北师大版八年级数学上册单元测试《第4章 + 一次函数》(解析版)
北师大版八年级数学上册 第4章 一次函数 单元基础卷 (含详解)

第4章《一次函数》(单元基础卷)一、单选题(本大题共10小题,每小题3分,共30分)1.若点在函数的图象上,则的值是( )A .1B .-1C.D .2.某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )A .B .C .D .3.已知点(-1,y 1),(4,y 2)在一次函数y=3x-2的图象上,则,,0的大小关系是( )A .B .C .D .4.已知一次函数不经过第三象限,则的取值范围是( )A .B .C .D .5.将一次函数y=kx+2的图象向下平移3个单位长度后经过点(-4,3),则k 的值为( )A .-1B .2C .1D .-26.一次函数与的图象如图,则下列结论:①;②;③当时,,其中正确的结论有( )A .0个B .1个C .2个D .3个7.对于一次函数,下列结论错误的是( )A .函数值随自变量的增大而减小()2,A m -12y x =-m 1414-24y x =+31y x =-31y x =-+24y x =-+1y 2y 120y y <<120y y <<120y y <<210y y <<()2y k x k =-+k 2k ≠2k >02k <<02k ≤<1y kx b =+2y x a =+0k <0a >3x <12y y <24y x =-+B .函数的图象不经过第三象限C .函数的图象与x 轴的交点坐标为(0,4)D .函数的图象向下平移4个单位长度得到的图象8.数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b 的解是( )A .x=20B .x=5C .x=25D .x=159.如图,直线y 1=x+3分别与x 轴、y 轴交于点A 和点C ,直线y 2=﹣x+3分别与x 轴、y 轴交于点B 和点C ,点P (m ,2)是△ABC 内部(包括边上)的一点,则m 的最大值与最小值之差为( )A .1B .2C .4D .610.如图,函数的图象分别与x 轴、y 轴交于A ,B 两点,线段绕点A 顺时针旋转得到线段,则点C 的坐标为( )A .B .C .D .二、填空题(本大题共8小题,每小题4分,共32分)2y x =-22y x =-+AB 90︒AC (2,1)(1,2)(3,1)(1,3)11.函数x 的取值范围是________.12.已知点,都在直线上,则______.13.若点在直线上,则代数式的值为______.14.一次函数y=x+m+2的图象不经过第二象限,则m 的取值范围是 _______.15.若一次函数________.16.若一次函数y =kx+2的图象,y 随x 的增大而增大,并与x 轴、y 轴所围成的三角形的面积为2,则k =_____.17.如图,把放在平面直角坐标系内,其中,,点,的坐标分别为,,将沿轴向右平移,当点落在直线上时,线段扫过的面积为______.18.如图,已知点,,直线经过点.试探究:直线与线段有交点时的变化情况,猜想的取值范围是______.三、解答题(本大题共6小题,共58分)19.(8分)已知关于的函数,当,为何值时,它是正比例函数?20.(8分)一次函数(为常数,且).y =()1,A m y ()21,B m y +23y x =-21y y -=(),P a b 21y x =-842a b -+y ax b =+=Rt ABC △90CAB а=5cm =BC A B ()1,0()4,0ABC V x C 26y x =-BC 2cm ()2,3A -()2,1B y kx k =+()1,0P -AB k k x ||1(2)5m y m x n -=++-m n 1=-+y ax a a 0a <(1)若点在一次函数的图象上,求的值;(2)当时,函数有最大值2,求的值.21.(10分)如图,已知正比例函数的表达式为y=﹣x ,过正比例函数在第四象限图象上的一点A 作x 轴的垂线,交x 轴于点H ,AH =2,求线段OA 的长.22.(10分)如图,已知点A(6,4),直线l 1经过点B(0,2)、点C(3,−3),且与x 轴交于点D ,连接AD 、AC ,AC 与x 轴交于点P .()2,3-1=-+y ax a a 12x -≤≤a 12(1) 求直线l1的表达式,并求出点D的坐标;(2) 在线段AD上存在一点Q.使S△PDQ=S△PDC,请求出点Q的坐标;(3) 一次函数y=kx+k+5的图象为l2,若点A,D到l2的图象的距离相等,直接写出k的值.23.(10分)某快递公司为提高快递分拣的速度,决定购买甲、乙两种型号的机器人共20台来代替人工分拣,两种型号机器人的工作效率和价格如下表:型号甲乙每台每小时分拣快递件数/件800600每台价格/万元3 2.5设购买甲种型号的机器人x 台,购买这20台机器人所花的费用为y 万元.(1)求y 与x 之间的函数关系式;(2)若要求这20台机器人每小时分拣快递件数总和不少于12700件,则该公司至少需要购买几台甲种型号的机器人?此时所花费的费用为多少万元?24.(12分)如图,一次函数的图象与轴,轴分别交于,两点,在轴上有一点,动点从点以每秒2个单位长度的速度向左移动,y kx b =+x y (30)A ,(01)B ,y (03)C ,P A(1)求直线的表达式;(2)求的面积与移动时间之间的函数关系式;(3)当为何值时,≌,求出此时点的坐标.参考答案一、单选题1.AAB COP ∆S t t COP ∆AOB ∆P【分析】将x=-2代入一次函数解析式中求出m 值,此题得解.解:当x=-2时,y=-×(-2)=1,∴m=1.故选A .2.D【分析】设一次函数关系式为y=kx+b ,y 随x 增大而减小,则k<0;图象经过点(1,2),可得k 、b 之间的关系式.综合二者取值即可.解:设一次函数关系式为y=kx+b ,∵图象经过点(1,2),∴k+b=2;∵y 随x 增大而减小,∴k<0.即k 取负数,满足k+b=2的k 、b 的取值都可以故选:D.3.B【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出、的值,将其与0比较大小后即可得出结论.解:∵点(-1,),(4,)在一次函数y=3x-2的图象上,∴=-5,=10,∵10>0>-5,∴<0<.故选:B .4.D【分析】根据一次函数的图象与k 、b 的关系列不等式组求解即可.解:∵一次函数的图象不经过第三象限,∴,,∴,故选:D .5.A121y 2y 1y 2y 1y 2y 1y 2y ()2y k x k =-+20k -<0k ≥02k ≤<【分析】根据平移的规律得到y=kx+2-3,然后根据待定系数法即可求得k 的值,从而求得正比例函数的表达式.解:将一次函数y=kx+2的图象向下平移3个单位长度后得到y=kx+2-3=kx-1,∵平移后的函数图象经过点(-4,3),∴3=-4k-1,解得k=-1,故选:A .6.B【分析】根据一次函数的增减性可得,再根据一次函数与轴的交点位于轴负半轴可得,然后根据当时,一次函数的图象位于一次函数的图象的上方可得,由此即可得出答案.解:对于一次函数而言,随的增大而减小,,结论①正确;一次函数与轴的交点位于轴负半轴,,结论②错误;由函数图象可知,当时,一次函数的图象位于一次函数的图象的上方,则,结论③错误;综上,正确的结论有1个,故选:B .7.C【分析】根据一次函数的图象和性质,平移的规律以及函数图象与坐标轴的交点的求法即可判断.解:A 、∵k=-2<0,∴函数值随自变量的增大而减小,故选项不符合题意;B 、∵k=-2<0,b=4>0,函数经过第一、二、四象限,不经过第三象限,故选项不符合题意;C 、当y=0时,x=2,则函数图象与x 轴交点坐标是(2,0),故选项符合题意;D 、函数的图象向下平移4个单位长度得y=-2x+4-4=-2x ,故选项不符合题1y kx b =+0k <2y x a =+y y 0a <3x <1y kx b =+2y x a =+12y y > 1y kx b =+1y x 0k ∴< 2y x a =+y y 0a ∴<3x <1y kx b =+2y x a =+12y y >意;故选:C.8.A【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故选:A.9.B【分析】由于P的纵坐标为2,故点P在直线y= 2上,要求符合题意的m 值,则P点为直线y= 2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.解:∵点P (m, 2)是△ABC内部(包括边上)的点.∴点P在直线y= 2上,如图所示,,当P为直线y= 2与直线y2的交点时,m取最大值,当P为直线y= 2与直线y1的交点时,m取最小值,∵y2 =-x+ 3中令y=2,则x= 1,∵y1 =x+ 3中令y=2,则x= -1,∴m的最大值为1, m的最小值为- 1.则m的最大值与最小值之差为:1- (-1)= 2.故选:B.10.C【分析】过C点作CD⊥x轴于D,如图,先利用一次函数图象上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=OA=1,则C点坐标可求.解:过C 点作CD ⊥x 轴于D ,如图.∵y =−2x +2的图象分别与x 轴、y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2),当y =0时,−2x +2=0,解得x =1,则A (1,0).∵线段AB 绕A 点顺时针旋转90°,∴AB =AC ,∠BAC =90°,∴∠BAO +∠CAD =90°,而∠BAO +∠ABO =90°,∴∠ABO =∠CAD .在△ABO 和△CAD 中,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选:C .二、填空题11.且【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.解:由题意可知:,解得:且,故答案为:且.AOB CDA ABO CAD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩0x ≥2x ≠020x x ≥⎧⎨-≠⎩0x ≥2x ≠0x ≥2x ≠【分析】分别把A 、B 的坐标代入,求得、再计算即可.解:把代入得=2m -3,把代入得=2(m +1)-3=2m -1,∴=(2m -1)-(2m -3)=2m -1-2m +3=2故答案为:213.6【分析】把点P 代入一次函数解析式,可得,化简带值可求出结论.解:∵点在直线上,∴,变形得:,代数式;故答案为:6.14.m ≤-2【分析】由一次函数y=x+m+2的图象不经过第二象限,可得k >0,b ≤0,列不等式求解即可.解:∵一次函数y=x+m+2的图象不经过第二象限,∴m+2≤0,解得m ≤-2,故答案为:m ≤-2.15.【分析】首先根据一次函数的位置确定a 和b 的值,然后化简二次根式求23y x =-1y 2y 21y y -()1,A m y 23y x =-1y ()21,B m y +23y x =-2y 21y y -21b a =-(),P a b 21y x =-21b a =-21a b -=()8428228216a b a b -+=--=-⨯=b-解:∵若一次函数y=ax+b 的图象经过第一、二、四象限,∴a <0,b >0,∴b-a >0,,故答案为-b .16.1【分析】如图,根据题意可求出OA .根据一次函数y =kx+2的图象,y 随x 增大而增大,即可利用k 表示出OB 的长,再根据三角形面积公式,即可求出k 的值.解:如图,令x=0,则y=2,∴A(0,2),∴OA=2.令y=0,则,∴B(,0).∵一次函数y =kx+2的图象,y 随x 增大而增大,∴k >0,∴OB=,∵一次函数y =kx+2的图象与两坐标轴围成的三角形面积为2,∴,即,a a b a b -=--+=-2x k=-2k -2k 122OA OB ⋅=12222k ⨯⨯=解得:.故答案为:1.17.16【分析】先根据勾股定理求出C 点的坐标,得到C 点平移后的对应点C 1的纵坐标为4,与直线 相交,可得C 1坐标,由此推出CC 1距离,再求出四边形BCC 1B 1的面积即可.解:∵A (1,0),B (4,0)∴AB=3∵,∠CAB=90°,∴∴C (1,4),∴C 点平移后对应点C 1的纵坐标为4,∴把代入解得,∴CC 1=4,∴,故答案为:16.18.或【分析】根据题意,画出图象,可得当x=2时,y ≥1,当x=-2时,y ≥3,即可求解.解:如图,1k =26y x =-5BC =4AC ==4y =26y x =-5x =11116BCC B S CC AC =⨯=13k ≥3k ≤-观察图象得:当x=2时,y ≥1,即,解得:,当x=-2时,y ≥3,即,解得:,∴的取值范围是或.故答案为:或三、解答题19.解:是正比例函数,且且,解得,.即当,时,函数是正比例函数.20.解:(1)把(2,-3)代入得,解得;(2)∵a <0时,y 随x 的增大而减小,则当x=-1时,y 有最大值2,把x=-1代入函数关系式得 2=-a-a+1,解得,所以.21.解:∵AH ⊥x 轴,AH =2,点A 在第四象限,∴A 点的纵坐标为﹣2,21k k +≥13k ≥23k k -+≥3k ≤-k 13k ≥3k ≤-13k ≥3k ≤-||1(2)5m y m x n -=++- 20m ∴+≠||11m -=50n -=2m =5n =2m =5n =||1(2)5m y m x n -=++-1=-+y ax a 213a a -+=-4a =-12a =-12a =-代入得,解得x =4,∴A (4,﹣2),∴OH =4,∴OA.22.(1)解:设l 1的表达式为y=kx+b(k≠0),∵l 1经过点B(0,2)、点C(3,−3),∴,解得,∴l 1的函数表达式:y=x+2.∵点D 为l 1与x 轴的交点,故令y=0,x+2=0,解得x=,∴点D 坐标为,0);(2)解:由(1)同理可得AD 所在直线的一次函数表达式为:,∵点Q 在线段上,∴设点Q 坐标为,其中.∵,∴,即,解得,满足题意.∴点Q 坐标为;(3)解:∵y=kx+k+5=(k+1)x+5,∴直线l 2过定点(-1,5),12y x =-122x -=-==233b k b =⎧⎨-=+⎩532k b ⎧=-⎪⎨⎪=⎩53-53-6565516y x =-AD 516m m ⎛⎫- ⎪⎝⎭,665m ≤≤PDQ PDC S S =V V Q C y y =-5136m -=245=m 2435⎛⎫⎪⎝⎭∵点A ,D 到l 2的图像的距离相等,∴当l 2与线段AD 平行或过线段AD 中点,当l 2与线段AD 平行时,k=;当l 2过线段AD 中点(,2)时,∴2=k+k+5,解得:k=;综上,k 的值为或.23.(1)解:y 与x 之间的函数关系式为:y=3x+2.5(20-x ),=3x+50-2.5x=0.5x+50(0≤x ≤20);(2)解:由题可得:800x+600(20-x )≥12700,解得x ≥3.5,∴当x=4时,y 取得最小值,∴y 最小=0.5×4+50=52.∴该公司至少需要购买4台甲种型号的机器人;此时所花费的费用为52万元.24.解:解(1)设直线AB 的表达式为将,两点代入得解得 ∴AB 的表达式为(2) 561851851523-561523-(0)y kx b k =+≠(30)A ,(01)B ,301k b b +=⎧⎨=⎩131k b ⎧=-⎪⎨⎪=⎩113y x =-+3322÷=当时当时(3)若≌时当 时, ,此时P 的坐标为;当 时, ,此时P 的坐标为;302t <≤13(32)22S OP OC t =⋅=-32t >13(23)22S OP OC t =⋅=-COP ∆AOB ∆OP OB=(0,1)B 1OB =∴1OP ∴=321t -=1t =(1,0)231t -=2t =(1,0)-。
北师大版初中数学八年级上册《第4章 一次函数》单元测试卷(含答案解析

北师大新版八年级上学期《第4章一次函数》单元测试卷一.选择题(共31小题)1.下列给出的式子中,x是自变量的是()A.x=5B.2x+y=0C.2y2=4x+3D.y=3x﹣1 2.下列曲线中不能表示y是x的函数的是()A.B.C.D.3.一定质量的干木,当它的体积V=4m3时,它的密度ρ=0.25×103kg/m3,则ρ与V的函数关系式是()A.ρ=1000V B.ρ=V+1 000C.ρ=D.ρ=4.在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣15.已知函数y=,则当函数值y=8时,自变量x的值是()A.﹣2或4B.4C.﹣2D.±2或±4 6.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是()A.此车一共行驶了210公里B.此车高速路一共用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里7.下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个8.若2y+1与x﹣5成正比例,则()A.y是x的一次函数B.y与x没有函数关系C.y是x的函数,但不是一次函数D.y是x的正比例函数9.如图,在平面直角坐标系xOy中,O为坐标系原点,A(3,0),B(3,1),C(0,1),将△OAB沿直线OB折叠,使得点A落在点D处,OD与BC交于点E,则OD所在直线的解析式为()A.B.C.D.10.如图,一次函数y=﹣x﹣4与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于点B,且AO=AB,则正比例函数的解析式为()A.y=x B.y=x C.y=x D.y=x11.如图所示是一次函数y=kx+b在直角坐标系中的图象,通过观察图象我们就可以得到方程kx+b=0的解为x=﹣1,这一求解过程主要体现的数学思想是()A.数形结合B.分类讨论C.类比D.公理化12.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0B.0<x<10C.0<x<5D.5<x<10 13.如图,一次函数y=2x﹣3的图象大致是()A.B.C.D.14.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.15.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.16.两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.17.如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n >0)的图象是()A.B.C.D.18.一次函数y=﹣2x﹣5的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限19.在函数y=3x﹣2,y=﹣x,y=,y=中,y随x的增加而增加的有()A.1个B.2个C.3个D.4个20.直线y=(3﹣π)x经过的象限是()A.一、二象限B.一、三象限C.二、三象限D.二、四象限21.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣B.k<﹣C.k=D.k=022.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>﹣5D.k<﹣5 23.如果直线y=kx+b经过一、二、四象限,则k,b的取值分别是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 24.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0B.a﹣b>0C.ab>0D.<025.一次函数y=2x﹣3与y轴的交点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)26.一次函数y=x、y=﹣2x+6、y=7x+6的图象所围成的图形的面积为()A.B.18C.9D.1227.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数值随自变量的增大而减小28.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>229.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4B.x>﹣4C.x>2D.x>﹣230.一列快车从甲城驶往乙城,一列慢车从乙城驶往甲城,已知每隔1小时有一列速度相同的快车从甲城开往乙城,如图所示,OA是第一列快车离开甲城的路程y(单位在:千米)与运行时间x(单位:小时)的函数图象,BC是一列从乙城开往甲城的慢车距甲城的路程y(单位:千米)与运行时间x(单位:小时)的函数图象.根据图象判断以下说法正确的个数有()①甲乙两地之间的距离为300千米;②点B的横坐标0.5的意义是慢车发车时间比第一列快车发车时间晚半小时;③若慢车的速度为100千米/小时,则点C的坐标是(3.5,0);④若慢车的速度为100千米/小时,则第二列快车出发后1小时与慢车相遇.A.1个B.2个C.3个D.4个31.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图l1,l2分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分)变化的函数图象,以下说法①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的有()A.4个B.3个C.2个D.1个二.填空题(共3小题)32.函数y=﹣(x﹣4)0中,自变量x的取值范围是.33.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,则关于x的方程3x+b=ax﹣2的解为x=.34.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.三.解答题(共8小题)35.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?36.已知一次函数y=(m+2)x+(3﹣n),求:(1)m,n是什么数时,y随x的增大而减小?(2)m,n为何值时,函数的图象经过原点?(3)若函数图象经过二、三、四象限,求m,n的取值范围.37.如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?相遇处离C站的路程是多少千米?38.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.39.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.40.如图直线L:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线l在第二象限内一个动点,试写出△OPA的面积S与x 的函数关系式,并写出自变量x的取值范围.(3)点P(x,y)是直线l上一点,当点P运动到什么位置时,△OPA的面积为9,并说明理由.41.如图,一次函数y=﹣x+4的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°,求过B、C两点直线的解析式.42.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第一象限,斜靠在两条坐标轴上,且点A(0,2),点C(1,0),BE⊥x轴于点E,一次函数y=x+b经过点B,交y轴于点D.(1)求证:△AOC≌△CEB;(2)求△ABD的面积.北师大新版八年级上学期《第4章一次函数》单元测试卷参考答案与试题解析一.选择题(共31小题)1.下列给出的式子中,x是自变量的是()A.x=5B.2x+y=0C.2y2=4x+3D.y=3x﹣1【分析】根据函数的定义,可得答案.【解答】解:y=3x﹣1,中y随x的变化而变化,x是自变量,y是x的函数,故选:D.【点评】本题考查了自变量,利用函数的定义是解题关键.2.下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x 是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.【点评】考查了函数的概念,理解函数的定义,是解决本题的关键.3.一定质量的干木,当它的体积V=4m3时,它的密度ρ=0.25×103kg/m3,则ρ与V的函数关系式是()A.ρ=1000V B.ρ=V+1 000C.ρ=D.ρ=【分析】根据mρV,可以求得m的值,从而可以得到ρ与V的函数关系式,本题得以解决.【解答】解:∵V=4m3时,密度ρ=0.25×103 kg/m3,∴m=ρV=4÷0.25×103=1000,∴ρ=,故选:D.【点评】本题考查函数关系式,解答本题的关键是明确题意,求出相应的函数关系式.4.在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣1【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.已知函数y=,则当函数值y=8时,自变量x的值是()A.﹣2或4B.4C.﹣2D.±2或±4【分析】把y=8直接代入函数y=,即可求出自变量的值.【解答】解:把y=8代入函数y=,先代入上边的方程得x=﹣2,∵x≤2,故x=﹣2;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣2.故选:A.【点评】本题考查了函数值,正确的理解题意是关键.6.李师傅一家开车去旅游,出发前查看了油箱里有50升油,出发后先后走了城市路、高速路、山路最终到达旅游地点,下面的两幅图分别描述了行驶里程及耗油情况,下面的描述错误的是()A.此车一共行驶了210公里B.此车高速路一共用了12升油C.此车在城市路和山路的平均速度相同D.以此车在这三个路段的综合油耗判断50升油可以行驶约525公里【分析】找准几个关键点,走了城市路、高速路、山路最终到达旅游地点进行分析解答即可.【解答】解:A、此车一共行驶了210公里,正确;B、此车高速路一共用了45﹣33=12升油,正确;C、此车在城市路的平均速度是30km/h,山路的平均速度是=60km/h,错误;D、以此车在这三个路段的综合油耗判断50升油可以行驶约525公里,正确;故选:C.【点评】本题考查了函数的图象,解答本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.7.下列函数:①y=﹣2x,②y=﹣3x2+1,③y=x﹣2,其中一次函数的个数有()A.0个B.1个C.2个D.3个【分析】一次函数的一般形式为y=kx+b(k≠0).【解答】解::①y=﹣2x是正比例函数,也是一次函数,②y=﹣3x2+1是二次函数,③y=x﹣2是一次函数.故选:C.【点评】本题主要考查的是一次函数的定义,熟练掌握一次函数的定义是解题的关键.8.若2y+1与x﹣5成正比例,则()A.y是x的一次函数B.y与x没有函数关系C.y是x的函数,但不是一次函数D.y是x的正比例函数【分析】根据2y+1与x﹣5成正比例可得出2y+1=k(x﹣5)(k≠0),据此可得出结论.【解答】解:∵2y+1与x﹣5成正比例,∴2y+1=k(x﹣5)(k≠0),∴y=x﹣,∴y是x的一次函数.故选:A.【点评】本题考查的是正比例函数的定义,熟知一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数是解答此题的关键.9.如图,在平面直角坐标系xOy中,O为坐标系原点,A(3,0),B(3,1),C(0,1),将△OAB沿直线OB折叠,使得点A落在点D处,OD与BC交于点E,则OD所在直线的解析式为()A.B.C.D.【分析】根据矩形的性质结合折叠的性质可得出∠EOB=∠EBO,进而可得出OE=BE,设点E的坐标为(m,1),则OE=BE=3﹣m,CE=m,利用勾股定理即可求出m值,再根据点E的坐标,利用待定系数法即可求出OD所在直线的解析式.【解答】解:∵A(3,0),B(3,1),C(0,1),O(0,0),∴四边形OABC为矩形,∴∠EBO=∠AOB.又∵∠EOB=∠AOB,∴∠EOB=∠EBO,∴OE=BE.设点E的坐标为(m,1),则OE=BE=3﹣m,CE=m,在Rt△OCE中,OC=1,CE=m,OE=3﹣m,∴(3﹣m)2=12+m2,∴m=,∴点E的坐标为(,1).设OD所在直线的解析式为y=kx,将点E(,1)代入y=kx中,1=k,解得:k=,∴OD所在直线的解析式为y=x.故选:C.【点评】本题考查了待定系数法求一次函数解析式、翻折变换、等腰三角形的性质以及勾股定理,利用勾股定理求出点E的坐标是解题的关键.10.如图,一次函数y=﹣x﹣4与正比例函数y=kx的图象交于第三象限内的点A,与y轴交于点B,且AO=AB,则正比例函数的解析式为()A.y=x B.y=x C.y=x D.y=x【分析】如图,过点A作AD⊥y轴于点D.根据一次函数解析式求得点B、C的坐标,结合等腰三角形的性质可以求得点D的坐标;通过锐角三角函数的定义求得点A的坐标;最后把点A的坐标代入正比例函数解析式y=kx即可求得k的值.【解答】解:设正比例函数解析式y=kx.∵y=﹣x﹣4,∴B(0,﹣4),C(﹣6,0).∴OC=6,OB=4.如图,过点A作AD⊥y轴于点D.又∵AO=AB,∴OD=BD=2.∴tan∠CBO==,即=,解得AD=3.∴A(﹣3,﹣2).把点A的坐标代入y=kx,得﹣2=﹣3k,解得k=.故该函数解析式为:y=x.故选:B.【点评】本题考查了待定系数法求一次函数解析式.注意:①求点的坐标的方法是先求出这点到两坐标轴的距离,然后根据这点在坐标系中的位置写出这点的坐标.②以后学了等腰三角形的性质后,作垂线后可直接得到OD=BD.11.如图所示是一次函数y=kx+b在直角坐标系中的图象,通过观察图象我们就可以得到方程kx+b=0的解为x=﹣1,这一求解过程主要体现的数学思想是()A.数形结合B.分类讨论C.类比D.公理化【分析】通过观察图象得到方程kx+b=0的解为x=﹣1,这一求解过程主要体现的数学思想是数形结合.【解答】解:观察图象,可知一次函数y=kx+b与x轴交点是(﹣1,0),所以方程kx+b=0的解为x=﹣1,这一求解过程主要体现的数学思想是数形结合.故选:A.【点评】本题考查了一次函数与一元一次方程,的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.12.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x 的函数关系式为y=20﹣2x,那么自变量x的取值范围是()A.x>0B.0<x<10C.0<x<5D.5<x<10【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,进行求解.【解答】解:根据三角形的三边关系,得则0<20﹣2x<2x,由20﹣2x>0,解得x<10,由20﹣2x<2x,解得x>5,则5<x<10.故选:D.【点评】本题考查了三角形的三边关系,一元一次不等式组的解法,正确列出不等式组是解题的关键.13.如图,一次函数y=2x﹣3的图象大致是()A.B.C.D.【分析】根据一次函数的图象与系数的关系解答即可.【解答】解:∵一次函数y=2x﹣3中,k=2>0,b=﹣3<0,∴此函数的图象经过一、三、四象限.故选:B.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.14.在平面直角坐标系中,一次函数y=x﹣1的图象是()A.B.C.D.【分析】观察一次函数解析式,确定出k与b的符号,利用一次函数图象及性质判断即可.【解答】解:一次函数y=x﹣1,其中k=1,b=﹣1,其图象为,故选:B.【点评】此题考查了一次函数的图象,熟练掌握一次函数的图象与性质是解本题的关键.15.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴k﹣1≥0,且k﹣1≠0,解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象如图所示:故选:B.【点评】此题主要考查了一次函数的图象与系数的关系,零指数幂定义以及二次根式有意义的条件;解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.16.两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.【分析】先由一次函数y1=ax+b图象得到字母系数的正负,再与一次函数y2=bx+a 的图象相比较看是否一致.【解答】解:A、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由一次函数y2=bx+a图象可知,b<0,a<0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a>0,b<0,两结论相矛盾,故错误;C、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;D、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a<0,b<0,两结论相矛盾,故错误.故选:C.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.17.如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n >0)的图象是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.【点评】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.18.一次函数y=﹣2x﹣5的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【分析】根据一次函数的图象的性质解答即可.【解答】解:一次函数y=﹣2x﹣5的图象经过坐标系的第二、三、四象限,故选:C.【点评】本题考查一次函数的图象的性质,关键是根据一次函数的图象的性质解答.19.在函数y=3x﹣2,y=﹣x,y=,y=中,y随x的增加而增加的有()A.1个B.2个C.3个D.4个【分析】根据一次函数的性质判断即可.【解答】解:在函数y=3x﹣2,y=﹣x,y=,y=中,y随x的增加而增加的有y=3x﹣2,y=,y=,故选:C.【点评】此题考查一次函数的性质,关键是根据k>0时,y随x的增加而增加进行解答.20.直线y=(3﹣π)x经过的象限是()A.一、二象限B.一、三象限C.二、三象限D.二、四象限【分析】先根据正比例函数的解析式判断出k的值,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵直线y=(3﹣π)x中,k<0,∴此直线经过二、四象限.故选:D.【点评】此题考查的是正比例函数的图象与系数的关系,即一次函数y=kx(k≠0)中,当k<0⇔y=kx的图象在二、四象限.21.正比例函数y=(2k+1)x,若y随x增大而减小,则k的取值范围是()A.k>﹣B.k<﹣C.k=D.k=0【分析】根据正比例函数图象与系数的关系列出关于k的不等式2k+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2k+1)x中,y的值随自变量x的值增大而减小,∴2k+1<0,解得,k<﹣;故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.22.已知正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>﹣5D.k<﹣5【分析】根据正比例函数图象的特点可直接解答.【解答】解:∵正比例函数y=(k+5)x中若y随x的增大而减小,∴k+5<0.∴k<﹣5,故选:D.【点评】此题比较简单,考查的是正比例函数y=kx(k≠0)图象的特点:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.23.如果直线y=kx+b经过一、二、四象限,则k,b的取值分别是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.24.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式一定成立的是()A.a+b<0B.a﹣b>0C.ab>0D.<0【分析】由于一次函数y=ax+b的图象经过第一、二、四象限,由此可以确定a <0,b>0,然后一一判断各选项即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A错误,a﹣b<0,故B错误,ab<0,故C错误,<0,故D正确.故选:D.【点评】本题考查一次函数的图象与系数的关系,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.25.一次函数y=2x﹣3与y轴的交点坐标为()A.(0,﹣3)B.(0,3)C.(,0)D.(﹣,0)【分析】令x=0可求得y的值,则可求得答案.【解答】解:在y=2x﹣3中,令x=0可得y=﹣3,∴y=2x﹣3与y轴的交点坐标为(0,﹣3),故选:A.【点评】本题主要考查函数图象与坐标轴的交点,掌握函数图象与坐标轴交点的求法是解题的关键.26.一次函数y=x、y=﹣2x+6、y=7x+6的图象所围成的图形的面积为()A.B.18C.9D.12=S△AOB+S△AOC,计算即可.【分析】画出图象,求出A、B、C三点坐标,根据S△ABC【解答】解:如图易知A(0,6),由解得,故C(2,2),由解得,∴S=S△AOB+S△AOC=×6×1+×6×2=9,△ABC故选:C.【点评】本题考查一次函数的应用,三角形的面积等知识,解题的关键是学会利用方程组确定两个函数的交点坐标,学会用分割法求三角形面积.27.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(0,4)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数值随自变量的增大而减小【分析】根据一次函数的性质对A、D进行判断;根据一次函数图象上点的坐标特征对B进行判断;根据一次函数的几何变换对C进行判断.【解答】解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;B、函数的图象与y轴的交点坐标是(0,4),符合题意;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;D、k=﹣2,函数值随自变量的增大而减小,不符合题意;故选:B.【点评】本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.28.将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>2【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选:A.【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.29.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4B.x>﹣4C.x>2D.x>﹣2【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0时,x=﹣2,所以y>0,x的取值范围是:x>﹣2.故选:D.【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.30.一列快车从甲城驶往乙城,一列慢车从乙城驶往甲城,已知每隔1小时有一列速度相同的快车从甲城开往乙城,如图所示,OA是第一列快车离开甲城的路程y(单位在:千米)与运行时间x(单位:小时)的函数图象,BC是一列从乙城开往甲城的慢车距甲城的路程y(单位:千米)与运行时间x(单位:小时)的函数图象.根据图象判断以下说法正确的个数有()①甲乙两地之间的距离为300千米;②点B的横坐标0.5的意义是慢车发车时间比第一列快车发车时间晚半小时;③若慢车的速度为100千米/小时,则点C的坐标是(3.5,0);④若慢车的速度为100千米/小时,则第二列快车出发后1小时与慢车相遇.A.1个B.2个C.3个D.4个【分析】①由A、B点的纵坐标可求得甲、乙两地间的距离;②B点横坐标表示慢车发车时间;③用待定系数法求直线BC的解析式,把y=0代入解答即可;④求ED与BC的交点来求第二列快车出发后多长时间与慢车相遇;【解答】解:①点A和点B的坐标分别为(2,300)、(0.5,300),则甲、乙两地之间的距离为300千米,正确;②BC是一列从乙城开往甲城的慢车距甲城的路程与运行时间的函数图象.而B的坐标为(0.5,300),则表示慢车发车时间比第一列快车发车时间推迟半小时,正确;③因为慢车的速度为100千米/小时,而全程距离为300千米,则所用时间为=3小时,故BC与x轴交点坐标为(3.5,0),正确;④设DE的函数解析式为y=kx+b.由于OA∥ED,则E点和D点坐标分别为(1,0)和(3,300).代入y=kx+b式中得:0=k+b,300=3k+b.解得:k=150,b=﹣150.故DE的函数解析式为y=150x﹣150.设第二列快车与慢车相遇时间为x,则(﹣100x+350)+(150x﹣150)=300,解得:x=2.故第二列快车出发后2﹣1=1小时时间与慢车相遇,正确.故选:D.。
北师大版八年级上 第四章一次函数单元测试(含答案解析)

第四章一次函数单元测试一、填空题1.若点P(m,n)在第二象限,则点Q(|m|,﹣n)在第______象限.2.若点P(2a﹣1,2﹣3b)是第二象限的点,则a,b的范围为______.3.已知A(4,b),B(a,﹣2),若A,B关于x轴对称,则a=______,b=______;若A,B关于y轴对称,则a=______,b=______;若A,B关于原点对称,则a=______,b=______.4.若点M(1﹣x,1﹣y)在第二象限,那么点N(1﹣x¸y﹣1)关于原点对称点P在第______象限.5.点B(2,﹣2)到x轴的距离是______;到y轴的距离是______.6.点C(0,﹣5)到x轴的距离是______;到y轴的距离是______;到原点的距离是______.7.点P(a,b)到x轴的距离是______,到原点的距离是______,到y轴的距离是______.8.已知点P(3,0),Q(﹣2,0),则PQ=______,已知点M(0,),N(0,﹣),则MQ=______;E(2,﹣1),F(2,﹣8),则EF两点之间的距离是______;已知点G(2,﹣3)、H(3,4),则G、H两点之间的距离是______.9.两点(3,﹣4)、(5,a)间的距离是2,则a的值为______.10.已知点A(0,2)、B(﹣3,﹣2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为______.11.对于函数y=5x+6,y的值随x值的减小而______.12.对于函数y=﹣x,y的值随x值的______而增大.14.直线y=(6﹣3m)x+(2n﹣4)不经过第三象限,则m、n的范围是______.15.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第______象限.16.无论m为何值直线y=x+2m与直线y=﹣x+4的交点都不可能在第______象限.二、解答题17.已知一次函数y=(1﹣2m)x+(3m﹣1)(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?18.若函数y=3x+b经过点(2,﹣6),求函数的解析式.19.直线y=kx+b的图象经过A(3,4)和点B(2,7),求解析式.20.如图表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围.21.一次函数的图象与y=2x﹣5平行且与x轴交于点(﹣2,0),求解析式.22.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.25.已知直线y=kx+b与直线y=﹣3x+7关于原点对称,求k、b的值.三、解答题26.直线经过(1,2)、(﹣3,4)两点,求直线与坐标轴围成的图形的面积.27.一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=O B.求:(1)这两个函数的表达式;(2)△AOB的面积S.28.已知直线m经过两点(1,6)、(﹣3,﹣2),它和x轴、y轴的交点式B、A,直线n过点(2,﹣2),且与y轴交点的纵坐标是﹣3,它和x轴、y轴的交点是D、C;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD的面积;(3)若直线AB与DC交于点E,求△BCE的面积.29.已知,A 、B 分别是x 轴上位于原点左、右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =6. (1)求△COP 的面积; (2)求点A 的坐标和m 的值;(3)若S △BOP =S △DOP ,求直线BD 的函数解析式.30.如图,已知l1:y=2x+m经过点(﹣3,﹣2),它与x轴,y轴分别交于点B、A,直线l2:y=kx+b 经过点(2,﹣2)且与y轴交于点C(0,﹣3),与x轴交于点D.(1)求直线l1,l2的解析式;(2)若直线l1与l2交于点P,求S△ACP :S△ACD的值.31.如图,已知点A(2,4),B(﹣2,2),C(4,0),求△ABC的面积.参考答案与试题解析一、填空题1.若点P(m,n)在第二象限,则点Q(|m|,﹣n)在第四象限.【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(m,n)在第二象限,∴m<0,n>0,∴|m|>0,﹣n<0,∴Q(|m|,﹣n)在第四象限.故答案为:四.【点评】考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.若点P(2a﹣1,2﹣3b)是第二象限的点,则a,b的范围为a<,b<.【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式,然后求解即可.【解答】解:∵点P(2a﹣1,2﹣3b)是第二象限的点,∴2a﹣1<0,2﹣3b>0,解得a<,b<.故答案为:a<,b<.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.已知A(4,b),B(a,﹣2),若A,B关于x轴对称,则a=4,b=2;若A,B关于y 轴对称,则a=﹣4,b=﹣2;若A,B关于原点对称,则a=﹣4,b=2.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;关于原点的对称点,横纵坐标都变成相反数.【解答】解:若A,B关于x轴对称,则a=4,b=2;若A,B关于y轴对称,则a=﹣4,b=﹣2;若A,B关于原点对称,则a=﹣4,b=2,故答案为:4,2;﹣4,﹣2;﹣4,2.【点评】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.4.若点M(1﹣x,1﹣y)在第二象限,那么点N(1﹣x¸y﹣1)关于原点对称点P在第一象限.【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】已知点M(1﹣x,1﹣y)在第二象限,根据第二象限点的坐标特征:横坐标<0,纵坐标>0,即1﹣x<0,1﹣y>0,由以上两式可以判断x>1,y>1,从而点N(1﹣x,y﹣1)在第三象限.又两点关于原点对称,则两点的横、纵坐标都是互为相反数,因而点P关于原点对称的点C是在第一象限.【解答】解:∵点M(1﹣x,y﹣1)在第二象限,根据第二象限点的坐标特征:横坐标<0,纵坐标>0,∴1﹣x<0,1﹣y>0,即x>1,y<1,∴1﹣x<0,y﹣1<0,∴点N(1﹣x,y﹣1)在第三象限,又∵两点关于原点对称,则两点的横、纵坐标都是互为相反数,∴点P在第一象限.故答案为一.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系,比较简单.5.点B(2,﹣2)到x轴的距离是2;到y轴的距离是2.【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:点B(2,﹣2)到x轴的距离是2;到y轴的距离是2.故答案为:2;2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.点C(0,﹣5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5.【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答;根据横坐标是0,到原点的距离等于纵坐标的长度解答.【解答】解:点C(0,﹣5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5.故答案为:5,0,5.【点评】本题考查了点的坐标,主要利用了点到坐标轴与原点的距离的求解,需熟记.7.点P(a,b)到x轴的距离是|b|,到原点的距离是,到y轴的距离是|a|.【考点】两点间的距离公式.【分析】根据平面直角坐标系中点的坐标的几何意义及两点间的距离公式解答.【解答】解:根据平面直角坐标系中点的坐标的几何意义点到x轴的距离是|b|;同理,到y轴的距离是|a|;根据两点之间的距离公式可知点到原点的距离是.【点评】本题用到的知识点为:点到x轴的距离为这个点纵坐标的绝对值;点到y轴的距离为这个点横坐标的绝对值.8.已知点P(3,0),Q(﹣2,0),则PQ=5,已知点M(0,),N(0,﹣),则MQ= 1;E(2,﹣1),F(2,﹣8),则EF两点之间的距离是7;已知点G(2,﹣3)、H(3,4),则G、H两点之间的距离是5.【考点】坐标与图形性质.【专题】计算题.【分析】根据与y轴垂直的直线上两点的距离等于两点的横坐标之差的绝对值计算PQ;根据与x轴垂直的直线上两点的距离等于两点的纵坐标之差的绝对值计算MN和EF;根据两点间的距离公式计算GH.【解答】解:∵点P(3,0),Q(﹣2,0),∴PQ=3﹣(﹣2)=5;∵点M(0,),N(0,﹣),∴MN=﹣(﹣)=1;∵E(2,﹣1),F(2,﹣8),∴EF=﹣1﹣(﹣8)=7;∵点G(2,﹣3)、H(3,4),∴FG==5.故答案为5,1,7,5,5.【点评】本题考查了坐标与图形性质:利用点的坐标特征计算相应的线段长和判断线段与坐标轴的位置关系;记住各象限内点的坐标特征和坐标上点的坐标特征.9.两点(3,﹣4)、(5,a)间的距离是2,则a的值为﹣4.【考点】两点间的距离公式.【专题】计算题.【分析】根据两点间的距离公式得到=2,然后解方程即可.【解答】解:根据题意得=2,解得a=﹣4.故答案为﹣4.【点评】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.也考查了勾股定理.10.已知点A(0,2)、B(﹣3,﹣2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为(﹣4,0)或(1,0).【考点】两点间的距离公式;勾股定理的逆定理.【专题】计算题.【分析】根据两点间的距离公式得到AB2=(0﹣3)2+(2+2)2=25,BC2=(a+3)2+(b+2)2,AC2=a2+(b﹣2)2,由于C点在x轴上,则b=0,然后根据勾股定理得到(a+3)2+22+a2+22=25,再解一元二次方程求出a的值即可得到C点坐标.【解答】解:AB2=(0﹣3)2+(2+2)2=25,BC2=(a+3)2+(b+2)2,AC2=a2+(b﹣2)2,∵∠ACB=90°,C点在x轴上,∴BC2+AC2=AB2,b=0,即(a+3)2+22+a2+22=25,整理得a2+3a﹣4=0,解得a1=﹣4,a2=1,∴C点坐标为(﹣4,0)或(1,0).【点评】本题考查了两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.也考查了勾股定理.11.对于函数y=5x+6,y的值随x值的减小而减小.【考点】一次函数的性质.【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=5x+6中,k=5>0,∴y的值随x值的减小而减小.故答案为:减小.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.12.对于函数y=﹣x,y的值随x值的减小而增大.【考点】一次函数的性质.【分析】直接根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=﹣x中,k=﹣<0,∴y的值随x值的减小而增大.故答案为:减小.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.14.直线y=(6﹣3m)x+(2n﹣4)不经过第三象限,则m、n的范围是m>2,n≥2.【考点】一次函数图象与系数的关系.【分析】若函数y=kx+b的图象不经过第三象限,则k<0,b≥0,由此可以确定m的取值范围.【解答】解:∵y=(6﹣3m)x+(2n﹣4)不经过第三象限,∴6﹣3m<0,2n﹣4≥0,故m>2,n≥2.故填空答案:m>2,n≥2.【点评】本题考查了一次函数的性质,难度不大,关键是掌握在一次函数y=kx+b中,k>0,y随x 的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.15.已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第二、三、四象限.【考点】一次函数图象与系数的关系.【分析】根据直线y=kx+b经过第一、二、四象限可以确定k、b的符号,则易求﹣b的符号,由﹣b,k的符号来求直线y=﹣bx+k所经过的象限.【解答】解:∵直线y=kx+b经过第一、二、四象限,∴k<0,b>0,∴﹣b<0,∴直线y=﹣bx+k经过第二、三、四象限.故答案是:二、三、四.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.16.无论m为何值直线y=x+2m与直线y=﹣x+4的交点都不可能在第三象限.【考点】两条直线相交或平行问题.【分析】分析y=﹣x+4的图象经过的象限即可.【解答】解:y=﹣x+4是一次函数,∵k=﹣1<0,∴图象过二、四象限,又∵b=4>0,∴图象过第一象限,∴一定不过第三象限;∴直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故答案为:三.【点评】本题考查了两条直线平行或相交的问题,需注意应找到完整的函数,进而找到它不经过的象限,那么交点就一定不在那个象限.17.已知一次函数y=(1﹣2m)x+(3m﹣1)(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?【考点】一次函数图象与系数的关系.【分析】(1)根据一次函数y=(1﹣2m)x+(3m﹣1)当1﹣2m<0时y随x的增大而减小,即可解答.(2)根据一次函数是正比例函数的定义即可解答.【解答】解:(1)由题意得:1﹣2m<0,∴m>,∴当m>时,y随x的增大而减小.(2)由题意得:1﹣2m≠0且3m﹣1=0,∴m=,∴当m=时函数的图象过原点.【点评】本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.二、解答题18.若函数y=3x+b经过点(2,﹣6),求函数的解析式.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】直接把点(2,﹣6)代入y=3x+b求出b的值即可.【解答】解:把(2,﹣6)代入y=3x+b得6+b=﹣6,解得b=﹣12,所以函数解析式为y=3x﹣12.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.19.直线y=kx+b的图象经过A(3,4)和点B(2,7),求解析式.【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】直接把A点和B点坐标代入y=kx+b得到关于k和b的方程组,然后解方程组求出k、b即可得到直线解析式.【解答】解:根据题意得,解得.所以直线解析式为y=﹣3x+13.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.20.如图表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围.【考点】根据实际问题列一次函数关系式.【分析】根据函数图象横坐标即可得出x的取值范围,利用待定系数法确定解析式.【解答】解:设油箱中剩油y(L)与行使时间x(h)之间的函数关系为y=kx+b(k≠0),把(0,40)、(8,0)代入得:,解得:,∴y与x的函数关系式为y=﹣5x+40;油箱中剩油y(L)与行使时间x(h)之间的函数关系为y=﹣5x+40.当x=0时,则y=40;当y=0时,则﹣5x+40=0,解得x=8,故自变量取值范围为:0≤x≤8.【点评】本题考查了一次函数的应用:先利用待定系数法确定一次函数关系式,然后根据一次函数的性质解决实际问题;学会把函数图象中的有关数与实际中的数据对应起来.21.一次函数的图象与y=2x﹣5平行且与x轴交于点(﹣2,0),求解析式.【考点】两条直线相交或平行问题.【专题】计算题.【分析】设所求的一次函数解析式为y=kx+b,先利用两直线平行的问题得到k=2,然后把(﹣2,0)代入y=2x+b中求出b的值即可.【解答】解:设所求的一次函数解析式为y=kx+b,∵直线y=kx+b与直线y=2x﹣5平行,∴k=2,把(﹣2,0)代入y=2x+b得﹣4+b=0,解得b=4,∴所求函数解析式为y=2x+4.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.【考点】待定系数法求一次函数解析式.【专题】分类讨论;待定系数法.【分析】因为函数增减性不明确,所以分①k>0时,函数值随x的增大而增大,此时当x=﹣2时,y=﹣11,x=6时,y=9;②k<0时,函数值随x增大而减小,此时当x=﹣2时,y=9,x=6时,y=﹣11;两种情况讨论.【解答】解:根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数解析式为y=﹣x+4.因此,函数解析式为y=x﹣6或y=﹣x+4.【点评】本题主要考查一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小,注意要分情况讨论.25.已知直线y=kx+b与直线y=﹣3x+7关于原点对称,求k、b的值.【考点】一次函数图象与几何变换.【分析】根据若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数可以直接写出答案.【解答】解:直线y=﹣3x+7关于原点对称的解析式为y=﹣3x﹣7.∵直线y=kx+b与直线y=﹣3x+7关于原点对称,∴k=﹣3,b=﹣7.【点评】此题主要考查了一次函数得几何变换,关键是利用数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三、解答题26.直线经过(1,2)、(﹣3,4)两点,求直线与坐标轴围成的图形的面积.【考点】一次函数图象上点的坐标特征.【分析】设经过两点的直线解析式为y=kx+b(k≠0),再把两点代入求出直线解析式,得出直线与坐标轴的交点,利用三角形的面积公式求解即可.【解答】解:经过两点的直线解析式为y=kx+b(k≠0),∵(1,2)、(﹣3,4),∴,解得.∴直线的解析式为y=﹣x+,∴此直线与坐标轴的交点为(0,),(5,0),∴直线与坐标轴围成的图形的面积=×5×=.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.27.一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=O B.求:(1)这两个函数的表达式;(2)△AOB的面积S.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先根据待定系数法确定正比例函数解析式为y=x;再利用两点间的距离公式计算出OA=5,则B点坐标为(0,﹣5),然后根据待定系数法确定直线AB的解析式;(2)根据三角形面积公式求解.【解答】解:(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,﹣5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,﹣5)代入得,解得,∴直线AB的解析式为y=3x﹣5;(2)△AOB的面积S=×5×3=.【点评】本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.28.已知直线m 经过两点(1,6)、(﹣3,﹣2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,﹣2),且与y 轴交点的纵坐标是﹣3,它和x 轴、y 轴的交点是D 、C ;(1)分别写出两条直线解析式,并画草图;(2)计算四边形ABCD 的面积;(3)若直线AB 与DC 交于点E ,求△BCE 的面积.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)利用待定系数法可分别求出直线AB 的解析式为y =2x +4;直线AB 的解析式为y =x ﹣3;然后利用两点确定一直线画函数图象;(2)利用坐标轴上点的坐标特征确定A 点坐标为(0,4)=B 点坐标为(﹣2,0)、D 点坐标为(6,0),然后根据三角形面积公式和四边形ABCD 的面积=S △ABD +S △CBD 进行计算;(3)根据一次函数的交点问题通过解方程组得到E 点坐标,然后利用△BCE 的面积=S △EBD ﹣S △CBD 进行计算.【解答】解:(1)设直线AB 的解析式为y =kx +b ,把(1,6)、(﹣3,﹣2)代入得, 解得. 所以直线AB 的解析式为y =2x +4;设直线CD 的解析式为y =mx +n ,把(2,﹣2)、(0,﹣3)代入得,解得,所以直线AB 的解析式为y =x ﹣3;如图所示;(2)把x =0代入y =2x +4得y =4,则A 点坐标为(0,4);把y =0代入y =2x +4得2x +4=0,解得x =﹣2,则B 点坐标为(﹣2,0);把y =0代入y =x ﹣3得x ﹣3=0,解得x =6,则D 点坐标为(6,0),所以四边形ABCD 的面积=S △ABD +S △CBD =×(6+2)×4+×(6+2)×3=28;(3)解方程组得,所以E 点坐标为(﹣,﹣),所以△BCE 的面积=S △EBD ﹣S △CBD=×(6+2)×﹣×(6+2)×3 =.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.29.已知,A 、B 分别是x 轴上位于原点左、右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =6.(1)求△COP 的面积;(2)求点A 的坐标和m 的值;(3)若S △BOP =S △DOP ,求直线BD 的函数解析式.【考点】两条直线相交或平行问题.【专题】代数几何综合题;待定系数法.【分析】(1)已知P 的横坐标,即可知道△OCP 的边OC 上的高长,利用三角形的面积公式即可求解;(2)求得△AOC 的面积,即可求得A 的坐标,利用待定系数法即可求得AP 的解析式,把x =2代入解析式即可求得p 的值;(3)设直线BD 的解析式为y =kx +b (a ≠0),再把P (2,3)代入得出2k +b =3,故可得出D (0,b ),B (﹣,0),再根据三角形的面积公式即可得出结论.【解答】解:(1)作PE ⊥y 轴于E ,∵P 的横坐标是2,则PE =2.∴S △COP =OC •PE =×2×2=2;(2)∴S △AOC =S △AOP ﹣S △COP =6﹣2=4,∴S △AOC =OA •OC =4,即×OA ×2=4, ∴OA =4,∴A 的坐标是(﹣4,0).设直线AP 的解析式是y =kx +b ,则,解得:.则直线的解析式是y =x +2.当x =2时,y =3,即m =3;(3)设直线BD 的解析式为y =ax +c (a ≠0),∵P (2,3),∴2a +c =3,∴D (0,c ),B (﹣,0),∵S △BOP =S △DOP ,∴OD •2=OB •3,即c =﹣,解得a =﹣,∴c =6,∴BD 的解析式是:y =﹣x +6.【点评】本题考查了三角形的面积与一次函数待定系数求函数解析式的综合应用,正确求得A 的坐标是关键.30.如图,已知l 1:y =2x +m 经过点(﹣3,﹣2),它与x 轴,y 轴分别交于点B 、A ,直线l 2:y =kx +b 经过点(2,﹣2)且与y 轴交于点C (0,﹣3),与x 轴交于点D .(1)求直线l 1,l 2的解析式;(2)若直线l 1与l 2交于点P ,求S △ACP :S △ACD 的值.【考点】两条直线相交或平行问题.【分析】(1)利用待定系数法求得两直线的解析式即可;(2)观察两个三角形,它们具有相同的底边,因此它们面积的比就是它们高的比,即点P和点D 横坐标绝对值的比.【解答】解:(1)∵l1:y=2x+m经过点(﹣3,﹣2),∴﹣2=2×(﹣3)+m,解得:m=4,∴l1:y=2x+4;∵l2:y=kx+b经过点(2,﹣2)且与y轴交于点C(0,﹣3),∴解得:k=,b=﹣3,∴l2:y=x﹣3;(2)令,解得:,∴点P(﹣,),∵△ACP和△ABD同底,∴面积的比等于高的比,∴S △ACP :S △ACD =PM :DO =:6=7:9.【点评】本题考查了两条直线平行或相交的问题,解题的关键是求得两条直线的解析式.31.如图,已知点A (2,4),B (﹣2,2),C (4,0),求△ABC 的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【专题】计算题.【分析】先利用待定系数法求直线AB 的解析式,再确定直线AB 与x 轴的交点D 的坐标,然后根据三角形面积公式和以S △ABC =S △ACD ﹣S △BDC 进行计算.【解答】解:设直线AB 的解析式为y =kx +b ,把A (2,4)、B (﹣2,2)代入得,解得.所以直线AB 的解析式为y =x +3,当y =0时,y =x +3=0,解得x =﹣6,则D 点坐标为(﹣6,0),所以S △ABC =S △ACD ﹣S △BDC=×(4+6)×4﹣×(4+6)×2 =10.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ;将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.。
北师大版数学八年级上册第四章《一次函数》检测题(解析版)

第四章《一次函数》检测题一.选择题1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x表示行走的时间(小时),y 表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x﹣3(x≥)C.y=3﹣4x(x≥0)D.y=3﹣4x(0≤x≤)3.函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣14.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>05.若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.6.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y 的值是()A.5B.10C.19D.217.若式子+(m﹣1)0有意义,则一次函数y=(m﹣1)x+1﹣m的图象可能()A.B.C.D.8.已知一次函数=kx+b(k,b为常数,k≠0)的图象经过一、三、四象限,则下列结论正确的是()A.kb>0B.kb<0C.k+b>0D.k+b<09.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.410.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y211.如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为()A.B.C.2D.412.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题13.函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.14.在平面直角坐标系中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=,则点P(3,﹣3)到直线y=﹣x+的距离为.15.已知一次函数y=(k﹣3)x+1的图象经过第一、二、四象限,则k的取值范围是.16.在平面直角坐标系中,A,B,C三点的坐标分别为(4,0),(4,4),(0,4),点P在x轴上,点D在直线AB上,若DA=1,CP⊥DP于点P,则点P的坐标为.17.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是.18.甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.三、解答题19.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k 与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.20.甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地.甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.(1)m=,n=;(2)求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;(3)当甲车到达B地时,求乙车距B地的路程.21.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米)与轿车所用的时间x(小时)的关系如图所示,请结合图象解答下列问题:(1)货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2)求轿车距其出发地的距离y(千米)与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA 和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.已知:一次函数y=(3﹣m)x+m﹣5.(1)若一次函数的图象过原点,求实数m的值;(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.(3)当一次函数的图象不经过第二象限时,求实数m的取值范围.(4)当y随x的增大而增大时,求m的取值范围.24.如图,直线y=kx+3与x轴、y轴分别相交于E,F.点E的坐标为(﹣6,0),点P是直线EF上的一点.(1)求k的值;(2)若△POE的面积为6,求点P的坐标.答案与解析一.选择题(共24小题)1.分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.分析:根据路程=速度×时间,容易知道y与x的函数关系式.解:根据题意得:全程需要的时间为:3÷4=(小时),∴y=3﹣4x(0≤x≤).故选:D.3.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.4.分析:由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.5.分析:利用ab<0,且a>b得到a>0,b<0,然后根据一次函数图象与系数的关系进行判断.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.6.分析:把x=7代入程序中计算,根据y值相等即可求出b的值,再将x=﹣8代入y=﹣2x+3中即可得出结论解:当x=7时,可得,可得:b=3,当x=﹣8时,可得:y=﹣2×(﹣8)+3=19,故选:C.7.分析:根据非负性得出m﹣1≥0,m﹣1≠0,进而利用一次函数的性质解答即可.解:由题意可得m﹣1≥0,m﹣1≠0,解得:m>1,∴m﹣1>0,1﹣m<0,所以一次函数y=(m﹣1)x+1﹣m的图象经过一,三,四象限,故选:A.8.分析:根据一次函数经过一、三、四象限,可知k>0,b<0,即可求得答案;解:=kx+b的图象经过一、三、四象限,∴k>0,b<0,∴kb<0;故选:B.9.分析:利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可;解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.10.分析:根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.11.分析:由一次函数解析式分别求出点A和点B的坐标,即可作答.解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=故选:A.12.分析:根据图象与纵轴的交点可得出A、B两地的距离,而s=0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.解:由图象可知A村、B村相离10km,故①正确,当1.25h时,甲、乙相距为0km,故在此时相遇,故②正确,当0≤t≤1.25时,易得一次函数的解析式为s=﹣8t+10,故甲的速度比乙的速度快8km/h.故③正确当1.25≤t≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s=kt+b代入得,解得∴s=8t+10当s=2时.得2=8t﹣10,解得t=1.5h由1.5﹣1.25=0.25h=15min同理当2≤t≤2.5时,设函数解析式为s=kt+b将点(2,6)(2.5,0)代入得,解得∴s=﹣12t+30当s=2时,得2=﹣12t+30,解得t=由﹣1.25=h=65min故相遇后,乙又骑行了15min或65min时两人相距2km,④正确.故选:D.二、填空题:13.分析:三角形ABC的找法如下:①以点A为圆心,AB为半径作圆,与x轴交点即为C;②以点B为圆心,AB 为半径作圆,与x轴交点即为C;③作AB的中垂线与x轴的交点即为C;解:以点A为圆心,AB为半径作圆,与x轴交点即为C;以点B为圆心,AB为半径作圆,与x轴交点即为C;作AB的中垂线与x轴的交点即为C;故答案为4;14.分析:根据题目中的距离公式即可求解.解:∵y=﹣x+∴2x+3y﹣5=0∴点P(3,﹣3)到直线y=﹣x+的距离为:=,故答案为:.15.分析:根据y=kx+b,k<0,b>0时,函数图象经过第一、二、四象限,则有k﹣3<0即可求解;解:y=(k﹣3)x+1的图象经过第一、二、四象限,∴k﹣3<0,∴k<3;故答案为k<3;16.分析:先由已知得出D1(4,1),D2(4,﹣1),然后分类讨论D点的位置从而依次求出每种情况下点P的坐标.解:∵A,B两点的坐标分别为(4,0),(4,4)∴AB∥y轴∵点D在直线AB上,DA=1∴D1(4,1),D2(4,﹣1)如图:(Ⅰ)当点D在D1处时,要使CP⊥DP,即使△COP1~△P1AD1∴即解得:OP1=2∴P1(2,0)(Ⅱ)当点D在D2处时,∵C(0,4),D 2(4,﹣1)∴CD2的中点E(2,)∵CP⊥DP∴点P为以E为圆心,CE长为半径的圆与x轴的交点设P(x,0),则PE=CE即解得:x=2±2∴P2(2﹣2,0),P3(2+2,0)综上所述:点P的坐标为(2,0)或(2﹣2,0)或(2+2,0).17.分析:根据已知条件得到A(,0),B(0,﹣1),求得OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,得到AB=AF,根据全等三角形的性质得到AE=OB=1,EF=OA=,求得F(,﹣),设直线BC的函数表达式为:y=kx+b,解方程组于是得到结论.解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B,∴令x=0,得y=﹣1,令y=0,则x=,∴A(,0),B(0,﹣1),∴OA=,OB=1,过A作AF⊥AB交BC于F,过F作FE⊥x轴于E,∵∠ABC=45°,∴△ABF是等腰直角三角形,∴AB=AF,∵∠OAB+∠ABO=∠OAB+∠EAF=90°,∴∠ABO=∠EAF,∴△ABO≌△F AE(AAS),∴AE=OB=1,EF=OA=,∴F(,﹣),设直线BC的函数表达式为:y=kx+b,∴,∴,∴直线BC的函数表达式为:y=x﹣1,故答案为:y=x﹣1.18.分析:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解.解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三.解答题(共6小题)19.分析:(1)令x=0,y=1,直线l与y轴的交点坐标(0,1);(2)①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点;②当x=k+1时,y=﹣k+1,则有k2+2k=0,k=﹣2,当0>k≥﹣1时,W内没有整数点;解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(﹣,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式y=kx+1,当x=k+1,y=﹣k+1,则有k2+2k=0,∴k=﹣2;当﹣1≤k<0时,W内没有整数点,∴当k=﹣2或﹣1≤k<0时,W内没有整数点;20.分析:(1)观察图象即可解决问题;(2)运用待定系数法解得即可;(3)把x=3代入(2)的结论即可.解:(1)根据题意可得m=2×2=4,n=280﹣2(280÷3.5)=120;故答案为:4;120;(2)设y关于x的函数解析式为y=kx(0≤x≤2),因为图象经过(2,120),所以2k=120,解得k=60,所以y关于x的函数解析式为y=60x,设y关于x的函数解析式为y=k1x+b(2≤x≤4),因为图象经过(2,120),(4,0)两点,所以,解得,所以y关于x的函数解析式为y=﹣60x+240(2≤x≤4);(3)当x=3.5时,y=﹣60×3.5+240=30.所以当甲车到达B地时,乙车距B地的路程为30km.21.分析:(1)观察图象即可解决问题;(2)分别求出得A、B、C的坐标,运用待定系数法解得即可;(3)根据题意列方程解答即可.解:(1)车的速度是50千米/小时;轿车的速度是:480÷(7﹣1)=80千米/小时;t=240÷80=3.故答案为:50;80;3;(2)由题意可知:A(3,240),B(4,240),C(7,0),设直线OA的解析式为y=k1x(k1≠0),∴y=80x(0≤x≤3),当3≤x≤4时,y=240,设直线BC的解析式为y=k2x+b(k≠0),把B(4,240),C(7,0)代入得:,解得,∴y=﹣80x+560,∴y=;(3)设货车出发x小时后两车相距90千米,根据题意得:50x+80(x﹣1)=400﹣90或50x+80(x﹣2)=400+90,解得x=3或5.答:货车出发3小时或5小时后两车相距90千米.22.分析:(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.分析:(1)把(0,0)代入函数解析式求得m的值即可;(2)、(3)由一次函数图象与系数的关系解答;(4)由一次函数图象的增减性解答.解:(1)把原点(0,0)代入,得m﹣5=0解得m=5;(2)由题意,得.解得3<m<5;(3)由题意,得.解得m<3;(4)由题意,得3﹣m>0.解得m<3.24.分析:(1)将点E的坐标代入即可求出k的值,(2)确定直线的关系式,若△POE的面积为6,以OE=6为底,因此高为2,即点P的纵坐标为2或﹣2,然后代入直线的关系式求出点P的坐标.解:(1)把E的坐标为(﹣6,0)代入直线y=kx+3得,﹣6k+3=0,解得:k=,答:k的值为.(2)设P(x,y),∵S△POE=OE•|y|=×6×|y|=6,∴|y|=2,即y=2,或y=﹣2,当y=2时,即2=x+3,解得:x=﹣2,∴P(﹣2,2)当y=﹣2时,即﹣2=x+3,解得:x=﹣10,∴P(﹣10,﹣2)答:点P的坐标为(﹣2,2)或(﹣10,﹣2)。
北师大版八年级数学上册《第4章一次函数》单元测试含答案

第4章一次函数一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B. C.D.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.11.函数y=的图象为()A.B.C.D.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤314.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣24.已知函数y=,当x=2时,函数值y为()A.5 B.6 C.7 D.825.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.326.如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降二、填空题(共4小题)27.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数关系是y=x+32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是℉.28.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.29.已知函数,那么=.30.如图,根据所示程序计算,若输入x=,则输出结果为.第4章一次函数参考答案与试题解析一、选择题(共26小题)1.2021年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】动点型.【分析】根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.【解答】解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.2.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A. B.C.D.【考点】函数的图象.【分析】根据匀速行驶,可得路程随时间匀速增加,根据原地休息,路程不变,根据加速返回,可得路程随时间逐渐减少,可得答案.【解答】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选:C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.3.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数图象,那么符合小明行驶情况的图象大致是()A.B.C.D.【考点】函数的图象.【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【解答】解:因为开始以正常速度匀速行驶﹣﹣﹣停下修车﹣﹣﹣加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选:D.【点评】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.均匀地向如图的容器中注满水,能反映在注水过程中水面高度h随时间t变化的函数图象是()A.B. C. D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器较粗,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器最小,那么用时最短.故选A.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.5.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A.0 B.C.1 D.【考点】函数的图象.【分析】根据函数图象的纵坐标,可得答案.【解答】解:由函数图象的纵坐标,得故选:B.【点评】本题考查了函数图象,利用了有理数大大小比较.6.某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟【考点】函数的图象.【分析】根据图象可以确定小强离公共汽车站2公里,步行用了多长时间,等公交车时间是多少,两人乘公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得小强从家到公共汽车步行了2公里,故选项正确;B、依题意得小强在公共汽车站等小明用了10分钟,故选项正确;C、公交车的速度为15÷=30公里/小时,故选项正确.D、小强和小明一起乘公共汽车,时间为30分钟,故选项错误;故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.7.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t (小时)之间的函数图象是()A. B.C. D.【考点】函数的图象.【专题】压轴题.【分析】根据出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米;经过三小时,货车到达乙地距离变为零,故而得出答案.【解答】解:由题意得出发前都距离乙地180千米,出发两小时小汽车到达乙地距离变为零,再经过两小时小汽车又返回甲地距离又为180千米,经过三小时,货车到达乙地距离变为零,故C符合题意,故选:C.【点评】本题考查了函数图象,理解题意并正确判断辆车与乙地的距离是解题关键.8.如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】立方体的上下底面为正方形,立方体的高为x,则得出y﹣x=2x,再得出图象即可.【解答】解:正方形的边长为x,y﹣x=2x,∴y与x的函数关系式为y=x,故选:B.【点评】本题考查了一次函数的图象和综合运用,解题的关键是从y﹣x等于该立方体的上底面周长,从而得到关系式.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】生活中比较运动快慢通常有两种方法,即比较相同时间内通过的路程多少或通过相同路程所用时间的多少,但统一的方法是直接比较速度的大小.【解答】解:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B符合要求.故选B.【点评】此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.10.如图,挂在弹簧称上的长方体铁块浸没在水中,提着弹簧称匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧称的读数F(N)与时间t(s)的函数图象大致是()A.B. C. D.【考点】函数的图象.【专题】压轴题.【分析】开始一段的弹簧称的读数保持不变,当铁块进入空气中的过程中,弹簧称的读数逐渐增大,直到全部进入空气,重量保持不变.【解答】解:根据铁块的一点过程可知,弹簧称的读数由保持不变﹣逐渐增大﹣保持不变.故选:A.【点评】本题考查了函数的概念及其图象.关键是根据弹簧称的读数变化情况得出函数的图象.11.函数y=的图象为()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】从x<0和x>0两种情况进行分析,先化简函数关系式再确定函数图象即可.【解答】解:当x<0时,函数解析式为:y=﹣x﹣2,函数图象为:B、D,当x>0时,函数解析式为:y=x+2,函数图象为:A、C、D,故选:D.【点评】本题考查的是函数图象,利用分情况讨论思想把函数关系式进行正确变形是解题的关键,要能够根据函数的系数确定函数的大致图象.12.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是下图中的()A.B.C.D.【考点】函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为C.故选C.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.13.如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A.﹣3≤y≤3B.0≤y≤2C.1≤y≤3D.0≤y≤3【考点】函数的图象.【分析】根据图象,找到y的最高点是(﹣2,3)及最低点是(1,0),确定函数值y的取值范围.【解答】解:∵图象的最高点是(﹣2,3),∴y的最大值是3,∵图象最低点是(1,0),∴y的最小值是0,∴函数值y的取值范围是0≤y≤3.故选:D.【点评】本题考查了函数的图象,解答本题的关键是会观察图象,找到y的最高点及最低点.14.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.15.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h随时间x变化的函数图象最接近实际情况的是()A.B.C.D.【考点】函数的图象.【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【解答】解:圆柱的直径较长,圆柱的高较低,水流下降较慢;圆柱的直径变长,圆柱的高变低,水流下降变慢;圆柱的直径变短,圆柱的高变高,水流下降变快.故选:A.【点评】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低.16.如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h随注水时间t变化规律的是()A.B. C.D.【考点】函数的图象.【分析】由于三个容器的高度相同,粗细不同,那么水面高度h随时间t变化而分三个阶段.【解答】解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h随时间t的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短.故选B.【点评】此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.17.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【专题】压轴题;数形结合.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l 与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.【点评】此题主要考查了函数图象以及中心投影的性质,得出l随S的变化规律是解决问题的关键.18.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,所以前1小时路程随时间增大而增大,后来以100千米/时的速度匀速行驶,路程的增加幅度会变大一点.据此即可选择.【解答】解:由题意知,前1小时路程随时间增大而增大,1小时后路程的增加幅度会变大一点.故选:C.【点评】本题主要考查了函数的图象.本题的关键是分析汽车行驶的过程.19.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.【解答】解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.20.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米【考点】函数的图象.【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.21.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【专题】行程问题.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.【点评】此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.22.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x千克,付款金额为y元,则y与x的函数关系的图象大致是()A. B.C.D.【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y元随购买种子数量为x千克增大而增大,超过2千克的部分打6折,y仍随x的增大而增大,不过增加的幅度低一点,故选:B.【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.23.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.。
北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)

北师大版八年级数学上册第4章《一次函数》单元测试题(含答案)一、单选题1.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-2.下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x =D .5x y = 3.在函数23y x =-中,当自变量5x =时,函数值等于( )A .1B .4C .7D .134.如图,在平面直角坐标系中,线段AC 所在直线的解析式为4y x =-+,E 是AB 的中点,P 是AC 上一动点,则PB PE +的最小值是( )A .42B .22C .25D .55.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,关于x 的方程x +5=ax +b 的解是( )A .x =20B .x =25C .x =20或25D .x =﹣20 6.点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( )A .-15B .15C .35D .53- 7.已知某汽车耗油量为0.1L/km ,油箱中现有汽油50L .如果不再加油,记此后汽车行驶的路程为x km ,油箱中的油量为y L .则此问题中的常量和变量是( )A .常量50;变量x .B .常量0.1;变量y .C .常量0.1,50;变量x ,y .D .常量x ,y ;变量0.1,50.8.一次函数y =(a +1)x +a +2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣19.已知,甲、乙两地相距720米,甲从A 地去B 地,乙从B 地去A 地,图中分别表示甲、乙两人离B 地的距离y (单位:米),下列说法正确的是( )A .乙先走5分钟B .甲的速度比乙的速度快C .12分钟时,甲乙相距160米D .甲比乙先到2分钟 10.函数13y x =+中自变量x 的取值范围是( ) A .3x >- B .3x ≥- C .3x <- D .3x ≠-11.汽车由A 地驶往相距120km 的B 地,它的平均速度是60km/h ,则汽车距B 地路程s (km )与行驶时间t (h )的关系式为( ).A .12060s t =-B .12060s t =+C .60s t =D .120s t =12.如图所示,一次函数()0y kx b k =+≠的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定二、填空题(共0分)13.一次函数(21)y m x m =-+的函数值y 随x 值的增大而增大,则m 的取值范围是____ ____.14.从﹣1,2,3这三个数中随机抽取两个数分别记为x ,y ,把点M 的坐标记为(x ,y ),若点N 为(﹣4,0),则在平面直角坐标系内直线MN 经过第一象限的概率为___ .15.一个正方形的边长为3cm ,它的边长减少cm x 后,得到的新的正方形周长(cm)y 与(cm)x 之间的函数关系式为124y x =-,自变量x 的取值范围是________ __.16.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是____ __cm .17.方程328x +=的解是x =______,则函数32y x =+在自变量x 等于_______时的函数值是818.如图(a )所示,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP 的面积为y ,如果y 关于x 的关系如图(b )所示,则m 的值是________.19.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .20.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______x x千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额(10)的函数解析式为______.三、解答题21.某天小刚骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续前行,按时赶到学校,如图是小刚从家到学校这段所走的路程s(米)与时间t(分)之间的关系.(1)小刚从家到学校的路程是________米,从家出发到学校,小刚共用了________分;(2)小刚修车用了多长时间;(3)小刚修车前的平均速度是多少?22.已知如图,在平面直角坐标系中,点A(3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B(1,0)和点C都在x轴上,当△ABC的面积是17.5时,求点C的坐标.23.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.24.如图1,在长方形ABCD 中,点P 从点B 出发,沿B →C →D →A 运动到点A 停止.设点P 的运动路程为x ,△P AB 的面积为y ,y 与x 的关系图象如图2所示.(1)AB 的长度为______,BC 的长度为______.(2)求图象中a 和b 的值.(3)在图象中,当m =15时,求n 的值.25.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?26.甲、乙两地之间有一条笔直的公路,小明从甲地出发步行前往乙地,同时小亮从乙地出发骑自行车前往甲地,小亮到达甲地没有停留,按原路原速返回,追上小明后两人一起步行到乙地.如图,线段OA 表示小明与甲地的距离y 1(米)与行走的时间x (分钟)之间的函数关系:折线BCDA 表示小亮与甲地的距离y 2(米)与行走的时间x (分钟)之间的函数关系.请根据图象解答下列问题:(1)小明步行的速度是 米/分钟,小亮骑自行车的速度是 米/分钟;(2)线段OA 与BC 相交于点E ,求点E 坐标;(3)请直接写出小亮从乙地出发到追上小明的过程中,与小明相距100米时x 的值.27.如图1,在Rt △ABC 中,AC =BC ,点D 在AC 边上,以CD 为边在AC 的右侧作正方形CDEF .点P 以每秒1cm 的速度沿F →E →D →A →B 的路径运动,连接BP 、CP ,△BCP 的面积y (2cm )与运动时间x (秒)之间的图象关系如图2所示.(1)求EF 的长度和a 的值;(2)当x =6时,连接AF ,判断BP 与AF 的数量关系,说明理由.28.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过320m 时,按2.5元/ 3m 计费;月用水量超过320m 时,其中320m 仍按2.5元/3m 收费,超过部分按3.2元/ 3m 计费,设每户家庭月用水量为3xm 时,应交水费y 元.(1)分别写出020x ≤≤和20x >时,y 与x 的函数表达式.(2)小明家第二季度缴纳水费的情况 如下:月份四月份 五月份 六月份 交费金额 40元 45元 56.4元小明家第二季度共用水多少立方米?29.一慢车和一快车沿相同路线从A 地到B 地,两车所行的路程s (千米)与慢车行驶的时间x (时)关系如图所示.根据图像解决下列问题:(1)快车比慢车晚 小时出发,快车比慢车早到 小时.快车追上慢车时,快车行驶了 千米.(2)求A 、B 两地相距多少千米?30.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人) 500 10001500 2000 2500 3000 … y (元)3000- 2000- 1000- 01000 2000 … (1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润参考答案1.C2.D3.C4.C5.A6.D7.C8.D9.D10.A11.A12.C13.12m > 14.2315.03x ≤<16.1517. 2 218.519.37.220. 3 42y x =+##24y x =+21.(1)由图象可得,小刚从家到学校的路程共2000米,从家出发到学校,小明共用了20分钟;故答案为:2000,20;(2)小刚修车用了:15-10=5(分钟),答:小刚修车用了5分钟;(3)由图象可得,小刚修车前的速度为:1000÷10=100米/分钟.答:小刚修车前的平均速度是100米/分钟.22.解:(1)设正比例函数的解析式为y kx =,将点(3,7)A 代入得:37k =,解得73k =, 则正比例函数的解析式为73y x =; (2)如图,过点A 作AD x ⊥轴于点D ,(3,7)A ,7AD ∴=,设点C 的坐标为(,0)a ,则1BC a =-,ABC 的面积是175., 117.52BC AD ∴⋅=,即17117.52a ⨯-=, 解得6a =或4a =-,故点C 的坐标为(6,0)或(4,0)-.23.解:(1)∵一次函数y kx b =+与正比例函数3y x =的图象交于点C ,点C 的横坐标为1,∴把x =1代入正比例函数得:3y =,∴点()1,3C ,∴把点()1,5A -、()1,3C 代入一次函数得:53k b k b -+=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩, ∴AB 的函数解析式为4y x =-+;(2)由(1)得:()1,3C ,AB 的函数解析式为4y x =-+, ∴令y =0时,则有4x =,∴点()4,0B ,∴OB =4,令C x 表示点C 的横坐标,C y 表示点C 的纵坐标,则由图象可得:1143622BOC C S OB y =⋅=⨯⨯=, ∵13COD BOC S S =△△, ∴2COD S =, ∴122COD C S OD x =⋅=△, ∴4OD =,∵点D 在y 轴负半轴,∴()0,4D -;(3)由图象可得:当3kx b x +<时,则x 的取值范围为1x >.24.解:由图2知,当x =5时,点P 与C 重合, ∴BC =5,当x =13时,点P 与D 重合,∴BC +CD =13,∴CD =8=AB ,故答案为:8,5;(2)当P 与C 点重合时,b =185202⨯⨯=,当点P 与A 重合时,a =5+8+5=18; (3)∵15m =58>+,∴此时点P 在AD 边上,且AP =3. ∴183122n =⨯⨯=. 25.由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=(h),到达乙地一共:3+3=6(h ),6-4.8=1.2(h),∴轿车比货车早1.2h 时间到达乙地.26.(1)由图可知,小明步行的速度为1500÷30=50(米/分钟),小亮骑车的速度为1500÷10=150(米/分钟),故答案为:50,150;(2)点E的横坐标为:1500÷(50+150)=7.5,纵坐标为:50×7.5=375,即点E的坐标为(7.5,375);(3)小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.理由:两人相遇前,(50+150)x+100=1500,得x=7,两人相遇后,(50+150)x﹣100=1500,得x=8,小亮从甲地到追上小明时,50x﹣100=150(x﹣10),得x=14,即小亮从乙地出发到追上小明的过程中,与小明相距100米时x的值是7,8或14.27.解:当点P在边EF上运动时,y=S△BCP12=BC•PF12=BC×1×x12=BC•x,∵BC为定值,∴y随x的增大而增大,∴当x=3时,y=a,此时EF=1×3=3(cm),当点P在边ED上运动时,点P到BC的距离等于3,y=S△BCP12=BC×332=BC,∴y的值不变,∵四边形FEDC是正方形,∴DE=EF=3cm,∴x331+==6(秒),∴b=6,当点P在DA上运动时,y=S△PBC12=BC•PC,∴y随PC的增大而增大,当点P与点A重合时,即x=8时,y最大,此时AD=8×1﹣3﹣3=2,∴AC=BC=3+2=5(cm),∴a12=BC×EF12=⨯5×3152=;(2)由(1)知,当点x =6时,点P 在点D 处,如图所示:此时,BD =AF ,理由:∵BC =AC ,CD =CF ,∠ACB =∠ACF =90°,∴△BDC ≌△AFC (SAS ),∴BD =AF .28.(1)当020x ≤≤时,1 2.5y x =;当20x >时,()2 2.520 3.220 3.214y x x =⨯+-=-;()2当20x 时,150y =4050,4550,56.450<<>∴四、五月份的月用水量比320m 少,六月份的月用水量比320m 多令140y =,得16x =令145y ,得18x =令256.4y =,得22x =16182256++=(立方米)∴第二季度共用水56立方米29.解:由图像可得,慢车比快车晚2小时出发,快车比慢车早到18﹣14=4(小时),快车追上慢车时,快行驶了276千米,故答案为:2,4,276;(2)解:由图像可得,慢车的速度为:276÷6=46(千米/时),46×18=828(千米),答:A 、B 两地相距828千米.30.解:(1)在这个变化过程中,每月的乘车人数x 是自变量,每月的利润y 是因变量; 故答案为每月的乘车人数x ,每月的利润y ;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元, 当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;故答案为3000;(4)设y 与x 的表达式为y=kx+b ,则依题意得:500300020000x b x b +=-⎧⎨+=⎩解得:24000k b =⎧⎨=-⎩ ∴y 与x 的表达式为24000y x =-;当5000y =时,500024000x =-.解得4500x =.答:5月乘车人数为4500人时,可获得利润5000元。
北师大版八年级上册数学第4章《一次函数》 单元测试卷(含答案)

北师大版八年级上册数学第4章《一次函数》单元测试卷一.选择题1.下列函数:①y=;②y=﹣;③y=3﹣x;④y=3x2﹣2.其中是一次函数的有()A.4个B.3个C.2个D.1个2.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.3.下列函数中,y是x的正比例函数的是()A.y=4x+1 B.y=C.y=﹣x D.y=4.用总长50m米的篱笆围成矩形场地,矩形面积S(m2)与一边长l(m)之间的关系式为S =l(25﹣l),那么下列说法正确的是()A.l是常量,S是变量,S是l的函数B.25是常量,S与l是变量,l是S的函数C.25是常量,S与l是变量,S是l的函数D.l是变量,25是常量,l是S的函数5.直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.直线y=﹣2x+6与两坐标轴围成的三角形的面积是()A.8 B.6 C.9 D.27.一次函数y=kx+2的图象沿直线y=x平移4个单位长度后经过原点,则k的值为()A.B.C.或D.或8.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表,下面能表示日销售量y(件)与销售价x(元)的关系式是()x(元)15 20 25 …y(件)25 20 15 …A.y=x+15 B.y=﹣x+15 C.y=x+40 D.y=﹣x+409.在平面直角坐标系xOy中,将横纵坐标之积为1的点称为“好点”,则函数y=|x|﹣3的图象上的“好点”共有()A.1个B.2个C.3个D.4个10.生物活动小组的同学们观察某植物生长,得到该植物高度y(单位:cm)与观察时间x (单位:天)的关系,并画出如图所示的图象(CD∥x轴),该植物最高的高度是()A.50cm B.20cm C.16cm D.12cm二.填空题11.已知一次函数y=(m+4)x+2m+2,无论m取何值时,它的图象恒过的定点P,求点P 的坐标.若m为整数,又知它的图象不过第四象限,则m的最小值为.12.将一次函数y=3x的图象向上平移2个单位的长度,平移后的直线与x轴的交点坐标为.13.已知函数y=x+m﹣2019(m常数)是正比例函数,则m=.14.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表所示.如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为.数量(千0.5 1 1.5 2 2.5 3 3.5 …克)售价(元) 1.5 3 4.5 6 7.5 9 10.5 …15.甲,乙两人在一次赛跑中,路程S与时间t的关系如图所示,那么可以知道:(1)这是一次米赛跑;(2)乙在这次赛跑中的速度为米/秒.三.解答题16.已知正比例函数y=kx(k≠0)的图象过点(﹣1,2).(1)求此函数的表达式;(2)在同一直角坐标系内画出(1)中所得函数和函数y=x﹣2的图象.17.甲乙两位老师同住一小区,该小区与学校相距2000米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为170米/分,甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x(分),图1中线段OA与折线B﹣C﹣D分别表示甲、乙离小区的路程y(米)与甲步行时间x(分)的函数关系的图象;图2表示甲、乙两人之间的距离s(米)与甲步行时间x(分)的函数关系的图象(不完整).根据图1和图2中所给的信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求直线BC的解析式;(3)在图2中,画出当20≤x≤25时,s关于x的函数的大致图象.18.直线l:y=x﹣1分别交x轴,y轴于A,B两点,(1)求线段AB的长;(2)如图,将l沿x轴正方向平移,分别交x轴,y轴于E,F两点,若直线EF上存在两点C,D,使四边形ABCD为正方形,求此时E点坐标和直线AD的解析式;(3)在(2)的条件下,将EF绕E点旋转,交直线l于P点,若∠OAB+∠OEP=45°,求P点的坐标.19.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟,乙的速度为米/分钟;(2)图中点A的坐标为;(3)求线段AB所直线的函数表达式;(4)在整个过程中,何时两人相距400米?20.已知在平面直角坐标系中,点Q的坐标为(4,0),点P是直线y=﹣1.5x+3上在第一象限内的一点,设点P的坐标是(x,y),△OPQ的面积为S.(1)求S与x函数关系式,并写出这个函数自变量的取值范围.(2)当点P的坐标为何值时,△OPQ的面积等于直线y=﹣1.5x+3与坐标轴围成的三角形面积的一半?参考答案一.选择题1.解:由题可得,是一次函数的有:①y=;③y=3﹣x,∴一次函数有2个,故选:C.2.解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.3.解:对于y=﹣x,y是x的正比例函数.故选:C.4.解:在S=l(25﹣l)中,25是常量,S与l是变量,S是l的函数.故选:C.5.解:∵直线y=﹣x+1中,k=﹣1<0,b=1>0,∴直线的图象经过第一,二,四象限.∴不经过第三象限,故选:C.6.解:在直线y=﹣2x+6中,当x=0时,y=6;当y=0时,x=3;∴直线y=﹣2x+6与坐标轴交于(0,6),(3,0)两点,∴直线y=﹣2x+6与两坐标轴围成的三角形面积=×6×3=9.故选:C.7.解:一次函数y=kx+2的图象沿直线y=x平移4个单位长度后所得的一次函数为y =k(x﹣4)+2+4或为y=k(x+4)+2﹣4,∵平移后经过原点,∴把(0,0)代入求得k=或,故选:C.8.解:由题可得,销售量y(件)与销售价x(元)的关系式是y=25﹣,即y=﹣x+40,故选:D.9.解:设函数y=|x|﹣3的图象上的“好点”的坐标为(x,y),当x≥0时,则y=x﹣1,所以,x(x﹣3)=1,解得:x1=(不合题意,舍去),x2=;当x<0时,则y=﹣x﹣3,所以,x(﹣x﹣3)=1,解得:x3=,x4=.∴函数y=|x|﹣3的图象上的“好点”共有3个.故选:C.10.设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴,解得.所以,直线AC的解析式为y=x+6(0≤x≤50),当x=50时,y=×50+6=16cm.故选:C.二.填空题(共5小题)11.解:由y=(m+4)x+m+2,得y=m(x+1)+4x+2;∵直线y=(m+4)x+m+2无论m取何值时恒经过定点P,∴x+1=0,即x=﹣1,∴y=﹣4+2=﹣2,即y=﹣2,∴直线y=(m+4)x+m+2无论m取何值时恒经过的定点坐标为(﹣1,﹣2);若该函数不经过第四象限,则,解得m≥﹣1;∴m的最小值为﹣1;故答案是:(﹣1,﹣2);﹣1.12.解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位长度所得函数的解析式为y=3x+2,∵此时与x轴相交,则y=0,∴3x+2=0,即x=﹣,∴点坐标为(﹣,0),故答案为(﹣,0).13.解:由题意得:m﹣2019=0,解得:m=2019,故答案为:2019.14.解:由图表可知,香蕉数量(千克)与售价(元)之间的关系满足一次函数关系,设一次函数解析式为y=kx+b,把(1,3)与(2,6)代入上式,得,解得,香蕉数量(千克)与售价(元)之间的关系满足一次函数关系为y=3x.故答案为:y=3x.15.解:(1)这是一次100米赛跑;(2)乙在这次赛跑中的速度为:100÷12.5=8(米/秒).故答案为:(1)100;(2)8.三.解答题(共5小题)16.解:(1)∵点(﹣1,2)在正比例函数y=kx的图象上,∴2=﹣k,即:k=﹣2,∴函数的表达式为:y=﹣2x;(2)列表:x…0 1 …y=﹣2x…0 ﹣2 …y=x﹣2 …﹣2 ﹣1 …描点、连线:17.解:(1)由图可知,甲步行的速度为:2000÷25=80(米/分),乙出发时甲离开小区的路程是80×10=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)(20﹣10)×170=1700(米),则点C的坐标为(20,1700),设直线BC对应的解析式为y=kx+b,,得,即直线BC的解析式为y=170x﹣1700;(3)∵甲步行的速度比乙步行的速度每分钟快5米,甲步行的速度是80米/分,∴乙步行的速度为80﹣5=75(米/分),则乙到达学校的时间为:20+(2000﹣1700)÷75=24(分钟),当乙到达学校时,甲离学校的距离是:80×(25﹣24)=80(米),则当20≤x≤25时,s关于x的函数的大致图象如下图所示:18.解:(1)令x=0,则y=﹣1,B(0,﹣1),令y=0,则x=2,∴A(2,0),∴AB==.(2)过点C作CG⊥OF于G,∵∠ABC=∠CGB=∠AOB=90°,∴∠CBG=∠BAO,∵AB=BC,∴△AOB≌△BGC(AAS),∴CG=OB=1,BG=OA=2,∴C(1,﹣3),过点D作DH⊥AE于H,同理可得,D(3,﹣2),设EF:y=kx+b,将C(1,﹣3),D(3,﹣2)代入y=kx+b中,得,解得:,∴直线EF的解析式为y=x﹣.令y=0,则y=x﹣=0,解得:x=7,∴E(7,0),设直线AD的解析式为y=k'x+b',∵A(2,0),D(3,﹣2),∴,∴,∴直线AD的解析式为y=﹣2x+4,(3)①当P在x轴上方时,设P(t,t﹣1),过点E作EQ⊥EP交AP于Q,∴∠OAB=∠PAE,∠OAB+∠OEP=45°,∴∠EPQ=45°,过点P作PG⊥x轴于G,过点Q作QH⊥x轴于H,∴PE=EQ,∵∠PGE=∠QHE=90°,∠PEG=∠EQH,∴△PEG≌△EQH(AAS),∴PG=EH,EG=QH=7﹣t,∴OH=OE+EH=7+=,∴Q(t+6,7﹣t),将Q(t+6,7﹣t),代入y=x﹣1中,得(t+6)﹣1=7﹣t,解得t=4,∴P(4,1).②当P在x轴下方时,可得点P关于x轴的对称点为N(4,﹣1),求得直线EN的解析式为y=,∴,解得:.∴P(﹣8,﹣5).综合以上可得点P的坐标为P(4,1)或(﹣8,﹣5).19.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).故答案为:24,40,60;(2)乙从图书馆回学校的时间为2400÷60=40(分钟),40×40=1600,∴A点的坐标为(40,1600).故答案为:(40,1600);(3)设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t;(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),②走过:(2400+400)÷100=28(分钟),∴在整个过程中,第20分钟和28分钟时两人相距400米.20.解:令x=0,则y=﹣1.5×0+3=3;令y=0,则﹣1.5x+3=0,解得:x=2.∴直线y=﹣1.5x+3与坐标轴的交点坐标为(0,3)和(2,0).∵点P是直线y=﹣1.5x+3上在第一象限内的一点,∴0<x<2,0<y<3.(1)∵S=2y,且y=﹣1.5x+3,∴S=2•(﹣1.5x+3)=﹣3x+6(0<x<2);(2)直线y=﹣1.5x+3与坐标轴围成的三角形面积为×3×2=3.∵S=2y=×3,解得:y=,此时=﹣1.5x+3,解得:x=.即点P的坐标为(,).故当点P的坐标为(,)时,△OPQ的面积等于直线y=﹣1.5x+3与坐标轴围成的三角形面积的一半.。
(常考题)北师大版初中数学八年级数学上册第四单元《一次函数》检测卷(含答案解析)

一、选择题1.A,B两地相距12千米,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF分别表示甲乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系,且OP与EF交于点M,下列说法:①y乙=-2x+12;②线段OP 对应的y甲与x的函数关系式为y甲=18x;③两人相遇地点与A地的距离是9km;④经过3 8小时或58小时时,甲乙两个相距3km.其中正确的个数是()A.1个B.2个C.3个D.4个2.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154其中正确的结论有()A.1个B.2个C.3个D.4个3.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A.B.C.D.4.如图①,正方形ABCD中,点P以恒定的速度从点A出发,沿AB→BC的路径运动,到点C停止.过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(秒)的函数图象如图②所示.当点P运动3秒时,△APQ的面积为()A.6cm2B.4cm2C.262cm D.42cm25.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A .1个B .2个C .3个D .4个6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y (升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家.如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min8.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )A .22B .22.5C .23D .259.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④10.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( ) A .y=x+2B .22y x =+ C .y=4x-12D .33y x =-11.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .12.已知函数y =kx+b 的图象如图所示,则y =2kx+b 的图象可能是( )A .B .C .D .二、填空题13.如图,点A (6,0),B (0,2),点P 在直线y =-x -1上,且∠ABP =45°,则点P 的坐标为_____________14.如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.15.已知直线y =13x +2与函数y =()()1111x x x x ⎧+≥-⎪⎨--<-⎪⎩的 图象交于A ,B 两点(点A 在点B 的左边).(1)点A 的坐标是_____;(2)已知O 是坐标原点,现把两个函数图象水平向右平移m 个单位,点A ,B 平移后的对应点分别为A ′,B ′,连结OA ′,OB ′.当m =_____时,|OA '﹣OB '|取最大值.16.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为____________.17.将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______. 18.将直线2y x =向下平移1个单位,得到直线___________.19.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______. 20.已知,函数y =3x +b 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1_____y 2(填“>”“<”或“=”)三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C . (1)求点C 的坐标; (2)求△OBC 的面积.22.如图1,O 的直径4cm AB =,C 为线段AB 上一动点,过点C 作AB 的垂线交O 于点D ,E ,连接AD ,AE .设AC 的长为cm x ,ADE 的面积为2cm y .小华根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.下面是小华的探究过程,请帮助小华完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y与x的几组对应值,如下表:x00.51 1.52 2.53 3.54 /cm2y00.7 1.7 2.9a 4.8 5.2 4.60 /cma(2)如图2,建立平面直角坐标系xOy,描出表中各对应点,画出该函数的大致图像;(3)结合画出的函数图像,直接写出当ADE的面积为24cm时AC的长约为多少(结果保留一位小数).23.已知一次函数y=kx+b.当x=-3时,y=-8;当x=0时,y=-4.(1)求该一次函数的表达式;(2)求该函数的图像与坐标轴围成的图形的面积.24.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为 km/h;乙车速度为 km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图像;②从两车同时从C地出发到两车同时到达B地的,整个过程中,两车之间的距离何时为80km?25.如图,直线l与x轴交于点A,与y轴交于点B(0,2).已知点C(﹣1,3)在直线l上,连接OC.(1)求直线l的解析式;(2)点P为x轴上一动点,若△ACP的面积与△AOB的面积相等,求点P的坐标.26.已知某大酒店有三人间和双人间两种客房,凡团体入住,三人间每人每天100元、双人间每人每天150元.现有一个50人的旅游团到该酒店住宿.(1)如果每个客房正好住满,并且一天一共花去住宿费6300元.求入住的三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式;(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求房间正好被住满的,并使住宿费用最低,请写出设计方案,并求出最低的费用.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】①根据函数图像中的数据可以求得y 乙与x 的函数关系式;②根据函数图像中的数据可以求得线段OP 对应的y 甲与x 的函数关系式,进而可求得两人相遇时距离A地的距离;③根据①和②中的函数关系式,可求得两人相距3km 时所用的时间. 【详解】(1)设y 乙与x 的函数关系式为:y 乙=ax +b , 把(0,12)和(2,0)代入得:1220b a b =⎧⎨+=⎩解得:612a b =-⎧⎨=⎩,可得y 乙=-6x +12,故①错误;(2)设线段OP 对应的y 甲与x 的函数关系式为:y kx =甲, 把x =0.5代入y =-6x +12中得:y =9, ∴M (0.5,9), ∴9=0.5k , 解得:k =18, ∴18y x =甲,∴当x =0.5时,y =9,即两人相遇时距离A地的距离为9,故②③正确; (3)令|18x -(-6x +12)|=3,解得x =38或58,故④正确;故选:C . 【点睛】本题考查一次函数的应用,解题本题的关键是明确题意,利用一次函数的性质解答.2.C解析:C 【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案. 【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确; 设甲车离开A 城的距离y 与t 的关系式为y kt =甲, 把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =, 即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=, 当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确;综上可知正确的有①②③共三个, 故选:C . 【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.3.D解析:D 【分析】由图2可得,行车速度在途中迅速减小并稳定了100多米然后又迅速提升,说明应该是进行一次性的拐弯,再对4个选项进行排除选择. 【详解】解:.A 行车路线为直线,则速度一直不变,排除; B .进入辅路后向右转弯,速度减小应该不大,排除;C .向前行驶然后拐了两次弯再掉头行驶,中间速度应该有两次变大变小的波动呢,排除;D .向前行驶拐了个较大的弯再进入直路行驶,满足图2的速度变化情况. 故选D . 【点睛】本题考查了函数图象的应用,正确理解函数图象的自变量和函数关系并对照实际问题进行分析是解题关键.4.A解析:A【分析】先由图象得出BD的长及点P从点A运动到点B的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故BD=42;②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2=(42)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.5.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x分钟,就可以求出小华家到学校的距离;③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x分钟,由题意,得250x=50(20+x),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=kt+b,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.C解析:C【分析】根据题意,分析图象,结合简单计算,可以得到答案.【详解】解:根据图象可知:A. 小明从家到食堂用了8min ,故A 选项说法正确;B. 小明家离食堂0.6km ,食堂离图书馆0.8-0.6=0.2(km ),故B 选项说法正确;C. 小明吃早餐用了25-8=17(min ),读报用了58-28=30(min ),故C 选项错误;D. 小明从图书馆回家的平均速度为0.8÷(68-58=)0.08(km/min ),故D 选项正确. 故选C.【点睛】本题考核知识点:函数的图形. 重点:分析函数图象,得到相关信息,并进行简单运算. 8.B解析:B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b ,将x=4时,y=20;x=12时,y=30代入求得k 、b 值,可得函数解析式,再将x=6代入求得对应的y 值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:2043012k b k b =+⎧⎨=+⎩,解得:5415k b ⎧=⎪⎨⎪=⎩, ∴5154y x =+, 当x=6时,56157.51522.54y =⨯+=+=, 故选:B .【点睛】 本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.9.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 10.D解析:D【分析】先确定A ,B 的坐标,从而确定交点横坐标的取值范围,后逐一计算选项直线与x 轴的交点,判断横坐标是否在求得的范围内,在范围内,满足条件,否则,不满足.【详解】∵直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,∴A (-1,0),B (2,0),∴-1≤x≤2,∵y=x+2交x 轴于点A (-2,0),且x= -2不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵2y =+交x 轴于点A (0),且x= 不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵y=4x-12交x 轴于点A (3,0),且x= 3不是-1≤x≤2的解,∴与x 轴的交点不在线段AB 上,∵3y =-交x 轴于点A 0),且是-1≤x≤2的解,∴与x 轴的交点在线段AB 上,故选D .【点睛】本题考查了一次函数与x 轴的交点问题,利用交点的横坐标建立不等式解集,验证新直线与x 轴交点的横坐标是否是解集的解是解题的关键.11.D解析:D【分析】逐一分析各个选项的k 、b 的符号,结合已知条件即可做出判断【详解】解:A 、由图可知k >0,b >0,且当x=-1时,-k+b <0, k >b ,则|k|=k ,|b|=b ,可得|k|>|b|与题意||||k b <不符;B 、由图可知k >0,b <0,且当x=1时,k+b >0, k >-b ,则|k|=k ,|b|=-b ,可得|k|>|b|与题意||||k b <不符;C 、由图可知当x=-1时,-k+b=0, k=b ,则 |k|=|b|与题意||||k b <不符;D 、由图可知k <0,b >0,且当x=1时,k+b >0, -k <b ,则|k|=-k ,|b|=b ,可得|k|<|b|与题意||||k b <相符;故选:D【点睛】此题考查了一次函数图象与k 和b 符号的关系,关键是掌握当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.12.A解析:A【分析】由图知,函数y =kx +b 图象过点(0,1),即k >0,b =1,再根据一次函数的特点解答即可.【详解】解:∵由函数y =kx +b 的图象可知,k >0,b =1,∴y =2kx +b =2kx +1,2k >0,∴2k >k ,可见一次函数y =2kx +b 图象与x 轴的夹角,大于y =kx +b 图象与x 轴的夹角.∴函数y =2kx +1的图象过第一、二、三象限且与x 轴的夹角比y =kx +b 与x 轴的夹角大.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k 与b 的关系是解题的关键.二、填空题13.(3-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD 求出点D 坐标证得AD 的中点K 求出其坐标求出直线BK 的解析式直线BK 与直线的交点即为点P 利用方程组即可求得P 坐标【详解】设直线AB 解析式为y =解析:(3,-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD ,求出点D 坐标,证得AD 的中点K ,求出其坐标,求出直线BK 的解析式,直线BK 与直线1y x =--的交点即为点P ,利用方程组即可求得P 坐标.【详解】设直线AB 解析式为y =kx +b ,将点A (6,0),B (0,2)代入上式得:0=62k b b +⎧⎨=⎩解得:1=32k b ⎧-⎪⎨⎪=⎩,∴直线AB 解析式:123y x =-+ 将线段BA 绕点B 顺时针旋转90°得到BD ,设直线BD 解析式为3y x n =+∵点B (0,2)在直线BD 上,∴直线BD 解析式为32y x =+,∵BD =AB==设点D (x ,32x +BD ==整理得:24x =解得:12x =-或22x =(舍去)∴2324y =-⨯+=-则点D (﹣2,﹣4)设AD 与BP 交于点K ,∵AB =BD ,∠ABP =45°,∠ABD =90°∴BK 是△ABD 的中线,又A (6,0)∴K 是AD 的中点,坐标为(2,﹣2)直线BK 与直线1y x =--的交点即为点P ,设直线BK 的解析式为y kx b =+,将点B 和点K 代入得:222b k b =⎧⎨-=+⎩解得:22b k =⎧⎨=-⎩∴直线BK 的解析式为22y x =-+,由221y x y x =-+⎧⎨=--⎩解得:34x y =⎧⎨=-⎩∴P 点坐标为(3,-4)故答案为:(3,-4).【点睛】本题考查一次函数图象上点的坐标的特征,等腰三角形的性质,待定系数法求解析式,解题的关键是学会作辅助线解决问题.14.12【分析】分A 在B 左边时和A 在B 右边时两种情况分别列出不等式组解之再合并即可【详解】解:令y=2x-a=0则2x=ax=∴A (0)令y=3x-6=0则3x=bx=∴B (0)∵AB 线段上只有3个点横解析:12【分析】分A 在B 左边时和A 在B 右边时,两种情况分别列出不等式组,解之,再合并即可.【详解】解:令y=2x-a=0,则2x=a ,x=2a , ∴A (2a ,0), 令y=3x-6=0,则3x=b ,x=3b , ∴B (3b ,0), ∵AB 线段上只有3个点横坐标都是整数,为4,5,6,∴A 在B 左边时, 则34273a b b ⎧<≤⎪⎪⎨⎪≤<⎪⎩,解得:681821a b <≤⎧⎨≤<⎩, ∵a ,b 为整数,∴a=7或8,b=18或19或20,∴(a ,b )有2×3=6种可能;A 在B 右边时, 则72343a b b ⎧≤<⎪⎪⎨⎪<≤⎪⎩,解得:1214912a b ≤<⎧⎨<≤⎩, ∵a ,b 为整数,∴a=12或13,b=10或11或12,∴(a ,b )有2×3=6种可能,综上:共有12种可能,故答案为:12.【点睛】本题考查了一次函数的性质,解题的关键是分类讨论,根据坐标为整数得到不等式组. 15.();6【分析】(1)分别求解如下两个方程组再根据已知条件即可得答案;(2)当OA′B′三点共线时|OA ﹣OB|取最大值即直线平移后过原点即可平移的距离为m 平移后的直线为把原点坐标代入计算即可【详解解析:(95-44,); 6.【分析】 (1)分别求解如下两个方程组1231y x y x ⎧=+⎪⎨⎪=--⎩,1231y x y x ⎧=+⎪⎨⎪=+⎩,再根据已知条件即可得答案;(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m ,平移后的直线为()123y x m =-+把原点坐标代入计算即可. 【详解】 (1)联立1231y x y x ⎧=+⎪⎨⎪=--⎩,解得9=-454x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(95-44,), 联立1231y x y x ⎧=+⎪⎨⎪=+⎩,解得3=252x y ⎧⎪⎪⎨⎪=⎪⎩,则交点坐标为(3522,), 又点A 在点B 的左边,所以A (95-44,),故答案为:(95-44,);(2)当O 、A′、B′三点共线时,|OA '﹣OB '|取最大值.即直线123=+y x 平移后过原点即可,平移的距离为m , 平移后的直线为()123y x m =-+, 则()10023m =-+, 解得6m =,当m =6时,|OA '﹣OB '|取最大值.故答案为:6.【点睛】本题考查一次函数与分段函数综合问题,会识别分段函数与一次函数的交点在哪一分支上,会利用平移解决最大距离问题是解题关.16.【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差据此即可求解【详解】解:买签字笔的支数x (支)花的钱数是15x 元则剩余的钱数是(15-15x )元则签字笔后所剩钱数(元)与买签字笔的支数(解析:15 1.5y x =-【分析】所剩钱数y (元)就是原来的钱数与买x 支签字笔钱数的差,据此即可求解.【详解】解:买签字笔的支数x (支)花的钱数是1.5x 元,则剩余的钱数是(15-1.5x )元,则签字笔后所剩钱数y (元)与买签字笔的支数x (支)之间的关系式为15 1.5y x =-. 故答案为:15 1.5y x =-.【点睛】此题考查函数关系式,根据题意,找到所求量的等量关系是解决问题的关键.17.y=2x-1【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1考点:一次函数的图象与几何变换 解析:y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1.考点:一次函数的图象与几何变换18.【分析】平移时k 的值不变只有b 的值发生变化而b 值变化的规律是上加下减【详解】解:由上加下减的原则可知直线y=2x 向下平移1个单位得到直线是:y=2x-1故答案为y=2x-1【点睛】本题考查了一次函数解析:21y x =-【分析】平移时k 的值不变,只有b 的值发生变化,而b 值变化的规律是“上加下减”.【详解】解:由“上加下减”的原则可知,直线y=2x 向下平移1个单位,得到直线是:y=2x-1. 故答案为y=2x-1.【点睛】本题考查了一次函数的图象与几何变换,掌握“上加下减”的原则是解题的关键. 19.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.20.>【分析】根据k =3>0一次函数的函数值y 随x 的增大而增大解答【详解】解:∵k =3>0∴函数值y 随x 的增大而增大∵﹣1>﹣2∴y1>y2故答案为:>【点睛】此题考查一次函数的性质:当k>0时函数值y解析:>【分析】根据k =3>0,一次函数的函数值y 随x 的增大而增大解答.【详解】解:∵k =3>0,∴函数值y 随x 的增大而增大,∵﹣1>﹣2,∴y 1>y 2.故答案为:>.【点睛】此题考查一次函数的性质:当k>0时,函数值y 随x 的增大而增大;当k<0时,函数值y 随x 的增大而减小.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)4;(2)见解析;(3)2.0cm 或3.7cm【分析】(1)当x =2时,点C 与点O 重合,此时DE 是直径,由此即可解决问题;(2)利用描点法即可解决问题;(3)利用图象法,确定y =4时x 的值即可;【详解】解:(1)当x =2时,点C 与点O 重合,此时DE 是直径,y=12×4×2=4.即a 的值是4,故答案是:4;(2)函数图象如图所示.(3)观察图象可知:当△ADE 的面积为4cm 2时,AC 的长度约为2.0cm 或3.7cm .【点睛】本题考查圆的性质,三角形的面积,函数图象等知识,解题的关键是理解题意,利用庙殿发画出函数图像,难度一般.23.(1)443y x =-;(2)6 【分析】(1)用待定系数法求解析式即可;(2)求出函数图象与坐标轴的交点,根据交点坐标求面积即可.【详解】解:(1)由当x =-3时,y =-8;当x =0时,y =-4可得, -8=-34k b b +⎧⎨-=⎩解得,4=34k b ⎧⎪⎨⎪=-⎩,∴该一次函数的表达式为443y x =-; (2)如图,设函数图象与x 轴、y 轴分别交于点A 、B ,当y =0时,x =3;即A 点坐标为(3,0)当x =0时,y =-4;即B 点坐标为(0,-4)∴S △AOB =12×3×4=6.【点睛】本题考查了待定系数法求一次函数解析式和求一次函数图象与坐标轴交点坐标及三角形面积公式,解题关键是熟练运用待定系数法求解析式和准确扎实的计算.24.(1)40,80;(2)①-40x 160S =+, (1.5x 4)≤≤,图见解析;②12t 1t 2.==,【分析】(1)根据乙车在A 地用1h 配货可知0.5到1.5小时的距离变化为甲车的变化,利用速度=路程÷时间计算即可;再根据前0.5小时甲乙两车相背而行列式求解乙车的速度;(2)①设从乙车掉头到乙车到达B 地的过程中,两车所用的时间为t 小时,然后根据追及问题求出相遇的时间,然后列出S 关于x 的函数解析式,再补全函数图象即可; ②分两种情况,当乙车没有调头,,两车之间的距离为80km 时,当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,分别求出t 的值,即可.【详解】解:(1)∵乙在A 地用1h 配货,∴0.5小时~1.5小时为甲独自行驶,∴甲的速度=(100-60)÷(1.5-0.5)=40(km/h ),乙的速度为:60÷0.5-40=80(km/h ),故答案是:40,80;(2)①设从乙车调头到乙车到达B 地的过程中,两车所用的时间为t 小时,由题意得,80t-40t =100,解得:t =2.5,1.5+2.5=4,此过程中,S =40(x-1.5)+100-80(x-1.5)=-40x +160(1.5≤x≤4),即:-40x 160S =+, 1.5x 4≤≤(), 补全图像如下:②当乙车没有调头,,两车之间的距离为80km 时,t=0.5+(80-60)÷40=1;当乙车调头到乙车到达B 地的过程中,两车之间的距离为80km 时,-40t +160=80,解得:t=2.综上所述:t 1=或t 2=.【点睛】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题,追及问题的等量关系,读懂题目信息并找出等量关系列出方程是解题的关键.25.(1)y =﹣x+2;(2)P (103,0)或(23,0). 【分析】(1)利用待定系数法求函数解析式;(2)先求出直线BC 与x 轴的交点坐标,然后设P (t ,0),根据三角形面积公式列方程求解.【详解】解:(1)设直线l 的解析式y =kx+b ,把点C (﹣1,3),B (0,2)代入解析式得, 23b k b =⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩, ∴直线l 的解析式:y =﹣x+2;(2)把 y =0代入y =﹣x+2得﹣x+2=0,解得:x =2,则点A 的坐标为(2,0),∵S △AOB =12×2×2=2, ∴S △ACP =S △AOB =2,设P (t ,0),则AP =|t ﹣2|, ∵12•|t ﹣2|×3=2,解得t =103或t =23,。
北师大版八年级上册数学第4章 《一次函数》 单元测试卷(含答案)

北师大版八年级上册数学第4章《一次函数》单元测试卷时间:90分钟满分:100分学校:_____班级:_____姓名:_____得分:______一.选择题(每题3分,共30分)1.小颖站在离家不远的公交车站等车,下列各图中能够最好地刻画等车这段时间小颖离家距离与时间关系的是()A.B.C.D.2.下列说法不正确的是()A.当k≠0时,y=是正比例函数B.如果y=,那么y与x2成正比例C.如果y=(n+2)x+n2﹣4是正比例函数.那么n=±2D.y=的定义域是一切实数.3.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1 B.﹣≤b≤1 C.﹣≤b≤D.﹣1≤b≤4.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.5.已知函数,当y=6时,x的值是()A.B.C.D.6.下表反映的是某地区电的使用量x(千瓦时)与应交电费y(元)之间的关系,下列说法不正确的是()用电量x(千瓦时) 1 2 3 4 …应交电费y(元)0.55 1.1 1.65 2.2 …A.x与y都是变量,且x是自变量,y是x的函数B.用电量每增加1千瓦时,电费增加0.55元C.当交电费20.5元时,用电量为37千瓦时D.若用电量为8千瓦时,则应交电费4.4元7.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.1008.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=19.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A、B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④10.小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是()个.A.1 B.2 C.3 D.4二.填空题(每题4分,共20分)11.在函数y=中,自变量x的取值范围是.12.如果A(1,2),B(2,4),P(4,m)三点在同一直线上,则m=.13.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C 在第二象限,若BC=OC=OA,则点C的坐标为.14.已知直线y=mx﹣1上有一点(1,n),它到原点的距离是,则此直线与两坐标轴围成的三角形面积为.15.如图,在平面直角坐标系中,点A的坐标是(0,2),点B的坐标是(2,0),连结AB,点P是线段AB上的一个动点(包括两端点),直线y=﹣x上有一动点Q,连结OP,PQ,已知△OPQ的面积为,则点Q的坐标为.三.解答题(共50分)16.已知关于x的正比例函数y=(k﹣1)x+k+1,求这个正比例函数的解析式.17.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?18.定义:在平面直角坐标系中,一个图形向右平移1个单位再向下平移2个单位称为一个跳步.如:点P(1,2)一个跳步后对应点P'(2,0).已知点A(﹣1,4),B(2,3).(1)求点A,B经过1个跳步后的对应点A',B'的坐标.(2)求直线AB经过一个跳步后对应直线的函数表达式.19.在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:(1)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?20.如图,直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B′处.(1)求A、B两点的坐标;(2)求直线AM的表达式;(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰三角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵小明站在离家不远的公共汽车站等车,∴这段时间离家距离不随时间的变化而变化,故选:A.2.解:A、当k≠0时,y=是正比例函数,故本选项错误;B、如果y=,那么y与x2成正比例,故本选项错误;C、如果y=(n+2)x+n2﹣4是正比例函数.那么n≠﹣2,故本选项正确;D、由已知函数关系式得到:y=|x﹣1|,故其定义域是一切实数,故本选项错误.故选:C.3.解:直线y=x+b经过点B时,将B(3,1)代入直线中,可得+b=1,解得b=﹣;直线y=x+b经过点A时:将A(1,1)代入直线中,可得+b=1,解得b=;直线y=x+b经过点C时:将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选:B.4.解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.5.解:∵函数y=,∴当x<2时,x2+1=6,得x1=﹣,x2=(不合题意,舍去),当x≥2时,=6,得x=(不合题意,舍去),故当y=6时,x的值是﹣,故选:A.6.解:由图表可知:应交电费与用电量间的关系为y=0.55x,对于这个函数关系,x、y都是变量,x是自变量,y是x的函数.所以选项A正确;根据图表可知,用电量每增加1千瓦时,电费增加0.55元,选项B正确;当y=20.5元时,x=≈37.3(千瓦时),故选项C错误;当x=8千瓦时,y=0.55×8=4.4(元),故选项D正确.故选:C.7.解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA==8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.8.解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.9.解:由图象可知A、B两城市之间的距离为300km,小带行驶的时间为5小时,而小路是在甲出发1小时后出发的,且用时3小时,即比早小带到1小时,∴①②都正确;设小带车离开A 城的距离y 与t 的关系式为y 小带=kt , 把(5,300)代入可求得k =60, ∴y 小带=60t ,设小路车离开A 城的距离y 与t 的关系式为y 小路=mt +n , 把(1,0)和(4,300)代入可得 ,解得:,∴y 小路=100t ﹣100,令y 小带=y 小路,可得:60t =100t ﹣100, 解得:t =2.5,即小带、小路两直线的交点横坐标为t =2.5,此时小路出发时间为1.5小时,即小路车出发1.5小时后追上小带车, ∴③不正确;令|y 小带﹣y 小路|=50,可得|60t ﹣100t +100|=50,即|100﹣40t |=50, 当100﹣40t =50时,可解得t =, 当100﹣40t =﹣50时,可解得t =,又当t =时,y 小带=50,此时小路还没出发,当t =时,小路到达B 城,y 小带=250;综上可知当t 的值为 或或或时,两车相距50千米,∴④不正确; 故选:C .10.解:根据题意得:小明用了10分钟步行了1km 到校站台,即小明步行了1km到校车站台,①正确,1000÷10=100m/min,即他步行的速度是100m/min,②正确,小明在校车站台从第10min等到第16min,即他在校车站台等了6min,③正确,小明用了14min的时间坐校车,走了7km的路程,7000÷14=500m/min,即校车运行的速度是500m/min,④不正确,即正确的是①②③,故选:C.二.填空题(共5小题)11.解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.解:设直线AB的解析式为y=kx+b,把A(1,2),B(2,4)代入得到:,解得,∴直线AB的解析式为y=2x,把P(4,m)代入,可得m=4×2=8,故答案为:8.13.解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OC=3,OE=2,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).14.解:∵点B(1,n)到原点的距离是,∴n2+1=10,即n=±3.∴(1,±3),∴一次函数的解析式为:y=4x﹣1或y=﹣2x﹣1.当一次函数的解析式为y=4x﹣1时,与两坐标轴围成的三角形的面积为:××1=;当一次函数的解析式为y=﹣2x﹣1时,与两坐标轴围成的三角形的面积为:××1=.故答案为:或.15.解:方法一:∵点Q在直线y=﹣x上,∴设点Q的坐标为(m,﹣m).∵点A的坐标是(0,2),点B的坐标是(2,0),∴△AOB为等腰直角三角形,点O(0,0)到AB的距离h=OA=.设直线AB的解析式为y=kx+b,∵点A(0,2),点B(2,0)在直线AB上,∴有,解得.即直线AB的解析式为y=﹣x+2,∵直线y=﹣x+2与y=﹣x平行,∴点P到底OQ的距离为(平行线间距离处处相等).∵△OPQ的面积S=OQ•h=OQ=,△OPQ∴OQ=2.由两点间的距离公式可知OQ==2,解得:m=±,∴点Q的坐标为(,﹣)或(﹣,).故答案为:(,﹣)或(﹣,).方法二:当P点与A重合时,则△OPQ底OP为2,∵△OPQ的面积为,∴△OPQ的高为,即点Q的横坐标为﹣,∵点Q在直线y=﹣x上,∴点Q的坐标为(﹣,);当P点与B重合时,同理可求出点Q的坐标为(,﹣).综上即可得出点Q的坐标为(,﹣)或(﹣,).三.解答题(共5小题)16.解:由题意得:k+1=0解得:k=﹣1,∴k﹣1=﹣2,∴这个正比例函数的解析式为y=﹣2x.17.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.18.解:(1)点A(﹣1,4)经过1个跳步后对应点A'(0,2),点B(2,3)经过1个跳步后对应点B'(3,1).(2)设直线AB经过一个跳步后对应直线A'B'的函数表达式为y=kx+b,由题意得:,∴,b=2.∴直线AB经过一个跳步后对应直线A'B'的函数表达式为.19.解:(1)设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=kx+b,由图可知,函数图象过点(2,30),(6,50),∴,解得,∴y=5x+20;(2)由图可知,甲队速度是:60÷6=10(米/时),设甲队从开始到完工所铺设彩色道砖的长度为z米,依题意,得=,解得z=110,答:甲队从开始到完工所铺设彩色道砖的长度为110米.20.解:(1)当x=0时,y=8,∴B(0,8),当y=0时,﹣x+8=0,x=6,∴A(6,0);(2)在Rt △AOB 中,∠AOB =90°,OA =6,OB =8,∴AB =10,由折叠得:AB =AB '=10,∴OB '=10﹣6=4,设OM =a ,则BM =B 'M =8﹣a ,由勾股定理得:a 2+42=(8﹣a )2,a =3,∴M (0,3),设AM :y =kx +b ,则,解得:,∴直线AM 的解析式为:y =﹣x +3;(3)在x 轴上存在点P ,使得以点P 、M 、B ′为顶点的三角形是等腰二角形,如图∵M (0,3),B ′(﹣4,0),∴B ′M =5,当PB ′=B ′M 时,P 1(﹣9,0),P 2(1,0);当B ′M =PM 时,P 3(4,0),当PB ′=PM 时,作BM 的垂直平分线,交x 轴于P 4,交B ′M 与Q ,连接MP 4, 设OP 4=m ,则P 4M =P 4B ′=4﹣m ,∵PM 2=OP 2+PM 2,∴(4﹣m )2=m 2+32解得m=,∴P(﹣,0),4综上,P点的坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)

北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
北师大版八年级上册数学第四章一次函数单元测试(附答案)

八年级上册数学第四章单元测试一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,只有一个选项是符合题目要求的.1.根据函数的定义,下列图象中表示函数的是()2.在函数y=1x-2-x+2中,自变量x的取值范围是()A.x>-2 B.x≥-2C.x>-2且x≠2 D.x≥-2且x≠23.已知某一次函数的图象与直线y=-2x+1平行,且过点(2,8),那么此一次函数的表达式为()A.y=-2x-2 B.y=-2x+12C.y=-2x-6 D.y=-2x-124.对于一次函数y=-2x+4,下列结论正确的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(-2,0)C.函数的图象向上平移4个单位长度后得到y=-2x的图象D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1<y25.两直线y1=kx+b和y2=bx+k(k≠0且b≠0)在同一平面直角坐标系内的图象位置可能是()6.一次函数y=(m-1)x+m的图象必过一定点,此定点的坐标为() A.(-1,1) B.(1,1)C.(0,1) D.(1,-1)7.爷爷在离家2 900 m的公园锻炼后回家,离开公园走了20 min后,爷爷停下来与朋友聊天10 min ,接着又走了15 min 回到家中.下列图象中表示爷爷离家的距离y (m)与爷爷离开公园的时间x (min)之间的函数关系的是( )8.等腰三角形的周长是40 cm ,其腰长y (cm)与底边长x (cm)的函数表达式正确的是( )A .y =-2x +40(10<x <20)B .y =-0.5x +20(10<x <20) C. y =-0.5x +20(0<x <20) D .y =-2x +40(0<x <20)9.某快递公司每天上午9:00-10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当甲、乙两仓库快件数量相同时,此时的时刻为( )A .9:15B .9:20C .9:25D .9:3010.8个边长为1的正方形如图摆放在平面直角坐标系中,若经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为( ) A .y =35x B .y =34x C .y =910x D .y =x(第9题) (第10题) (第12题)11.已知过点(2,-3)的直线y =ax +b (a ≠0)不经过第一象限,设s =a +2b ,则s的取值范围是( )A .-5≤s ≤-32B .-6<s ≤-32 C .-6≤s ≤-32 D .-7<s ≤-3212.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80 km/h 的速度行驶1 h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1 h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km)与乙车行驶时间x (h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h ;②m =160;③点H 的坐标是(7,80);④n =7.4. 其中说法正确的有( )A .1个B .2 个C .3个D .4个 二、填空题:本大题共6小题,每小题4分,共24分. 13.如果函数y =(m -1)x m2-3是正比例函数,且y 的值随x 值的增大而增大,那么m 的值是________.14.一次函数y =kx +b 的图象如图所示,当y <5时,x 的取值范围是____________.(第14题) (第18题)15.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.16.2021年5月15日7时18分,“天问一号”火星探测器成功在火星着陆,开启了中国人自主探测火星之旅.已知华氏温度f (℉)与摄氏温度c (℃)之间的关系满足下表:c /℃ … -10 0 10 20 30 … f /℉…1432506886…____________℉.17.某直线与x 轴交于点A (-4,0),与y 轴交于点B ,若点B 到x 轴的距离为2,则该直线对应的函数表达式为__________________.18.如图①所示,在长方形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y .如果y 关于x 的函数图象如图②所示,那么△ABC的面积是________.三、解答题(一):本大题共2小题,每小题8分,共16分.19.已知y与x-1成正比例,且当x=3时,y=4.(1)求y与x之间的函数表达式;(2)求当x=-5时y的值.20.拖拉机开始工作时,油箱中有油40 L,如果工作1 h耗油4 L,求:(1)油箱中的余油量Q(L)与工作时间t(h)的函数关系式及自变量的取值范围;(2)当工作5 h时油箱的余油量.四、解答题(二):本大题共2小题,每小题10分,共20分.21.如图,在平面直角坐标系中,直线l经过原点O和点A(6,4),经过点A的另一条直线交x 轴于点B (12,0). (1)求直线l 对应的函数表达式;(2)若直线l 上有一点P ,使得S △ABP =13S △AOB ,求出点P 的坐标.22.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2 h 后休息,与甲车相遇后,继续行驶.设甲、乙两车与B 地的距离分别为y甲(km),y 乙(km),甲车行驶的时间为x (h),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题. (1)乙车休息了________h ;(2)已知乙车与甲车相遇后y 乙仍是x 的正比例函数,求乙车与甲车相遇后y 乙与x 的函数表达式,并写出自变量x 的取值范围; (3)当甲、乙两车相距40 km 时,求x 值.五、解答题(三):本大题共2小题,每小题12分,共24分.23.某大型商场为了提高销售人员的积极性,对原有的薪酬计算方式进行了修改,设销售人员一个月的销售量为x (件),销售人员的薪酬为y (元),原有的薪酬y1(元)计算方式采用的是底薪+提成,且y1=k1x+b1,已知每销售一件商品另外获得15元的提成.修改后的薪酬y2(元)计算方式为y2=k2x+b2.根据图象回答下列问题:(1)分别求y1、y2与x之间的函数表达式,并说明b1和b2的实际意义;(2)求两个函数图象的交点F的坐标,并说明交点F的实际意义;(3)请根据函数图象判断哪种薪酬计算方式更适合销售人员.24.如图,直线y=-2x+8分别与x轴,y轴交于A,B两点,点C在线段AB 上,过点C作CD⊥x轴于点D,CD=2OD,点E在线段OB上,且AE=BE.(1)点C的坐标为________,点E的坐标为________;(2)若直线m经过点E,且将△AOB分成面积比为1:2的两部分,求直线m的函数表达式;(3)若点P在x轴上运动,当PC+PE取最小值时,求点P的坐标及PC+PE的最小值.答案一、1.C2.D3.B4.A5.A6.A点拨:将一次函数y=(m-1)x+m变形为m(x+1)-x-y=0,令x+1=0,则-x-y=0,解得x=-1,y=1,故一次函数y=(m-1)x+m的图象必过定点(-1,1).7.B8.C点拨:根据三角形周长的定义可得x+2y=40,所以y=-0.5x+20.又由三角形三边关系,得x<2y,x>y-y,所以x<2(-0.5x+20),x>0,即x<20,x>0,所以0<x<20.9.B10.C11.B点拨:因为直线y=ax+b(a≠0)不经过第一象限,所以a<0,b≤0.因为直线y=ax+b(a≠0)过点(2,-3),所以2a+b=-3,所以a=-b-32,b=-2a-3,所以s=a+2b=-b-32+2b=32b-32≤-32,s=a+2b=a+2(-2a-3)=-3a-6>-6,所以s的取值范围是-6<s≤-32.故选B.12.D二、13.214.x>015.m<n16.-67点拨:由表中数据可得,f=32+18×c10=32+1.8c,当c=-55时,f=32+1.8×(-55)=-67.所以换算成华氏温度约为-67℉.17.y =12x +2或y =-12x -2 18.10三、19.解:(1)设y =k (x -1),把x =3,y =4代入,得(3-1)k =4, 解得k =2,所以y =2(x -1),即y =2x -2. (2)当x =-5时,y =2×(-5)-2=-12.20.解:(1)由题意可知Q =40-4t (0≤t ≤10).(2)把t =5代入Q =40-4t , 得Q =40-4×5=20.所以当工作5 h 时油箱的余油量为20 L . 四、21.解:(1)设直线l 对应的函数表达式为y =kx ,把(6,4)代入,得4=6k , 解得k =23.所以直线l 对应的函数表达式为y =23x .(2)因为A (6,4),B (12,0), 所以S △AOB =12×12×4=24.当S △ABP =13S △AOB =8时,分两种情况, 设点P 的坐标为⎝ ⎛⎭⎪⎫x ,23x .①如图①,当点P 在线段OA 上时,连接BP , 则S △BOP =S △AOB -S △ABP =24-8=16, 即12×12×23x =16. 解得x =4, 则P ⎝ ⎛⎭⎪⎫4,83;②如图②,当点P 在线段OA 的延长线上时,连接BP ,则S △BOP =S △AOB +S △ABP =24+8=32, 即12×12×23x =32. 解得x =8, 则P ⎝ ⎛⎭⎪⎫8,163.故点P 的坐标为⎝ ⎛⎭⎪⎫4,83或⎝ ⎛⎭⎪⎫8,163.22.解:(1)0.5(2)设乙车与甲车相遇后y 乙与x 的函数表达式为y 乙=k 2x ,把(5,400)代入,得5k 2=400. 解得k 2=80.所以y 乙=80x (2.5≤x ≤5).(3)设乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=k 3x ,把(2,200)代入,得2k 3=200. 解得k 3=100.所以乙车与甲车相遇前y 乙与x 的函数表达式为y 乙=100x (0≤x ≤2). 设y 甲与x 的函数表达式为y 甲=k 1x +b 1. 把(0,400),(5,0)代入, 得b 1=400,5k 1+b 1=0, 解得k 1=-80,所以y 甲=-80x +400(0≤x ≤5). 当0≤x ≤2时,y 甲-y 乙=40, 即-80x +400-100x =40. 解得x =2.当2.5≤x ≤5时,y 乙-y 甲=40,即80x-(-80x+400)=40.解得x=11 4.所以当甲、乙两车相距40 km时,x=2或x=11 4.五、23.解:(1)因为y1=k1x+b1的图象过点(0,3 000),所以b1=3 000,又因为每销售一件商品另外获得15元的提成,所以k1=15,所以y1=15x+3 000.因为y2=k2x+b2的图象过点(100,3 000),(0,0),所以b2=0,100k2=3 000,解得k2=30,所以y2=30x.所以b1的实际意义是底薪为3 000元,b2的实际意义是底薪为0元.(2)令y1=y2,即15x+3 000=30x,解得x=200,所以y1=y2=6 000.所以F(200,6 000),所以交点F的实际意义是当销售人员一个月的销售量为200件时,销售人员通过两种薪酬计算方式所得的薪酬相等,为6 000元.(3)结合函数图象可知,当0<x<200时,原有的薪酬计算方式更适合销售人员;当x=200时,两种薪酬计算方式对销售人员一样;当x>200时,修改后的薪酬计算方式更适合销售人员.24.解:(1)(2,4);(0,3)(2)设直线m的函数表达式为y=kx+3,根据k值的不同,可分为两种情况讨论:①当k>0时,如图①,设直线m交AB于点F,过点F作FH⊥y轴于点H.当S△BEF=11+2S△AOB时,易知B (0,8),E (0,3),所以BE =5, 所以5FH 2=13×4×82,解得FH =3215.将x =3215代入y =-2x +8,得y =5615.将点F ⎝ ⎛⎭⎪⎫3215,5615的坐标代入y =kx +3, 得k =1132,所以直线m 的函数表达式为y =1132x +3;②当k <0时,如图②,设直线m 交OA 于点N .当S △OEN =11+2S △AOB时,易知OE =3, 所以3ON 2=13×4×82,解得ON =329.将点N ⎝ ⎛⎭⎪⎫329,0的坐标代入y =kx +3, 得k =-2732,所以直线m 的函数表达式为y =-2732x +3.综上,直线m 的函数表达式为y =1132x +3或y =-2732x +3.(3)作点E 关于x 轴的对称点E ′,连接 CE ′交x 轴于点P ,此时PC +PE取最小值.易知点E ′的坐标为(0,-3), 设直线CE ′的函数表达式为y =nx -3,将点C (2,4)的坐标代入,得n =72,所以y =72x -3.将y =0代入y =72x -3,得x =67,所以点P 的坐标为⎝ ⎛⎭⎪⎫67,0, 作E ′G ⊥CD 交CD 延长线于点G ,易知E ′G =OD =2,CG =7,所以PC +PE 的最小值=CE ′=22+72=53.。
八年级上册数学单元测试卷-第四章 一次函数-北师大版(含答案)

八年级上册数学单元测试卷-第四章一次函数-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.2、已知A,B两地相距80km,甲,乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲,乙离开A地的路程s(km)与时间t(h)的函数关系,根据图象得出的下列信息错误的是()A.乙到达B地时甲距A地120kmB.乙出发1.8小时被甲追上C.甲,乙相距20km时,t为2.4hD.甲的速度是乙的速度的倍3、下列命题中,正确的个数有()①若,则a、b中至少有一个是0.②若S△ABC=S△ABD(C、D不重合),则CD∥AB。
③图象为直线的函数的解析式为一次函数。
④有一组对边相等和一组对角相等的四边形是平行四边形。
A.0个B.1个C.2个D.4 个4、下列函数中,自变量的取值范围选取错误的是()A.y=2x 2中,x取全体实数B.y= 中,x取x≠-1的实数C.y=中,x取x≥2的实数 D.y= 中,x取x≥-3的实数5、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是()A. B. C. D.6、甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量B.t是变量C.v是变量D.S是常量7、如图,矩形ABCD中,对角线AC,BD交于点O,E,F分别是边BC,AD的中点,AB=2,BC=4,一动点P从点B出发,沿着B﹣A﹣D﹣C在矩形的边上运动,运动到点C停止,点M 为图1中某一定点,设点P运动的路程为x,△BPM的面积为y,表示y与x的函数关系的图象大致如图2所示.则点M的位置可能是图1中的()A.点CB.点OC.点ED.点F8、如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点A,B,点P的坐标为,且点P在的内部,则m的取值范围是()A. B. C. D. 或9、一次函数y=x+3的图象与x轴的交点坐标是()A.(-3,0)B.(3,0)C.(0,-3)D.(0,3)10、在函数中,自变量的取值范围是( )A. B. C. D.11、下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y= x-3D.y=12、对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是()x -1 0 1 2 3y 2 5 8 12 14A.5B.8C.12D.1413、若y=是一次函数,则m的值为()A.0B.-1C.0或﹣1D.±114、小亮家与学校相距1500m ,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽误了几分钟,与小强告别后他就改为匀速慢跑,最后回答了家,设小亮从学校出发后所用的时间为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是().A. B. C. D.15、函数的图象一定经过点()A.(3,5)B.(-2,3)C.(2,7)D.(4,10)二、填空题(共10题,共计30分)16、请你写出同时具备下列两个条件的一次函数的表达式(写出一个即可)________17、一次函数y=(2k﹣5)x+2中,y随x的增大而减小,则k的取值范围是________.18、若函数,则当函数值y=12时,自变量x的值是________ 。
八年级数学上册第四章一次函数单元综合测试含解析北师大版

《第4章一次函数》一、选择题1.下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个2.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12) B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12)D.y=x﹣12(0<x<24)3.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m=()A.﹣1 B.3 C.1 D.﹣1或34.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)5.对于函数y=﹣x+3,下列说法错误的是()A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是96.关于x的一次函数y=kx+k2+1的图象可能正确的是() A.B. C.D.7.P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是()A.y1<y2 B.y1=y2C.y1>y2 D.y1>y2>08.已知一次函数y=x+m和y=﹣x+n的图象都经过点A(﹣2,0),且与y轴分别交于B,C两点,那么△ABC的面积是()A.2 B.3 C.4 D.69.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C.16 D.810.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…按此作法继续下去,点B2013的坐标为()A.(42012×,42012) B.(24026×,24026)C.(24026×,24024)D.(44024×,44024)二、填空题11.将直线y=2x向上平移1个单位长度后得到的直线是.12.函数y=中,自变量x的取值范围是.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是.14.直线y=3x﹣m﹣4经过点A(m,0),则关于x的方程3x﹣m﹣4=0的解是.15.已知某一次函数的图象经过点A(0,2),B(1,3),C(a,1)三点,则a的值是.16.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是天.17.经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是.18.如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为.三、解答题(共66分)19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.(1)求k、b的值;(2)若一次函数y=kx+b的图象与x轴交点为A(a,0),求a 的值.20.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)

第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
北师大版八年级数学上册第4章一次函数单元检测试卷及解析

北师大版八年级数学上册第4章一次函数单元检测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.在函数y=x−2中,自变量x的取值范围是A. x≠0B. x>2C. x≥2D. x≠22.下列四个点中,在正比例函数25y x=-的图象上的点是( )A.(2,5)B.(5,2)C.(2,-5)D.(5,-2)3.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)4.已知一次函数y=kx-2,若y随x的增大而减小,则该函数的图象经过哪些象限()A.二、三、四 B.一、二、三 C.一、三、四 D.一、二、四5.若点(-4,y1),(2,y2)都在直线y=-3x+t上,则y1与y2的大小关系是 ( ) A.y1>y2 B. y1=y2 C.y1<y2 D.无法确定6.小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.图5中的哪一个图象能大致描述她去书店过程中离书店的距离......s (千米)与所用时间t(分)之间的关系( ).A. B.C. D.7.如图,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延长线上任取一点P,过点P作PD⊥BC,使得PD=2PC,则当点P在BC延长线上向左移动时,△ABD的面积大小变化情况是()A. 一直变大B. 一直变小C. 先变小再变大D. 先变大再变小8.如图,已知点A(-1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有()A.5个 B.4个 C.3个 D.2个9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B.C. D.第II卷(非选择题)请点击修改第II卷的文字说明二、解答题(题型注释)10.已知一次函数y=(1-2m )x+m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围。
北师大版初二上册数学第四章一次函数单元测试卷(解析版)

北师大版初二上册数学第四章一次函数单元测试卷(解析版)数 学 试 卷考试时间:120分钟;总分值:150分学校:___________姓名:___________班级:___________考号:___________一.选择题〔共10小题,总分值40分,每题4分〕 1.〔4分〕以下各曲线中不能表示y 是x 的函数是〔 〕A .B .C .D .2.〔4分〕函数y=11-+x x ,那么自变量x 的取值范围是〔 〕 A .﹣1<x <1 B .x ≥﹣1且x ≠1 C .x ≥﹣1 D .x ≠13.〔4分〕小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后抵达学校,小刚从家到学校行驶路程s 〔单位:m 〕与时间t 〔单位:min 〕之间函数关系的大致图象是〔 〕A .B .C .D .4.〔4分〕以下函数的解析式中是一次函数的是〔 〕 A .y=x -1 B .y=51x +1 C .y=x 2+1 D .y=x5.〔4分〕如图,直线l 所表示的变量x ,y 之间的函数关系式为〔 〕 A .y=﹣2x B .y=2xC .y=﹣x 21D .y=x 216.〔4分〕一次函数y=ax +b 〔a ,b 是常数且a ≠0〕,x 与y 的局部对应值如下表:那么方程ax +b=0的解是〔 〕A .x=﹣1B .x=0C .x=1D .x=47.〔4分〕假定b >0,那么一次函数y=﹣x +b 的图象大致是〔 〕A .B .C .D .8.〔4分〕假定一次函数y=〔k ﹣2〕x +1的函数值y 随x 的增大而增大,那么〔 〕 A .k <2B .k >2C .k >0D .k <09.〔4分〕在平面直角坐标系中,假定直线y=2x +k ﹣1经过第一、二、三象限,那么k 的取值范围是〔 〕 A .k >1B .k >2C .k <1D .k <2<10.〔4分〕:将直线y=x ﹣1向上平移2个单位长度后失掉直线y=kx +b ,那么以下关于直线y=kx +b 的说法正确的选项是〔 〕A .经过第一、二、四象限B .与x 轴交于〔1,0〕C .与y 轴交于〔0,1〕D .y 随x 的增大而减小评卷人得 分二.填空题〔共4小题,总分值20分,每题5分〕11.〔5分〕一个物体重100N ,物体对空中的压强P 〔单位:Pa 〕随物体与空中的接触面积S 〔单位:m 2〕变化而变化的函数关系式是 .12.〔5分〕小高从家门口骑车去单位下班,先走平路抵达点A ,再走上坡路抵达点B ,最后走下坡路抵达任务单位,所用的时间与路程的关系如下图.下班后,假设他沿原路前往,且走平路、上坡路、下坡路的速度区分坚持和去下班时分歧,那么他从单位到家门口需求的时间是 分钟.13.〔5分〕星期天,小明上午8:00从家里动身,骑车到图书馆去借书,再骑车回到家.他离家的距离y 〔千米〕与时间t 〔分钟〕的关系如下图,那么上午8:45小明离家的距离是 千米.14.〔5分〕在平面直角坐标系xOy 中,正方形A 1B 1C 1O 、A 2B 2C 2B 1、A 3B 3C 3B 2,…,按图所示的方式放置.点A 1、A 2、A 3,…和点B 1、B 2、B 3,…区分在直线y=kx +b 和x 轴上.C 1〔1,﹣1〕,C 2〔27,23〕,那么点A 3的坐标是 . 评卷人得 分三.解答题〔共9小题,总分值90分〕15.〔8分〕在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的质量x的一组对应值:〔1〕上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?〔2〕写出y与x之间的关系式,并求出当所挂重物为6kg时,弹簧的长度为多少?16.〔8分〕如下图表示王勇同窗骑自行车离家的距离与时间之间的关系,王勇9点分开家,15点回家,请结合图象,回答以下效果:〔1〕抵达离家最远的中央是什么时间?离家多远?〔2〕他一共休息了几次?休息时间最长的一次是多长时间?〔3〕在哪些时间段内,他骑车的速度最快?最快速度是多少?17.〔8分〕如图,在平面直角坐标系中,直线l经过第一、二、四象限,点A〔0,m〕在l上.〔1〕在图中标出点A;〔2〕假定m=2,且l过点〔﹣3,4〕,求直线l的表达式.18.〔8分〕:函数y=〔1﹣3k〕x+2k﹣1,试回答:〔1〕k为何值时,图象过原点?〔2〕k为何值时,y随x的增大而增大?19.〔10分〕如图,过点A〔4,0〕的两条直线l1,l2区分交y轴于点B,C,其中点B 在原点上方,点C在原点下方,AB=213.〔1〕求点B的坐标;〔2〕假定△ABC的面积为20,求直线l2的解析式.20.〔10分〕效果:探求函数y=|x﹣l|+1的图象与性质.小东依据学习一次函数的阅历,对函数y=|x﹣l|+1的图象与性质停止了探求:〔1〕在函数y=|x﹣l|+1中,自变量x可以是恣意实数,下表是y与x的几组对应值..①表格中m的值为;②在平面直角坐标系中画出该函数的图象;〔2〕结合函数图象,写出该函数的两条性质.21.〔12分〕一次函数y=2x﹣4的图象与x轴、y轴区分相交于点A,B,点P在该函数图象上,P到x轴、y轴的距离区分为d1,d2.〔1〕当P为线段AB的中点时,d1+d2=;〔2〕设点P横坐标为m,用含m的代数式表示d1+d2,并求当d1+d2=3时点P的坐标;22.〔12分〕某工厂甲、乙两车直接到加工一批零件的义务,从末尾加工到完成这项义务共用了9天,乙车间在加工2天后中止加工,引入新设备后继续加工,直到与甲车间同时完成这项义务为止,设甲、乙车间各自加工零件总数为y〔件〕,与甲车间加工时间x〔天〕,y与x之间的关系如图〔1〕所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z〔件〕与甲车间加工时间x〔天〕的关系如图〔2〕所示.〔1〕甲车间每天加工零件为件,图中d值为.〔2〕求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.〔3〕甲车间加工多长时间时,两车间加工零件总数为1000件?23.〔14分〕某种水泥贮存罐的容量为25立方米,它有一个输入口和一个输入口.从某时辰末尾,只翻开输入口,匀速向贮存罐内注入水泥,3分钟后,再翻开输入口,匀速向运输车输入水泥,又经过2.5分钟贮存罐注满,封锁输入口,坚持原来的输入速度继续向运输车输入水泥,当输入的水泥总量到达8立方米时,封锁输入口.贮存罐内的水泥量y〔立方米〕与时间x〔分〕之间的局部函数图象如下图.〔1〕求每分钟向贮存罐内注入的水泥量.〔2〕当3≤x≤5.5时,求y与x之间的函数关系式.〔3〕贮存罐每分钟向运输车输入的水泥量是立方米,从翻开输入口到封锁输入口共用的时间为分钟.2021年秋八年级上学期第四章一次函数单元测试卷参考答案与试题解析一.选择题〔共10小题,总分值40分,每题4分〕1.【剖析】依据函数的定义可知,满足关于x的每一个取值,y都有独一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:A 、满足关于x 的每一个取值,y 都有独一确定的值与之对应关系,故A 不契合题意;B 、满足关于x 的每一个取值,y 有两个值与之对应关系,故B 契合题意;C 、满足关于x 的每一个取值,y 都有独一确定的值与之对应关系,故C 不契合题意;D 、满足关于x 的每一个取值,y 都有独一确定的值与之对应关系,故D 不契合题意; 应选:B .【点评】主要考察了函数的定义.函数的定义:在一个变化进程中,有两个变量x ,y ,关于x 的每一个取值,y 都有独一确定的值与之对应,那么y 是x 的函数,x 叫自变量. 2.【剖析】依据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:依据题意得:⎩⎨⎧≠-≥+0101x x ,解得:x ≥﹣1且x ≠1. 应选:B .【点评】考察了函数自变量的取值范围,函数自变量的范围普通从三个方面思索: 〔1〕当函数表达式是整式时,自变量可取全体实数; 〔2〕当函数表达式是分式时,思索分式的分母不能为0; 〔3〕当函数表达式是二次根式时,被开方数为非正数. 3.【剖析】依据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:依据题意得:小刚从家到学校行驶路程s 〔单位:m 〕与时间r 〔单位:min 〕之间函数关系的大致图象是 应选:B .【点评】此题考察了函数的图象,由图象了解对应函数关系及其实践意义是解此题的关键. 4.【剖析】依据形如y=kx +b 〔k ≠0,k 、b 是常数〕的函数,叫做一次函数停止剖析即可. 【解答】解:A 、是正比例函数,故此选项错误; B 、是一次函数,故此选项正确;C、是二次函数,故此选项错误;D、不是一次函数,故此选项错误;应选:B.【点评】此题主要考察了一次函数定义,关键是掌握一次函数的方式.5.【剖析】依据图形得出函数是正比例函数,设直线的解析式是y=kx,依据图象可知图象过点〔1,2〕,代入求出k即可.【解答】解:设直线的解析式是y=kx,依据图象可知:图象过点〔1,2〕,代入得:k=2,所以函数的关系式为y=2x,应选:B.【点评】此题考察了一次函数图象上点的坐标特征和用待定系数法求一次函数的解析式,能从函数图象上得出正确信息是解此题的关键.6.【剖析】方程ax+b=0的解为y=0时函数y=ax+b的x的值,依据图表即可得出此方程的解.【解答】解:依据图表可得:当x=1时,y=0;因此方程ax+b=0的解是x=1.应选:C.【点评】此题主要考察了一次函数与一元一次方程的关系:方程ax+b=0的解是y=0时函数y=ax+b的x的值.7.【剖析】依据一次函数的k、b的符号确定其经过的象限即可确定答案.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,b>0,∴一次函数的图象经过一、二、四象限,应选:C.【点评】主要考察了一次函数的图象性质,要掌握它的性质才干灵敏解题.一次函数y=kx+b的图象有四种状况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.【剖析】依据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,应选:B.【点评】此题考察了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.9.【剖析】依据一次函数的性质求解.【解答】解:一次函数y=2x+k﹣1的图象经过第一、二、三象限,那么k﹣1>0,解得k>1.应选:A.【点评】此题主要考察一次函数图象在坐标平面内的位置与k、b的关系.解答此题留意了解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【剖析】应用一次函数图象的平移规律,左加右减,上加下减,得出即可.【解答】解:将直线y=x﹣1向上平移2个单位长度后失掉直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于〔﹣1,0〕,错误;C、直线y=x+1与y轴交于〔0,1〕,正确;D、直线y=x+1,y随x的增大而增大,错误;应选:C.【点评】此题主要考察了一次函数图象与几何变换,正确掌握变换规律是解题关键.二.填空题〔共4小题,总分值20分,每题5分〕11.【剖析】直接应用压强与接触面积和物体重量的关系进而得出答案.【解答】解:由题意可得,物体对空中的压强P 〔单位:Pa 〕随物体与空中的接触面积S 〔单位:m 2〕变化而变化的函数关系式是:SP 100=. 故答案为:SP 100=. 【点评】此题主要考察了函数关系式,正确记忆压强与接触面积和物体重量的关系是解题关键. 12.【剖析】依据图象区分求出平路、上坡路和下坡路的速度,然后依据路程,求出时间即可.【解答】解:先算出平路、上坡路和下坡路的速度区分为31、51和21〔千米/分〕,所以他从单位到家门口需求的时间是15311211522=÷+÷+÷〔分钟〕.故答案为:15.【点评】此题主要考察函数的图象的知识点,经过考察一次函数的运用来考察从图象上获取信息的才干. 13.【剖析】首先设当40≤t ≤60时,距离y 〔千米〕与时间t 〔分钟〕的函数关系为y=kt +b ,然后再把〔40,2〕〔60,0〕代入可得关于k |B 的方程组,解出k 、b 的值,进而可得函数解析式,再把t=45代入即可.【解答】解:设当40≤t ≤60时,距离y 〔千米〕与时间t 〔分钟〕的函数关系为y=kt +b , ∵图象经过〔40,2〕〔60,0〕,解得:⎪⎩⎪⎨⎧=-=6101b t ,∴y 与t 的函数关系式为y=﹣101x +6, 当t=45时,y=﹣101×45+6=1.5, 故答案为:1.5.【点评】此题主要考察了一次函数的运用,关键是正确了解题意,掌握待定系数法求出函数解析式.【剖析】依据正方形的轴对称性,由C 1、C 2的坐标可求A 1、A 2的坐标,将A 1、A 2的坐标代入y=kx +b 中,失掉关于k 与b 的方程组,求出方程组的解失掉k 与b 的值,从而求直线解析式,由正方形的性质求出OB 1,OB 2的长,设B 2G=A 3G=t ,表示出A 3的坐标,代入直线方程中列出关于b 的方程,求出方程的解失掉b 的值,确定出A 3的坐标. 【解答】解:衔接A 1C 1,A 2C 2,A 3C 3,区分交x 轴于点E 、F 、G , ∵正方形A 1B 1C 1O 、A 2B 2C 2B 1、A 3B 3C 3B 2,∴A 1与C 1关于x 轴对称,A 2与C 2关于x 轴对称,A 3与C 3关于x 轴对称,∵C 1〔1,﹣1〕,C 2〔27,23-〕, ∴A 1〔1,1〕,A 2〔27,23〕,∴OB 1=2OE=2,OB 2=OB 1+2B 1F=2+2×〔27﹣2〕=5,将A 1与A 2的坐标代入y=kx +b 中得:⎪⎩⎪⎨⎧=+=+23271b k b k ,解得:⎪⎪⎩⎪⎪⎨⎧==5451b k ,∴直线解析式为y=51x +54,设B 2G=A 3G=t ,那么有A 3坐标为〔5+t ,t 〕,代入直线解析式得:b=51〔5+t 〕+54,解得:t=49,∴A 3坐标为〔429,49〕.故答案是:〔429,49〕.【点评】此题考察了一次函数的性质,正方形的性质,应用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了先生归结总结的才干,灵敏运用正方形的性质是解此题的关键.三.解答题〔共9小题,总分值90分〕【剖析】〔1〕应用自变量与因变量的定义剖析得出答案;〔2〕应用表格中数据的变化进而得出答案.【解答】解:〔1〕上表反映了弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;〔2〕由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,那么y=2x+18,当所挂重物为6kg时,弹簧的长度为:y=12+18=30〔cm〕.【点评】此题主要考察了函数的表示方法,正确得出函数关系式是解题关键.16.【剖析】〔1〕依据折线统计图可知,王勇同窗抵达离家最远的中央距离他家是30千米;〔2〕统计图中,折线持平的就是王勇同窗休息的时间,由图可见,王勇同窗共休息了2次,可用10.5﹣11和12﹣13停止计算即可失掉王勇同窗每次休息的时间;〔3〕王勇同窗从11:00到12:00之间和13:00到15:00之间,所骑车的速度最快,列式解答即可失掉答案.【解答】解:〔1〕王勇同窗抵达离家最远的中央半夜12时,距离他家是30千米;〔2〕王勇同窗共休息了2次,休息时间最长的一次是13﹣12=1小时的时间;〔3〕王勇同窗从11:00到12:00之间和13:00到15:00之间,所骑车的速度最快,最快速度是15千米/小时.【点评】此题主要考察的是如何从折线统计图中获取信息,然后再依据信息停止剖析、解释即可.17.【剖析】〔1〕应用y轴上点的坐标性质得出A点位置;〔2〕应用待定系数法求出直线l的表达式即可.【解答】解:〔1〕如下图:〔2〕设直线l的表达式为:y=kx+b,把〔0,2〕,〔﹣3,4〕区分代入表达式得:解得:⎪⎩⎪⎨⎧=-=232b k ,故直线l 的表达式为:y=﹣32x +2. 【点评】此题主要考察了待定系数法求一次函数解析式,正确代入点是解题关键. 18.【剖析】〔1〕依据题意可知,原点在函数图象上,将x=0,y=0代入函数解析式即可求得k 的值;〔2〕依据题意可知1﹣3k >0,从而可以求得k 的取值范围,此题得以处置.【解答】解:〔1〕∵y=〔1﹣3k 〕x +2k ﹣1经过原点〔0,0〕,∴0=〔1﹣3k 〕×0+2k ﹣1,解得,k=0.5,即当k=0.5时,图象过原点;〔2〕∵函数y=〔1﹣3k 〕x +2k ﹣1,y 随x 的增大而增大,∴1﹣3k >0,解得,k <31, 即当k <31时,y 随x 的增大而增大. 【点评】此题考察一次函数图象上点的坐标特征、一次函数的性质,解答此题的关键是明白题意,找出所求效果需求的条件,应用一次函数的性质解答.19.【剖析】〔1〕先依据勾股定理求得BO 的长,再写出点B 的坐标;〔2〕先依据△ABC 的面积为20,可得CO 的长,再依据点A 、C 的坐标,运用待定系数法求得直线l 2的解析式【解答】解:〔1〕∵点A 〔4,0〕∴AO=4∵∠AOB=90°,AO=4,AB=213∴BO ═36=6∴点B 的坐标为〔0,6〕.〔2〕∵△ABC 的面积为20 ∴21BC ×AO=20. ∴BC=10.∵BO=6,∴CO=10﹣6=4∴C 〔0,﹣4〕.设l 2的解析式为y=kx +b ,那么⎩⎨⎧+=-=bk b 404 解得⎩⎨⎧-==41b k ∴l 2的解析式为:y=x ﹣4【点评】此题主要考察了两条直线的交点效果和坐标与图形的性质、三角形的面积,属于基础题,解题的关键是掌握勾股定理以及待定系数法20.【剖析】〔1〕①直接代入解析式可得m 的值.②在图象中描点,连线,可得图象.〔2〕观察图象,从对称性和最值思索可得其性质.【解答】解:①当x=4时,y=|4﹣1|+1=4〔2〕由图象可得①函数图象关于直线x=1对称②函数当x=1时有最小值为1【点评】此题考察一次函数图象,一次函数的性质,此题关键是能经过对称性和最值等方面去思索函数图象的性质.21.【剖析】〔1〕关于一次函数解析式,求出A 与B 的坐标,即可求出P 为线段AB 的中点时d 1+d 2的值;〔2〕设P 〔m ,2m ﹣4〕,表示出d 1+d 2,依据d 1+d 2=3求出m 的值,即可确定出P 的坐标;【解答】解:〔1〕关于一次函数y=2x ﹣4,令x=0,失掉y=﹣4;令y=0,失掉x=2,∴A 〔2,0〕,B 〔0,﹣4〕,∵P 为AB 的中点,∴P 〔1,﹣2〕,那么d 1+d 2=3;g2daan1w2:3〔2〕设P 〔m ,2m ﹣4〕,∴d 1+d 2=|m |+|2m ﹣4|,当0≤m ≤2时,d 1+d 2=m +4﹣2m=4﹣m=3,解得:m=1,此时P 1〔1,﹣2〕;当m >2时,d 1+d 2=m +2m ﹣4=3,解得:m=37,此时P 2〔37,32〕; 当m <0时,不存在, 综上,P 的坐标为〔1,﹣2〕或〔37,32〕; 【点评】此题属于一次函数综合题,触及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,相对值的代数意义,以及坐标与图形性质,熟练掌握相对值的代数意义是解此题的关键.22.【剖析】〔1〕由图象的信息解答即可;〔2〕应用待定系数法确定解析式即可;〔3〕依据题意列出方程解答即可.【解答】解:〔1〕由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770〔2〕b=80×2﹣40=120,a=〔200﹣40〕÷80+2=4,∴B 〔4,120〕,C 〔9,770〕设y BC =kx +b ,过B 、C ,∴⎩⎨⎧+=+=b k b k 97704120,解得⎩⎨⎧-==400130b k ,∴y=130x ﹣400〔4≤x ≤9〕〔3〕由题意得:80x +130x ﹣400=1000,解得:x=320 答:甲车间加工320天时,两车间加工零件总数为1000件 【点评】此题为一次函数实践运用效果,关键是依据一次函数图象的实践意义和依据图象确定一次函数关系式解答.23.【剖析】〔1〕体积变化量除以时间变化量求出注入速度;〔2〕依据标题数据应用待定系数法求解;〔3〕由〔2〕比例系数k=4即为两个口同时翻开时水泥贮存罐容量的添减速度,那么输入速度为5﹣4=1,再依据总输入量为8求解即可.【解答】解:〔1〕每分钟向贮存罐内注入的水泥量为15÷3=5立方米;〔2〕设y=kx +b 〔k ≠0〕把〔3,15〕〔5.5,25〕代入解得∴当3≤x ≤5.5时,y 与x 之间的函数关系式为y=4x +3〔3〕由〔2〕可知,输入输入同时翻开时,水泥贮存罐的水泥添减速度为4立方米/分,那么每分钟输入量为5﹣4=1立方米;只翻开输入口前,水泥输入量为5.5﹣3=2.5立方米,之后到达总量8立方米需需输入8﹣2.5=5.5立方米,用时5.5分钟∴从翻开输入口到封锁输入口共用的时间为:5.5+5.5=11分钟故答案为:1,11【点评】此题为一次函数实践运用效果,考察了一次函数的图象性质以及在实践效果中比例系数k 代表的意义.。
八年级上册数学单元测试卷-第四章 一次函数-北师大版(含答案)

八年级上册数学单元测试卷-第四章一次函数-北师大版(含答案)一、单选题(共15题,共计45分)1、匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t之间的函数关系如图所示,则该容器可能是()A. B. C. D.2、若等腰三角形周长是80 cm,则能反映这个等腰三角形的腰长y cm与底边长x cm函数关系的图象是().A. B. C. D.3、如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A. B. C. D.4、二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是()A. B. C. D.5、在直角坐标系中,点P在直线x+y﹣4=0上,O为原点,则|OP|的最小值为()A.-2B.2C.D.6、已知函数的图象与轴有交点,则的取值范围是()A. B. C. D.7、某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟8、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个B.2个C.3个D.4个9、一次函数片与的图象如图所示,下列说法:①ab<0;②函数y=ax+d不经过第一象限;③函数y=cx+b中,y随x的增大而增大;④3a+b=3c+d其中正确的个数有()A.4个B.3个C.2个D.1个10、设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是().A.2k-2B.k-1C. kD.k+111、对于正比例函数,随的增大而增大,则的取值范围()A. B. C. D.12、如图所示,已知点A坐标为(6,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.2B.3C.3D.613、函数y=中x的取值范围为()A.x≥﹣2且x≠0B.x>﹣2且x≠0C.x>﹣2D.x≠14、放学后,小明与小强同时从学校出发匀速步行回家,小明家、学校、超市、小强家依次在同一条笔直的马路上.在回家的途中小强去超市买水果,随后继续保持原速前行,最终小强比小明晚4分钟到家.小明与小强之间的距离y(米)与小强出发的时间x(分钟)之间的函数关系如图所示.则下列说法:①;②小强在超市停留了2分钟;③小强家距离学校1470米;④点D的坐标为.其中结论正确的有()A.1个B.2个C.3个D.4个15、已知一次函数y=kx+b,-3<x<1时对应的y值为-1<y<3,则b的值是()A.2B.3或0C.4D.2成0二、填空题(共10题,共计30分)16、请写出一个图象过点,且函数值随自变量的增大而减小的一次函数的表达式:________(填上一个答案即可).17、反比例函数y= ,自变量x的取值范围是________.18、已知y是x的一次函数,函数y与自变量x的部分对应值如表,x …﹣2 ﹣1 0 1 2 …y …10 8 6 4 2 …点(x1, y1),(x2, y2)在该函数的图象上.若x1>x2,则y1________y2.19、A、B两地之间有一修理厂C,一日小海和王陆分别从A、B两地同时出发相向而行,王陆开车,小海骑摩托.二人相遇时小海的摩托车突然出故障无法前行,王陆决定将小海和摩托车一起送回到修理厂C后再继续按原路前行,王陆到达A地后立即返回B地,到B地后不再继续前行,等待小海前来(装载摩托车时间和掉头时间忽略不计),整个行驶过程中王陆速度不变,而小海在修理厂花了十分钟修好摩托车,为了赶时间,提速前往目的地B,小海到达B地后也结束行程,若图象表示的是小海与王陆二人到修理厂C的距离和y (km)与小海出行时间之间x(h)的关系,则当王陆第二次与小海在行驶中相遇时,小海离目的地B还有________km.20、写出一个函数,使得满足下列两个条件:①经过点(﹣1,1);②在x>0时,y随x的增大而增大.你写出的函数是________ .21、在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是________.22、已知等腰三角形的周长为18,设底边长为x,腰长为y,则y与x之间的函数关系式为:________ (要求写出自变量x的取值范围).23、若将直线y=﹣2x向上平移3个单位后得到直线AB,那么直线AB的解析式是________.24、已知某果农贩卖的西红柿,其质量与价钱成一次函数关系,今小华向果农买一竹篮的西红柿,含竹篮称得总质量为15公斤,付西红柿的钱25元.若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的质量为________公斤.25、某航空公司托运行李的费用y元与托运行李的质量x(kg)之间的函数关系如图所示,根据图中的信息可知:免费托运行李质量应不超过________kg.三、解答题(共5题,共计25分)26、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.27、四川省第十二届运动会将于8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.28、已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.29、下列四个图象中,哪些是y关于x的函数?请用函数定义判断之.30、小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分?小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米?(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时?②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、5、B7、D8、9、A10、11、C12、A13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第4章一次函数》一、选择题(共10小题,每小题3分,满分30分)1.若函数是正比例函数,则m的值是()A.2 B.﹣2 C.±2 D.12.下列函数中,是一次函数的有()①;②y=4x;③;④;⑤y=2x2﹣1.A.1个B.2个C.3个D.4个3.一次函数y=2x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0) D.(1,1)5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1个B.2个C.3个D.4个6.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B.C.D.7.一次函数y=ax+b,若a+b=1,则它的图象必经过点()A.(﹣1,﹣1) B.(﹣1,1)C.(1,﹣1)D.(1,1)8.一次函数y=kx+b,当k>0,b<0时,它的图象是()A.B.C.D.9.已知一次函数y=x+b的图象经过第一、三、四象限,则b的值可以是()A.﹣1 B.0 C.1 D.210.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是()A.y=2x﹣3 B.y=2x+2 C.y=2x+1 D.y=2x二、填空11.若P(﹣7,3a+2)在直线y=x上,则a= .12.若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为.13.一次函数y=6x+1的图象不经过第象限.14.对于函数y=3x﹣6,当x=﹣2时,y= ,当y=6时,x= .15.点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.16.函数y=﹣5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.17.点C(0,﹣5)到x轴的距离是;到y轴的距离是;到原点的距离是.18.设点P(x,y)在第二象限,且|x|=1,|y|=2,则P点的坐标为.19.若点M(3+2a,a﹣1)在x轴上,则点M的坐标为.20.若点P(﹣2,y)与Q(x,3)关于y轴对称,则x= ,y= .三、解答题21.如图,在平行四边形OABC中,OA=a,AB=b,∠AOC=120°,求点C,B的坐标.22.已知平面上A(4,6),B(0,2),C(6,0),求△ABC的面积.23.如果B(m+1,3m﹣5)到x轴的距离与它到y轴的距离相等,求:(1)m的值;(2)求它关于原点的对称点坐标.24.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(,0),并写出另外三个顶点的坐标.25.在平面直角坐标系中,将坐标为(0,0),(2,4),(4,4),(2,0)的点用线段依次连接起来,形成一个图案.问:(1)若将这四个点的纵坐标保持不变,横坐标变成原来的;将所得的四个点用线段依次连接起来,所得图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3呢?(3)横坐标保持不变,纵坐标分别加3呢?(4)纵坐标保持不变,横坐标分别乘以﹣1呢?(5)横、纵坐标分别变成原来的2倍呢?(6)横坐标保持不变,纵坐标分别乘以﹣1呢?《第4章一次函数》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若函数是正比例函数,则m的值是()A.2 B.﹣2 C.±2 D.1【考点】正比例函数的定义.【分析】根据正比例函数的定义,令2m2﹣7=1,且m+2≠0求出即可.【解答】解:∵函数是正比例函数,∴2m2﹣7=1,且m+2≠0,∴m2﹣4=0,且m+2≠0,∴(m+2)(m﹣2)=0,且m+2≠0,∴m﹣2=0,解得:m=2.故选:A.【点评】本题主要考查了正比例函数的定义,关键是掌握①正比例系数≠0,②自变量次数=1.2.下列函数中,是一次函数的有()①;②y=4x;③;④;⑤y=2x2﹣1.A.1个B.2个C.3个D.4个【考点】一次函数的定义.【分析】根据一次函数的定义对各选项进行逐一分析即可.【解答】解:①y=是反比例函数,故本选项错误;②y=4x是一次函数,故本选项正确;③y=x是一次函数,故本选项正确;④y=﹣+1是一次函数,故本选项正确;⑤y=2x2﹣1是二次函数,故本选项错误.故正确的有3个.故选:C.【点评】本题考查的是一次函数的定义,即一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.3.一次函数y=2x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据一次函数的性质,当k>0时,图象经过第一、三象限解答.【解答】解:∵k=2>0,∴函数经过第一、三象限,∵b=﹣3<0,∴函数与y轴负半轴相交,∴图象不经过第二象限.故选:B.【点评】本题主要考查一次函数的性质,需要熟练掌握.4.下面哪个点不在函数y=﹣2x+3的图象上()A.(﹣5,13)B.(0.5,2)C.(3,0) D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1个B.2个C.3个D.4个【考点】一次函数的性质.【分析】分别确定四个函数的k值,然后根据一次函数y=kx+b(k≠0)的性质判断即可.【解答】解:①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y=,k=﹣<0;④y=(1﹣)x,k=(1﹣)<0.所以四函数都是y随x的增大而减小.故选D.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y 随x的增大而减小.6.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为()A.B.C.D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.7.一次函数y=ax+b,若a+b=1,则它的图象必经过点()A.(﹣1,﹣1) B.(﹣1,1)C.(1,﹣1)D.(1,1)【考点】一次函数图象上点的坐标特征.【分析】x=1时,ax+b=a+b=1,依此求出一次函数y=ax+b的图象必经过点的坐标.【解答】解:一次函数y=ax+b只有当x=1,y=1时才会出现a+b=1,∴它的图象必经过点(1,1).故选D.【点评】本题考查的知识点为:一次函数y=ax+b只有当x=1,y=1时才会出现a+b=1.8.一次函数y=kx+b,当k>0,b<0时,它的图象是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象在坐标平面内的位置与k、b的关系,可以判断出其图象过的象限,进而可得答案.【解答】解:根据题意,有k>0,b<0,则其图象过一、二、四象限;故选C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.9.已知一次函数y=x+b的图象经过第一、三、四象限,则b的值可以是()A.﹣1 B.0 C.1 D.2【考点】一次函数图象与系数的关系.【专题】探究型.【分析】先根据一次函数y=x+b的图象经过第一、三、四象限求出b的取值范围,再找出符合条件的b的取值即可.【解答】解:∵一次函数y=x+b的图象经过第一、三、四象限,∴b<0,四个选项中只有﹣1符合条件.故选A.【点评】本题考查的是一次函数的图象与系数的关系,一次函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限.10.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是()A.y=2x﹣3 B.y=2x+2 C.y=2x+1 D.y=2x【考点】一次函数图象与几何变换.【分析】平移时k的值不变,只有b发生变化.【解答】解:原直线的k=2,b=3;向下平移2个单位长度得到了新直线,那么新直线的k=2,b=3﹣2=1.∴新直线的解析式为y=2x+1.故选C.【点评】求直线平移后的解析式时要注意平移时k和b的值的变化.二、填空11.若P(﹣7,3a+2)在直线y=x上,则a= ﹣3 .【考点】一次函数图象上点的坐标特征.【专题】探究型.【分析】把点P(﹣7,3a+2)代入直线y=x求出a的值即可.【解答】解:∵P(﹣7,3a+2)在直线y=x上,∴﹣7=3a+2,解得﹣3.故答案为:﹣3.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.若将直线y=2x﹣1向上平移3个单位,则所得直线的表达式为y=2x+2 .【考点】一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将直线y=2x﹣1向上平移2个单位后,所得直线的表达式是y=2x﹣1+3,即y=2x+2.故答案为:y=2x+2.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.一次函数y=6x+1的图象不经过第四象限.【考点】一次函数的性质.【分析】根据一次函数的性质进行解答即可.【解答】解:∵一次函数y=6x+1中.k=6>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故答案为:四.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象经过一、二、三象限.14.对于函数y=3x﹣6,当x=﹣2时,y= ﹣12 ,当y=6时,x= 4 .【考点】一次函数的定义.【分析】根据当x=﹣2时,当y=6时,分别代入函数解析式求出即可.【解答】解:∵对于函数y=3x﹣6,∴当x=﹣2时,y=3×(﹣2)﹣6=﹣12,当y=6时,6=3x﹣6,解得x=4.故答案为:﹣12,4.【点评】本题考查的是一次函数图象上点的坐标特点,属较简单题目.15.点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是(6,8)或(6,﹣8),A点离开原点的距离是10 .【考点】两点间的距离公式.【分析】由于点A在y轴右侧,所以横坐标大于0,但纵坐标有两种情况,又A距y轴6个单位长度,距x轴8个单位长度,由此即可确定A点的坐标,然后利用勾股定理就可以求出A点离开原点的距离.【解答】解:∵点A在y轴右侧,距y轴6个单位长度,∴点A的横坐标为6,∵点A距x轴8个单位长度,∴A点的坐标是(6,8)或(6,﹣8);∴A点离开原点的距离是=10.故两空分别填:(6,8)或(6,﹣8);10.【点评】此题主要考查了根据点的位置和到坐标轴的距离确定点的坐标,也考查了利用勾股定理求点到原点的距离,有一定的综合性.16.函数y=﹣5x+2与x轴的交点是(,0),与y轴的交点是(0,2),与两坐标轴围成的三角形面积是.【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】令y=0,解得x即可得与x轴的交点,同理可求得与y轴的交点,再根据坐标特征即可求得三角形面积.【解答】解:由题意,令y=0,解得x=,∴函数与x轴的交点是(,0),令x=0,解得y=2,∴函数与y轴的交点是(0,2),根据坐标特征知,函数与两坐标轴围成的三角形面积S=×2×=.故填(,0)、(0,2)、.【点评】本题考查了一次函数图象上点的坐标特征,是基础题型.17.点C(0,﹣5)到x轴的距离是 5 ;到y轴的距离是0 ;到原点的距离是 5 .【考点】点的坐标.【分析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答;根据横坐标是0,到原点的距离等于纵坐标的长度解答.【解答】解:点C(0,﹣5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5.故答案为:5,0,5.【点评】本题考查了点的坐标,主要利用了点到坐标轴与原点的距离的求解,需熟记.18.设点P(x,y)在第二象限,且|x|=1,|y|=2,则P点的坐标为(﹣1,2).【考点】点的坐标.【专题】计算题.【分析】根据|x|=1,|y|=2求得x、y的两个值,在根据点所处的位置确定x、y的具体值,从而可以确定点P的坐标.【解答】解:∵|x|=1,|y|=2,∴x=±1,y=±2,∵点P(x,y)在第二象限,∴x<0,y>0,∴x=﹣1,y=2,∴P点的坐标为(﹣1,2).故答案为:(﹣1,2).【点评】本题考查了点的坐标的知识,解题的关键是根据点所处的位置判断其横纵坐标的符号.19.若点M(3+2a,a﹣1)在x轴上,则点M的坐标为(5,0).【考点】点的坐标.【专题】应用题.【分析】根据x轴上的点的纵坐标为0,可求得a的值,从而可求M的坐标.【解答】解:∵点M(3+2a,a﹣1)在直角坐标系的x轴上,∴a﹣1=0,∴a=1.则点M的坐标为(5,0).【点评】本题主要考查了坐标轴上的点的特点:x轴上的点的纵坐标为0.20.若点P(﹣2,y)与Q(x,3)关于y轴对称,则x= 2 ,y= 3 .【考点】关于x轴、y轴对称的点的坐标.【分析】让纵坐标相等,横坐标互为相反数列式求值即可.【解答】解:∵P(﹣2,y)与Q(x,3)关于y轴对称,∴﹣2+x=0,y=3,解得x=2,y=3.【点评】用到的知识点为:两点关于y轴对称,纵坐标相等,横坐标互为相反数.三、解答题21.如图,在平行四边形OABC中,OA=a,AB=b,∠AOC=120°,求点C,B的坐标.【考点】坐标与图形性质;平行四边形的性质.【分析】∠AOC=120°,设BC与y轴交于M,则∠COM=30°,在直角△COM中可以得到OM、MC的长,就可以求出C点的坐标,进而可以求出BM的长,就可以求出B的横坐标.【解答】解:∠AOC=120°,设BC与y轴交于M,则∠COM=30°,在直角△COM中,OM=cos30°•OC=,MC=sin30°•OC=,则MB=BC﹣CM=a﹣b,因而C(﹣b, b),B(a﹣b, b)【点评】本题主要考查了平行四边形的性质,解题的关键是把求坐标的问题可以转化为求线段的长的问题.22.已知平面上A(4,6),B(0,2),C(6,0),求△ABC的面积.【考点】三角形的面积;坐标与图形性质.【分析】已知三点的坐标,可以把求三角形的面积的问题,转化为梯形与三角形面积的差的问题.【解答】解:ADOC是梯形,则梯形的面积是(4+6)×6=30,三角形ABD的面积是×4×4=8,三角形OBC的面积是×2×6=6,因而△ABC的面积是30﹣8﹣6=16.【点评】求图形的面积可以转化为一些规则图形的面积的和或差的问题.23.如果B(m+1,3m﹣5)到x轴的距离与它到y轴的距离相等,求:(1)m的值;(2)求它关于原点的对称点坐标.【考点】关于原点对称的点的坐标;点的坐标.【分析】(1)根据到x轴的距离与它到y轴的距离相等可得m+1=3m﹣5,或m+1+3m﹣5=0,解方程可得m的值;(2)首先根据m的值,求出B点坐标,再根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:(1)由题意得:m+1=3m﹣5,或m+1+3m﹣5=0,解得:m=3,m=1;(2)当m=3时,B(4,4)关于原点的对称点坐标(﹣4,﹣4);当m=1时,B(2,﹣2)关于原点的对称点坐标(﹣2,2).【点评】此题主要考查了点的坐标以及关于原点对称的点的坐标特点,关键是掌握到x轴的距离与它到y轴的距离相等时横坐标的绝对值=纵坐标的绝对值.24.正方形的边长为2,建立适当的直角坐标系,使它的一个顶点的坐标为(,0),并写出另外三个顶点的坐标.【考点】正方形的性质;坐标与图形性质.【专题】计算题.【分析】先找到A(,0),根据正方形的对称性,可知A点的对称点C的坐标,同样可得出B和D的坐标.【解答】解:建立坐标轴,使正方形的对称中心为原点,则A(,0),C(﹣,0),那么B的坐标是(0,),其对称点D的坐标是(0,﹣).【点评】本题利用了正方形既是轴对称图形又是中心对称图形的性质.25.在平面直角坐标系中,将坐标为(0,0),(2,4),(4,4),(2,0)的点用线段依次连接起来,形成一个图案.问:(1)若将这四个点的纵坐标保持不变,横坐标变成原来的;将所得的四个点用线段依次连接起来,所得图案与原图案相比有什么变化?(2)纵坐标保持不变,横坐标分别加3呢?(3)横坐标保持不变,纵坐标分别加3呢?(4)纵坐标保持不变,横坐标分别乘以﹣1呢?(5)横、纵坐标分别变成原来的2倍呢?(6)横坐标保持不变,纵坐标分别乘以﹣1呢?【考点】坐标与图形性质.【专题】图表型.【分析】(1)建立平面直角坐标系,然后找出各点的位置,再顺次连接即可;(2)根据纵坐标不变,横坐标加,相当于向右平移解答;(3)根据横坐标不变,纵坐标加,相当于向上平移解答;(4)根据纵坐标不变,横坐标乘以﹣1,关于y轴对称;(5)关于原点O位似变换;(6)根据横坐标不变,纵坐标乘以﹣1,关于x轴对称.【解答】解:(1)如图所示,所得图案是以原图案的一边为对角线的平行四边形;(2)原图案向右平移3个单位;(3)原图案向上平移3个单位;(4)原图案关于y轴对称;(5)以点O为位似中心的位似变化,位似比为;(6)原图案关于x轴对称.【点评】本题考查了坐标与图形性质,是基础题,熟练掌握平移变换以及轴对称,位似变换的性质是解题的关键.。