三角函数、平面向量综合题八类型(师)

合集下载

三角函数平面向量优秀数学复习题目精选(适合复习用)

三角函数平面向量优秀数学复习题目精选(适合复习用)

D. ������
C【解析】 a 3b
2
a 3b
2
2
a 9 b 2 a 3b

1 9 213 1
13
2
4. 已知 ������������������ (������������ + ������) = ������,那么 ������������������������ = ( )
D. ������������ + ������������ = ������
C【解析】因为 ������,������,������ 三点共线,所以 ���⃗⃗⃗���⃗���⃗⃗��� = ���������⃗⃗���⃗⃗���⃗���(������ ≠ ������),即 ���������������⃗��� + ���⃗��� = ������(���⃗��� + ���������������⃗���) = ���������⃗��� + ���������������������⃗���(������ ≠ ������). 又因为 ���⃗���,���⃗��� 不共线,所以 {������������������==������������������,������. 所以 ������������������������ = ������. 7. 函数 ������(������) = ������������������������������ + √������������������������������������ 的最大值和周期分别为 ( )
������������������������
3. 已知 ���⃗���,���⃗��� 均为单位向量,它们的夹角为 ������������∘,那么 ∣ ���⃗��� + ���������⃗��� ∣ 等于 ( )

-三角函数三角形平面向量高考常考14种题型解题方法

-三角函数三角形平面向量高考常考14种题型解题方法

三角函数三角形平面向量高考常考题型解题方法本专题要特别小心: 1.平面向量的几何意义应用 2. 平面向量与三角形的综合 3. 三角形的边角互化4.向量的数量积问题等综合问题5. 向量夹角为锐角、钝角时注意问题6.三角形中角的范围7.正余弦定理综合。

【题型方法】(一)考查平面向量基本定理例1. 设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =-【解析】∵3BC CD = ∴AC −−AB =3(AD −−AC ) ∴AD =43AC −−13AB . 选C练习1.设四边形ABCD 为平行四边形,,.若点M ,N 满足,,则( )A .20B .15C .9D .6【解析】不妨设该平行四边形为矩形,以为坐标原点建立平面直角坐标系 则,故练习2. 如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭得2213,22AB AC =即3,AB AC =故3AB AC=(二)考察数形结合思想(如:向量与圆等图形的结合) 例2. 已知点A ,B ,C 在圆上运动,且ABBC ,若点P 的坐标为(2,0),则的最大值为( )A .6B .7C .8D .9 【解析】由题意,AC 为直径,所以当且仅当点B 为(-1,0)时,取得最大值7选B练习1. 在平面内,定点A ,B ,C ,D 满足==, = = =–2,动点P ,M 满足=1,=,则的最大值是( )A .B .C .D .【解析】甴已知易得以为原点,直线为轴建立平面直角坐标系,如图所示则设由已知,得又,它表示圆上的点与点的距离的平方的,选B练习2. 在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λAB +μAD ,则λ+μ的最大值为( ) A .3 B .22 C .5 D .2 【解析】如图,建立平面直角坐标系设()()()()0,1,0,0,2,1,,A B D P x y 根据等面积公式可得圆的半径是25,即圆的方程是()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=若满足AP AB AD λμ=+,即21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==- ,所以12xy λμ+=-+设12x z y =-+ ,即102xy z -+-= 点(),P x y 在圆()22425x y -+=上,所以圆心到直线的距离d r ≤,即221514z -≤+ ,解得13z ≤≤ 所以z 的最大值是3,即λμ+的最大值是3,选A(三).考查向量的数量积 例3. 已知向量,则ABC =( )A .30B .45C .60D .120 【解析】由题意,得,所以,选A【小结】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题练习1. 已知是边长为4的等边三角形,为平面内一点,则的最小值是A .B .C .D .【解析】以BC 中点为坐标原点,建立如图所示的坐标系则A (0,2),B (﹣2,0),C (2,0),设P (x ,y )则=(﹣x ,2﹣y ),=(﹣2﹣x ,﹣y ),=(2﹣x ,﹣y )所以•(+)=﹣x •(﹣2x )+(2﹣y )•(﹣2y )=2x 2﹣4y +2y 2=2[x 2+(y ﹣)2﹣3]所以当x =0,y =时,•(+)取得最小值为2×(﹣3)=﹣6,选D练习2.在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【解析】因为1,9DF DC λ=12DC AB = 119199918CF DF DC DC DC DC AB λλλλλ--=-=-==;AE AB BE AB BC λ=+=+19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+ ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒21172117299218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918BAD C E(四)考查三角形中的边角互化例 4. 在ABC ∆中,角,,A B C 的对边分别为a , b , c .若ABC ∆为锐角三角形,且满足()sin 12cos 2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A = 【解析】()sin 2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A练习1. 在中,角,,所对应的边分别为,,.已知,则()A.一定是直角三角形B.一定是等腰三角形C.一定是等腰直角三角形D.是等腰或直角三角形【解析】由题,已知,由正弦定理可得:即又因为所以即由余弦定理:,即所以所以三角形一定是等腰三角形,选B练习2. 在中,,为边上的一点,且,若为的角平分线,则的取值范围为()A.B.C.D.【解析】因为,为的角平分线,所以在中,,因为,所以在中,,因为,所以,所以则因为,所以所以,则即的取值范围为,选A练习3. 在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知,,,则的面积( ) A .B .C .D .【解析】由题,,所以所以 又因为锐角三角形ABC ,所以 由题,即根据代入可得,,即再根据正弦定理: 面积故选D练习4. 在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且cos cos A B a b +=33Ca,23b =a c +的取值范围为_____.【解析】cos cos 33A B C a b a +=23cos cos sin 3b A a B C ∴+= ∴由正弦定理可得: 23sin cos sin cos sin 3B A A B BC +=,可得:23sin()sin sin A B C B C +==,3sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭33A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,43]a c ∴+∈.练习5. 在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为________________. 【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+ 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab C a B b A a A b B c C+=+-,所以由正弦定理可得222abcc a b c =+- 即222a b c ab +-=,所以222c a b =+-2()3ab a b ab =+-, 因为3a b +=,所以293c ab =-,因为29()24a b ab +≤=, 当且仅当23==b a 时取等号,所以27304ab -≤-<, 所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3[,3)2(五)三角形与向量综合 例5. 在△中,为边上的中线,为的中点,则( )A .B .C .D .【分析】首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.【解析】根据向量的运算法则,可得,所以,故选A .练习1. 已知中,为的重心,则()A.B.C.D.【解析】因为中,为的重心,所以,由余弦定理可得:且所以=练习2. 下列命题中,①在中,若,则为直角三角形;②若,则的最大值为;③在中,若,则;④在中,,若为锐角,则的最大值为.正确的命题的序号是______【解析】①在中,若,可得或,则为直角或钝角三角形,故①错;②若时,即,即垂直,则的最大值为,故②正确;③在中,若,,即,即,,即为,由,可得,故③正确;④在中,,即为,即为,可得,即,可得锐角,可得时,的最大值为,故④正确故答案为:②③④练习3. 在ABC 中, 60A ∠=︒, 3AB =, 2AC =. 若2BD DC =, ()AE AC AB R λλ=-∈,且4AD AE ⋅=-,则λ的值为______________. 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ 则()1221233493433333311AD AE AB AC AC AB λλλλ⎛⎫⋅=+-=⨯+⨯-⨯-⨯=-⇒= ⎪⎝⎭(六)向量与三角函数综合例6. 自平面上一点O 引两条射线OA ,OB ,点P 在OA 上运动,点Q 在OB 上运动且保持PQ 为定值a (点P ,Q 不与点O 重合),已知3AOB π∠=,7a =,则3||||PQ PO QP QOPO QO ⋅⋅+的取值范围为( )A .1,72⎛⎤⎥⎝⎦B .7,72⎛⎤⎥ ⎝⎦C .1,72⎛⎤- ⎥⎝⎦D .7,72⎛⎤- ⎥ ⎝⎦【解析】设OPQ α∠=,则23PQO πα∠=- 322cos 3cos 7cos 3cos 33PQ PO QP QO PQ QP POQO ππαααα⋅⋅⎫⎛⎫⎛⎫+=+-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎭()3331337cos cos 7cos 7sin 22ααααααϕ⎫⎫=-=-+=-⎪⎪⎪⎪⎭⎭其中3tan 9ϕ=,则7sin 14ϕ=20,3πα⎛⎫∈ ⎪⎝⎭,∴当()sin 1αϕ-=时,原式取最大值7 ()()7sin sin 0sin 14αϕϕϕ->-=-=-,∴()77sin 2αϕ->- 37,72PQ PO QP QO PO QO ⎛⎤⋅⋅+∈- ⎥ ⎝⎦∴,选D练习1. 在同一个平面内,向量的模分别为与的夹角为,且与的夹角为,若,则_________.【解析】以为轴,建立直角坐标系,则, 由的模为与与的夹角为,且知,,可得,,由可得 ,(七)三角形中的最值 例7. 在中,内角所对的边分别为.已知,,,设的面积为,,则的最小值为_______. 【解析】在中,由得, 因为利用正弦定理得,再根据,可得,,,由余弦定理得,求得,所以,所以 ,所以,当且仅当,即时取等,所以 的最小值为。

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

三角函数平面向量一题多解 28题89解

三角函数平面向量一题多解 28题89解

题目及解答(a+-证法二:由正弦定理,sina b c A+≥⇒+2<三角函数图像变换问题的2,所以2BD =(0,)πθ∈,所以(2)由0[1,1]41010b a bb a b a >⎧⎪⎪-∉-⎪⎨⎪-+≥⎪++≥⎪⎩得44a b a b <->或若4,a b <-则302a b b +<-<<;若4,a b >则由10b a ++≥得1413b a b b <≤+⇒<,故51223a b b +≤+<<. (3)由20[1,1]442(1)0b a b a b b >⎧⎪⎪-∈-⎨⎪∆=-⨯-+≤⎪⎩得2218()22a b +-≤, 由柯西不等式,2222291112[8()]1()8282a b a b ⎛⎫⎛⎫ ⎪⨯≥+-+≥+- ⎪ ⎪ ⎪⎝⎭⎝⎭,故13222a b a b +-≤⇒+≤, 当且仅当2218()2218()2a b a b ⎧+-=⎪⎪⎨⎪=-⎪⎩即4323a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,此时满足1[1,1]42a b -=-∈-. 综上,a b +的最大值为2.第6题 三角形内角平分线定理的2种证法三角形内角平分线定理:△ABC 中,AD 平分BAC ∠交边BC 于D ,则AB DB AC DC=. 证法一:初中平面几何证法 利用平行线分线段成比例 证明:过D 作DE AC交AB 于E ,则ADE DAC ∠=∠,又DAE DAC ∠=∠,所以DAE DAC ∠=∠,所以AE DE =,又由DE AC 得,DB EB EB AB DC EA ED AC ===,所以AB DBAC DC =. 证法二:高中三角证法 正弦定理法 证明:在△ABD 和△ACD 中,sin sin AB ADBBD BAD ∠=∠, sin sin AC ADCCD CAD∠=∠, 而BAD CAD ∠=∠,ADB ADC π∠+∠=,所以sin sin ,BAD CAD ∠=∠sin sin ,ADB ADC ∠=∠所以AB DBAC DC=. 说明:还可以利用面积法第7题 三角形重心定理的2种证法三角形重心定理:三角形的三条中线交于一点,该点到每个顶点的距离等于它到该顶点对边中点距离的2倍.如图,AD BE CF 、、是△ABC 的三条中线,则它们交于一点G ,且2AG BG CGGD GE GF===. 证法一:初中平面几何证法,构造三角形中位线法连接EF ,由已知EF 为△ABC 的中位线, 所以,EFBC 12EF BC =, 设CF BE 、交于1G ,则再由EFBC 得11112BG CG BCG E G F EF===,同理可证AD BE 、的交点2G 满足同样的性质,所以12G G 、重合于G ,且2AG BG CGGD GE GF=== 证法二:高中向量几何证法,利用相等向量法在中线AD 上取点1G 满足112AG G D=,则112AG G D =,于是123AG AD =,又D 为BC 中点,所以1()2AD AB AC =+,所以11()3AG AB AC =+, 对于平面ABC 内任意点O ,11()3OG OA OB OA OC OA -=-+-所以11()3OG OA OB OC =++,同理在中线BE 上取点2G 满足222BG G E=,则21()3OG OA OB OC =++,在中线CF 上取点3G 满足332CG G F=,则31()3OG OA OB OC =++, 所以123OG OG OG ==,所以123G G G 、、重合于G 且 2.AG BG CG GD GE GF===第8题 垂心定理的2种证法若AD 、BE 、CF 是△ABC 的三条高,则AD 、BE 、CF 相交于一点H .H 叫做△ABC 的垂心.证法一:初中平面几何证法,运用四点共圆性质证明:设△ABC 的两条高AD 、BE 相交于点H ,连结CH 交AB 于点F . ∵AD ⊥BC 于E ,BE ⊥AC 于E ,∴A 、B 、D 、E 四点共圆,∴∠1=∠ABE , 同理∠2=∠1,∴∠2=∠ABE , ∵∠ABE+∠BAC =90°, ∴∠2+∠BAC =90°即CF ⊥AB .证法二:高中解析几何法,坐标法如图,以直线BC 为x 轴,高AD 为y 轴,建立直角坐标系, 设A(0 , a) , B(b , 0) , C(c , 0),由两条直线垂直的条件1,BE AC ck k a =-=1,CF AB b k k a=-=则三条高的直线方程为:解(2)和(3)得()(),c bx b x c aa-=-()0b c x -=,)0,0(><≠c b c b∴0=x ,这说明BE 和CF 得交点在AD 上,所以三角形的三条高相交于一点。

三角函数与平面向量综合题(合编打印)

三角函数与平面向量综合题(合编打印)

三角函数与平面向量题型归类解析1.考查三角函数的化简或求值2.考查三角函数中的求角问题3. 考查三角形的边长或角的运算4. 考查三角函数的最值与向量运算5. 考查三角函数解析式的求法一、结合向量的数量积,考查三角函数的化简或求值 【例1】(2007年高考安徽卷)已知04πα<<,β为()cos(2)8f x x π=+的最小正周期,(tan(),1),(cos ,2),4a b a b m βαα=+-=⋅=,求22cos sin 2()cos sin ααβαα++-的值.【解答】因为β为()cos(2)8f x x π=+的最小正周期,故βπ=.因为a b m ⋅=,又cos tan()24a b βαα⋅=⋅+-,故cos tan()24m βαα⋅+=+.由于04πα<<,所以22cos sin 2()cos sin ααβαα++=-22cos sin(22)cos sin ααπαα++-22cos sin 2cos sin αααα+=-2cos (cos sin )cos sin ααααα+=-1tan 2cos 1tan ααα+=⋅-cos tan()24m βαα=⋅+=+.【评析】 合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入求值或化简。

题型二:结合向量的夹角公式,考查三角函数中的求角问题 【例2】 (2006年高考浙江卷)如图,函数2sin(),y x x R πϕ=+∈(其中02πϕ≤≤)的图像与y 轴交于点(0,1)。

(Ⅰ)求ϕ的值;(Ⅱ)设P 是图像上的最高点,M 、N 是图像与x 轴的交点,求PM 与PN 的夹角。

【解答】(I )因为函数图像过点(0,1), 所以2sin 1,ϕ=即1sin .2ϕ= 因为02πϕ≤≤,所以6πϕ=.(II )由函数2sin()6y x ππ=+及其图像,得115(,0),(,2),(,0),636M P N -- 所以11(,2),(,2),22PM PN =-=-从而cos ,||||PM PNPM PN PM PN ⋅<>=⋅1517=,故,PM PN <>=15arccos 17.【评析】 此类问题的一般步骤是:先利用向量的夹角公式:cos ,a b a b a b⋅=⋅求出被求角的三角函数值,再限定所求角的范围,最后根据反三角函数的基本运算,确定角的大小;或者利用同角三角函数关系构造正切的方程进行求解。

三角函数与平面向量综合测试题

三角函数与平面向量综合测试题

约稿:三角函数与平面向量综合测试题一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,恰有一项....是符合题目要求的。

1.下列函数中,周期为2π的是( ) A .sin 2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x =2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3. 条件甲a =+θsin 1,条件乙a =+2cos2sinθθ,那么 ( )A .甲是乙的充分不必要条件B .甲是乙的充要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =5. 若函数f (x )=3sin21x , x ∈[0, 3π], 则函数f (x )的最大值是 ( )A.21 B.32C.22D.236. (1+tan25°)(1+tan20°)的值是( )A.-2B.2C.1D.-17. α、β为锐角a =sin(βα+),b =ααcos sin +,则a 、b 之间关系为 ( )A .a >bB .b >aC .a =bD .不确定8. 下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π.BACD②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点.④把函数.2sin 36)32sin(3的图象得到的图象向右平移x y x y =ππ+=⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y其中真命题的序号是 ① ④ ((写出所有真命题的编号))9. )sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则 ( )A .)1(-x f 一定是奇函数B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数10. 使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( )A .π25B .π45C .πD .π2311、在直角坐标系xOy 中,,i j分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2A Bi j =+ ,3AC i k j =+,则k 的可能值有 ( )A 、1个B 、2个C 、3个D 、4个 12. 如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( )(A )32 (B )364(C )4173 (D )3212二、填空题:本大题共4小题,每小题4分,共16分。

三角函数与平面向量综合问题—6种类型

三角函数与平面向量综合问题—6种类型

三角函数与平面向量综合问题—6种类型一、三角函数与平面向量综合问题经典回顾三角函数与平面向量是高中数学的两大重点内容,在近几年的数学高考中,除了单独考查三角函数问题和平面向量问题以外,还常常考查三角函数与平面向量的交汇问题.即一个问题中既涉及三角函数内容,又涉及平面向量知识,以此检测我们综合处理问题的能力.因此,在高三数学复习中,我们应当有意识地关注平面向量与三角函数的交汇,通过典型的综合问题的分析和研究,逐步掌握这类问题的求解策略.开心自测题一:设的三个内角,向量,,若,则=()A.B.C.D.题二:设两个向量和,其中为实数.若,则的取值范围是().A.B.C.D.金题精讲题一:平面上三点不共线,设,则的面积等于().A.B.C.D.题二:设向量(Ⅰ)若与垂直,求的值;(Ⅱ)求的最大值;(Ⅲ)若,求证:∥.题三:在中,角所对的边分别为,且满足,.(I)求的面积;(II)若,求的值.题四:设是锐角三角形,分别是内角所对边长,并且.(Ⅰ)求角的值;(Ⅱ)若,求(其中).三角函数与平面向量综合问题经典回顾参考答案开心自测题一:C.题二:A.金题精讲题一:C.题二:(Ⅰ);(Ⅱ);(Ⅲ)略.题三:(I);(II).题四:(Ⅰ);(Ⅱ).二、三角函数与平面向量综合问题—6种类型题型一:结合向量的数量积,考查三角函数的化简或求值【例1】已知,为的最小正周期,,求的值.【解答】因为为的最小正周期,故.因为,又,故.由于,所以.【评析】合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入求值或化简。

题型二:结合向量的夹角公式,考查三角函数中的求角问题【例2】如图,函数(其中)的图像与轴交于点(0,1)。

(Ⅰ)求的值;(Ⅱ)设是图像上的最高点,M、N是图像与轴的交点,求与的夹角。

【解答】(I)因为函数图像过点,所以即因为,所以.(II)由函数及其图像,得所以从而,故.【评析】此类问题的一般步骤是:先利用向量的夹角公式:求出被求角的三角函数值,再限定所求角的范围,最后根据反三角函数的基本运算,确定角的大小;或者利用同角三角函数关系构造正切的方程进行求解。

三角函数、平面向量综合题八类型(师)

三角函数、平面向量综合题八类型(师)

三角函数与平面向量综合题的九种类型题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(sinA -cosA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B2的最大值.【解】(Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA), 则sin 2A =34,又A 为锐角,所以sinA =32,则A =π3.(Ⅱ)y =2sin 2B +cos C -3B2=2sin 2B +cos (π-π3-B)-3B2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B=32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2.【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型二. 三角函数与平面向量垂直的综合 此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等. 【例2】已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值.【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果.【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0.由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-43.(Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cosαcosβ+sinαsinβ)+12=45,∴cos(α-β)=35.(Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π,由cos(α-β)=-35,得sin(α-β)=45,又sinβ=-513,∴cosβ=1213,∴sinα=sin [(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=3365.题型四:结合向量的数量积,考查三角函数的化简或求值 【例1】(2010年高考安徽卷)已知04πα<<,β为()cos(2)8f x x π=+的最小正周期,(tan(),1),(cos ,2),4a b a b m βαα=+-=⋅= ,求22cos sin 2()cos sin ααβαα++-的值.【解答】因为β为()cos(2)8f x x π=+的最小正周期,故βπ=.因为a b m ⋅=,又cos tan()24a b βαα⋅=⋅+-,故cos tan()24m βαα⋅+=+.由于04πα<<,所以22cos sin 2()cos sin ααβαα++=-22cos sin(22)cos sin ααπαα++-22cos sin 2cos sin αααα+=-2cos (cos sin )cos sin ααααα+=-1tan 2cos 1tan ααα+=⋅-cos tan()24m βαα=⋅+=+.【评析】 合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入求值或化简。

向量和三角函数综合题

向量和三角函数综合题

向量和三角函数综合题引言向量和三角函数是数学中常见且重要的概念,它们在物理学、几何学、工程学等领域都有广泛的应用。

本文将介绍向量和三角函数的基本概念和性质,并通过一些综合题目来加深理解和应用。

向量的基本概念什么是向量向量是由大小和方向共同决定的量,可以用有向线段表示,其中起点和终点分别称为向量的始点和终点。

通常用小写字母表示向量,如a、b等。

向量的表示方法向量可以用矩阵或坐标表示。

如果一个向量在二维坐标系中,可以用二维列向量表示;如果一个向量在三维坐标系中,可以用三维列向量表示。

向量的运算向量之间可以进行加法、减法和数量乘法。

向量的加法和减法可以通过将向量的始点与终点相连得到,而数量乘法就是将向量的长度进行比例缩放。

向量的数量特征向量的数量特征包括模长、方向角和方向余弦。

模长表示向量的长度,方向角表示向量与正方向的夹角,而方向余弦就是向量的方向角的余弦值。

三角函数的基本概念什么是三角函数三角函数是描述角度关系的函数,主要包括正弦、余弦和正切函数。

它们在三角形的计算和周期性变化的问题中经常出现。

正弦函数正弦函数在数学上表示为sin(x),其中x为角度。

正弦函数的值域在[-1, 1]之间,当x为0、π、2π等整数倍的π时,函数的值为0,这也是函数图像上的极值点。

余弦函数余弦函数在数学上表示为cos(x),其中x为角度。

余弦函数的值域也在[-1, 1]之间,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数的值为0,极值点出现在函数图像的波峰和波谷处。

正切函数正切函数在数学上表示为tan(x),其中x为角度。

正切函数的值域为全体实数,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数没有定义。

三角函数的性质三角函数有很多重要的性质,包括周期性、奇偶性、和差公式、倍角公式、半角公式等。

这些性质在计算中经常用到,对于解题非常有帮助。

向量和三角函数的综合应用向量与三角函数的关系向量和三角函数在很多应用中是密切相关的。

高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)

高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)


cos
x




0


2

的部分图象如图所示,f
x0


f
0 ,
则正确的选项是( )
试卷第 2页,总 9页
A.

6
,
x0

1
C.

3
,
x0

1
B.

6
,
x0

4 3
D.

3
,
x0

2 3
20.已知 | a | 1,| b | 2, a 与 b 的夹角为 600,若 a kb 与 b 垂直,则 k 的值为( )
B. 2 2
C. 3 2
D.1
22 . . 设 G 是 ABC 的 重 心 , 且
(56 sin A)GA (40 sin B)GB (35 sin C)GC 0 ,则角 B 的大小为
()
A.45° B.60° C.30° D.1 5°
23.在△ABC 中,a=2,b=2 ,B=45°,则 A 等于( )

CC1 c 则A1B
(A) a+b-c
(B) a–b+c
(C)-a+b+c.
(D)-a+b-c
18.函数 f x sin 2 x
3
sin
x
cos
x
在区间
4
,
2

上的最大值为(

(A) 3 2
(B)1 3
(C)1
(D) 1 3 2
19.已知函数

(完整版)三角函数与平面向量综合题的六种类型

(完整版)三角函数与平面向量综合题的六种类型

第1讲 三角函数与平面向量综合题3.17题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B2的最大值.题型二. 三角函数与平面向量垂直的综合 【例2】已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值.题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.题型四 三角函数与平面向量数量积的综合【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.(1)求cos C ;(2)若52CB CA ⋅=u u u r u u u r ,且9a b +=,求c .题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】()f x a b =⋅r r ,其中向量(,cos 2)a m x =r,(1sin 2,1)b x =+r ,x R ∈,且函数()y f x =的图象经过点(,2)4π.(Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

专题5.2 三角函数与平面向量综合题

专题5.2    三角函数与平面向量综合题

专题5.2 三角函数与平面向量综合题近几年考点分布平面向量在高考试题中,主要考查有关的基础知识,突出向量的工具作用.平面向量的考查要求: 第一,主要考查平面向量的性质和运算法则,以及基本运算技能,考查学生掌握平面向量的和、差、数乘和数量积的运算法则,理解其直观的几何意义,并能正确地进行运算;第二,考察向量的坐标表示,及坐标形式下的向量的线性运算;第三,经常和函数、曲线、数列等知识结合,考察综合运用知识能力.在近几年的高考中,每年都有两道题目.其中小题以填空题或选择题形式出现,考查了向量的性质和运算法则,数乘、数量积、共线问题与轨迹问题.大题则以向量形式为条件,综合考查了函数、三角、数列、曲线等问题。

【考点预测】预计向量基本概念、向量基本运算等基础问题,通常为选择题或填空题出现;而用向量与三角函数、解三角形等综合的问题,通常为解答题,难度以中档题为主。

复习建议1、平面向量部分的复习应该注重向量的工具作用,紧紧围绕数形结合思想,扬长避短,解决问题;2、平面向量与三角函数的交汇是近年来的考查热点,一般都出现在解答题的前三大题里,在复习中,应加强这种类型试题的训练。

【考点pk 】【考点一 三角函数】1.(全国文7、理5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 2.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A)23 (B)32(C )2 (D)33.(课标卷文 11).设函数)42cos()42sin()(ππ+++=x x x f ,则( )A 函数上在)2,0(),(πx f 单调递增,其图像关于直线4π对称;B 函数上在)2,0(),(πx f 单调递增,其图像关于直线2π对称;C 函数上在)2,0(),(πx f 单调递减, 其图像关于直线4π对称;D 函数上在)2,0(),(πx f 单调递减,其图像关于直线2π对称;4.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增5.已知函数()f x =Atan(x ωϕ+)(02πωϕ>,<), ()y f x =的部分图像如图,则24f π⎛⎫⎪⎝⎭=( )(A ) (C)(D)2 6.将函数()sin()f x x ωϕ=+的图像向左平移2π个单位。

三角函数平面向量综合问题

三角函数平面向量综合问题
8..已知点A(-2,0>、B(3,0>,动点P(x,y>满足 · =x2,则点P的轨迹是(>
A.圆B.椭圆C.双曲线D.抛物线
9.已知向量a=(cos x,- >,b=( sin x,cos 2x>,x∈R,则a·b在 上的最大值和最小值分别为(>
A. ,- B. ,- C.1, D.1,-
10.若函数y=Asin(ωx+φ> 在一个周期内的图象如图所示,M,N分别是这段图象的最高点与最低点,且 · =0,则A·ω=(>
在矩形ABCD中,AB=2,BC=1,E为BC的中点,若F为该矩形内(含边界>任意一点,则 · 的最大值为________.
已知两个单位向量a,b的夹角为60°,c=ta+(1-t>b,若b·c=0,则t=________.
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
A. B.பைடு நூலகம்C. πD. π
11.已知关于x的一元二次方程a·x2+b·x+c=0,其中a,b,c是非零平面向量,且a,b不共线,则该方程(>
A.可能有无穷多个实数解B.至多有两个实数解
C.至少有一个实数解D.至多有一个实数解
12.在△ABC中, · =1, · =-3,则 的值为________.
课题
三角函数、平面向量综合问题
学习目标
重点难点
导学过程
备注
1.已知函数f(x>=sin +cos ,g(x>=2sin2 .(1>若α是第一象限角,且f(α>= ,求g(α>的值;(2>求使f(x>≥g(x>成立的x的取值集合.

13三角函数平面向量经典版测试题(含解析)

13三角函数平面向量经典版测试题(含解析)

高一数学周末测试(十八周)一、选择题1. 若向量 a ⃗ =(x +1,2) 和向量 b ⃗ =(1,−1) 平行,则 ∣a ⃗ +b ⃗ ∣=( ) A. √10 B. √102 C. √2 D. √222. 已知点 A (1,3),B (4,−1),则与向量 AB ⃗⃗⃗⃗⃗⃗ 同方向的单位向量是 ( ) A. (35,−45) B. (45,−35) C. (−35,45) D. (−45,35)3. 已知函数 f (x )=cos 4x −sin 4x ,下列结论中错误的是 ( ) A. f (x )=cos2x B. 函数 f (x ) 的图象关于直线 x =0 对称 C. f (x ) 的最小正周期为 π D. f (x ) 的值域为 [−√2,√2]4. 要得到函数 y =2sin (2x +π5) 的图象,应该把函数 y =cos (x −215π)−√3sin (x −2π15) 的图象做如下变换 ( )A. 将图象上的每一点横坐标缩短到原来的 12 而纵坐标不变B. 沿 x 轴向左平移 π2 个单位,再把得图象上的每一点横坐标伸长到原来的 2 倍而纵坐标不变C. 先把图象上的每一点横坐标缩短到原来的 12 而纵坐标不变,再将所得图象沿 x 轴向右平移 π4 个单位D. 先把图象上的每一点横坐标缩短到原来的 12 而纵坐标不变,再将所得图象沿 x 轴向左平移 π2 个单位5. 3−sin70∘2−cos 210∘= ( )A. 12 B. √22 C. 2 D. √326. cos10∘sin70∘−cos80∘sin20∘= ( ) A. 12B. √32C. −12D. −√327. 已知 sin ( π4−x)=35,则 cos ( π2−2x) 的值为 ( ) A. 1925 B. 1625 C. 1425 D. 7258. 设 α∈(0,π2),β∈(0,π2),且 sinαcosα=cosβ1−sinβ,则 ( )A. 2α+β=π2 B. 2α−β=π2C. α+2β=π2D. α−2β=π29. 在 △ABC 中,AB =3,AC =2,BD ⃗⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗⃗ ,则 AD ⃗⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ 的值为 ( ) A. 52 B. −52 C. 54 D. −5410. △ABC 中, CB ⃗⃗⃗⃗⃗⃗ =a ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ , ∣a ⃗ ∣=2,∣∣b ⃗ ∣∣=1,a ⃗ ⋅b ⃗ =−1,则 ∣∣AB ⃗⃗⃗⃗⃗⃗ ∣∣= ( ) A. 1 B. √2 C. √3 D. 211. 函数 f (x )=2cos 2x +sin2x −1,给出下列四个命题中正确的是 ( ) A 函数在区间 [π8,5π8] 上是减函数;B 直线 x =π8 是函数图象的一条对称轴;C 函数 f (x ) 的图象可由函数 y =√2sin2x 的图象向左平移 π4 而得到; D 若 x ∈[0,π2],则 f (x ) 的值域是 [0,√2]; 12. 已知下列四个命题正确的是 . A 对任意两向量 a ⃗ ,b ⃗ ,均有 ∣∣a ⃗ −b ⃗ ∣∣<∣a ⃗ ∣+∣∣b ⃗ ∣∣;B 若在 △ABC 中,AD ⃗⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则 D 是线段 BC 的中点;C 在四边形中,若 (AB ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )+(BD ⃗⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗⃗ )=0⃗ ,则 ABCD 为平行四边形; D 若 ∣∣AB ⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ∣∣=∣∣AB ⃗⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ ∣∣,则 ∣∣AB ⃗⃗⃗⃗⃗⃗ ∣∣=∣∣AD ⃗⃗⃗⃗⃗⃗ ∣∣. 13.下列命题中错误的是( ).A 存在实数 α,β,使等式 sin (α+β)=sinα+sinβ 成立.( )B 在锐角 △ABC 中,sinAsinB 和 cosAcosB 大小不确定.( ) C 若 α+β=45∘,则 tanα+tanβ=1−tanαtanβ.( )D y =3sinx +4cosx 的最大值是 7.( )E 对任意角 α 都有 1+sinα=(sin α2+cos α2)2.( )F 在非直角三角形中,tanA +tanB +tanC =tanAtanBtanC .( )二、填空题14. 若单位向量 e 1⃗⃗⃗⃗ ,e 2⃗⃗⃗⃗ 的夹角为 π3,则向量 e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ 与向量 e 1⃗⃗⃗⃗ 的夹角为 .15. 如图,在直角梯形 ABCD 中,AD ∥BC ,∠ADC =90∘,AD =2,BC =CD =1,P 是 AB 的中点,则 DP ⃗⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗⃗ = .16. 定义运算 ∣∣∣a b c d ∣∣∣=ad −bc ,若 cosα=17,∣∣∣sinαsinβcosαcosβ∣∣∣=3√314,0<β<α<π2,则 β= .17. 已知平面向量 a ⃗ ,b ⃗ 的夹角为 π3,且满足 ∣a ⃗ ∣=2,∣∣b ⃗ ∣∣=1,则 a ⃗ ⋅b ⃗ = , ∣∣a ⃗ +2b ⃗ ∣∣= . 三、解答题18. ∣a ⃗ ∣=4,∣b ⃗ ∣=3,(2a ⃗ −3b ⃗ )⋅(2a ⃗ +b ⃗ )=61. (1)求 a ⃗ 与 b ⃗ 的夹角 θ; (2)求 ∣a ⃗ +b⃗ ∣.19. 向量 a ⃗ =(cosα,sinα),b⃗ =(cosx,sinx ),c ⃗ =(sinx +2sinα,cosx +2cosα),其中 0<α<x <π.(1)若 α=π4,求函数 f (x )=b ⃗ ⋅c ⃗ 的最小值及相应 x 的值; (2)若 a ⃗ 与 b⃗ 的夹角为 π3,且 a ⃗ ⊥c ⃗ ,求 tan2α 的值.20. 函数 f (x )=2cos 2x +2√3sinxcosx +a ,且当 x ∈[0,π2] 时,f (x ) 的最小值为 2,(1)求 a 的值,并求 f (x ) 的单调递增区间; (2)先将函数 y =f (x ) 的图象上的点纵坐标不变,横坐标缩小到原来的 12,再将所得的图象向右平移 π12 个单位,得到函数 y =g (x ) 的图象,求方程 g (x )=4 在区间 [0,π2] 上所有根之和.21. 在平面直角坐标系 xOy 中,已知点 P (12,√32),将向量 OP⃗⃗⃗⃗⃗⃗ 绕原点 O 按逆时针方向旋转 x 弧度得到向量 OQ ⃗⃗⃗⃗⃗⃗ . (1)若 x =π4,求点 Q 的坐标;(2)已知函数 f (x )=OP ⃗⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ ,令 g (x )=f (x )⋅f (x +π3),求函数 g (x ) 的值域.22. 已知函数 f (x )=2sin 2x +cos (2x −π3).(1)求 f (x ) 的最小正周期;(2)求 f (x ) 在 (0,π2) 上的单调递增区间.23. 如图,某市准备在道路 EF 的一侧修建一条运动赛道,赛道的前一部分为曲线段FBC ,该曲线段是函数 y =Asin (ωx +2π3)(A >0,ω>0),x ∈[−4,0] 的图象,且图象的最高点为 B (−1,2);赛道的中间部分为直线跑道 CD ,且 CD =√3,CD ∥EF ;赛道的后一部分是以 O 为圆心的一段圆弧 DE .(1)求 ω 的值和 ∠DOE 的大小;(2)若要在圆弧赛道所对应的扇形 ODE 区域内建一个矩形草坪,矩形的一边在道路OE 上,一个顶点在半径 OD 上,另外一个顶点 P 在圆弧 DE 上,且 ∠POE =θ,求当矩形草坪的面积取最大值时 θ 的值.参考答案(十八周)第一部分 1. C【解析】依题意得,−(x +1)−2×1=0,得 x =−3, 又 a ⃗ +b ⃗ =(−2,2)+(1,−1)=(−1,1), 所以 ∣a ⃗ +b ⃗ ∣=√2. 2. A【解析】已知点 A (1,3),B (4,−1),则 AB⃗⃗⃗⃗⃗⃗ =(3,−4),故与其同方向的单位向量为 15(3,−4)=(35,−45).3. D4. C 【解析】函数y =cos (x −215π)−√3sin (x −2π15)=2cos [(x −2π15)+π3]=2cos (x +π5)=2sin (π2+x +π5)=2sin (x +7π10)轴的图象,先把图象上的每一点横坐标缩短到原来的 12 而纵坐标不变,可得 y =2sin (2x +7π10) 的图象,再将所得图象沿 x 向右平移 π4 个单位,可得 y =2sin (2x −π2+7π10)=2sin (2x +π5) 的图象.5. C【解析】3−sin70∘2−cos 210∘=3−sin70∘2−1+cos20∘2=2(3−sin70∘)3−cos20∘=2 .6. B7. D【解析】因为 sin ( π4−x)=35,所以 cos (π2−2x)=cos2( π4−x)=1−2sin 2( π4−x)=725. 8. B【解析】由 sinαcosα=cosβ1−sinβ ,可得:sinα−sinαsinβ=cosαcosβ. 所以 sinα=cosαcosβ+sinαsinβ=cos (α−β), 因为 α∈(0,π2),β∈(0,π2), 所以 cos (α−β)>0, 所以 α+α−β=π2, 即 2α−β=π2. 9. C 10. C 11. A B【解析】提示:f (x )=cos2x +sin2x =√2sin (2x +π4),A B 对. 12. B C【解析】若两向量 a ⃗ ,b ⃗ 方向相反,则A 不对; 由向量平行四边形法则可知B 对;C 中向量等式化简后为 CB ⃗⃗⃗⃗⃗⃗ =DA ⃗⃗⃗⃗⃗⃗ ,说明 CB ∥AD ,CB =AD ,所以C 对; 由向量平行四边形法则可知D 不对. 13. B D第二部分 14. π2.【解析】因为 (e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ )⋅e 1⃗⃗⃗⃗ =e 1⃗⃗⃗⃗ 2−2e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ =1−2×12=0; 所以 (e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ )⊥e 1⃗⃗⃗⃗ ;所以向量 e 1⃗⃗⃗⃗ −2e 2⃗⃗⃗⃗ 与向量 e 1⃗⃗⃗⃗ 的夹角为 π2. 15. −1【解析】在直角梯形 ABCD 中,AD ∥BC ,∠ADC =90∘,AD =2,BC =CD =1,可得 △BCD 为等腰直角三角形,则 BD =√2,且 P 是 AB 的中点,可得 DP ⃗⃗⃗⃗⃗⃗ =12(DB ⃗⃗⃗⃗⃗⃗ +DA⃗⃗⃗⃗⃗⃗ ),DP ⃗⃗⃗⃗⃗⃗ ⋅AB⃗⃗⃗⃗⃗⃗ =12(DB ⃗⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗⃗ )⋅(DB ⃗⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗⃗ )=12(DB ⃗⃗⃗⃗⃗⃗ 2−DA⃗⃗⃗⃗⃗⃗ 2)=12[(√2)2−22]=−1.16. π3【解析】由 0<β<α<π2,cosα=17,得 sinα=4√37;又由 ∣∣∣sinαsinβcosαcosβ∣∣∣=3√314,得 sinαcosβ−cosαsinβ=sin (α−β)=3√314,cos (α−β)=1314,所以 cosβ=cos [(α−β)−α]=cos (α−β)cosα+sin (α−β)sinα=12,则 β=π3. 17. 1,2√3【解析】a ⃗ ⋅b ⃗ =∣a ⃗ ∣∣∣b ⃗ ∣∣cos⟨a ⃗ ,b ⃗ ⟩=2×1×12=1;∣∣a ⃗ +2b ⃗ ∣∣=√(a ⃗ +2b ⃗ )2=√∣a ⃗ ∣2+4a ⃗ ⋅b ⃗ +4∣∣b ⃗ ∣∣2=√4+4×1+4×1=2√3.第三部分18. (1) 由 (2a ⃗ −3b ⃗ )⋅(2a ⃗ +b ⃗ )=61, 得 4∣a ⃗ ∣2−4a ⃗ ⋅b ⃗ −3∣b⃗ ∣2=61. 因为 ∣a ⃗ ∣=4,∣b ⃗ ∣=3, 所以 a ⃗ ⋅b ⃗ =−6, 所以 cosθ=a ⃗ ⋅b ⃗ ∣a⃗ ∣∣b ⃗ ∣=−64×3=−12.又 θ∈[0,π], 所以 θ=23π.(2) 因为 ∣a ⃗ +b ⃗ ∣2=(a ⃗ +b ⃗ )2=∣a ⃗ ∣2+2a ⃗ ⋅b ⃗ +∣b ⃗ ∣2=42+2×(−6)+32=13, 所以 ∣a ⃗ +b⃗ ∣=√13. 19. (1) 因为 b⃗ =(cosx,sinx ),c ⃗ =(sinx +2sinα,cosx +2cosα),α=π4, 所以 f (x )=b ⃗ ⋅c ⃗ =cosxsinx +2cosxsinα+sinxcosx +2sinxcosα =2sinxcosx +√2(sinx +cosx ).令 t =sinx +cosx (0<x <π),则 2sinxcosx =t 2−1,且 −1<t ≤√2. 则 y =g (t )=t 2+√2t −1=(t +√22)2−32,−1<t ≤√2.所以 t =−√22时,y 取得最小值,且 y min =−32,此时 sinx +cosx =−√22.1)sin(x )442ππ+=∴+=-由于 0<x <π,5444x πππ<+< 746x ππ∴+= 故 x =11π12. 所以函数 f (x ) 的最小值为 −32,相应 x 的值为 11π12. (2) 因为 a ⃗ 与 b⃗ 的夹角为 π3, 所以 cos π3=a ⃗ ⋅b ⃗ ∣a⃗ ∣⋅∣b ⃗ ∣=cosαcosx +sinαsinx =cos (x −α).因为 0<α<x <π,所以 0<x −α<π.所以 x −α=π3. 因为 a⃗ ⊥c ⃗ , 所以 cosα(sinx +2sinα)+sinα(cosx +2cosα)=0. 所以 sin (x +α)+2sin2α=0,sin (2α+π3)+2sin2α=0. 所以 52sin2α+√32cos2α=0.所以 tan2α=−√35. 20. (1) 函数 f (x )=cos2x +1+√3sin2x +a =2sin (2x +π6)+a +1, 因为 x ∈[0,π2],所以 2x +π6∈[π6,7π6],f (x )min =−1+a +1=2,得 a =2,即 f (x )=2sin (2x +π6)+3.令 2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z , 得 kπ−π3≤x ≤kπ+π6,k ∈Z ,所以函数 f (x ) 的单调递增区间为 [kπ−π3,kπ+π6],k ∈Z .(2) 由(1)得 f (x )=2sin (2x +π6)+3,所以 g (x )=2sin (4(x −π12)+π6)+3=2sin (4x −π6)+3,又因为g(x)=4.所以sin(4x−π6)=12,解得4x−π6=2kπ+π6或2kπ+5π6,即x=kπ2+π12或kπ2+π4(k∈Z).因为x∈[0,π2],所以x=π12或π4,故所有根之和为π12+π4=π3.21. (1)由题意可得P(cosπ3,sinπ3),cos(π3+π4)=12×√22−√32×√22=√2−√64,sin(π3+π4)=√32×√22+12×√22=√2+√64,所以点Q的坐标为(√2−√64,√2+√64).(2)f(x)=12cos(π3+x)+√32sin(π3+x)=14cosx−√34sinx+34cosx+√34sinx =cosx,所以g(x)=cosx⋅cos(x+π3)=12cos2x−√32sinxcosx=1+cos2x4−√34sin2x=14−12sin(2x−π6).因−1≤sin(2x−π6)≤1,故g(x)的值域为[−14,34].22. (1)因为cos2x=1−2sin2x,所以f(x)=2sin2x+cos(2x−π3)=1−cos2x+12cos2x+√32sin2x=1+sin(2x−π6).故f(x)的最小正周期为π.(2)由2kπ−π2≤2x−π6≤2kπ+π2,k∈Z,得kπ−π6≤x≤kπ+π3,k∈Z.故f(x)在(0,π2)上的单调递增区间为(0,π3).23. (1)由条件得A=2,T4=3.∵T=2πω,∴ω=π6,∴曲线段FBC的解析式为y=2sin(π6x+2π3)(−4≤x≤0).当x=0时,y=OC=√3.又CD=√3,∴∠COD=π4,∴∠DOE=π4.(2)由(1)可知OD=√6.又点P在圆弧DE上,OP=√6.又∠POE=θ,0<θ<π4,∴矩形草坪的面积为S=√6sinθ(√6cosθ−√6sinθ)=6(sinθcosθ−sin2θ)=6(12sin2θ+12cos2θ−12)=3√2sin(2θ+π)−3.∵0<θ<π4,∴π4<2θ+π4<3π4,∴当2θ+π4=π2,即θ=π8时,S取得最大值.。

三角函数、平面向量专题试题集

三角函数、平面向量专题试题集

三角函数、平面向量专题试题集三角函数.平面向量专题试题集1. 函数的最小正周期为 ( A )A. B. C.8D.42. 已知函数的图象的一条对称轴方程为直线_=1,若将函数的图象向右平移b个单位后得到y=sin_的图象,则满足条件的b的值一定为( C )A.B. C.D.3. 在△ABC,为角A.B.C所对的三条边.(1)求时,t的取值范围;(2)化简(用(1)中t表示).(1)∵,∴△ABC为直角三角形,∴∠A+∠B= …………2分又…………4分∵ ∴, ∴…………6分(2)∵ ∴…………9分…………12分4. 已知向量a和b的夹角为60°,a = 3,b = 4,则(2a –b)·a等于 ( B )(A)15 (B)12 (C)6 (D)35. 已知.(Ⅰ)求cos的值;(Ⅱ)求满足sin(– _ ) – sin (+ _) + 2cos=的锐角_.解:(Ⅰ)因为,所以.(2分)所以=, (4分)由,所以.(6分)(Ⅱ)因为sin() – sin() + 2cos,所以, (8分)所以sin_=, (10分)因为_为锐角,所以.(12分)6. 下列函数中,最小正周期为,且图象关于直线对称的是( B )A. B.C. D.7. 若是纯虚数,则的值为 ( B )A.B.C.D.8. 已知向量上的一点(O为坐标原点),那么的最小值是( B )A.-16 B.-8 C.0 D.49. _年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于( D )A.1 B.C.D.-10. 为锐角,为钝角,=.11. 已知a=1,b=,(1)若a//b,求a·b;(2)若a,b的夹角为135°,求a+b.解(1),①若,同向,则……3分②若,异向,则……3分(2)的夹角为135°,……2分……2分……2分12.已知函数(1)将的形式,并求其图象对称中心的横坐标;(2)如果△ABC的三边a.b.c成等比数列,且边b所对的角为_,试求_的范围及此时函数f(_)的值域.解:(1) ……3分由即对称中心的横坐标为……3分(2)由已知.……3分的值域为……2分综上所述, ……1分13. 设平面上的动向量a=(s,t),b=(-1,t2-k)其中s,t为不同时为0的两个实数,实数,满足a⊥b,(1)求函数关系式(2)若函数上是单调增函数,求证:;(3)对上述,存在正项数列,其中通项公式并证明.(1)解: ……3分(2)证明:成立, ……2分故; ……1分(3)故因为……4分事实上,……4分方法1:方法2:14. 如果函数的最小正周期是T,且当时取得最大值,那么( A )A. B. C. D.15. 在中,已知,那么一定是( B )A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形16. 已知,那么的值为,的值为.17. 若 , 且()⊥ ,则与的夹角是 ( B )(A)(B)(C)(D)18. 把y = sin_的图象向左平移个单位,得到函数y = sin的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,得到函数的图象.19. 已知直线:_ – 2y + 3 = 0 ,那么直线的方向向量为(2,1)或等(注:只需写出一个正确答案即可);过点(1,1),并且的方向向量2与1满足1·= 0,则的方程为2_ + y – 3 = 0.20. 已知:tan= 2,求:(Ⅰ)tan的值;(Ⅱ)sin2的值.解:(Ⅰ)== 2,∴tan. (5分)(Ⅱ)解法一:sin2+sin2+ cos2= sin2+ sin2+ cos2– sin2= 2sincos+ cos2 (8分)= (11分)=.(13分)(Ⅱ)解法二:sin2+ sin2+ cos2= sin2+ sin2+ cos2– sin2= 2sincos+ cos2 (1)(8分)∵tan=,∴为第一象限或第三象限角.当为第一象限角时,sin=,cos=,代入(1)得2sincos+ cos2=; (10分)当为第三象限角时,sin=,cos=,代入(1)得2sincos+ cos2=. (12分)综上所述:sin2+ sin2+ cos2=.(13分)21. 已知常数a _gt; 0,向量,,经过定点A (0,–a )以+为方向向量的直线与经过定点B (0,a)以+ 2为方向向量的直线相交于点P,其中∈R.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若,过E (0,1)的直线l交曲线C于M.N两点,求的取值范围.解:(Ⅰ)设P点的坐标为(_,y),则,,又,故,.由题知向量与向量平行,故(y + a) = a_.又向量与向量平行,故y – a = 2.两方程联立消去参数,得点P (_,y)的轨迹方程是(y + a)(y – a)= 2a2_2,即y2 – a2 = 2a2_2.(6分)(Ⅱ)∵,故点P的轨迹方程为2y2 – 2_2= 1,此时点E (0,1)为双曲线的焦点.①若直线l的斜率不存在,其方程为_ = 0,l与双曲线交于.,此时. (8分)②若直线l的斜率存在,设其方程为y = k_ + 1,代入2y2 – 2_2= 1化简得2(k2 – 1) _2 + 4k_ + 1 = 0.∴直线l与双曲线交于两点,∴△=(4k)2 – 8 (k2 – 1) _gt; 0且k2 –1≠0.解得k≠±1.设两交点为M (_1,y1).N (_2,y2),则_1 + _2 =,_1_2 =. (10分)此时= _1_2 + k2_1_2= (k2 + 1) _1_2 =.当–1 _lt; k _lt; 1时,k2 – 1 _lt; 0,故≤;当k _gt; 1或k _lt; – 1时,k2 – 1 _gt; 0,故.综上所述,的取值范围是∪. (13分)22.23.24.25.26.27.28.29.30.31.32. 已知向量=(8, _),=(_,1),其中_>0,若(-2)∥(2+),则_的值为A.4B.8C.0D.2解:-2=(8-2_,_-2),2+=(16+_,_+1)由(-2)∥(2+),得(8-2_,_-2)=λ(16+_,_+1)即_THORN; _=4.选A33. 同时具有以下性质:〝①最小正周期实π;②图象关于直线_=对称;③在[-]上是增函数〞的一个函数是A.y=sin()B.y=cos(2_+)C.y=sin(2_-)D.y=cos(2_-)解:由性质①排除A,由性质②排除D,由性质③排除B,选C.34. 在△ABC中,已知sin2Asin2B=,tanAtanB=3,求角C.解:∵sin2Asin2B=,∴sinAsinBcosAcosB=……①……3’由A.B∈(0,π),知sinAsinB>0,∴cosAcosB>0又tanAtanB=3,即=3……②……6’由①②得:∴c osC=-cos(A+B)=-cosAcosB+sinAsinB=而C∈(0,π),∴C=.35. 如图,已知点P(3,0),点A.B分别在_轴负半轴和y轴上,且=0,,当点B在y轴上移动时,记点C的轨迹为E.(1)求曲线E的方程;(2)已知向量=(1,0),=(0,1),过点Q(1,0)且以向量+k(k∈R)为方向向量的直线l交曲线E于不同的两点M.N,若D(-1,0),且>0,求k的取值范围.解:(1)设A(a,0)(a<0),B(0,b),C(_,y)则=(_-a,y),=(a,-b),=(3,-b),∵=0,,∴……3’消去a.b得:y2=-4_∵a<0,∴_=3a<0故曲线E的方程为y2=-4_(_<0)……5’(2)设R(_,y)为直线l上一点,由条件知)即(_-1,y)=λ(1,k)∴,消去λ得l的方程为:y=k(_-1) ……7’由_THORN;k2_2-2(k2-2)_+k2=0 ……(_)∵直线l交曲线E与不同的两点M.N∴△>0 _THORN; -1<k<1……①……9’设M(_1,y1),N(_2,y2),则=(_1+1,y1),=(_2+1,y2)∵M.N在直线y=k(_-1)上,∴y1=k(_1-1),y2=k(_2-1)又由(_),有_1+_2=,_1_2=2∴=(_1+1)(_2+1)+y1y2=(_1+1)(_2+1)+k2(_1-1)(_2-1)=(k2+1)_1_2+(1-k2)(_1+_2)+k2+1=由条件知:>0 _THORN;k2>……②……12’由①②知:-1<k<-或<k<1.……13’36. 设集合,集合,则( A )A.中有3个元素 B.中有1个元素C.中有2个元素 D.37. 在△中,〝是〝〞的( C )A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件38. 函数在下面哪个区间内是增函数( C )A.B.C. D.39. 函数的最小正周期为.40. 在三角形ABC中,设,,点在线段上,且,则用表示为.41. 将圆按向量平移得到圆,则的坐标为(-1,2);将抛物线按的相反向量平移后的曲线方程为.42. 已知向量,,,其中.(Ⅰ)当时,求值的集合;(Ⅱ)求的最大值.解:(Ⅰ)由,得,即.…………4分则,得.…………………………………5分∴为所求.…………………………………6分(Ⅱ),……………10分所以有最大值为3. (12)分。

三角函数和平面向量综合测试题.doc

三角函数和平面向量综合测试题.doc

10.使y = sin亦(3 >0)在区间|0, 1 ]至少出现2次最大值,则3的最小值为(()A.* B t6.(l+tan25o)(l+tan2O o)的值是(7.a > 0 为锐角a二sin(a + "), b= sin tz + cos or ,则a、bZ间关系为A. a>hB. h>aC. a-bD.不确定8.同时具有性质“①最小正周期是龙,②图象关于直线x =-对称;③在3 6 3 是减函数”的一个函数是()X TT TT TT TT A. y - sin(— + —) B. y - cos(2x ------- ) C. y = sin(2x -------- ) D. y = cos(2x +—)2 6 6 63 9. /(x) = Asin((wc^(p) (A>0, 3>0)在x=l 处取最大值,则AD・BC=16.下面有五个命题:①函数3?=sin4x-cos4x的最小正周期是兀.②终边在y轴上的角的集合是{a\a=^,k e Z |.J③在同一坐标系中,函数>,=sirL¥的图象和函数)=兀的图象有三个公共点.④把函数y = 3sin(2x + -)的图象向右平移匹得到y = 3sin 2x的图象.3 6⑤函数y = sin(x-^)在(0,兀)上是减函数.其中真命题的序号是_____________ ((写出所有真命题的编号))三•解答题=17.在ZXABC中,内角A, B, C所对的边分别是a, b, c.已知bsin A = 3csinB,一、选择题:1 •下列函数中,周期为彳的是()A. ”si吟B. y = sin 2xC. y = cos-一4D. y = cos 4x2.设P是ZkABC所在平面内的一点,BC + BA = 2BP,则A.PA+PB=O B PC+PA=0C.PB+PC"°PA+PB+PC=O)3.己知向量"HZ若a + ”与4b-2a平行,则实数兀的值是()A.-2 B. 0 C. 1 D. 24.已知O是△4BC所在平面内一点,D为BC边中点,且2Q4 + OB + OC = 0, 那么)A. AO = OD B.AO = 2OD C. AO = 3OD D. 2AO = OD5. 若函数fix)= V3 sin 1 ,函数/U)的最大值是5 5 3A. —71B. —71C.兀D・—712 4 211、在直角坐标系x0>冲,i,丿•分别是与x轴,y轴平行的单位向量,若直角屮,AB = 2i + j, AC = 3i + kj ,则k的可能值有A、1个12.如图,h、仏、B、2个C、3个厶是同一平面内的三条平行直线,厶与b间的距离是的距离是2,正三角形ABC的三顶点分别在厶、H、厶上,贝'JAABC的边(A) 2^3 (B) —(C) (D)3 4 3二、填空题:13.设两个向量"5 ,满足I 5l=2,| e2\=l, e lf e2的夹角为60°,若向量2t e i+7 e2与向量e x+1 e2的夹角为钝角,则实数t的取值范围为.714.若sin〃一cos0 = —, 0(0,兀),则tan。

三角函数与平面向量结合问题-高考数学大题精做之解答题题型全覆盖高端精品

三角函数与平面向量结合问题-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第一篇三角函数与解三角形专题04三角函数与平面向量结合问题类型对应典例三角函数的定义与平面向量的运算相结合典例1三角恒等变换与平面向量运算相结合典例2三角函数的图象与平面向量相结合典例3三角函数的性质与平面向量、不等式相结合典例4三角函数图象的性质与平面向量运算相结合典例5平面向量的数量积运算与三角函数相结合典例6三角函数的性质与平面向量的数量积相结合典例7【典例1】如图,在平面直角坐标系中,已知点()2,0A 和单位圆上的两点()10B ,,34,55C ⎛⎫- ⎪⎝⎭,点P 是劣弧 BC上一点,BOC α∠=,BOP β∠=.(1)若OC OP ⊥,求()()sin sin παβ-+-的值;(2)设()f t OA tOP =+ ,当()f t 的最小值为1时,求OP OC ⋅的值.【思路引导】(1)根据任意角三角函数定义可求得sin ,cos αα,利用2πβα=-可求得sin cos βα=-,结合诱导公式可化简求出结果;(2)利用向量坐标表示可得到()2cos ,sin OA tOP t t ββ+=+ ,可求得224cos 4OA tOP t t β+=++ ,根据二次函数性质可求得22min44cos OA tOP β+=- ,从而利用()f t 的最小值构造方程可求得2cos β,根据角的范围可求得sin β和cos β,进而根据数量积的坐标运算可求得结果.【典例2】在平面直角坐标系xOy 中,设向量()cos sin a αα=,,()sin cos b ββ=-,,()12c =-.(1)若a b c +=,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//a b c + ,求β的值.【思路引导】(1)利用向量的数量积转化求解两角差的三角函数即可;(2)通过向量平行,转化求解角的大小即可.【典例3】已知向量a m x (,cos 2)= ,b x n (sin 2,)= ,设函数()f x a b =⋅ ,且()y f x =的图象过点(12π和点2(,2)3π-.(Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.【思路引导】(Ⅰ)利用向量的数量积坐标运算公式代入函数式整理化简,将函数过的点(12π和点2(,2)3π-代入就可得到关于,m n 的方程,解方程求其值;(Ⅱ)利用图像平移的方法得到()y g x =的解析式,利用最高点到点(0,3)的距离的最小值为1求得ϕ角,得()2cos 2g x x =,求减区间需令[]22,2x k k πππ∈+解x 的范围【典例4】已知函数()()f x a b c=+,其中向量()sin ,cos a x x =-,()sin ,3cos b x x =-,()cos ,sin c x x =-,x ∈R .(Ⅰ)若()52f α=,588ππα-<<-,求cos 2α的值;(Ⅱ)不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围.【思路引导】(Ⅰ)利用向量数量积公式得到()f x 后,再用二倍角公式以及两角和的正弦公式的逆用公式化成辅助角的形式,根据已知条件及同角公式解得3cos 244πα⎛⎫+= ⎪⎝⎭,再将所求变成33cos 2cos 244ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦后,利用两角差的余弦公式求得;(Ⅱ)将不等式恒成立转化为最大最小值可解得.【典例5】已知向量()a cos x cos x ωω=-,,()b sin x xωω=(ω>0),且函数()f x a b=⋅的两个相邻对称中心之间的距离是4π.(1)求6f π⎛⎫⎪⎝⎭;(2)若函数()()1g x m x =+-在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,求实数m 的取值范围.【思路引导】(1)首先利用平面向量的数量积的应用求出函数的关系式,进一步把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.(2)利用函数的零点和方程之间的转换的应用,利用函数的定义域和值域之间的关系求出m 的范围.【典例6】已知实数0θπ≤≤,()cos ,sin a θθ= ,()0,1j = ,若向量b满足()0a b j +⋅= ,且0a b ⋅= .(1)若2a b -= ,求b;(2)若()()f x b x a b =+- 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,求实数θ的取值范围.【思路引导】(1)设出b 的坐标,结合0a b ⋅= 、2a b -= 、()0a b j +⋅= ,解方程,先求得θ的值,再求得b的坐标.(2)利用向量模的运算、数量积的运算化简()f x 表达式,结合二次函数的性质列不等式,解不等式求得b的取值范围.设出b的坐标,结合()0a b j +⋅= 、0a b ⋅= ,解方程,用θ表示出2b ,根据b 的取值范围列不等式,解不等式求得cos θ的取值范围,进而求得θ的取值范围.【典例7】在平面直角坐标系xOy 中,已知向量()cos ,sin e αα=,设,(0)OA e λλ=>,向量ππcos ,sin 22OB ββ⎛⎫⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .(1)若π6βα=-,求向量OA 与OB 的夹角;(2)若2AB OB ≥对任意实数,αβ都成立,求实数λ的取值范围.【思路引导】(1)由题意结合平面向量的坐标表示,结合平面向量的数量积运算法则可得1cos sin 62πθ==.则向量OA 与OB的夹角为3π.(2)原问题等价于2230OA OB λ-⋅-≥任意实数,αβ都成立.分离参数可得()23sin 2λαβλ-≥-任意实数,αβ都成立.结合三角函数的性质求解关于实数λ的不等式可得3λ≥.1.已知向量)1,2sin a x xωω=+,)()0b x x ωωω=->r .(1)当2x k πωπ≠+,k Z ∈时,若向量()1,0c =r ,)d =u r ,且()()//a c b d -+r r r u r,求224sin cos x x ωω-的值;(2)若函数()f x a b =⋅ 的图象的相邻两对称轴之间的距离为4π,当,86x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.2.已知向量(sin ,1),cos ,cos 2)(0)2Am x n x x A ==>,函数()f x m n =⋅ 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域.3.已知点()2,0A ,()0,2B -,()2,0F -,设AOC α∠=,[)0,2απ∈,其中O 为坐标原点.(1)设点C 在x 轴上方,到线段AF 3AFC π∠=,求α和线段AC 的大小;(2)设点D 为线段OA 的中点,若2OC =uuu r,且点C 在第二象限内,求)cos y OB BC OA α=⋅+⋅ 的取值范围.4.已知向量())2=+ a x ωϕ,22,22⎛⎫=- ⎪ ⎪⎝⎭ b ,其中0>ω,02πϕ<<,函数()f x a b =⋅ 的图像过点()1,2B ,点B 与其相邻的最高点的距离为4.(1)求函数()f x 的单调递减区间;(2)计算()()()122019f f f ++⋅⋅⋅+的值.5.已知向量)()2,1,cos ,cos 1m x n x x ωωω==+,设函数()f x m n b =⋅+ .(1)若函数()f x 的图象关于直线6x π=对称,[]0,3ω∈,求函数()f x 的单调递增区间;(2)在(1)的条件下,当70,12x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 有且只有一个零点,求实数b 的取值范围.6.已知(sin ,cos ),(sin ,sin )a x x b x x ==,函数()f x a b =⋅.(1)求()f x 的对称轴方程;(2)若对任意实数[,]63x ππ∈,不等式()2f x m -<恒成立,求实数m 的取值范围.7.在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,1OC = ,且AOC=x ∠,其中O 为坐标原点.(1)若34x π=,设点D 为线段OA 上的动点,求||OC OD +uuu r uuu r 的最小值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量m BC = ,(1cos ,sin 2cos )n x x x =-- ,求m n ⋅ 的最小值及对应的x 值.8.已知向量(p = ,()cos ,sin q x x =.(1)若//p q u r r,求2sin 2cos x x -的值;(2)设函数()f x p q =⋅ ,将函数()f x 的图象上所有的点的横坐标缩小到原来的12(纵坐标不变),再把所得的图象向左平移3π个单位,得到函数()g x 的图象,求()g x 的单调增区间.9.已知向量(3sin ,cos )x x =m ,(cos )x x =-n ,3()2f x =⋅-m n .(1)求函数()f x 的最大值及取得最大值时x 的值;(2)若方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.10.已知O 为坐标原点,()22cos ,1OA x =,()OB x a=+()R,R x a a ∈∈且为常数,若()•f x OA OB =.(Ⅰ)求函数()f x 的最小正周期和单调递减区间;(Ⅱ)若0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的最小值为2,求实数a 的值.参考答案【典例1】解:(1)由34,55C ⎛⎫- ⎪⎝⎭可知:4sin 5α=,3cos 5α=-OC OP⊥ 2πβα∴=-3sin sin cos 25πβαα⎛⎫∴=-=-=⎪⎝⎭()()431sin sin sin sin 555παβαβ∴-+-=-=-=(2)由题意得:()cos ,sin P ββ()2,0OA ∴= ,()cos ,sin OP ββ=()2cos ,sin OA tOP t t ββ∴+=+()()22222cos sin 4cos 4OA tOP t t t t βββ∴+=++=++ 当2cos t β=-时,22min44cos OA tOP β+=- ()min 1f t ∴==,解得:23cos 4β=1sin 2β∴==0βα<< 6πβ∴=3cos 2β∴=31,22P ⎛⎫∴ ⎪ ⎪⎝⎭3414525210OP OC -⎛⎫∴⋅=-⨯+⨯=⎪⎝⎭【典例2】解:(1)因为()cos sin a αα= ,,()sin cos b ββ=- ,,()12c =-,所以1a b c ===,且()cos sin sin cos sin a b αβαβαβ⋅=-+=-.因为a b c += ,所以22a b c +=,即2221a a b b +⋅+= ,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.(2)因为5π6α=,所以3122a ⎛⎫=- ⎪ ⎪⎝⎭,.依题意,1sin cos 22b c ββ⎛⎫+=--+ ⎪ ⎪⎝⎭,.因为()//a b c +,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ-=,所以()π1sin 32β-=.因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.【典例3】试题解析:(1)由题意知.()y f x =的过图象过点(12π和2(,2)3π-,所以sincos ,66442sin cos ,33m n m n ππππ=+-=+即13,2212,22m n m n =+-=--解得{1.m n ==(2)由(1)知.由题意知()()2sin(22)6g x f x x πϕϕ=+=++.设()y g x =的图象上符合题意的最高点为0(,2)x ,1=,所以,即到点(0,3)的距离为1的最高点为(0,2).将其代入()y g x =得sin(216πϕ+=,因为0ϕπ<<,所以6πϕ=,因此()2sin(22cos 22g x x x π=+=.由222,k x k k πππ-+≤≤∈Z 得,2k x k k πππ-+≤≤∈Z ,所以函数()y f x =的单调递增区间为[,],2k k k Zπππ-+∈【典例4】解:()()f x a b c=+()()sin ,cos sin cos ,sin 3cos x x x x x x =--- 222sin 2sin cos 3cos 1sin 22cos x x x x x x=-+=-+32cos 2sin 2224x x x π⎛⎫=+-=++ ⎪⎝⎭(Ⅰ)若()52f α=,则352242πα⎛⎫+= ⎪⎝⎭,即3sin(244πα+=,由588ππα-<<-∴544ππα-<2<-,即3242πππα-<2+<,则3cos 244πα⎛⎫+= ⎪⎝⎭,则333333cos 2cos 2cos 2cos sin 2sin444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦142424⎛⎫=⨯-+⨯= ⎪ ⎪⎝⎭.(Ⅱ)∵不等式()2f x m -<在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,∴()22f x m -<-<,即()()22f x m f x -<<+在,82x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,当,82x ππ⎡⎤∈⎢⎥⎣⎦,则2,4x ππ⎡⎤∈⎢⎥⎣⎦,372,44x πππ⎡⎤+∈⎢⎥⎣⎦,则当324x ππ+=,即8x π=时,()f x 取得最大值,最大值为()max 2f x =,当33242x ππ+=,即38x π=时,()f x 取得最小值,最小值为()min 322f x π=+2=,则2222m m >-⎧⎪⎨<-+⎪⎩,得04m <<,即实数m的取值范围是(0,4-.【典例5】解:(1)向量()a cos x cos x ωω=-,,()b sin x x ωω= ,所以()f x a b =⋅= sinωx •cosωx cos 2ωx ()121222232sin x cos x sin x πωωω⎛⎫=-+=-- ⎪⎝⎭.函数的两个相邻对称中心之间的距离是4π.所以函数的最小正周期为2π,由于ω>0,所以242πωπ==,所以f (x )=sin (4x 3π-).则f (6π)4632sin ππ⎛⎫=⋅--= ⎪⎝⎭sin 332π-=0.(2)由于f (x )=sin (4x 3π-).则()()1g x m x =+-在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点,即31432m x π⎛⎫+--= ⎪⎝⎭0,即m 1432x π⎛⎫=-+ ⎪⎝⎭,由于04x π⎡⎤∈⎢⎥⎣⎦,,所以24333x πππ⎡⎤-∈-⎢⎥⎣⎦,,在24333x πππ⎡⎤-∈-⎢⎥⎣⎦,时,函数的图象与y =m 有两个交点,最高点除外.当433x ππ-=时,m 31222=+=,当432x ππ-=时,m 12=,所以当m 122⎡⎫∈+⎪⎢⎣⎭时,函数的图象在在04π⎡⎤⎢⎥⎣⎦,上恰有两个零点.【典例6】解:(1)设()00,b x y = ,则()00cos ,sin b x a y θθ=+++ ,∵0a b ⋅=,由2a b -= 得()24a b-= ,得2224a a b b -⋅+= ,得2104b -+= ,得b =,∵()0a b j +⋅=,∴0sin 0y θ+=,∴0sin y θ=-,∵0a b ⋅= ,∴00cos sin 0x y θθ+=,∴20sin cos x θθ=,∴()22222002sin 3sin cos x y b θθθ⎛⎫=+=⇒+- ⎪⎝⎭3tan θ=⇒=,∵[]0,θπ∈,∴3πθ=,或23πθ=,∴当3πθ=时,032x =,032y =-,当23πθ=时,032x =-,032y =-,所以3,22b ⎛⎫=- ⎪ ⎪⎝⎭或3,22b ⎛⎫=-- ⎪ ⎪⎝⎭.(2)()()()1f x b x a b xa x b =+-=+-==∵()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,所以对称轴()2221221b b--≤+ ,即1b ≤ ,设()00,b x y = ,则()00cos ,sin b x a y θθ=+++,又∵()0a b j +⋅= ,且0a b ⋅= ,∴0sin y θ=-,20sin cos x θθ=.∴22222020sin sin 1cos x b y θθθ⎛⎫=+=+≤ ⎪⎝⎭,即22sin cos θθ≤,21cos 2θ≥,∴,11,22cos θ⎤⎡∈--⎥⎢⎣⎦⎣⎦ ,∴30,,44ππθπ⎡⎤⎡⎤∈⎢⎥⎢⎥⎣⎦⎣⎦ .【典例7】解析:(1)由题意,()cos ,sin (0)OA λαλαλ=> ,()sin ,cos OB ββ=-,所以OA λ= ,1OB =,设向量OA 与OB的夹角为θ,所以()()cos sin sin cos cos sin 1OA OB OA OBλαβλαβθαβλ-+⋅===-⋅⋅.因为6πβα=-,即6παβ-=,所以1cos sin 62πθ==.又因为[]0,θπ∈,所以3πθ=,即向量OA 与OB 的夹角为3π.(2)因为2AB OB ≥ 对任意实数,αβ都成立,而1OB =,所以24AB ≥,即()24OB OA-≥任意实数,αβ都成立..因为OA λ= ,所以2230OA OBλ-⋅-≥任意实数,αβ都成立.所以()22sin 30λλαβ---≥任意实数,αβ都成立.因为0λ>,所以()23sin 2λαβλ-≥-任意实数,αβ都成立.所以2312λλ-≥,即2230λλ--≥,又因为0λ>,所以3λ≥1.【思路引导】(1)先将a c -r r 和b d +r u r用坐标形式表示出来,然后根据向量平行对应的坐标表示得到tan x ω的值,然后利用22sin cos 1x x ωω+=将224sin cos x x ωω-进行变形即可求值;(2)计算并化简()f x ,根据相邻两对称轴之间的距离为4π求解出ω的值,然后根据x 范围即可求解出()f x 的最大值和最小值.解:(1)因为),2sin a c x x ωω-=r r,),cos b d x x ωω+=r u r,又因为()()//a c b d -+r r r u r,2cos x x x ωωω=,又因为()2x k k Z πωπ≠+∈,所以3tan 6x ω=,所以22222222114sin cos 4tan 1834sin cos 1sin cos tan 113112x x x x x x x x ωωωωωωωω----====-+++;(2)()))112sin cos f x a b ωx ωx ωx ωx=⋅=+-+)22cos 1sin 2sin 222sin 23x x x x x πωωωωω⎛⎫=-+==+ ⎪⎝⎭,因为相邻两对称轴之间的距离为4π,所以242T ππ=⨯=,所以224Tπω==,所以2ω=,所以()2sin 43πf x x ⎛⎫=+⎪⎝⎭,因为,86x ππ⎡⎤∈-⎢⎥⎣⎦,所以4,36ππx π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以()max 2sin 22f x π==,此时24x π=,()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时8x π=-.2.【解析】(Ⅰ)()(sin ,1)cos ,cos 2)sin 2.26A f x m n x x x A x π⎛⎫=⋅=⋅=+ ⎪⎝⎭因为()f x m n =⋅的最大值为6,所以 6.A =(Ⅱ)将函数()y f x =的图象向左平移12π个单位,得到()6sin 26sin 2.1263t x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到()6sin 4.3g x x π⎛⎫=+ ⎪⎝⎭因为5[0,24x π∈所以74,336x πππ≤+≤()6sin 43g x x π⎛⎫=+ ⎪⎝⎭的最小值为76sin 3,6π⨯=-最大值为6sin 6,2π⨯=所以()g x 在5[0,]24π上的值域为[]3,6.-3.【思路引导】(1)过点C 作AF 的垂线,垂足为点E ,可得出CE =2CF =,可得出OCF ∆为等边三角形,可求出α的值,然后在ACF ∆中利用余弦定理求出AC ;(2)由题中条件求出DC 、OB 、OA的坐标,化简)cos y OB BC OA α=⋅+⋅ 的解析式为4cos 223y πα⎛⎫=++ ⎪⎝⎭,再根据α的取值范围,结合余弦函数的定义域与基本性质可求出y 的取值范围.解:(1)过C 作AF 的垂线,垂足为E ,则CE =在直角三角形FCE 中,2sin CEFC CFE==∠,又2OF =,3OFC π∠=,所以OFC ∆为正三角形.所以3FOC π∠=,从而23FOC παπ=-∠=.在AFC ∆中,AC ===;(2)()2,0A ,点D 为线段OA 的中点,()1,0D ∴,2OC = 且点C 在第二象限内,()2cos ,2sin C αα∴,,2παπ⎛⎫∈ ⎪⎝⎭,从而()2cos 1,2sin DC αα=- ,()2cos ,2sin 2BC αα=+ ,()2,0OA = ,()0,2OB =-,则)2cos cos 4cos y OB BC OA αααα=⋅+⋅=-+()221cos 24cos 223πααα⎛⎫=-++=++ ⎪⎝⎭,因为,2παπ⎛⎫∈⎪⎝⎭,所以472,333πππα⎛⎫+∈ ⎪⎝⎭,从而1cos 2123πα⎛⎫-<+≤ ⎪⎝⎭,04cos 2263πα⎛⎫∴<++≤ ⎪⎝⎭,因此,)cos y OB BC OA α=⋅+⋅的取值范围为(]0,6.4.【思路引导】(1)先求出()1cos 2()f x x ωϕ=-+,则()1,2B 为函数()f x 的图象的一个最高点,又点B 与其相邻的最高点的距离为4,所以242πω=,可得4πω=,再将点()1,2B 代入求出4πϕ=即可求出()1sin 2f x x π=+,最后令322222k x k πππππ+≤≤+解之即可求出函数()f x 的单调递减区间;(2)根据函数()f x 的最小正周期4,则()()()()()()()()()()1220195041234123f f f f f f f f f f ++⋅⋅⋅+=++++++⎡⎤⎣⎦求出()1f 、()2f 、()3f 、()4f 的值代入计算即可.解:(1)因为())2=+a x ωϕ,22,22⎛⎫=- ⎪ ⎪⎝⎭b ())1cos2()22∴=⋅=-+=-+ f x a b x x ωϕωϕ()max 2∴=f x ,则点()1,2B 为函数()f x 的图象的一个最高点.点B 与其相邻的最高点的距离为4,242∴=πω,得4πω=. 函数()f x 的图象过点()1,2B ,1cos 222⎛⎫∴-+=⎪⎝⎭πϕ即sin 21=ϕ.02πϕ<<,4πϕ∴=.()1cos 21sin 442⎛⎫∴=-+=+ ⎪⎝⎭f x x x πππ,由322222k x k πππππ+≤≤+,得4143k x k +≤≤+,k Z ∈.()f x ∴的单调递减区间是[]41,43++k k ,k Z ∈.(2)由(1)知,()1sin2=+f x x π,()f x ∴是周期为4的周期函数,且()12f =,()21f =,()30f =,()41f =()()()()12344∴+++=f f f f 而201945043=⨯+,()()()12201945042102019∴++⋅⋅⋅+=⨯+++=f f f 5.思路引导:(1)根据平面向量数量积运算求解出函数()•f x m n b =+,利用函数()f x 的图象关于直线6x π=对称,且[]0,3ω∈可得1ω=,结合三角函数的性质可得其单调区间;(2)当70,12x π⎡⎤∈⎢⎥⎣⎦时,求出函数()f x 的单调性,函数()f x 有且只有一个零点,利用其单调性求解求实数b 的取值范围.试题解析:解:向量),1m x ω=,()cos ,cos21n x x ωω=+,()2•cos cos 1f x m n b x x x bωωω=+=+++133sin2cos2sin 222262x x b x b πωωω⎛⎫=+++=+++ ⎪⎝⎭(1)∵函数()f x 图象关于直线6x π=对称,∴()2•662k k Z πππωπ+=+∈,解得:()31k k Z ω=+∈,∵[]0,3ω∈,∴1ω=,∴()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,由222262k x k πππππ-≤+≤+,解得:()36k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由(1)知()3sin 262f x x b π⎛⎫=+++ ⎪⎝⎭,∵70,12x π⎡⎤∈⎢⎥⎣⎦,∴42,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴2,662x πππ⎡⎤+∈⎢⎥⎣⎦,即0,6x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增;42,663x πππ⎡⎤+∈⎢⎥⎣⎦,即7,612x ππ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减.又()03f f π⎛⎫=⎪⎝⎭,∴当70312f f ππ⎛⎫⎛⎫>≥⎪ ⎪⎝⎭⎝⎭或06f π⎛⎫= ⎪⎝⎭时函数()f x 有且只有一个零点.即435sinsin326b ππ≤--<或3102b ++=,所以满足条件的3352,22b ⎛⎤-⎧⎫∈-⋃- ⎨⎬⎥ ⎩⎭⎝⎦.6.【详解】(I )()21cos21sin sin cosx sin222x f x a b x x x -=⋅=+⋅=+ 21sin 2242x π⎛⎫=-+ ⎪⎝⎭,令242x k k Z πππ-=+∈,,解得328k x k Z ππ=+∈.∴f x ()的对称轴方程为328k x k Z ππ=+∈,.(II )由1f x ()≥得1sin 21242x π⎛⎫-+≥ ⎪⎝⎭,即sin 242x π⎛⎫-≥⎪⎝⎭,∴3222444k x k k Z πππππ+≤-≤+∈,.故x 的取值集合为42xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭,.(Ⅲ)∵63x ππ⎡⎤∈⎢⎥⎣⎦,,∴5212412x πππ≤-≤,又∵sin y x =在02π⎡⎤⎢⎥⎣⎦,上是增函数,∴5sinsin 212412x sin πππ⎛⎫≤-≤ ⎪⎝⎭,又5sinsin 12644πππ⎛⎫=+=⎪⎝⎭,∴()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,时的最大值是()2621332424max f x ++=⨯+=,∵2f x m -()<恒成立,∴2max m f x ->(),即354m ->,∴实数m 的取值范围是35,4⎛⎫-+∞ ⎪ ⎪⎝⎭.7.【思路引导】(1)设D (t ,0)(0≤t ≤1),利用二次函数的性质求得它的最小值.(2)由题意得⋅=m n1sin (2x 4π+),再利用正弦函数的定义域和值域求出它的最小值.解:(I )设(,0)(01)D t t ≤≤,又22,22C ⎛⎫-⎪ ⎪⎝⎭所以22OC OD t ⎛⎫+=-+ ⎪ ⎪⎝⎭所以22211||122OC OD t t +=-++=-+21(01)22t t ⎛=-+≤≤ ⎪⎝⎭所以当2t =时,||OC OD +uuu r uuu r最小值为2.(II )由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+则221cos sin 2sin cos 1cos 2sin 2m n x x x x x x⋅=-+-=--124x π⎛⎫=-+ ⎪⎝⎭因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52444x πππ≤+≤所以当242x ππ+=时,即8x π=时,sin 24x π⎛⎫+ ⎪⎝⎭取得最大值1所以8x π=时,124m n x π⎛⎫⋅=-+ ⎪⎝⎭取得最小值1所以m n ⋅的最小值为18x π=8.解:(1)(p = ,()cos ,sin q x x = ,且//p q u r r,sin x x ∴=,则tan x =222222sin cos cos 2tan 1231sin 2cos sin cos tan 14x x x x x x x x x ---∴-===++;(2)()cos 2sin 6f x p q x x x π⎛⎫=⋅=+=+ ⎪⎝⎭ ,由题意可得()52sin 22sin 2366g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()5222262k x k k Z πππππ-+≤+≤+∈,得()236k x k k Z ππππ-+≤≤-+∈.∴函数()y g x =的单调递增区间为()2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦.9.【思路引导】(1)先通过数量积求出5()26f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数即可求出最大值.(2)方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根表示()f x a =与y 在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,画出()f x 在0,2π⎡⎤⎢⎥⎣⎦的图像易得a 的取值范围.【详解】(1)2333()3sin cos sin 2222f x x x x x =⋅-=--=-+m n 35(1cos 2)sin 2cos 2222226x x x x π⎛⎫+-=-+=+ ⎪⎝⎭.当52262x k πππ+=+,即6x k ππ=-,k ∈Z 时,函数f (x )取得最大值.(2)由于0,2x π⎡⎤∈⎢⎥⎣⎦时,55112,666x πππ⎡⎤+∈⎢⎥⎣⎦.而函数()g x x =在区间53,62ππ⎡⎤⎢⎥⎣⎦上单调递减,在区间311,26ππ⎡⎤⎢⎣⎦上单调递增.又113,622g g ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,562g π⎛⎫= ⎪⎝⎭.结合图象(如图),所以方程()f x a =在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数根时,2a ⎛∈- ⎝⎦.故实数a 的取值范围为2⎛- ⎝⎦.10.【思路引导】(1)通过向量的数量积,把OA ,OB的坐标,代入函数解析式,利用向量积的运算求得函数解析式,进而得到函数()f x 的最小正周期和单调递减区间;(2)通过x ∈[0,2π],求出相位的范围,然后求出函数的最大值,利用最大值为2,直接求得a .解:(1)由题意()()22cos ,1,(,,OA x OB x a x R a R a ==-∈∈ 是常数)所以()22cos cos212sin 216f x x x a x x a x a π⎛⎫=++=+++=+++ ⎪⎝⎭,∴()f x 的最小正周期为22ππ=,令3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,所以()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴当7266x ππ+=,即2x π=时,()f x 有最小值a ,所以2a =.。

三角函数与平面向量(会考)

三角函数与平面向量(会考)

1、弧度制:(1)、π=180弧度,1弧度'1857)180(≈=π;弧长公式:r l ||α= (α是角的弧度数)2、同角三角函数基本关系式:1cos sin 22=+αα αααc o ss i nt a n =1c o t t a n =αα3、诱导公式:(奇变偶不变,符号看象限) 正弦上为正;余弦右为正;正切一三为正公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 4、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-)(βα+C :βαβαβsin sin cos cos )cos(-=+a)(βα-C :βαβαβsin sin cos cos )cos(+=-a)(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=- 5、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a6、二倍角公式:(1)、α2S : αααcos sin 22sin = )α2C : ααα22sin cos 2cos -=1cos 2sin 2122-=-=ααα2T : ααα2t a n 1t a n22t a n -=(2)、降次公式:(多用于研究性质)ααα2sin 21cos sin =212cos 2122cos 1sin 2+-=-=ααα212cos 2122cos 1cos 2+=+=ααα7、三角函数:8、解三角形:(1)、三角形的面积公式:A bc B ac C ab S sin 2sin 2sin 2===∆ (2)正弦定理:s i 2s i n2,si n 2,2s ins i ns i n R c B R b A R a R C cB bAa ======, 边用角表示 (3)、余弦定理:)1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c Bac c a b Abc c b a +-+=-+=⋅-+=⋅-+=第五章、平面向量1、向量()()2211,,,y x b y x a ==→→的夹角θ,则222221212121cos y x y x y y x x +++=θ,2、重要结论:(1)、两个向量平行: →→→→=⇔b a b a λ// )(R ∈λ,⇔→→b a // 01221=-y x y x (2)、两个非零向量垂直0=⋅⇔⊥→→→→b a b a ,02121=+⇔⊥→→y y x x b a三角函数(一)1. 下列说法正确的有____________.(1)终边相同的角一定相等(2)锐角是第一象限角(3)第二象限角为钝角 (4)小于︒90的角一定为锐角 (5)第二象限的角一定大于第一象限的角 2. 已知角x 的终边与角︒30的终边关于y 轴对称,则角x 的集合 可以表示为__________________________.3. 终边在y 轴上角的集合可以表示为________________________.4. 终边在第三象限的角可以表示为________________________.5. 在︒︒-720~360之间,与角︒175终边相同的角有__________________.6. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为________,扇形面积为__________.7. 已知角α的终边经过点(3,-4),则sin α=______ , cos α=______, tan α=_______ . 8. 已知0cos 0sin ><θθ且,则角θ一定在第______象限. 9. “0sin >θ”是“θ是第一或第二象限角”的________条件. 11. 化简:tan cos ____θθ=.12. 已知,54cos -=α 且α为第三象限角,则_____tan _____,sin ==αα . 13. 已知31tan =α,且23παπ<<,则_____cos _____,sin ==αα . 14. 已知2tan =α,则____sin cos cos 2sin =+-αααα. 15. 计算:_____)317sin(=-π, _____)417cos(=-π. 16. 化简:____)cos()sin()2sin()cos(=----++αππαπααπ.三角函数(二)1. 求值: ︒165cos =________,=︒-)15tan(________. 2. 已知21cos -=θ,θ为第三象限角,则=+)3sin(θπ________,=+)3cos(θπ________,=+)3tan(θπ________.3. 已知x tan ,y tan 是方程0762=++x x 的两个根,则=+)tan(y x ______.4. 已知31sin =α,α为第二象限角,则=α2sin ______, =α2cos ______,=α2tan ______.5. 已知21tan =α,则=α2tan ______.6. 化简或求值:=---y y x y y x cos )cos(sin )sin(______, =︒︒-︒︒170sin 20sin 10cos 70sin ______, =-ααsin 3cos ______,____15tan 115tan 1=︒-︒+, _____5tan 65tan 35tan 65tan =︒︒-︒-︒,=︒︒15cos 15sin ____, =-2cos 2sin22θθ______15.22cos 22-︒=______, ︒-︒150tan 1150tan 22=______. 7. 已知,3tan ,2tan ==ϕθ且ϕθ,都为锐角,则=+ϕθ______. 8. 已知21cos sin =+θθ,则=θ2sin ______. 9. 已知41sin =θ,则=-θθ44cos sin ______.10. 在ABC ∆中,若,53sin ,135cos =-=B A 则=C sin ________.三角函数(三) 1. 函数)4sin(π+=x y 的图象的一个对称中心是( ).A. )0,0(B. )1,4(π C. )1,43(π D. )0,43(π2. 函数)3cos(π-=x y 的图象的一条对称轴是( ).A. y 轴B. 3π-=xC. 65π=xD. 3π=x3. 函数x x y cos sin =的值域是________,周期是______, 此函数的为____函数(填奇偶性).4. 函数x x y cos sin -=的值域是________,周期是______, 此函数的为____函数(填奇偶性).5. 函数x x y cos 3sin +=的值域是________,周期是______, 此函数的为____函数(填奇偶性). 8. 函数)42tan(3π-=x y 的定义域是__________________,值域是________,周期是______,此函数为______函数(填奇偶性). 9. 比较大小:︒︒530cos ___515cos , )914sin(____)815sin(ππ--︒︒143tan ____138tan , ︒︒91tan ___89tan 10. 要得到函数)42sin(2π+=x y 的图象,只需将x y 2sin 2=的图象上各点____11. 将函数x y 2cos =的图象向左平移6π个单位,得到图象对应的函数解析式为________________. 12. 已知22cos -=θ,)20(πθ<<,则θ可能的值有_________.三角函数(四)1. 在︒︒360~0范围内,与-1050o的角终边相同的角是___________.2. 在π2~0范围内,与π310终边相同的角是___________. 3. 若sin α<0且cos α<0 ,则α为第____象限角.4. 在︒︒-360~360之间,与角︒175终边相同的角有_______________.5. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为______________. 6. 已知角α的终边经过点(3,-4),则cos α=______. 7. 命题 “x = π2 ” 是命题 “sin x =1” 的_____________条件.8. sin(π617-)的值等于___________. 9. 设π4 <α<π2 ,角α的正弦. 余弦和正切的值分别为a ,b ,c ,则( ).A. a <b <cB. b <a <cC. a <c <bD. c <b <a 10. 已知,54cos -=α 且α为第三象限角,则_____tan =α. 11. 若 tan α=2且sin α<0,则cos α的值等于_____________.12. 要得到函数y =sin(2x -π3 )的图象,只要把函数y =sin2x 的图象( ).A.向左平移π3 个单位B. 向右平移π3 个单位C.向左平移π6 个单位D. 向右平移π6个单位13. 已知tan α=-3 (0<α<2π),那么角α所有可能的值是___________ 14. 化简cos x sin(y -x )+cos(y -x )sin x 等于_____________15. cos25ocos35o–sin25osin35o的值等于_____________(写具体值). 16. 函数y =sin x +cos x 的值域是( )A.[-1,1]B.[-2,2]C.[-1, 2 ]D.[- 2 , 2 ] 17. 函数y =cos x - 3 sin x 的最小正周期是( )A.2π B. 4πC. πD.2π 18. 已知sin α=53,90o <α<180o,那么sin2α的值__________.19. 函数y=cos 2x -sin 2x 的最小正周期是( ) A. 4π B. 2π C. π D. π220. 函数y =sin x cos x 是( )A.周期为2π的奇函数B. 周期为2π的偶函数C. 周期为π的奇函数D. 周期为π的偶函数平面向量(一)1. 下列说法正确的有______________.(1)零向量没有方向 (2)零向量和任意向量平行 (3)单位向量都相等 (4)(a ·b )·c =a ·(b ·c ) (5)若a ·c = b ·c ,且c 为非零向量,则a =b (6)若a ·b =0,则a,b 中至少有一个为零向量.2. “b a =”是“a ∥b ”的________________条件.3. 下列各式的运算结果为向量的有________________. (1)a +b (2)a -b (3)a ·b (4)λa (5)||b a + (6)4. 计算:=-++______.5. 如图,在ABC ∆中,BC 边上的中点为M ,设=AB a, =AC b ,用a , b 表示下列向量:=BC ________,=AM ________,=MB ________.6. 在□ABCD 中,对角线AC ,BD 交于O 点,设=a,= b ,用a , b 表示下列向量:=________,. =BD ________,=CO ________,=OB ________.8. 已知,4||,3||==b a 且向量b a,的夹角为︒120,则=b a ·________, =-||b a __________.9. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________, =||a ______,向量b a,的夹角的余弦值为_______.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____. 13. 已知)4,2(),2,1(B A -,)3,(x C ,且A,B,C 三点共线,则x =______. 14. 把点)5,3(P 按向量a =(4,5)平移至点P ’,则P ’的坐标为_______.15. 将函数22x y =的图象F 按a =(1,-1)平移至F ’, 则F ’的函数解析式为____.16. 将一函数图象按a =(1,2)平移后,所得函数图象所对应的函数解析式为x y lg =,则原图象的对应的函数解析式为_______.17. 将函数x x y 22+=的图象按某一向量平移后得到的图象对应的函数解析式为2x y =,则这个平移向量的坐标为________.18. 已知)3,2(),5,1(B A ,点M 分有向线段的比2-=λ,则M 的坐标为____. 19. 已知P 点在线段21P P 上,21P P =5,P P 1=1,点P 分有向线段21P P 的比为__.20. 已知P 点在线段21P P 的延长线上,21P P =5,P P 2=10,点P 分有向线段21P P 的比为_____. 24. 在ABC ∆中,3=a ,4=b ,37=c ,则这个三角形中最大的内角为______.平面向量(二)1. 小船以10 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为( ).A.20 2 km/hB.20km/hC. 10 2 km/hD. 10km/h 2. 若向量→a =(1,1),→b =(1,-1),→c =(-1,2),则→c =( ).A. -12 →a +32 →bB. 12 →a -32 →bC. 32 →a -12 →bD.- 32 →a +12 →b3. 有以下四个命题:① 若→a ·→b =→a ·→c 且→a ≠→0,则→b =→c ; ② 若→a ·→b =0,则→a =→0或→b =→0;③ ⊿ABC 中,若→AB ·→AC >0,则⊿ABC 是锐角三角形;④ ⊿ABC 中,若→AB ·→BC =0,则⊿ABC 是直角三角形.其中正确命题的个数是( ). A.0 B.1 C.2 D.3 4. 若|→a |=1,|→b |=2,→c =→a +→b ,且→c ⊥→a ,则向量→a 与→b 的夹角为( ). A.30oB.60oC.120oD150o5. 已知→a . →b 是两个单位向量,那么下列命题中真命题是( ). A. →a =→b B. →a ·→b =0 C. |→a ·→b |<1 D. →a 2=→b26. 在⊿ABC 中,AB =4,BC =6,∠ABC =60o,则AC 等于( ).A. 28B. 76C. 27D. 2197. 在⊿ABC 中,已知a = 3 +1, b =2, c = 2 ,那么角C 等于( ).A. 30oB. 45oC. 60oD. 120o8. 在⊿ABC 中,已知三个内角之比A :B :C =1:2:3,那么三边之比a :b :c =( ). A. 1: 3 :2 B. 1:2:3 C. 2: 3 :1 D. 3:2:1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与平面向量综合题的九种类型题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(sinA -cosA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B2的最大值.【解】(Ⅰ)∵→p 、→q 共线,∴(2-2sinA)(1+sinA)=(cosA +sinA)(cosA -sinA), 则sin 2A =34,又A 为锐角,所以sinA =32,则A =π3.(Ⅱ)y =2sin 2B +cos C -3B2=2sin 2B +cos (π-π3-B)-3B2=2sin 2B +cos(π3-2B)=1-cos2B +12cos2B +32sin2B=32sin2B -12cos2B +1=sin(2B -π6)+1. ∵B ∈(0,π2),∴2B -π6∈(-π6,5π6),∴2B -π6=π2,解得B =π3,y max =2.【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B 角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型二. 三角函数与平面向量垂直的综合 此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等. 【例2】已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值.【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan α2的值,再利用两角和与差的三角公式求得最后的结果.【解】 (Ⅰ)∵→a ⊥→b ,∴→a ·→b =0.而→a =(3sinα,cosα),→b =(2sinα, 5sinα-4cosα),故→a ·→b =6sin 2α+5sinαcosα-4cos 2α=0. 由于cosα≠0,∴6tan 2α+5tanα-4=0.解之,得tanα=-43,或tanα=12.∵α∈(3π2,2π),tanα<0,故tanα=12(舍去).∴tanα=-43.(Ⅱ)∵α∈(3π2,2π),∴α2∈(3π4,π).由tanα=-43,求得tan α2=-12,tan α2=2(舍去).∴sin α2=55,cos α2=-255,∴cos(α2+π3)=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.【分析】 利用向量的模的计算与数量积的坐标运算可解决第(Ⅰ)小题;而第(Ⅱ)小题则可变角α=(α-β)+β,然后就须求sin(α-β)与cos β即可.【解】 (Ⅰ)∵|→a -→b |=255,∴→a 2-2→a ·→b +→b 2=45, 将向量→a =(cosα,sinα),→b =(cosβ,sinβ)代入上式得 12-2(cosαcosβ+sinαsinβ)+12=45,∴cos(α-β)=35.(Ⅱ)∵-π2<β<0<α<π2,∴0<α-β<π,由cos(α-β)=-35,得sin(α-β)=45,又sinβ=-513,∴cosβ=1213,∴sinα=sin [(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=3365.题型四:结合向量的数量积,考查三角函数的化简或求值 【例1】(2010年高考安徽卷)已知04πα<<,β为()cos(2)8f x x π=+的最小正周期,(tan(),1),(cos ,2),4a b a b m βαα=+-=⋅=,求22cos sin 2()cos sin ααβαα++-的值.【解答】因为β为()cos(2)8f x x π=+的最小正周期,故βπ=.因为a b m ⋅=,又cos tan()24a b βαα⋅=⋅+-,故cos tan()24m βαα⋅+=+.由于04πα<<,所以22cos sin 2()cos sin ααβαα++=-22cos sin(22)cos sin ααπαα++-22cos sin 2cos sin αααα+=-2cos (cos sin )cos sin ααααα+=-1tan 2cos 1tan ααα+=⋅-cos tan()24m βαα=⋅+=+.【评析】 合理选用向量的数量积的运算法则构建相关等式,然后运用三角函数中的和、差、半、倍角公式进行恒等变形,以期达到与题设条件或待求结论的相关式,找准时机代入求值或化简。

练习1:设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.分析:利用向量内积公式的坐标形式,将题设条件中所涉及的向量内积转化为三角函数中的“数量关系”,从而,建立函数f(x)关系式,第(Ⅰ)小题直接利用条件f(π2)=2可以求得,而第(Ⅱ)小题利用三角函数函数的有界性就可以求解.解:(Ⅰ)f(x)=→a ·→b =m(1+sinx)+cosx , 由f(π2)=2,得m(1+sin π2)+cos π2=2,解得m =1.(Ⅱ)由(Ⅰ)得f(x)=sinx +cosx +1=2sin(x +π4)+1,当sin(x +π4)=-1时,f(x)的最小值为1- 2.题型五:结合向量的夹角公式,考查三角函数中的求角问题【例2】 (2006年高考浙江卷)如图,函数2sin(),y x x R πϕ=+∈(其中02πϕ≤≤)的图像与y 轴交于点(0,1)。

(Ⅰ)求ϕ的值;(Ⅱ)设P 是图像上的最高点,M 、N 是图像与x 轴的交点,求PM 与PN 的夹角。

【解答】(I )因为函数图像过点(0,1), 所以2sin 1,ϕ=即1sin .2ϕ= 因为02πϕ≤≤,所以6πϕ=.(II )由函数2sin()6y x ππ=+及其图像,得115(,0),(,2),(,0),636M P N -- 所以11(,2),(,2),22PM PN =-=-从而cos ,||||PM PNPM PN PM PN ⋅<>=⋅1517=,故,PM PN <>=15arccos 17.【评析】 此类问题的一般步骤是:先利用向量的夹角公式:cos ,a b a b a b⋅=⋅求出被求角的三角函数值,再限定所求角的范围,最后根据反三角函数的基本运算,确定角的大小;或者利用同角三角函数关系构造正切的方程进行求解。

题型六:结合三角形中的向量知识考查三角形的边长或角的运算【例3】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.(1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c . 【解答】(1)tan 37C =,∴sin 37cos CC=,又22sin cos 1C C +=,解得:1cos 8C =±,tan 0C >,∴C 是锐角,∴1cos8C =.(2)52CB CA ⋅=,∴5cos 2ab C =,∴20ab =,又9a b +=,22281a ab b ∴++=,2241a b ∴+=,2222cos 36c a b ab C ∴=+-=,6c ∴=.【评析】 根据题中所给条件,初步判断三角形的形状,再结合向量以及正弦定理、余弦定理实现边角转化,列出等式求解。

题型七:结合三角函数的有界性,考查三角函数的最值与向量运算 【例4】(2007年高考陕西卷)()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π.(Ⅰ)求实数m 的值;(Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

【解答】(Ⅰ)()f x a b =⋅(1sin 2)cos 2m x x =++ 由已知()4f π=(1sin)cos222m ππ++=,得1m =.(Ⅱ)由(Ⅰ)得()1sin 2cos 212sin(2)4f x x x x π=++=++∴当sin(2)14x π+=-时,()y f x =的最小值为12-,由sin(2)14x π+=-,得x 值的集合为3|,8x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭. 【评析】 涉及三角函数的最值与向量运算问题时,可先根据向量的数量积的运算法则求出相应的函数基本关系式,然后利用三角函数的基本公式将所得出的代数式化为形如sin()y A x k ωϕ=++,再借助三角函数的有界性使问题得以解决。

题型八:结合向量平移问题,考查三角函数解析式的求法【例5】(2007年高考湖北卷)将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量,24π⎛⎫=-- ⎪⎝⎭a 平移,则平移后所得图象的解析式为( )A.2cos 234x y π⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭【解答】∵,24π⎛⎫=-- ⎪⎝⎭a ,∴平移后的解析式为π2cos 23612x y π⎛⎫=++- ⎪⎝⎭2cos 234x π⎛⎫=+- ⎪⎝⎭,选A .【评析】理清函数()y f x ω=按向量(,)h k =a 平移的一般方法是解决此类问题之关键,平移后的函数解析式为[()]y f x h k ω=--.题型九:结合向量的坐标运算,考查与三角不等式相关的问题【例6】(2006年高考湖北卷)设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+.(Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3()2f x ≥成立的x 的取值集. 【解答】(Ⅰ)∵()()f x a a b =⋅+222sin cos sin cos cos a a a b x x x x x =⋅+⋅=+++1131sin 2(cos 21))22224x x x π=+++=++∴()f x 的最大值为322+,最小正周期是22ππ=(Ⅱ)要使3()2f x ≥成立,当且仅当33)242x π++≥, 即sin(2)04x π+≥⇔2224k x k ππππ≤+≤+⇔3,88k x k k Z ππππ-≤≤+∈, 即3()2f x ≥成立的x 的取值集合是3|,88x k x k k Z ππππ⎧⎫-≤≤+∈⎨⎬⎩⎭. 【评析】 结合向量的坐标运算法则,求出函数()f x 的三角函数关系式,再根据三角公式对函数()f x 的三角恒等关系,然后借助基本三角函数的单调性,求简单三角不等式的解集。

相关文档
最新文档