火费,
c3~每个队员一次性费用, t1~开始救火时刻,
a = w2/w1
啤酒杯重心s(x)只与质量比a有关
对于每个a, s(x)
s
0.5
w1 ~ 啤酒质量 w2 ~ 空杯质量
0.45
有一最小点.
a=1
0.4
a=0.3, x=0.35左右 s最小, 即重心最低.
0.35 0.3
a=0.5 a=0.3
0.25
0.2 0
a=0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T T 2rT
2rT
(目标函数)
求 T ,Q C(T ,Q) min
C 0, C 0 为与不允许缺货的存贮模型
T
Q
相比,T记作T´, Q记作Q´.
T 2c1 c2 c3 rc2 c3
Q 2c1r c3 c2 c2 c3
允许
T'
2c1
c 2
c 3
缺货
rc2 c3
c1=5000, c2=1,r=100
T=10(天), Q=1000(件), C=1000(元)
思考: 为什么与前面计算的C=950元有差别?
• 用于订货供应情况: 每天需求量 r,每次订货费 c1, 每天每件贮存费 c2 , T天(周期) 订货一次,每次订货Q 件,当贮存量降到零时,Q件立即到货.
w2 ~ 空杯侧壁质量 w3 ~ 空杯底面质量
空杯重心由w2和w3 决定, 与x无关.
问题分析与模型假设 x
w1 ~ 啤酒 (满杯) 质量
1
w2 ~空杯侧壁质量, w3 ~空杯底面质量
啤酒杯重心s(x)由啤酒重心和空杯 重心合成.
s2=1/2 xs(x) 液面 s1=x/2 0
液面高度x时啤酒质量w1x, 啤酒重心位置 s1=x/2
每天费用5000元 • 10天生产一次, 每次1000件,贮存费900+800+…+100 =4500元,准备费5000元,总计9500元.
平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元.
平均每天费用2550元
一杯啤酒约剩1/3时重心最低,最不容易倾倒!
货允许 缺货T来自2c1c 2c 3
rc2 c3
q Q
模型 Q
2c1r
c 3
c2 c2 c3
r R
注意:缺货需补足
O
T1 T
t
Q~每周期初的存贮量
每周期的生产量 R (或订货量)
R rT
2c1r c2 c3
c2
c3
R Q Q Q~不允许缺货时的产量(或订货量)
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻t森林烧毁面积B(t)的大致图形.
B
分析B(t)比较困难, 转而讨论单位时间
B(t2)
烧毁面积 dB/dt (森林烧毁的速度).
O
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度). 2)t1tt2, 降为–x (为队员的平均灭火速度).
10天生产一次,平均每天费用最小吗?
问题分析与思考
• 周期短,产量小 • 周期长,产量大
贮存费少,准备费多 准备费少,贮存费多
存在最佳的周期和产量,使总费用 (二者之和) 最小.
• 是一个优化问题,关键在建立目标函数.
显然不能用一个周期的总费用作为目标函数.
目标函数——每天总费用的平均值.
模型假设
目标函数——总费用
C(x) f (x) f (x)
1
2
模型建立
目标函数——总费用
C(x)

c1 t12
2

c t2 2
1
1
2(x )

c2 t1x x
c3 x
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
相关文档
最新文档