Genetic effects and plant architecture influences on outcrossing rate in soybean

合集下载

植物激素在低磷响应中的作用

植物激素在低磷响应中的作用

植物激素在低磷响应中的作用磷是植物生长发育所必需的大量元素之一。

土壤缺磷是植物生长的限制因素之一。

植物在低磷环境下形成了一系列的生理生化适应机制。

研究发现植物激素在植物应对低磷胁迫中扮演重要的角色。

植物激素的刺激与磷胁迫之间存在着密切的联系。

笔者总结了近几年来植物激素如生长激素、乙烯、赤霉素等与低磷胁迫之间的关系的证据,作为进一步了解土壤中磷有限条件下植物激素的作用的工具。

标签:植物激素;生长激素;赤霉激素;乙烯;细胞分裂素;磷胁迫磷元素是植物生长发育所必需的大量元素之一,在植物的生命活动过程中有重要的生物学功能。

植物在长期进化过程中形成了一系列适应低磷胁迫的机制。

植物感受到低磷信号,就会经过一系列的信号转导过程调控其体内与磷相关的调节基因和结构基因的表达,从而影响植物体内的生理生化过程,并最终表现为一系列可见的特征,包括根系形态结构的变化、生理生化代谢的改变以及与菌类共生等,以最大限度吸收和利用有效磷。

以拟南芥为例,感受到低磷信号后会出现以下表现:(1)拟南芥主根的生长受抑制即主根变短;(2)侧根的数量和长度增加;(3)根毛的长度和密度也会增加;(4)植株矮小,根冠比增加,生物量降低;(5)叶片由暗绿变紫,花青素积累;(6)生长发育受阻,抗性减弱;(7)植物的营养周期变短,提前开花完成生活史等等[1-2]。

植物激素在植物的低磷响应中也起了比较重要的作用,笔者就植物激素在植物响应低磷胁迫过程中所起的作用做了综合分析。

1?生长激素在低磷响应机制中的作用生长激素的极性运输是侧根形成所必需的。

当植物生长在低磷环境中时,施加外源性生长激素能显著地抑制植物主根的生长并促进侧根的形成。

相反的,如果要在高磷环境中造成这样的根系构型则需要比低磷环境中高出10倍甚至100倍浓度的生长激素。

此外,抗生长激素的突变体axr2-1,axr3-1和axr4-1在低磷环境中表现出正常的低磷反应,而iaa28-1则能够抵抗由低磷引起的对根毛和侧根形成的刺激效应。

全基因组关联分析(GWAS)取样策略

全基因组关联分析(GWAS)取样策略

全基因组关联分析(GWAS)取样策略GWAS要想做得好,材料选择是至关重要的一环。

So,小编查阅了上百篇GWAS文献,精心梳理了一套GWAS的取样策略,是不是很贴心呢?赶紧来学习一下吧!一、常见经济作物样本选择对于经济作物来说,一般都有成百上千个品系,其中包括野生种、地方栽培种、驯化种及商业品种。

一般选择多个品系来确保群体遗传多样性。

文献中常见的经济作物的样本收集于全国或者全世界各地。

表1 常见经济作物样本收集二、常见哺乳动物样本选择对于哺乳动物,一般选择雄性个体作为研究对象(除研究产奶、产仔等性状外),并且要求所研究的对象年龄相近。

下表是我们统计的一些已发表的哺乳动物取材案例,供大家参考。

表2 常见哺乳动物样本收集三、常见家禽类样本选择对于家禽而言,一般会选择家系群体(全同胞家系或半同胞家系)。

为了增加分析内容,可以构建多个家系群体进行研究。

此外,尽量使群体所有个体生长环境以及营养程度保持一致,同时家禽的年龄也尽量保持一致,这对表型鉴定的准确性有很大的帮助。

表3 常见家禽类样本收集四、林木类样本选择对于林木类,一般选择同一物种的多个样本,多个样本做到表型丰富。

表4 林木类样本收集五、其他物种样本选择对于原生生物以及昆虫等的取样策略,可以参考表5中已发表的文献。

表5 其他物种样本收集有这么多文献支持,各位看官是不是已经整明白了GWAS该如何取材呢?最后,小编再温馨提示一句,根据文献统计及项目经验,一般来说,GWAS的样本大小要不少于300个才是极好的。

参考文献[1] Jia G, Huang X, Zhi H, et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica)[J]. Nature Genetics, 2013, 45(8):957-61.[2] Zhou L, Wang S B, Jian J, et al. Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seqgenotyping method[J]. Scientific reports, 2015, 5.[3]Zhou Z, Jiang Y, Wang Z, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domesticatio n and improvement in soybean[J]. Nature Biotechnology, 2015, 33(4):408-414.[4] MorrisG P, Ramu P, Deshpande S P, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum[J].Proceedings of the National Academy of Sciences, 2013, 110(2): 453-458.[5] Yano K, Yamamoto E, Aya K,et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice[J]. Nature Genetics, 2016, 48(8).[6] Wang X, Wang H, Liu S, et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings[J]. Nature Genetics, 2016.[7] Pryce J E, Bolormaa S, Chamberlain A J, et al. A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes[J]. Journal of dairy science, 2010, 93(7):3331-3345.[8] Hayes B J, Pryce J, Chamberlain A J, et al. Genetic architecture of complex traits and accuracy of genomic prediction:coat colour, milk-fat percentage, and type in Holstein cattle as contrastingmodel traits[J]. PLoS Genet, 2010, 6(9): e1001139.[9] Heaton M P, Clawson M L, Chitko-Mckown C G,et al. Reduced lentivirus susceptibility in sheep with TMEM154 mutations[J].PLoS Genet, 2012, 8(1): e1002467.[10] Tsai K L, Noorai R E, Starr-Moss A N, et al. Genome-wide association studies for multiple diseases of the German Shepherd Dog[J]. Mammalian Genome, 2012, 23(1-2): 203-211.[11] Petersen J L, Mickelson J R, Rendahl A K, et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds[J]. PLoS Genet, 2013,9(1): e1003211.[12] Do D N, Strathe A B, Ostersen T, et al. Genome-wide association study reveals genetic architecture of eating behaviorin pigs and its implications for humans obesity by comparative mapping[J]. PLoS One, 2013, 8(8).[13] Daetwyler H D, Capitan A, Pausch H, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic andcomplex traits in cattle[J]. Nature genetics, 2014, 46(8): 858-865.[14] Wu Y, Fan H, Wang Y, et al. Genome-Wide Association Studies Using Haplotypes and Individual SNPs in Simmental Cattle[J]. PLoS One,2014,9(10): e109330.[15] Parker C C, Gopalakrishnan S, Carbonetto P,et al.Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice[J]. Nature Genetics, 2016.[16] Gu X, Feng C, Ma L, et al. Genome-wide association study of body weight in chicken F2 resource population[J]. PLoS One, 2011, 6(7): e21872.[17] Xie L, Luo C, Zhang C, et al. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits[J]. PLoS One, 2012, 7(2): e30910.[18] Liu R, Sun Y, Zhao G, et al. Genome-Wide Association Study Identifies Loci and Candidate Genes for Body Composition and Meat Quality Traits in Beijing-You Chickens[J]. Plos One, 2012, 8(4):-.[19] Evans L M, Slavov G T, Rodgers-Melnick E, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations[J]. Nature genetics, 2014.[20] Porth I, Klapšte J, Skyba O,et al. Genome‐wide association mapping for wood characteristics in Populus identifiesan array of candidate single nucleotide polymorphisms[J]. New Phytologist,2013, 200(3): 710-726.[21] Van Tyne D, Park D J, Schaffner S F, et al. Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum[J]. PLoS Genet, 2011, 7(4): e1001383.[22] Ke C, Zhou Z, Qi W, et al. Genome-wide association study of 12 agronomic traits in peach[J]. Nature Communications,2016, 7:13246.[23] Miotto O, Amato R, Ashley E A, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum[J]. Naturegenetics, 2015, 47(3): 226-234.[24] Spötter A, Gupta P, Nürnberg G, et al. Development of a 44K SNP assay focussing on the analysis of a varroa‐specific defence behaviour in honey bees (Apis mellifera carnica)[J]. Molecular ecology resources, 2012, 12(2): 323-332.重测序业务线靳姣姣丨文案武苾菲丨编辑。

玉米PHYB1 基因的克隆、改造及其在拟南芥中的功能分析

玉米PHYB1 基因的克隆、改造及其在拟南芥中的功能分析

生物技术进展2019年㊀第9卷㊀第4期㊀350~356CurrentBiotechnology㊀ISSN2095 ̄2341研究论文Articles㊀收稿日期:2019 ̄04 ̄10ꎻ接受日期:2019 ̄04 ̄26㊀基金项目:国家自然科学基金项目(31500239ꎻ31601319)资助ꎮ㊀作者简介:马晓净ꎬ硕士研究生ꎬ研究方向为植物分子生物学ꎮE ̄mail:maxiaojingshengwu@163.comꎮ∗通信作者:王海洋ꎬ教授ꎬ主要从事玉米高产耐密遗传基础和分子机理解析㊁玉米耐密理想株型分子设计等研究ꎮE ̄mail:whyang@scau.edu.cn玉米PHYB1基因的克隆㊁改造及其在拟南芥中的功能分析马晓净1ꎬ2ꎬ㊀赵斌斌1ꎬ2ꎬ㊀刘㊀扬1ꎬ㊀马梦迪1ꎬ㊀王海洋3∗1.中国农业科学院生物技术研究所ꎬ北京100081ꎻ2.中国农业科学院研究生院ꎬ北京100081ꎻ3.华南农业大学生命科学学院ꎬ亚热带农业生物资源保护与利用国家重点实验室ꎬ广州510642摘㊀要:光是一个重要的环境因子ꎬ影响植物生长发育的诸多方面ꎮ植物通过多种光受体感受环境中的光信号ꎬ其中以红光与远红光受体 光敏色素的研究最为透彻ꎮ研究表明ꎬ将拟南芥phyB的104位点与361位点的酪氨酸(Y)残基改造为苯丙氨酸(F)残基可增强其活性ꎮ为了研究玉米光敏色素B1(PHYB1)的功能ꎬ构建了玉米光敏色素B1基因的3种重组质粒:pZmPHYB1ɨZmPHYB1WT㊁pZmPHYB1ɨZmPHYB1Y98F(对应拟南芥Y104F突变)和pZmPHYB1ɨZmPHYB1Y359F(对应拟南芥Y361F突变)ꎬ并将其转入拟南芥phyB ̄9突变体中ꎬ然后对转基因株系进行表型分析ꎮ结果表明ꎬZmPHYB1可抑制phyB ̄9突变体下胚轴及叶柄的伸长ꎻZmPHYB1可与拟南芥AtPIF5互作并诱导下游避荫反应响应基因和生长素合成基因的表达ꎻY98F和Y359F氨基酸的替换可增强ZmPHYB1的活性ꎮ研究结果表明ZmPHYB1在拟南芥中具有介导避荫反应的作用ꎬ同时也将为玉米耐密株型改良提供参考ꎮ关键词:ZmPHYB1ꎻ下胚轴ꎻ避荫反应ꎻ光敏色素互作因子(PIFs)DOI:10.19586/j.2095 ̄2341.2019.0039CloningꎬModificationandFunctionalCharacterizationofMaizePHYB1inArabidopsisthaliana㊀MAXiaojing1ꎬ2ꎬZHAOBinbin1ꎬ2ꎬLIUYang1ꎬMAMengdi1ꎬWANGHaiyang3∗1.BiotechnologyResearchInstituteꎬChineseAcademyofAgriculturalSciencesꎬBeijing100081ꎬChinaꎻ2.GraduateSchoolofChineseAcademyofAgriculturalSciencesꎬBeijing100081ꎬChinaꎻ3.StateKeyLaboratoryforConservationandUtilizationofSubtropicalAgro ̄BioresourcesꎬSchoolofLifeSciencesꎬSouthChinaAgriculturalUniversityꎬGuangzhou510642ꎬChinaAbstract:Asanimportantenvironmentalfactorꎬlightaffectsmanyaspectsofplantgrowthanddevelopment.Plantsuseseveralclassesofphotoreceptorstoperceivethelightsignalsintheambientenvironment.Amongthephotoreceptorsꎬphytochromesꎬwhichsenseredandfar ̄redlightsignalsꎬarebeststudiedsofar.Previousstudieshaveshownthatchangingthetyrosine(Y)atposition104and361ofArabidopsisphyBtophenylalanine(F)canenhanceitsactivity.ToinvestigatethefunctionofmaizephytochromeB1ꎬweconstructedthreebinaryvectors:WildtypepZmPHYB1ɨZmPHYB1WTꎬpZmPHYB1ɨZmPHYB1Y98F(mimickingY104FofArabidopsisphyB)andpZmPHYB1ɨZmPHYB1Y359F(mimickingY361FofArabidopsisphyB)ꎬandtransformedthemintotheArabidopsisphyB ̄9loss ̄of ̄functionmutant.PhenotypicanalysesofthetransgeniclinesshowedthatthemaizePHYB1genecanlargelycomplementtheArabidopsisphyB ̄9mutantphenotypesꎬincludinghypocotylelongationandpetioleelongation.FurthermoreꎬZmPHYB1canphysicallyinteractwiththeArabidopsisPIF5proteinandinducetheexpressionofdownstreamshadeavoidanceresponsiveandauxinbiosynthesisrelatedgenes.TheY98FandY359FaminoacidsubstitutionscanenhancetheactivityofZmPHYB1.InsummaryꎬourresultsindicatedthatZmPHYB1playsanimportantroleinmediatingshadeavoidanceresponseinArabidopsisꎬandprovidedusefulcluesforgeneticimprovementmaizeplantarchitectureforadaptingtohigh ̄densityplanting.Keywords:ZmPHYB1ꎻhypocotylꎻshadeavoidanceresponseꎻphytochromeinteractingfactors(PIFs). All Rights Reserved.㊀㊀对于植物而言ꎬ光是重要的能量来源及环境信号ꎬ几乎贯穿于植物的一生ꎬ对于植物的生长发育极其重要[1]ꎮ植物主要依靠四类光受体感知光的变化ꎬ其中以红光(R)及远红光(FR)(600~750nm)受体 光敏色素(phytochromesꎬphys)的研究最为透彻ꎮ光敏色素是含有一个线性四吡咯发色团的同源二聚体ꎬ单体约120kDa[2]ꎮphyB在植物体内以两种可逆状态存在ꎬ即有活性的FR吸收态 Pfr和非活性的R吸收态 Pr[3]ꎮ其通过与光敏色素互作因子(phytochromeinteractingfactorsꎬPIFs)互作来行使其功能[4~7]ꎮNito等[8]认为将拟南芥PHYB的104位酪氨酸(Y)残基改造为苯丙氨酸(F)残基可使其对红光超敏感ꎮZhang等[9]研究表明ꎬ将拟南芥PHYBN端361位的酪氨酸(Y)残基突变为苯丙氨酸(F)残基可增强其活性ꎮ同时ꎬ光敏色素B还是避荫反应的抑制因子[10]ꎮ避荫反应是一个十分复杂的过程[11~12]ꎬ通常认为红光与远红光的比例(R:FR)下降是触发避荫反应的因素ꎮ密植后(遮阴)植物之间相互遮挡ꎬ由于植物叶片对有效光的截留㊁吸收及反射等影响导致底层红光与远红光比例下降(低R:FR)ꎬ而影响植物的光合作用ꎮ在低R:FR生长条件下ꎬ拟南芥表现为茎和叶柄伸长㊁叶片上翘㊁叶面积变小㊁分枝减少㊁早花㊁根系弱㊁易感病㊁抗逆性减弱等适应性特征ꎬ这些反应统称为避荫反应(shadeavoidanceresponseꎬSAR)[13~15]ꎮ在低R:FR生长条件下ꎬ单子叶植物也会出现茎秆徒长㊁分蘖显著减少㊁产量下降㊁易倒伏㊁雌雄间隔增大等特征ꎮ并且玉米中的phyB1phyB2双突变体和高粱中的phyB突变体与拟南芥中的phyB突变体类似ꎬ均表现出避荫反应的特征ꎬ如植株增高㊁节间增长㊁易倒伏㊁分蘖减少㊁早花等[16~19]ꎮ这一结果表明ꎬphyB也是禾本科植物中调控避荫反应的主要光受体[20]ꎮ目前拟南芥中遮荫反应分子机理的研究已经相当完善ꎬ但在禾本科植物中的研究还十分有限[19]ꎮ因此研究玉米的光敏色素B对于了解玉米避荫反应及光敏色素在单㊁双子叶植物避荫反应中的功能差异十分重要ꎮ玉米(ZeamaysL.)由于广适性㊁高产㊁用途多样等特点ꎬ在全球范围内被广泛种植ꎮ2012年玉米已成为我国第一大谷物ꎮ研究表明[21]ꎬ我国玉米单产水平与美国等国家相去甚远ꎮDuvick等[22]研究发现增加单位面积玉米的种植密度以增加果穗数是提高玉米单产的有效途径ꎬ但目前我国玉米的种植密度仅为美国的60%左右ꎮ因此ꎬ我国在玉米种植密度上还有很大的提升空间ꎮ但在高密度种植情况下ꎬ避荫反应综合征是限制玉米产量提高的主要因素ꎬ因此解析避荫反应关键基因光敏色素的功能ꎬ对于深入了解玉米光信号遗传网络㊁指导玉米新品种培育具有重要作用ꎮ1㊀材料与方法1.1㊀材料1.1.1㊀实验材料㊀玉米自交系B73㊁拟南芥野生型Col ̄0㊁拟南芥突变体phyB ̄9㊁本生烟草(N.benthamiana)为本实验室保存ꎻ大肠杆菌DH5α感受态㊁农杆菌GV3101感受态㊁P19菌株㊁AT ̄Hook菌株为本实验室保存ꎻ改造后的pCAMBIA载体为本实验室保存ꎮ1.1.2㊀实验试剂㊀快速质粒小提试剂盒(DP105 ̄03)㊁反转录试剂盒(KR106 ̄02)㊁通用型DNA纯化回收试剂盒(DP214 ̄03)㊁荧光定量试剂盒(FP205 ̄02)购于天根生化科技公司ꎻTrizol试剂盒购于赛默飞世尔试剂公司ꎻ限制性内切酶购于TaKaRa公司和NEB公司ꎻIn ̄fusionHDCloningKit购于Clontech公司ꎻKODFxPCR扩增酶购于ToYoBo公司等ꎮ1.1.3㊀实验仪器㊀TC ̄XP型PCR仪购于广州博日科技公司ꎻQuantStudio3实时定量PCR仪购于ABI公司ꎻTanon ̄100一体化凝胶成像系统购于上海天能公司ꎻ低温离心机购于Eppendorf公司ꎻNANODROP2000C购于Thermo公司ꎻ三色光植物培养箱购于PERCIVA公司ꎻStemi508型体视显微镜购于蔡司公司ꎻLB985型植物活体成像仪购于BertholdTechnologies公司等ꎮ1.2㊀方法1.2.1㊀序列获得㊀在Tair数据库(https://www.arabidopsis.org/)和MaizeGDB数据库(https://www.maizegdb.org/)中下载拟南芥及玉米光敏色素蛋白质序列ꎮ1.2.2㊀组织表达分析㊀利用Trizol法提取RNAꎻ反转录(详见天根反转录试剂盒(KR106 ̄02)说明书)ꎻ转基因株系中外源基因ZmPHYB1的表达量153马晓净ꎬ等:玉米PHYB1基因的克隆㊁改造及其在拟南芥中的功能分析. All Rights Reserved.检测利用引物qPHYB1 ̄F/R(表1)ꎬ内参引物参考Liu等[23]的引物序列ꎬ进行实时定量PCR(操作详见天根荧光定量试剂盒(FP205 ̄02)说明书)ꎮ1.2.3㊀ZmPHYB1序列的克隆及改造㊀利用CTAB法[24]提取DNAꎬRNA提取同1.2.2ꎮ在MaizeGDB数据库(https://www.maizegdb.org/)中检索PHYB1(GRMZM2G124532)基因并下载其序列信息ꎬ设计克隆及位点改造所需的引物(引物序列见表1)ꎮZmPHYB1启动子(pZmPHYB1)由引物ZmPHYB1 ̄pro ̄F/ZmPHYB1 ̄pro ̄R以自交系B73基因组DNA为模板进行克隆ꎻ野生型Zm ̄PHYB1(ZmPHYB1WT)编码序列(CDS)由引物Zm ̄PHYB1 ̄F/ZmPHYB1 ̄R以自交系B73的cDNA为模板克隆ꎮ为了得到序列ZmPHYB1Y98FꎬZm ̄PHYB1Y359F(两个位点的确定详见2.1)ꎬ通过重叠PCR的方法进行克隆ꎮ具体操作如下:以Zm ̄PHYB1WT为模板ꎬ利用引物ZmPHYB1 ̄F/Zm ̄PHYB1 ̄98 ̄R和ZmPHYB1 ̄98 ̄F/ZmPHYB1 ̄Rꎬ分别进行富集ꎬ纯化回收ꎬ混合后作为模板ꎮ再以ZmPHYB1 ̄F/ZmPHYB1 ̄R进行重叠PCRꎬ获得ZmPHYB1Y98Fꎻ以同样的方法获得ZmPHYB1Y359Fꎮ1.2.4㊀转基因及鉴定㊀将pZmPHYB1与Zm ̄PHYB1WT㊁ZmPHYB1Y98F及ZmPHYB1Y359F分别融合ꎬ与改造后的pCAMBIA载体重组获得重组子ꎮ将重组质粒转入拟南芥中研究其功能ꎮ转基因采用拟南芥花序浸染法[25]ꎻ转基因阳性植株的鉴定采用喷洒Basta筛选法及特异引物PCR检测法ꎮ特异引物PCR检测法具体操作如下ꎬ提取转基因拟南芥基因组DNA为模板ꎬ以鉴定引物ZmPHYB1 ̄identify ̄FP/RP(表1)进行PCR扩增ꎬ若为阳性植株则可见1.4kb大小条带ꎬ阴性植株则无此条带ꎮ1.2.5㊀表型统计及分析㊀主要观测的表型包括下胚轴长度㊁叶柄长度㊁叶片长度等ꎮ每个材料取30株进行表型的测量及统计ꎬ采用t测验(Student sttest)进行显著性分析ꎮ下胚轴长度测量:人工气候室(光照/黑暗:16h/8h)培养6~7d后ꎬ体视显微镜下观察㊁拍照ꎻ用ImageJ软件测量30株幼苗的下胚轴ꎬ统计分析ꎻ叶柄长度及叶片长度测量:取在长日照条件下生长2~3周材料的第3㊁4片叶ꎬ相机拍照ꎻImageJ软件测量30个单株的叶柄长度及叶片长度ꎬ统计分析ꎮ1.2.6㊀蛋白互作研究㊀采用荧光素酶互补成像(fireflyluciferasecomplementationimagingassayꎬLCI)实验[23]进行验证ꎮ表1㊀本研究所用引物Table1㊀Primersforthestudy.引物名称引物序列(5ᶄң3ᶄ)引物用途ZmPHYB1 ̄pro ̄F5ᶄ ̄GGCCAGTGCCAAGCTTAAACGCAACCGAGAAAGGC ̄3ᶄZmPHYB1 ̄pro ̄R5ᶄ ̄CCGGGGATCCTCTAGAGGCGGGGTTGGGGGAGAC ̄3ᶄ克隆启动子ZmPHYB1 ̄F5ᶄ ̄CAACCCCGCCTCTAGAATGGCGTCGGGCAGCCGC ̄3ᶄZmPHYB1 ̄R5ᶄ ̄CTCGCCCTTGCTCACCATGACGATTTCTCTACCAGCTGCTGG ̄3ᶄZmPHYB1 ̄98 ̄F5ᶄ ̄CCGAGCAGCAGATCGCCGCCTTCCTCTCCCGCATCCAGCGC ̄3ᶄZmPHYB1 ̄98 ̄R5ᶄ ̄GGCGGCGATCTGCTGCTCGG ̄3ᶄZmPHYB1 ̄359 ̄F5ᶄ ̄GCTCCACACGGGTGTCATGCACAGTTCATGGCGAACATGGGGTCAATT ̄3ᶄZmPHYB1 ̄359 ̄R5ᶄ ̄CTGTGCATGACACCCGTGTGGAGC ̄3ᶄ克隆CDS序列及改造位点qPHYB1 ̄F5ᶄ ̄GCTCATATTGCGTGACTCCTTC ̄3ᶄqPHYB1 ̄R5ᶄ ̄TGTCTCTATCAACCGAACCATCT ̄3ᶄZmPHYB1的表达量检测ZmPHYB1 ̄identify ̄FP5ᶄ ̄GCTCATATTGCGTGACTCCTTC ̄3ᶄZmPHYB1 ̄identify ̄RP5ᶄ ̄TGTCTCTATCAACCGAACCATCT ̄3ᶄ转基因鉴定2㊀结果与分析2.1㊀玉米PHYB1改造位点的确定已有研究发现ꎬ把拟南芥PHYB的104位与361位的酪氨酸(Y)残基改造为苯丙氨酸(F)残基可以提高拟南芥phyB的活性[8ꎬ9]ꎮ下载拟南芥㊁玉米㊁水稻㊁大豆㊁高粱等的PHYB全蛋白序列进行比对ꎮ结果如图1所示ꎬ通过序列比对ꎬ我们发现在以上物种中ꎬ这两个位点十分保守ꎮ最253生物技术进展CurrentBiotechnology. All Rights Reserved.终我们确定玉米中的98位和359位酪氨酸(Y)残基分别与拟南芥中104位和361位酪氨酸(Y)残基相对应ꎮ图1㊀氨基酸突变位点Fig.1㊀Aminoacidmutationsites.ZmPHYB1:玉米PHYB1ꎻSbPHYB:高粱PHYBꎻZmPHYB2:玉米PHYB2ꎻOsPHYB:水稻PHYBꎻAtPHYB:拟南芥PHYBꎻGmPHYB:大豆PHYBꎮ2.2㊀转基因单拷贝纯合株系的筛选将构建好的pZmPHYB1ɨZmPHYB1WTꎬpZm ̄PHYB1ɨZmPHYB1Y98F和pZmPHYB1ɨZmPHYB1Y359F三种重组子分别转入拟南芥phyB ̄9突变体中ꎮ采用喷洒Basta溶液的方法ꎬ筛选阳性植株ꎮ最终得到单基因插入的纯合转基因植株ꎬ收取种子待用ꎮ为了确定转基因纯合株系的真实性ꎬ对以上植株进行PCR鉴定ꎮ阳性转基因植株可见1.4kb的条带ꎬ而野生型(Col ̄0)及phyB ̄9无该条带ꎬ如图2ꎮ通过以上实验结果我们最终得到了确切的单基因插入的转基因纯合株系ꎮ图2㊀PCR鉴定阳性转基因株系Fig.2㊀PCRidentificationofpositivelines.2.3㊀表达分析为了得到ZmPHYB1基因的表达图谱ꎬ在线搜索了ZmPHYB1的RNA ̄Seq数据[26]ꎬ并对数据进行分析ꎬ结果如图3A所示ꎻ同时针对2.2中得到的纯合转基因株系我们还进行了外源基因Zm ̄PHYB1的实时定量PCR检测ꎬ结果如图3B所示ꎮ通过以上结果发现ꎬZmPHYB1基因在根㊁茎(节间)㊁叶㊁顶端分生组织(SAM)㊁雄穗㊁花丝等组织中均有表达ꎬ但主要在叶子中表达ꎬ尤其是在V9时期的第13片叶及未成熟叶片中表达量最高ꎮ此结果与光敏色素基因光受体的功能相符ꎮ由图3B还可以发现ꎬ在转基因株系中ꎬ转入的外源ZmPHYB1可在phyB ̄9突变体中表达ꎮ图3㊀ZmPHYB1基因的表达情况Fig.3㊀TheexpressionofZmPHYB1.A.ZmPHYB1基因在玉米不同组织中的表达情况ꎻB.拟南芥各转基因株系中ZmPHYB1的表达水平ꎮWT#1/2㊁Y98F#16/24㊁Y359F#3/12名称中 # 后面的数字表示转基因株系编号ꎮ2.4㊀转基因拟南芥植株表型分析2.4.1㊀转基因株系下胚轴长度统计分析㊀如图4A所示ꎬphyB ̄9突变体的下胚轴显著长于各转基因株系及野生型ꎮ图4B中统计数据也同样证实上述结果ꎮ对以上结果进行分析可以得出:①转入外源基因ZmPHYB1可以使phyB ̄9突变体的下胚轴长度部分或完全恢复到野生型水平ꎬ即抑制突变体下胚轴伸长ꎻ②经过位点改造的转基因株系的下胚轴短于未经过位点改造的转基因株系ꎮ综上所述ꎬZmPHYB1与拟南芥中phyB具有353马晓净ꎬ等:玉米PHYB1基因的克隆㊁改造及其在拟南芥中的功能分析. All Rights Reserved.图4㊀转基因株系表型Fig.4㊀Phenotypeoftransgeniclines.注:A.长日照条件下生长6天的植株的表型ꎻB.长日照条件下生长两周的叶片形态ꎻC.长日照条件下ꎬ下胚轴长度的测量及统计ꎻD.长日照条件下ꎬ第三㊁四片真叶叶片长度的测量及统计ꎻE.长日照条件下ꎬ第三㊁四片真叶叶柄长度的测量及统计ꎮ标尺为1mmꎻ∗∗表示突变体phyB ̄9与各株系之间在P<0.01水平上差异显著(t检验ꎬn=30)ꎮ相似的功能ꎮ并且Y98F和Y359F氨基酸的替换可增强ZmPHYB1的活性ꎬ此结果与前人在拟南芥中的研究相符[8]ꎮ2.4.2㊀转基因株系叶片长度与叶柄长度统计分析㊀在长日照生长条件下ꎬphyB ̄9突变体一般只有4片莲座叶且其叶片及叶柄显著伸长ꎬ因此我们选取Col ̄0㊁phyB ̄9㊁转基因株系的第3㊁4片叶ꎬ对其叶片长度㊁叶柄长度进行统计ꎬ如图4C ̄E所示ꎮ从以上结果可以看出ꎬ转基因株系的叶片长度及叶柄长度均显著短于突变体phyB ̄9ꎬ即在拟南芥phyB ̄9突变体中转入外源ZmPHYB1后ꎬ转基因材料的叶片及叶柄变短ꎮ由此可见ꎬZmPHYB1可以抑制phyB ̄9突变体的伸长反应(下胚轴㊁叶片及叶柄的伸长)ꎬ这说明该基因可能是避荫反应的抑制因子ꎮ2.5㊀ZmPHYB1与AtPIF5互作研究表明ꎬ拟南芥的phyB可以直接与光敏色素互作因子(PIFs)互作[5]ꎮ前期实验表明ꎬZm ̄PHYB1与拟南芥phyB在功能上存在一定的保守性ꎮ推测其通过与拟南芥PIFs互作而行使功能ꎮ借助荧光素酶互补成像技术ꎬ可验证玉米PHYB1是否与拟南芥PIFs互作ꎮ选取AtPIF5为代表进行验证ꎮ结果显示ꎬ三种形式的ZmPHYB1(PHYB1WT㊁PHYB1Y98F㊁PHYB1Y359F)均可以与At ̄PIF5互作(图5)ꎬ表明ZmPHYB1在拟南芥中可与AtPIF5互作ꎬ进一步验证了ZmPHYB1与拟南芥PhyB在功能上的保守性ꎮ2.6㊀转基因株系中避荫反应响应基因及生长素合成关键基因的表达模式phyB是拟南芥中响应避荫反应的主要光受体ꎬ为了验证ZmPHYB1是否参与拟南芥的避荫反应ꎬ我们对避荫反应信号通路中的一些重要响应基因的表达量进行了检测ꎮ如图6所示ꎬ通过qRT ̄PCR检测避荫反应中的marker基因(ATHB2)与生长素合成marker基因(YUC5)在转基因株系中的表达模式ꎬ对结果分析可以看出ꎬ拟南芥转基453生物技术进展CurrentBiotechnology. All Rights Reserved.图5㊀LCI验证ZmPHYB1与AtPIF5互作Fig.5㊀LCIverifiestheinteractionbetweenZmPHYB1andAtPIF5.图6㊀下游响应基因表达分析Fig.6㊀Expressionanalysisofdownstreamshaderesponsivegenes.A.ATHB2表达量变化ꎻB.YUC5表达量变化ꎮ∗和∗∗表示突变体phyB ̄9与各株系之间在P<0.05和P<0.01的水平上差异显著(t检验)ꎮ因株系中ATHB2及YUC5的表达量均显著低于phyB ̄9突变体中的表达量ꎬ但均高于野生型ꎬ这也从一个侧面解释了我们的转基因株系为什么不能完全互补phyB ̄9突变体表型ꎮ以上结果进一步表明ZmPHYB1在拟南芥中可以行使PHYB的功能 抑制伸长反应ꎮ3㊀讨论在双子叶模式植物拟南芥中PHYB具有抑制避荫反应的功能[27~29]ꎮ在禾本科植物中PHYB也是调控避荫反应的主要光受体ꎬ但其在玉米避荫反应调控的遗传网络和分子机理鲜有研究[19ꎬ30~31]ꎮ本研究表明ZmPHYB1与拟南芥PhyB存在功能保守性ꎬ并且ZmPHYB1可以参与调控拟南芥的避荫反应ꎮ作物的避荫反应是一种适应性反应ꎬ但其对农业生产十分不利ꎮ育种家经过不断地实践和总结ꎬ提出作物耐密理想株型以减弱或消除避荫反应ꎮ理想株型指标包括小雄穗㊁坚茎秆㊁株高适宜等[32]ꎮ张世煌[33]指出ꎬ高密度育种的首要目标在于增强自交系和杂交种的耐密植等抗逆性ꎮ研究表明[34]ꎬ玉米的茎秆徒长(株高增加)是玉米避荫反应综合征的典型特征ꎮ此外ꎬ避荫反应所导致的植株徒长还会加重倒伏的发生以及减产[35]ꎮ陈德龙[36]认为ꎬ株高和穗位高与倒伏是高度正相关的ꎮ本研究结果表明ZmPHYB1可以抑制拟南芥的伸长反应ꎬ故而推测在转基因玉米中同样会出现株高降低㊁穗位高降低等表型ꎮ拟南芥Y104F(对应玉米Y98F突变)氨基酸的替换可增加植株对红光的敏感性[8]ꎬ因此推测玉米Y98F氨基酸的替换也可以使玉米对红光超敏ꎬ进而减弱由于密植造成的避荫反应ꎮ拟南芥Y361F(对应玉米Y359F突变)氨基酸的替换ꎬ可以加速PhyB由非活性形式转变为活性形式[9]ꎬ因此在Y359F残基替换的转基因株系中PhyB的活性形式积累ꎬ降解避荫反应促进因子 PIFsꎬ增强了玉米的耐密性ꎮ总之ꎬ本研究为耐密植玉米新品种的培育提供了参考ꎬ同时也可以启发育种工作者筛选这两553马晓净ꎬ等:玉米PHYB1基因的克隆㊁改造及其在拟南芥中的功能分析. All Rights Reserved.个位点的自然变异ꎬ以改良玉米的株高㊁穗位高以及增强耐密性ꎮ参㊀考㊀文㊀献[1]㊀KamiCꎬSéverineLꎬHornitschekPꎬetal..Chaptertwo ̄light ̄regulatedplantgrowthanddevelopment[J].Curr.Top.Dev.Biol.ꎬ2010ꎬ91:29-66.[2]㊀VierstraRDꎬZhangJ.Phytochromesignaling:Solvingthegordianknotwithmicrobialrelatives[J].TrendsPlantSci.ꎬ2011ꎬ16(8):417-426.[3]㊀LiJGꎬLiGꎬWangHYꎬetal..Phytochromesignalingmech ̄anisms[J].ArabidopsisBookꎬ2002ꎬ3(3):e0148. [4]㊀AndreaCꎬGiovannaSꎬMassimilianoSꎬetal..Dynamicsoftheshade ̄avoidanceresponseinArabidopsis[J].PlantPhysiol.ꎬ2013ꎬ163(1):331-353.[5]㊀PabloLꎬQuailPH.PIFs:Pivotalcomponentsinacellularsignalinghub[J].TrendsPlantSci.ꎬ2011ꎬ16(1):19-28. [6]㊀LorrainSꎬAllenTꎬDuekPGꎬetal..Phytochrome ̄mediatedinhibitionofshadeavoidanceinvolvesdegradationofgrowth ̄promotingbHLHtranscriptionfactors[J].PlantJ.ꎬ2010ꎬ53(2):312-323.[7]㊀StammPꎬKumarPP.Thephytohormonesignalnetworkregu ̄latingelongationgrowthduringshadeavoidance[J].J.Exp.Bot.ꎬ2010ꎬ61(11):2889.[8]㊀NitoKꎬWongCLꎬYatesJꎬetal..Tyrosinephosphorylationregulatestheactivityofphytochromephotoreceptors[J].CellRep.ꎬ2013ꎬ3(6):1970-1979.[9]㊀ZhangJRꎬStankeyRJꎬVierstraRD.Structure ̄guidedengi ̄neeringofplantphytochromebwithalteredphotochemistryandlightsignaling[J].PlantPhysiol.ꎬ2013ꎬ161(3):1445-1457.[10]㊀HallidayKJꎬKoornneefMꎬWhitelamGC.PhytochromeBandatleastoneotherphytochromemediatetheacceleratedfloweringresponseofArabidopsisthalianaL.tolowred/far ̄redratio[J].PlantPhysiol.ꎬ1994ꎬ104(4):1311-1315. [11]㊀KutscheraUꎬBriggsWR.Seedlingdevelopmentinbuckwheatandthediscoveryofthephotomorphogenicshade ̄avoidancere ̄sponse[J].PlantBiol.ꎬ2013ꎬ15(6):931-940.[12]㊀SmithHꎬWhitelamGC.Theshadeavoidancesyndrome:Mul ̄tipleresponsesmediatedbymultiplephytochromes[J].PlantCellEnvir.ꎬ2010ꎬ20(6):840-844.[13]㊀BoardmanNK.Comparativephotosynthesisofsunandshadeplants[J].Ann.Rev.PlantPhysiol.ꎬ1977ꎬ28(1):355-377. [14]㊀MiddletonL.Shade ̄tolerantfloweringplants:Adaptationsandhorti ̄culturalimplications[J].ActaHortic.ꎬdoi:10.17660/ActaHortic.2001.552.9.[15]㊀SmithH.Lightqualityꎬphotoperceptionꎬandplantstrategy[J].Ann.Rev.PlantPhysiol.ꎬ1982ꎬ33(1):481-518. [16]㊀BennetzenJL.Patternsingrassgenomeevolution[J].Curr.Opin.PlantBiol.ꎬ2007ꎬ10(2):176-181.[17]㊀ChildsKL.ThesorghumphotoperiodsensitivitygeneꎬMa3ꎬencodesaphytochromeB[J].PlantPhysiol.ꎬ1997ꎬ113(2):611-619.[18]㊀KebromTHꎬBrutnellTPꎬFinlaysonSA.Suppressionofsor ̄ghumaxillarybudoutgrowthbyshadeꎬphyBanddefoliationsignallingpathways[J].PlantCellEnvir.ꎬ2010ꎬ33(1):48-58.[19]㊀KebromTHꎬBrutnellTP.Themolecularanalysisoftheshadeavoidancesyndromeinthegrasseshasbegun[J].J.Exp.Bot.ꎬ2007ꎬ58(12):3079-3089.[20]㊀WangHꎬWuGꎬZhaoBꎬetal..Regulatorymodulescontrollingearlyshadeavoidanceresponseinmaizeseedlings[J].BMCGenom.ꎬ2016ꎬ17(1):269.[21]㊀杨慧莲ꎬ韩旭东ꎬ郑风田.全球主产国(地区)玉米生产㊁贸易㊁消费及库存状况对比 基于1996/1997-2016/2017产季数据测算[J].世界农业ꎬ2017(6):28-35.[22]㊀DuvickDN.GeneticprogressinyieldofUnitedStatesmaize(ZeamaysL.)[J].Maydicaꎬ2005ꎬ50(3):193-202. [23]㊀LiuYꎬXieYꎬWangHꎬetal..LightandethylenecoordinatelyregulatethephosphatestarvationresponsethroughtranscriptionalregulationofPHOSPHATESTARVATIONRE ̄SPONSE1[J].PlantCellꎬ2017ꎬ29(9):268-2017. [24]㊀MurrayMGꎬThompsonWF.RapidisolationofhighmolecularweightplantDNA[J].Nucl.AcidsRes.ꎬ1980ꎬ8(19):4321-4325.[25]㊀CloughSJꎬBentAF.Floraldip:Asimplifiedmethodforagrobacterium ̄mediatedtransformationofArabidopsisthaliana[J].PlantJ.ꎬ2010ꎬ16(6):735-743.[26]㊀WalleyJWꎬSartorRCꎬShenZ.Integrationofomicnetworksinadevelopmentalatlasofmaize[J].Scienceꎬ2016ꎬ353(6301):814-818.[27]㊀FankhauserCꎬCasalJJ.Phenotypiccharacterizationofapho ̄tomorphogenicmutant[J].PlantJ.ꎬ2004ꎬ39(5):747-760. [28]㊀López ̄JuezEꎬNagataniAꎬTomizawaKꎬetal..Thecucumberlonghypocotylmutantlacksalight ̄stablePHYB ̄likephyto ̄chrome[J].PlantCellꎬ1992ꎬ4(3):241-251.[29]㊀SomersDEꎬSharrockRAꎬTeppermanJMꎬetal..Thehy3longhypocotylmutantofarabidopsisisdeficientinphytochromeB[J].PlantCellꎬ1991ꎬ3(12):1263-1274.[30]㊀KebromTHꎬBursonBLꎬFinlaysonSA.PhytochromeBre ̄pressesteosintebranched1expressionandinducessorghumax ̄illarybudoutgrowthinresponsetolightsignals[J].PlantPhysiol.ꎬ2006ꎬ140(3):1109-1117.[31]㊀SawersRJꎬSheehanMJꎬBrutnellTP.Cerealphytochromes:targetsofselectionꎬtargetsformanipulation?[J].TrendsPlantSci.ꎬ2005ꎬ10(3):138-143.[32]㊀王元东ꎬ段民孝ꎬ邢锦丰ꎬ等.玉米理想株型育种的研究进展与展望[J].玉米科学ꎬ2008ꎬ16(3):47-50.[33]㊀张世煌.论玉米高密度育种和生产上的密植[J].北京农业ꎬ2009(29):1-2.[34]㊀DuboisPGꎬOlsefskiGTꎬSherryFGꎬetal..Physiologicalandgeneticcharacterizationofend ̄of ̄dayfar ̄redlightresponseinmaizeseedlings[J].PlantPhysiol.ꎬ2010ꎬ154(1):173-186. [35]㊀ChenCYꎬHouYHꎬRuiSꎬetal..Effectsofplantingdensityonyieldperformanceanddensity ̄toleranceanalysisformaizehybrids[J].ActaAgron.Sin.ꎬ2010ꎬ36(7):1153-1160. [36]㊀陈德龙.不同抗倒能力玉米品种茎秆及根系等相关特征研究[D].长春:吉林农业大学ꎬ硕士学位论文ꎬ2015.653生物技术进展CurrentBiotechnology. All Rights Reserved.。

花生研究英文文献

花生研究英文文献

花生研究英文文献Peanuts, scientifically known as Arachis hypogaea, are a legume crop that has gained significant global attention due to their versatility, nutritional value, and economic importance. The study of peanuts, often referred to as "groundnuts," has been a topic of extensive research across various scientific disciplines, including agronomy, plant breeding, food science, and nutrition. This essay will delve into the existing English literature on peanut research, highlighting key findings, advancements, and future directions in this field.One of the primary areas of peanut research focuses on understanding the crop's genetic diversity and the development of improved cultivars. Peanuts are known to exhibit a wide range of genetic variation, which can be leveraged to enhance desirable traits such as yield, disease resistance, and adaptability to different environmental conditions. Researchers have employed various techniques, including traditional breeding methods and modern genomic approaches, to identify and characterize the genetic factors responsible for these traits. For instance, studies have explored the use of molecular markers and quantitative trait loci (QTLs) analysis todissect the genetic architecture of peanut yield components, oil content, and resistance to major diseases like leaf spot and aflatoxin contamination.Another significant aspect of peanut research is the investigation of the crop's nutritional profile and potential health benefits. Peanuts are renowned for their high protein content, as well as their abundance of essential vitamins, minerals, and bioactive compounds. Researchers have conducted extensive studies to evaluate the nutritional composition of different peanut cultivars, examining factors such as fatty acid profiles, antioxidant activity, and the presence of beneficial phytochemicals. These findings have important implications for the development of nutritionally-enhanced peanut products and the promotion of peanuts as a healthy food choice.In the realm of food science, peanut research has focused on exploring the processing and utilization of peanuts in various food applications. Researchers have investigated methods for improving the quality, shelf-life, and safety of peanut-based products, such as peanut butter, roasted peanuts, and peanut oil. This includes studying the effects of different processing techniques, the role of packaging materials, and the mitigation of food safety concerns like aflatoxin contamination. Additionally, researchers have explored the potential for value-added peanut products, such as the developmentof peanut-based protein isolates, flours, and other ingredients for use in the food industry.Peanut research has also addressed the agronomic and environmental aspects of peanut cultivation. Researchers have examined the optimal growing conditions, water management strategies, and nutrient requirements for peanut production, aiming to enhance yield and sustainability. Studies have also delved into the impact of climate change on peanut cultivation, exploring strategies for adapting to shifting environmental conditions and mitigating the effects of drought, heat stress, and other abiotic stresses.Furthermore, peanut research has contributed to the understanding of the crop's role in agricultural systems and its potential for sustainable development. Peanuts are known for their ability to fix atmospheric nitrogen through symbiotic relationships with soil microorganisms, making them a valuable component of crop rotation and intercropping practices. Researchers have investigated the agronomic and environmental benefits of integrating peanuts into diverse farming systems, examining their impact on soil fertility, greenhouse gas emissions, and the overall sustainability of agricultural production.In recent years, the emergence of advanced technologies, such as precision agriculture, remote sensing, and machine learning, hassignificantly enhanced peanut research. These tools have enabled researchers to collect and analyze large-scale data on peanut growth, yield, and environmental interactions, leading to the development of more efficient and data-driven management strategies. Additionally, the application of biotechnology and genetic engineering has opened up new avenues for peanut improvement, including the development of disease-resistant cultivars, the enhancement of nutritional profiles, and the exploration of novel uses for peanut-derived products.Despite the substantial progress made in peanut research, there are still numerous challenges and opportunities that warrant further investigation. For instance, the continued efforts to address the issue of aflatoxin contamination, a major food safety concern associated with peanuts, remain a priority. Researchers are exploring various strategies, such as the development of resistant cultivars, improved post-harvest handling practices, and the use of biological control agents, to mitigate this problem.Another area of growing interest is the exploration of peanut's potential as a sustainable and versatile crop for biofuel production. Peanut oil has been identified as a promising feedstock for biodiesel, and researchers are investigating the feasibility and environmental impacts of using peanut-derived fuels as alternatives to fossil fuels.Furthermore, as consumer preferences and dietary trends evolve, peanut research is also shifting towards the development of innovative peanut-based food products that cater to diverse dietary needs and preferences, such as gluten-free, vegan, and allergen-free options.In conclusion, the existing English literature on peanut research showcases the multifaceted and dynamic nature of this field. From genetic improvement and nutritional analysis to food processing and sustainable agriculture, peanut research has made significant contributions to our understanding of this important legume crop. As the global demand for peanuts continues to grow, the ongoing research efforts in this area will be crucial in addressing the challenges and seizing the opportunities that lie ahead, ultimately enhancing the production, utilization, and sustainability of peanuts worldwide.。

根际微生物调控植物根系构型的研究进展_陈伟立

根际微生物调控植物根系构型的研究进展_陈伟立

第36卷第17期2016年9月生态学报ACTAECOLOGICASINICAVol.36,No.17Sep.,2016基金项目:国家自然科学基金(31270448);广东省高等学校人才引进专项(粤财教[2013]246号)收稿日期:2015⁃02⁃26;㊀㊀网络出版日期:2015⁃00⁃00∗通讯作者Correspondingauthor.E⁃mail:yaoqscau@scau.edu.cnDOI:10.5846/stxb201502260390陈伟立,李娟,朱红惠,陈杰忠,姚青.根际微生物调控植物根系构型的研究进展.生态学报,2016,36(17):㊀⁃㊀.ChenWL,LiJ,ZhuHH,ChenJZ,YaoQ.Areviewoftheregulationofplantrootsystemarchitecturebyrhizospheremicroorganisms.ActaEcologicaSinica,2016,36(17):㊀⁃㊀.根际微生物调控植物根系构型的研究进展陈伟立1,李㊀娟2,朱红惠3,陈杰忠1,姚青1,2,∗1华南农业大学园艺学院,广州㊀5106422仲恺农业工程学院,广州㊀5102253广东省微生物研究所,广州㊀510070摘要:根系构型是最重要的植物形态特征之一,具有可塑性,既由遗传因素控制,又受到许多环境因子的调控㊂近年的大量研究表明,根际微生物能够调控植物的根系构型,进而影响植物的一系列生理与生态过程㊂综述丛枝菌根真菌(AMF)㊁根瘤菌㊁植物根际促生菌(PGPR)等重要根际微生物类群对植物根系构型的调控模式以及相应的调控机理,并对进一步的研究进行了展望,旨在为今后的相关研究和实际应用提供参考㊂关键词:根系构型;根际微生物;调控Areviewoftheregulationofplantrootsystemarchitecturebyrhizospheremicroorganisms㊀CHENWeili1,LIJuan2,ZHUHonghui3,CHENJiezhong1,YAOQing1,2,∗1CollegeofHorticulture,SouthChinaAgriculturalUniversity,Guangzhou510642,China2ZhongkaiUniversityofAgricultureandEngineering,Guangzhou510225,China3GuangdongInstituteofMicrobiology,Guangzhou510070,ChinaAbstract:Plantrootsystemarchitecture(RSA)isoneofthemostimportantcharacteristicsofplantmorphology.RSAexhibitsaplasticitythatisnotonlycontrolledbygeneticfactorsbutisalsoregulatedbydiverseenvironmentalfactors.Recently,alargenumberstudieshaveindicatedthatrhizospheremicroorganismscanregulatetheplantRSA,andfurtherinfluenceanarrayofplantphysiologicalandecologicalprocesses.ThispapermainlyreviewstheregulationpatternsandcorrespondingmechanismsofplantRSAmediatedbytheimportantrhizospheremicroorganisms,suchasarbuscularmycorrhizalfungi,rhizobia,andplantgrowth-promotingrhizobacteria.Futureresearchisproposedtoprovidereferenceforrelatedresearchandpracticalapplications.KeyWords:rootsystemarchitecture;rhizospheremicroorganism;regulation众所周知,根系在植物生长发育中起着重要的作用,既是植株吸收水分和营养的主要器官,又是支撑植株地上部的重要力量[1]㊂因此,根系作为植株的地下部分,其活力与植物吸收能力的强弱有直接关系,这些都直接影响着地上部分的生长与发育㊂由于土壤的物质和能量被植物获取和利用均是通过根系得以实现的,因此,根系的分布特征反映了土壤的物质和能量被植物利用的可能性以及生产力,而根系在土壤中的分布特征网络出版时间:2015-12-14 14:03:26网络出版地址:/kcms/detail/11.2031.Q.20151214.1403.034.html2㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀主要表现为根系构型(Rootsystemarchitecture,RSA)[2]㊂根系构型既受到遗传控制,又受到许多环境因子(尤其是根际微生物)的调控㊂本文在此主要综述了根际微生物对根系构型的调控作用及其相应机制,旨在为后来研究者提供一定的理论参考,进一步阐明根际微生物与根系构型之间的复杂关系,最终更好地被应用于生产实践㊂1㊀植物根系构型1.1㊀根系构型研究的意义根系构型是一个重要的农学和生态学指标,指同一根系中不同级别的根在生长介质中的相互连接情况和空间分布[2],具体包括根系形态㊁根系拓扑结构㊁总根长㊁根系分布㊁根长密度和根系的延长速率㊁各级根的发生及在空间的三维分布㊁根系的生长角度和根系的扭转程度等㊂根系构型特点直接反映了根系的生长状况㊂良好的根系构型不仅可以提高根系对土壤养分和水分利用的效率,而且也是构建稳定生态群落的基础,此外,根系构型在土壤维持[3⁃4]和抗病性[5⁃6]方面也起着不可或缺的作用,所以,植物根系构型的研究对植物的生长发育及其生态稳定性具有重要意义㊂近年来,根系构型的研究已经成为诸多学科研究的热点问题,主要包括植物根系生长及对养分吸收利用等营养功能的研究[7⁃8],不同根系构型对各种土壤环境的适应性变化的定量研究[9⁃10],植物根系生长的三维可视化模拟研究[11⁃13],以及根际微生物对植物根系构型的影响[14⁃15]㊂1.2㊀根系构型调控的必要性在全世界大部分地区,水分和矿质养分的有效性是作物生产力的主要限制因素,而且肥沃并具有良好生态环境的耕地极其有限[11],这对主要经济作物如水稻[16⁃17]㊁小麦[18]㊁玉米[19⁃20]及其它植物如橡胶[21]㊁大豆[22]㊁荔枝[23]㊁苜蓿[24]等的生长状况及产量影响巨大,而植物生长状况的良好与否很大程度上依赖于根系对土壤水分及养分吸收能力的强弱㊂在同样的环境条件下,良好的根系构型可以提高植株对有限资源的利用,进而提高产量和品质[25]㊂而根系构型具有极强可塑性的报道屡见不鲜[26],说明作物生产中对根系构型的调控是绝对可行的㊂在育种界,根系构型特点已经慢慢成为育种者考虑的重要因素之一[27⁃28],而且很多研究也表明植株根系构型的改善会促进植株生长和发育㊂因此,根系构型的调控对植株的生长发育及最终产量都具有重大的现实意义,是满足当代社会对作物产量需求的一个有效解决途径㊂1.3㊀根系构型调控的途径根系主要的功能就是从土壤或基质中吸收水分和养分,因此通过控制水分[17,20]和养分[29]的多少将会直接影响根系的生长发育状况及生理特性㊂例如,低磷可以诱导水稻[30]和拟南芥[31]侧根的发生,不过在玉米中则发现相反的结果[32],这说明磷对根系的改善作用因物种不同而不同㊂另外,土壤或基质的温度或外界环境的温度,以及土壤的质地和机械阻力也会对根系的生长产生影响,在一定的温度范围内,植物根系的长度随温度的升高而增长,当温度过高或过低时都会抑制根系的生长[33]㊂在紧实土壤中生长的根系,其伸长速度减慢,根长缩短且变粗等㊂另外一些微量元素如硼㊁钼等对根系的生长也是不可缺少的㊂虽然有毒元素如铜过多则会抑制主根生长,但会促进比较短的侧根的密度[34]㊂近年来,土壤生物因子对根系构型的调控作用日益引起关注,其中根际微生物对根系构型的调控得到广泛报道㊂根际微生物是土壤生态系统中最为活跃的构成因子,参与了土壤中各种生物学过程(如共生)和生物化学过程(如土壤酶),对植物的生长发育和环境适应性产生重要影响㊂植物根际是植物㊁微生物和土壤相互影响最强烈的区域,根系构型与根际微生物间相互影响,相互作用,根系构型的改变势必会影响微生物群落的构成与分布,而根际微生物的存在对植株根系的发育及生长也有重要的影响㊂目前关于此领域的研究主要集中于丛枝菌根真菌(ArbuscularMycorrhizalFungi,AMF)㊁根瘤菌及植物根际促生菌(PlantGrowthPromotingRhinoacteria,PGPR)等根际微生物如何有效地调控植物根系构型[35⁃39]㊂2㊀根际微生物对根系构型的调控2.1㊀AMF㊀㊀AMF是与植物内共生的土壤真菌,其宿主范围十分广泛,可与陆地上80%以上的维管束植物形成共生关系[40]㊂建立共生体后,AMF可以提高植物根系对土壤水分及养分的吸收,植物的抗旱性㊁耐涝性㊁耐盐性和抗病性,加强植物抵抗高温和重金属毒害的能力,此外AMF还可以分解有毒有机物,修复污染与退化土壤等[41⁃42]㊂虽然对AMF的认识已经非常深刻,但是其依然是植物微生物群落中一个关键却神秘的组分㊂AMF侵染植物根系而形成丛枝结构,因此认为AMF对植物生理生态过程的影响与根系构型的变化密不可分,国内外有关AMF影响植物根系构型的研究已经有20多年的历史,发现AMF对植物根系构型的调控是全方位的,包括根系生物量㊁长度㊁根直径㊁根总表面积㊁根总体积㊁分枝数㊁根生长角度以及侧根发育和不定根形成等各根系指标㊂在根系生物量㊁长度及面积等方面,柱花草(Stylosanthesgracilis)接种Glomusversiforme显著增加了根系长度,而且还观察到其基根角度有增大的趋势[43]㊂接种AMF时,角豆树白根㊁黄根生物量及玉米根系总长度㊁根条数(根分枝数)和根系吸收面积都显著[44⁃45]增加,而在柑橘根系长度增加的同时,根系的平均直径却降低了[46],这与Yuan等人[47]所观察到根平均直径增加的结果不同,而且还发现不同AMF种类对植株生长效应不同,促进或抑制地上部和地下部生物量的情况时有报道[48⁃49]㊂不管是接种Glomusmosseae还是Acaulosporadelicata都增加了翅果油树的根系体积㊁表面积和根系吸收能力,提高了根系酶体系,有利于植物抵抗各种胁迫,对扩大翅果油树植物的分布区具有重要意义[50]㊂除此之外,Yao等人[35]第一次报道了丛枝菌根对不同直径级别根系的分布情况的影响,发现接种G.versiforme显著增加柑橘直径<0.4mm根系比例,减少直径0.4 1.2mm的根系比例㊂之后Wu等人[51]也发现接种AMF后在显著增加Citrustangerine根系总长度㊁总投影面积㊁总表面积和总体积的同时,0 1cm根总长及其在中的比例也得到增加,但根平均直径和1 2cm分级根总长在总根长中所占比例显著减少㊂在侧根及分枝方面,AMF起着巨大作用[47,52⁃53]㊂Schellenbaum等人[54]发现,接种Glomusfasciculatum使得葡萄(Vitisvinifera)根系的一级㊁二级和三级根的分枝分别增加了140%㊁200%和266%㊂在其它植物种类中也发现了类似现象,接种AMF使成年番荔枝根系总数目㊁一级侧根数目和二级侧根数目分别增加了3㊁2和4倍,而且总根㊁不定根㊁一级侧根和二级侧根的长度都有不同程度的增加[55];接种Glomusintraradices虽然没有增加水稻冠根的数量,但是由冠根发育出来的大侧根和细侧根数量都比对照高出三分之一,而且还发现细侧根数量的增加是由于大侧根数量增加引起的,不受接菌影响[36]㊂而且在干旱和水涝条件下,接种AMF分别促进水稻分枝指数增加2.4 4.1和1.7 2.6倍[56]㊂AMF同样促进荔枝[57]㊁柑橘[58]和欧洲桤木[59]等木本植物的根系分枝,但显著减少后者根毛数量㊂此外,在低温[60]㊁水分胁迫[39,61⁃63]㊁盐胁迫[41,64]㊁原油污染[65]的土壤中,AMF对根系构型的改善愈发明显,这促进了植物在逆境条件下的正常生长发育㊂而且研究发现感染立枯病的番茄在接种G.mosseae后,根系总长度和根尖数量增加,这在一定程度上使植株更加抗病[66]㊂另外在组培㊁扦插和嫁接试验中,AMF对植物根系的生长发育起着促进作用,在Williams香蕉(MusaAAA)上,G.versiforme虽然显著地增加组培苗的须根数量,但是须根的平均长度降低,导致整个根系中须根的总长没有变化[67]㊂AMF可以改善一品红扦插时的生根表现,显著促进了不定根的生成[68],也会增加西瓜嫁接苗的根系生物量[69]㊂另外还发现,复合菌种处理的番茄根系总根长和根鲜重均显著高于单一菌株处理[70]㊂干旱下接种内生菌根真菌㊁外生菌根真菌㊁混合接种对滇柏和楸树根系影响不一致,滇柏以外生菌和混合菌接种对根系生物量的效果更显著,而楸树以内生菌的效果最为显著,而且滇柏根系平均直径㊁总长度及表面积呈增加趋势[71]㊂虽然上述研究中报道的都是AMF对根系构型特点改善作用更大,但是其不影响或减少根系长度或侧根数量的报道也有许多,例如接种时湿地植物Bidensfrondosa根系长度和表面积要低于不接种处理,而接种对3㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀4㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀Ecliptaprostrata根系构型影响不大[72]㊂而在多年生黑麦草中,AMF虽然没改变根系生物量,但显著减少根长度,根直径和根数量[73]㊂另外有研究指出当植株所接AMF种类不是其优势菌株时,不会增加根系长度和促进侧根的发生,甚至会比不接菌时的根系长度和侧根数量都要低[74⁃75],其中很大的原因可能是其与植株根系竞争碳素㊂由此可见,AMF对根系构型的影响错综复杂,而这可能是由于不同植物种类㊁不同菌剂种类㊁不同试验条件等造成的,反过来,不同种类植株根系构型不同也会影响对AMF的依赖性㊂2.2㊀根瘤菌根瘤菌是一类广泛分布于土壤中的革兰氏阴性细菌,是与豆科植物共生的重要微生物,它能侵染豆科植物根部或茎部而形成根瘤或茎瘤,然后在根瘤或茎瘤中分化成类菌体,将空气中的氮素固定为植物可吸收利用的氨㊂Hafeez等[76]发现根瘤菌Rhizobiumleguminosarum使得棉花根干重㊁根生物量和根表面积分别增加了248%㊁332%和283%,而且会促进蒺藜状苜蓿的根毛卷曲及增加分枝的程度,进而侧根数量增多[77⁃78],还发现百脉根根瘤菌会促进拟南芥侧根发生和伸长[79],但是也有研究者发现接种根瘤菌对大豆根系长度没有影响,但会增加根表面积和体积[80]㊂不过,目前关于根瘤与根系构型的直接研究并不多见,诸如根瘤在根系上如何分布的以及根瘤的形成对根系构型又会有怎样的促进或抑制作用等问题尚未得到深入探讨㊂2.3㊀PGPRPGPR是栖居于植物根围中的一类土壤细菌,通过诸多方式来促进植株生长,如产生植物激素(生长素和赤霉素等)㊁氮固定㊁溶磷㊁抵抗重金属污染和改善根系构型等,而且可以减少肥料的施用[81⁃82],常见的如假单孢菌属和芽孢杆菌属等㊂通常情况下,PGPR作为生物肥料㊁植物促进和生物防除方面的接种剂,在农业生产起着重要的作用[83]㊂但是关于PGPR对植物根系构型影响的研究并不是很多,但是,在已报道的研究中发现其在改变根系构型方面所起作用也是很重要的㊂大部分的PGPR都增加植株根毛密度和根长度及根生物量,促进根毛从近根尖部位开始形成[84⁃86]㊂Serratiaproteamaculans会增加鹰嘴豆(Cicerarietinum)根长㊁侧根数量和长度以及根生物量[87],接种Azospirillumlipoferum会增加玉米幼苗根表面积㊁根生物量㊁根长和根尖数量,促进根系分枝,但没有改变根平均直径[88],而之前的研究发现,接种Azospirillumbrasilense在增加菜豆根长和根鲜重的同时会减少根直径,而且在菜豆苗生长的初始阶段,细根在长根中所占比例大[89],但是Nosheen等人[81]发现接种PGPR(特别是A.brasilense和Pseudomonasstutzeri)同时显著地增加红花(Carthamustinctorius)根长㊁根面积和根直径㊂GutiERrez-Luna等人[90]在柠檬根际土壤中成功分离出三种促进主根生长和侧根发育的菌株,经鉴定分别为蜡样芽胞杆菌(Bacilluscereus),简单芽孢杆菌(Bacillussimplex)和芽孢杆菌(Bacillussp),均属于PGPR,它们是通过释放挥发性有机化合物来改变根系构型的㊂此外在有AMF或施用化肥时,接种PGPR的效果会更加显著[91]㊂与AMF类似,PGPR也有不影响甚至抑制根系生长的效应,例如,接种Pseudomonastrivialis会使得杂草双雄雀麦(Bromusdiandrus)根系生物量㊁根表面积㊁根体积和根尖数量减少,从而保证硬质小麦(Triticumdurum)的正常生长[92]㊂两种根际促生菌假单胞细菌(Pseudomonasputida)和肠杆菌(Enterobactercloacae)对黄瓜根系生长的影响不明显,这可能与植物种类有关,或者是由于植物对根际促生菌的选择差异性㊂2.4㊀其他根际微生物除了AMF㊁根瘤菌和PGPR外,其它根际微生物如外生菌根真菌等对植物根系构型也有一定的影响㊂不同于AMF,外生菌根共生体只存在于5%以下陆生植物种类中,但是许多生长于温带森林的松科和山毛榉科以及热带亚热带地区的桃金娘科和龙脑香科都以外生菌根为主[93],主要功能是扩大根系对水分和养分的吸收面积,分泌多种生物酶,提高植物根系对氮㊁磷和钾等养分的吸收,产生生物素㊁生长素等促进植物生长,提高植物的抗逆性和抗病性,以及活化土壤[94⁃95]㊂分别接种黄色须腹菌(Rhizopogenluteous)㊁彩色豆马勃(Pisolithustinctorius)和美味牛肝菌(Boletusedulis)3种外生菌根真菌后,黑松(Pinusthunbergii)幼苗许多根系参数均比对照有不同程度的增加,侧根与主根之间夹角从大到小依次为R.luteous㊁B.㊁P.tinctorius㊁对照,R.luteous有效扩大了根系吸收的空间范围[96]㊂另外,P.tinctorius和Burkholderiaglathei对滇柏[71]和松树[97]的根系效应也与上述相似㊂此外对分别来自正常森林和火烧森林的假山毛榉(Nothofagusalpina)幼苗根系比较发现,外生菌根真菌(Descoleaantarctica)促使其根系系统更加深入土壤,且侧根及细根主要分布在下层土壤,以避免上层较低的相对湿度[98]㊂另外干旱胁迫下,外生菌根真菌虽然没有增加幼年欧洲山毛榉(Fagussylvatica)植株生物量,但显著增加了根尖数量和细根形成,特别是0.2 0.8mm级别根[99]㊂除了外生菌根真菌外,弗兰克氏菌是一类能与多种非豆科木本双子叶植物共生固氮的放线菌,它也显著促进欧洲桤木(Alnusglutinosa)幼苗根系分枝,但会显著减少根毛数量[59]㊂而且有意思的是,Kawaguchi等人[100]用从绿色木霉菌(Trichodermaviride)分离出来的木聚糖酶处理烟草根系发现主根细胞分裂和细胞伸长受到抑制,但是根系维管束和根毛的形成并不受任何影响,而且若移除该木聚糖酶,根系构型会重新改变,说3㊀;(2)改㊂3.1㊀众所周知㊁不定根构成的直根系;[101],另外,木本植物与草本植物的根系也明显不同㊂除去物种之间的差异性,侧根是影响植物根系构型最主要的内在因子,其在根系响应土壤环境条件方面起着至关重要的作用,因此,环境因子往往是通过影响侧根的发生来影响根系构型[15,102⁃103]㊂高等植物侧根的形成主要包括四个关键阶段[101]:(1)中柱鞘建成细胞受到刺激发生分化;(2)中柱鞘细胞的极性不对称分裂产生侧根原基;(3)侧根原基细胞膨大突破主根最处层;(4)侧根分生组织的活化与侧根生长㊂早在上世纪90年代,Taylor和Scheuring[104]就发现番茄根系的RSI⁃1基因在侧根原基发生的早期就被启动,一直持续到侧根刚刚突出主根,认为RSI⁃1可以作为侧根发生过程中的分子标记;另外在拟南芥的根系还发现LRP1基因在侧根和不定根的原基发生的早期启动,而在侧根突出主根之前关闭,也可作为侧根发生的分子标记[105]㊂不过到目前为止还没确定哪个标记基因可以用于研究侧根发生的关键阶段㊂根系活力也是影响根系构型的另一重要因素㊂在Kawaguchi等人[100]用从T.viride分离出来的木聚糖酶处理烟草根系的研究中发现主根细胞分裂和细胞伸长受到抑制可能是根系中编码细胞周期素依赖性激酶5㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀6㊀生㊀态㊀学㊀报㊀㊀㊀36卷㊀(cyclin-dependentkinases,CDK)的基因表达受阻导致根分生组织活力的降低㊂在辣椒中接种三种AMF菌剂(Glomusetunicatum,G.mosseae和G.versiforme)都显著增加了根系活力以及根系抗氧化酶活性,一级侧根数㊁根表面积㊁根体积和根质量都比对照高出许多,其中G.mosseae的效果最佳[106]㊂根生长角度对根系构型的影响同样不可忽略,Uga等人[107]在水稻上发现DRO1是控制深根比率的一个主要数量性状位点,而且干旱条件下DRO1会增大根生长角度,从而促进深根系统的形成,提高水稻产量㊂3.2㊀激素调控植物激素是调控根发育和构型的主要因素㊂研究发现生长素运输途径对根系结构的调控主要表现在以下方面:(1)参与主根的生长;(2)参与侧根的形成与伸长,具体为参与侧根原基组织的生长,使侧根从母根上突出;(3)调控盐胁迫条件下根系的发育过程,从而使根系的生长发育适应盐胁迫㊂其中,最重要的,植物生长素是侧根发生和发育的重要信号[15]㊂添加外源生长素能够增加侧根的数目,抑制生长素的运输则减少侧根的数目[108],而且还发现生长素的峰值出现在侧根的发生位置以及侧根突出和伸长阶段[101]㊂AMF会促使根系合成生长素增加,并且生长素信号是早期丛枝菌根形成所必需的[109],因此接种AMF改变玉米根系构型可能是由于其增加了IBA所导致[110],且在番茄中也发现了类似的现象[111]㊂一些PGPR可以释放IAA改变植株生长素含量,进而促进植株形成一个细长且高度分枝的根系系统[112]㊂同样,在Jiang等人[113]的研究中发现,以细菌为生的线虫类会促进土壤中产生IAA的细菌生长和增加土壤中氮营养和IAA,进而促使拟南芥形成高度分枝根系系统,而且根系更长更细㊂另一方面,P.trivialis会通过产生高浓度的IAA来抑制杂草根系的生长,从而真正意义上实现生物防控[92]㊂分子水平上,侧根发生最重要的一种生长素蛋白是SLR1/IAA14,slr1突变体会钝化IAA14而不能形成侧根[114]㊂KRP1和KRP2是编码细胞周期蛋白激酶(CDK)的基因,Himanen等人[115]研究发现,KRP1和KRP2的表达可以抑制细胞周期从G1期向S期转变;KRP2的超表达明显减少侧根的数目;生长素NAA则抑制KRP1和KRP2的表达,由此可见,生长素通过调控细胞分裂周期来影响侧根的发生㊂LAX(likeAUX1)是介导生长素从胞外向胞内转移的载体蛋白,而载体突变体lax3的侧根数目减少,表明生长素的胞内胞外转移也决定着侧根的发育[116]㊂此外,细胞分裂素是另一个重要的影响侧根发育的植物激素㊂由于在许多生理过程中拮抗生长素的作用,细胞分裂素能够抑制许多植物的侧根发育[7,117],报道指出,细胞分裂素含量降低的拟南芥突变体的侧根数目增加[118],添加外源细胞分裂素则减少侧根的数目[119]㊂其他对侧根发育产生影响激素包括乙烯[120]㊁赤霉素[121]㊁油菜素内酯[122]㊁脱落酸[123⁃124]㊁水杨酸[125]㊁多胺[51]以及越来越引起大家关注的独脚金内脂[126]等,而且细胞分裂素和脱落酸反向调节侧根发生,而生长素和油菜素内酯对侧根发生起着促进作用[127]㊂AMF侵染植物根系形成菌根共生体过程中能诱导植物合成多种信号物质,如水杨酸㊁茉莉酸㊁类黄酮㊁一氧化氮和过氧化氢等[128],从而一定程度上调控根系的发育;拥有ACC脱氨酶的根际细菌会通过减少乙烯的含量促进根系生长来调控根系构型[87],此外,PGPR也可通过产生生长素或细胞分裂素来调控根系构型和促进茎生长[129]㊂3.3㊀矿质养分调控研究表明,不论是AMF,还是根瘤菌或PGPR都可以改善植物对养分的吸收[130],从而改变植物根系构型,例如B.glathei促进松树根系改善主要是通过加强矿物风化来改善植株营养状况实现的[97];还有,与对照处理相比,滇柏的接种处理和楸树的内生菌根真菌和混合菌根真菌处理对N和P的吸收都显著增加,进而增加根系生物量[71]㊂AMF与根系共生后,能显著促进根系对土壤矿质营养元素特别是P的吸收,甚至在土壤温度降低植物生长和P吸收受抑的情况下,AMF仍能增加植物体内P含量[131],但是如果土壤中含P丰富,丛枝菌根对植株的贡献会大大折扣,而且也相应地发现AMF改变根系构型通常是在低磷条件下[132],因此低磷促进侧根的形成,尤其是浅层根系的生长[133]㊂进一步研究发现,接种AMF玉米根中磷酸盐转运体基因ZEAma:Pht1;6(丛枝菌根诱导)表达水平为不接菌的26 135倍,提高了茎中磷含量,进而促进了植株生长;在增施少量磷肥时,会显著增加该基因的表达,但是不影响ZEAma:Pht1;3(磷饥饿诱导)的表达[134]㊂植株高氮水平抑制侧根的形成和生长,PGPR菌株Phyllobacteriumsp会改善高外源硝酸根离子对拟南芥侧根生长的抑制作用[135]㊂不过局部高氮会促进侧根的形成和生长[136],在低营养条件下,AMF促进了角豆树根系对无机氮的吸收,且使该根系具有高浓度的氮素[44]㊂Boukcim等[137]发现AMF在氮利用率高的田间挪威云杉中会显著增加根系侧根数量,减少所有侧根的长度,而在氮利用率低时会显著减少侧根数量,只增加三级侧根数量㊂中度干旱胁迫和光照下,外生菌根真菌会促进幼年F.sylvatica根系对氮素的吸收,从而促进根系生长[99]㊂不过有意思的是,在营养丰富的土壤中,温带森林菌根树更倾向于通过增殖根系来汲取更多养分[138],说明AMF在该环境条件下对根系构型的影响可能远小于在土壤营养贫瘠时㊂3.4㊀碳素调控根系的生长和发育依赖植物形成的光合碳水化合物,碳水化合物可直接作为代谢底物或生长调节物质影响细胞的分裂,导致根系构型发生变化[139]㊂植物地上部分与地下部在利用碳水化合物方面存在着竞争关系,而在共生微生物的存在下,地上部分的蔗糖经长距离运输向根系的分配比率提高,例如 菌根碳库 的存在会促使糖向菌根化细胞中转移[104,140],因此,根际微生物可能通过调控植株碳素营养的运输来改变根系构型㊂接种AMF会显著增加枳壳幼苗叶片葡萄糖和蔗糖含量,但减少根葡萄糖和蔗糖含量[48],不过在白三叶草中,却是增加了根系的蔗糖含量[141],可能是因为不同菌剂种类对木本植株和草本植株的作用模式不同所致,但两个研究都表明接菌增加了植株根系总长度㊁根表面积以及总体积㊂另一方面,在春夏季,许多植物叶片增多且光合作用活跃,这使得大量的碳水化合物被运输至地下部,促进细根的形成以维持AMF的生存[142]㊂另外,接种AMF时,一品红插条的叶片糖含量增加,且碳水化合物动力学开始变化,从而根系生长得到促进[68]㊂本文之前所描述的AMF减少根系长度及侧根数量的原因可能是其与宿主植株竞争碳水化合物所致㊂除了AMF,PGPR和根瘤菌通常都能增加根系生物量[143⁃145],说明它们也参与到碳水化合物的运输过程中,最终导致根系构型发生改变,不过目前关于根际微生物调控碳水化合物组分及分配及其对根系构型影响的研究鲜见报道,特别是后两种微生物㊂4㊀展望虽然土壤根际微生物影响不同植物根系构型的研究日益增多,相应地也提出了一些调控机制,但是,不同微生物改变根系构型的差异性及最主要的调控途径还需要更深层次的理解㊂由于根系是生长于土壤中,不能直接观察,因此选择合适的试验方案至关重要,需要不断地优化,以便更直观地了解根际微生物对植株根系构型的调控作用㊂对根系构型的研究,主要是为了仿真出根系在不同的生长条件下的分布情况,从而得出更加有利于生产和实验的品种或者根系结构,可以更好的利用土壤的营养,提高产量和品质㊂就目前研究方向而言,以下几方面可能值得重视和深入探讨:(1)AMF与其它根际微生物相互作用(协同或竞争)对植株根系构型有哪些影响?这些影响的作用机制是什么?这些问题尚不明确,需要深入研究㊂(2)根际微生物的侵染或定殖需要消耗根系的碳素(光合产物),而碳素也是根系构建的物质基础,那么,根际微生物对碳素的竞争是如何调控根系构型的?在这一调控途径过程中,何种碳素(葡萄糖㊁果糖或蔗糖)起着关键作用?(3)根系构型与作物(如菜豆)的生产力密切相关,在农业生产中如何有效利用根际微生物来改善根系构型,使植株更加适应周围环境变化,从而实现高产优质㊂总之,根际微生物对植物根系构型的调控意义深远,值得进行更多的深入研究㊂参考文献(References):[1]㊀BaileyPHJ,CurreyJD,FitterAH.TheroleofrootsystemarchitectureandroothairsinpromotinganchorageagainstuprootingforcesinAlliumcepaandrootmutantsofArabidopsisthaliana.JournalofExperimentalBotany,2002,53(367):333⁃340.[2]㊀LynchJ.Rootarchitectureandplantproductivity.PlantPhysiology,1995,109(1):7⁃13.[3]㊀屈志强,刘连友,吕艳丽.沙生植物构型及其与抗风蚀能力关系研究综述.生态学杂志,2011,30(2):357⁃362.7㊀17期㊀㊀㊀陈伟立㊀等:根际微生物调控植物根系构型的研究进展㊀。

植物学的英文简介带翻译

植物学的英文简介带翻译

horticulture. The knowledge gained from studying plants has broad applications, from improving crop yields and fighting plant diseases to developing new pharmaceuticals and understanding the impacts of climate change on plant species.
植物学还与其他科学学科密切相关,包括生态学、环境科学、农业和园艺学。

通过研究植物所获得的知识有广泛的应用,从提高作物产量和 bek闄哽īf.u软鹆诘淖稹⒋忻匚辰裣等┲
Overall, botany is a crucial field of study that has a significant impact on our lives. By understanding plants and their interactions with the environment, we can work towards a more sustainable future for our planet.
总的来说,植物学是一个重要的研究领域,对我们的生活产生了深远的影响。

通过了解植物及其与环境的相互作用,我们可以为地球的可持续发展努力工作。

利用重组自交系和SSR标记进行陆地棉株型QTL的鉴定和定位英文

利用重组自交系和SSR标记进行陆地棉株型QTL的鉴定和定位英文

遗 传 学 报 Acta Genetica Sinica , February 2006, 33 (2):161–170 ISSN 0379-4172QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR MarkersWANG Bao-Hua, WU Yao-Ting, HUANG Nai-Tai, ZHU Xie-Fei, GUO Wang-Zhen, ZHANG Tian-Zhen①National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural Univer-sity, Nanjing 210095, ChinaAbstract: Xiangzamian 2 (XZM2) is the most widely cultivated cotton hybrid in China. By crossing two parents Zhongmiansuo12 and 8891 and upon subsequent selfings, we got F 8 and F 9 populations having 180 recombinant inbred lines. Ten plant architecture traits were investigated in two years with this population. A genetic map was constructed mainly with SSR markers. Quantitative trait loci (QTL) conditioning plant architecture traits were determined at the single-locus and double-locus levels. The results showed that epistastic effects as well as additive effects of QTL played an important role as the genetic basis of cotton plant archi-tecture. The QTL detected in our research might provide new information on improving plant architecture traits. The polymorphism of molecular markers between ZMS12 and 8891 were quite limited, while significant differences between their phenotypes were found and the hybrid XZM2 expressed high heterosis in yield. All these could be partly explained by the effect of epistatic QTL. Key words: plant architecture; additive effect; epistatic effect; QTLReceived: 2005-01-18; Accepted: 2005-04-21This work was supported by the National Science Foundation for Distinguished Young Scholars (No. 30025029), Chinese National Programs for High Technology Research and Development (863 Program) (No. 2002AA207006) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions Program for Changjiang Scholars and Innovative Research Team in University of MOE, China.① Corresponding author. E-mail: cotton@; Tel: +86-25-8439 5307In crops, most agronomic traits are inherited in a complicated pattern and affected by environments. Plant architecture is of major agronomic importance, which greatly influences other traits such as resistance, adaptability and, finally, yield production. As a good example, in wheat breeding the plant architecture se-lection of shorter and sturdier stems has led to a great success of Green Revolution [1, 2]. Studies have been conducted to relate plant architecture with yield or other agronomic traits in wheat (Triticum aestivum )[3], barley (Hordeum sativum )[4], cassava (Manihot escu-lenta )[5,6], rice (Oryza sativa )[7,8], cotton (Gossypium hirsutum )[9], sorghum (Sorghum bicolor ), maize (Zea mays )[10], and Chinese cabbage [11]. Breeders have tried to develop high yield crop varieties by understanding how various parts of a plant interact with each other to produce the best output [12]. Accordingly, research of plant architecture traits would be useful to improve yield production effectively in crop breeding.Recombinant inbred lines (RILs) are developed from a hybrid followed by repeated selfing to consti-tute a permanent mapping population. RIL population is very useful in plant breeding and genetic re-search [13] and has been extensively used to construct linkage maps [14], make inheritance analysis of resis-tance [15,16], screen QTL for yield traits [17] and carry out MAS (marker-assisted selection)[18]. However, RIL populations have seldom been applied in mo-lecular genetic research in cotton so far possibly be-cause of difficulty in developing RIL populations from interspecific cross and low polymorphism in intraspecific population. Taylor [19] pointed out that an RIL population is more efficient for estimating re-combination than a backcross population when map162 遗传学报 Acta Genetica Sinica V ol.33 No.2 2006distances are greatly shortened (r<12.5 cM).In this paper, a RIL population derived from Xiangzamian 2 (XZM2) was produced. XZM2 was developed by Hunan Institute of Cotton Sciences. It was released in Hunan province in 1997[20] and in Yangtze River Valley cotton-growing region in 2001. As an elite hybrid cotton with high heterosis in yield[21], XZM2 was the most widely cultivated cot-ton hybrid (F1 and F2 population) before transgenic Bt hybrids were extensively released in China. Its par-ents are ZMS12 and 8891. Cotton variety ZMS12 was released in Yellow River Valley cotton-growing region and had been planted in the largest cotton growing area in China. In addition, 8891 is a non-released commercial strain developed in the cot-ton-growing region of the Yangtze River Valley.The field trials of the RIL population were car-ried out at Guanyun County in Yellow River Valley, the cotton-growing region in Jiangsu province, China, in 2002 and 2003. The purposes of the present re-search were: (1) to detect major QTL and epistatic QTL for plant architecture and their contributions to the trait; (2) to provide new information on improving plant architecture traits; (3) to gain an insight into the molecular basis of heterosis.1 Materials and Methods1. 1 Materials and phenotypingZMS12 was crossed with 8891 in Jiangpu Ex-perimental Station, Nanjing Agricultural University (NAU). The F1 hybrid plants were self-pollinated to produce F2 seeds in the winter at Hainan Island in 1998. Two hundred and sixty F2 plants derived from a single F1 hybrid were planted for selfing to produce F2:3 seeds in Nanjing in 1999. Then two hundred and sixty F2:3 families as well as their parents were grown in one-row plots and self-pollinated in the winter at Hainan Island. The RIL population was developed by bulk-selfing technique. One boll was harvested from a single plant of every family line and at every gen-eration, and bulked them for next generation until F2:6. Then one plant was selected randomly from each line at F2:6 and sent to Hainan to propagate. Finally, F6:8and F6:9 generations of RIL families were used for replicated field trial.The parental lines, F1 and 180 RILs were evalu-ated at Guanyun County in Jiangsu province, China, in 2002 and 2003. A randomized complete block design with two replications was used in the field trials. Fif-teen seedlings, approximately 30-days-old, were trans-planted to a one-row plot, with a distance of 30 cm between plants within a row, and 80 cm between rows. The five plants in the middle of every row were investigated for plant architecture data.In 2002, six plant architecture traits were investi-gated, i.e. speed rate of fruit node forming (SOFNF, the number of fruit nodes formed per day from July 15 to August 15), speed rate of boll forming (SOBF, the number of bolls formed per day from July 22 to August 22), lower boll number (LBN, bolls on one-third of all the fruit branches in the lower position), middle boll number (MBN, bolls on one-third of all the fruit branches in the middle position), upside boll number (UBN, bolls on one-third of all the fruit branches in the upside position), and fruit branch number(FBN).Four plant architecture traits were explored in 2003, namely plant height (PH), fruit branch length (FBL), ratio of fruit branch length to plant height (RFBH), and fruit branch angle (FBA, the angle be-tween the fruit branch and the main stem).1. 2 DNA marker assayDNAs from 180 RILs, F1 and 2 parents were ex-tracted as described by Paterson et al[22]. Two thou-sand one hundred and thirty SSR primer pairs were used to screen parents for polymorphism. SSR prim-ers were separately obtained from following sources: BNL primers from Research Genetics Co. (Huntsville, AL, USA, ); JESPR from Reddy et al.[23] sequences; TM from Dr. John Yu, USDA-ARS, Crops Germplasm Research Unit, Texas, USA; EST from Dr. Saha, USDA-ARS, Crop Science Research Laboratory, Mississippi, USA; CIR from Nguyen et al[24]. The SSR primers of NAU were EST-SSR designated “NAUXXX”, using “NAU” as a short prefix for Nanjing Agricultural University, and “XXX” as the serial number of the SSR marker.WANG Bao-Hua et al.: QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers 163(Zhang, unpublished data). As to nomenclature of markers, the letter in each marker describes the origin of marker, which is followed by the primer number. Procedure for SSR analysis was the same as reported by Zhang et al [25,26].The 10-mer oligonucleotides were commercially purchased from the RAPD primers kit [Operon Technologies, Alameda, Calif., USA (referred as sim-ply Operon primers)]. One thousand and forty Operon primers were used to survey the DNA polymorphism of parents. The PCR procedure was the same as re-ported by Zhang et al.[27]; sequence-related amplified polymorphism (SRAP) primer combination sequences and PCR procedure were from Li et al[28]. In addition, Yellow anther gene, P1, in 8891 was also surveyed.1. 3 Data analysisA genetic linkage map was constructed using MapMaker 3.0[29,30], in which Kosambi function and LOD=3.0 were used.Assignment of linkage groups to subgenomes and chromosomes was made based on our backboned linkage map[26,31] and the published map data[24,32]. When no subgenome or chromosome inference was available, the linkage group was de-scribed as LGXX, in which LG means linkage group, while XX refers to its serial number.Single-locus QTL were analyzed by composite interval mapping method[33] using Windows QTL Cartographer 2.0[34]. Composite interval mapping was performed using Model 6 with a walking speed of 2 cM and the inclusion of 10 maximum background marker loci in a stepwise forward regression proce-dure. Kosambi function and the LR thresholds based on 1 000 permutation tests[35] at P≤0.05 for all the traits were used.A program of QTLMapper1.0[36] based on a mixed linear model[37] was used to determine epistatic QTL conditioning plant architecture. Background genetic variation (BGV) due to main and epistatic effects of important markers was controlled. The LR value corresponding to P=0.005 was used as the threshold for claiming a putative QTL. The signifi-cance of QTL effects, including additive effect (A) and additive-by-additive epistatic effect (AA) was tested by running Bayesian test (P<0.005).For convenience of description, just like Xing et al.[38], we referred to the QTL with main effects that corresponded to QTL detected by single-locus analysis as main-effect QTL, and QTL involved in digenic inter-actions as epistatic QTL, although many of the main-effect QTL were involved in epistatic interactions.QTL nomenclature was adapted according to the method in rice[39], which starts with “q”, followed by an abbreviation of the trait name and the name of chromosome or linkage group, and then followed by the number of QTL affecting the trait on the chromo-some or linkage group.2 Results2. 1 Trait performance and traits correlated withyield and fiber qualityDescriptive statistics of plant architecture traits were made from data of two years (Table 1). To de-termine if these traits were normally distributed, skewness values were calculated for all traits (Table 1). All traits abided by normal distribution and expressed transgressive segregation in both directions in RIL population. T-test showed that there were significant differences between two parents in plant architecture traits such as plant height, ratio of fruit branch length to plant height, fruit branch angle, speed rate of fruit node forming and upside boll number (Table 1).Before running the trait data against the mo-lecular data, ANOVA was performed using the SAS program[40] to partition variances into genotypes, replications and error. The results showed that ex-cept for speed rate of fruit node forming and speed rate of boll forming, all the traits had significant difference among genotypes (data not shown). This indicated that the RIL population was suitable for QTL analysis.As for as heterosis was concerned, speed rate of fruit node forming and speed rate of boll forming displayed mid-parent heterosis with the value of 13.75% and 6.67% respectively. Fruit branch number and boll number of different positions also showed high heterosis.164 遗传学报 Acta Genetica Sinica V ol.33 No.2 2006The hybrid XZM2 showed a pagoda type of plant architecture with a sturdy main stem and a small fruit branch angle. It gave super resistance to wind damage and was able to endure fertilizers. Its plant height was between the two parents, ZMS12 and 8891. Its fruit branch length and ratio of fruit branch length to plant height was lower, while the boll num-ber of different positions, fruit branch number, speed rate of fruit node forming and boll forming were higher than those of both parents.Plant architecture traits were correlated with yield and fiber quality traits. Correlation analysis (data not shown) showed that seed yield was corre-lated with plant height (with the correlation coeffi-cient of 0.174* significant at the 0.05 level,), fruit branch angle (0.196** significant at 0.01 level), and fruit branch number (0.204**). Lint yield was sig-nificantly correlated with fruit branch number (0.167*), plant height (0.202**) and fruit branch an-gle (0.206**). Boll number was significantly corre-lated with plant height (0.188*), fruit branch length (0.180*), fruit branch angle (0.169*), and fruit branchnumber (0.358**). Fiber length was negatively cor-related with plant height (–0.182*) significantly; while it was significantly correlated with ratio of fruit branch length to plant height (0.253**). Fiber strength was significantly correlated with fruit branch angle (0.175*).2. 2 Construction of molecular linkage mapThe screen of the 2130 SSR primer pairs re-sulted in 67 polymorphic pairs between two parents. In addition, two RAPD primers, one SRAP and a dominant yellow anther gene P 1 from 8891 were screened too. Chi-square goodness-of-fit test was con-ducted to determine whether the genotypic frequencies differed significantly from the expected segregation ratio. Most of the loci fit 1:1 segregation ratio with chi-square value ranging from 0.00 to 3.82.Therefore, they were all used to construct a linkage map. Finally, fifty-four loci were mapped to 17 linkage groups. The average distance between two adjacent markers was 5.64 cM, and the largest distance was 22.7 cM (NAU1426-P1, Chr.5; Fig.1).Table 1 Descriptive statistics of plant architecture traits of the RIL populations and their parentsRILsParentsTraitRange Mean±SDSkew-nessZMS128891t -value F 1 Mid-parent heterosis (%)Plant height (cm)68.40-112.6893.87±6.746-0.11 87.86 103.69-7.05**92.60–3.32Fruit branch length (cm)20.57-38.45 28.02±3.0530.4929.08 27.831.00 24.80 –12.85Ratio of fruit branch length to plant height 0.23-0.42 0.30±0.034 0.490.33 0.27 5.44** 0.27 –10.00 Fruit branch angle (°) 63.63-76.70 70.12±2.8580.0767.74 72.23-2.50*69.00–1.41Speed rate of fruit node forming0.33-1.28 0.79±0.181 0.030.74 0.86 -2.15* 0.91 13.75Speed rate of boll forming0.27-0.87 0.46±0.081 0.890.47 0.43 1.63 0.48 6.67 Lower boll number 4.40-14.20 7.72±1.429 0.557.39 7.60 -0.42 8.20 9.41 Middle boll number 4.30-10.90 7.26±1.220 0.166.717.40 -1.48 7.50 6.31 Upside boll number 1.80-6.60 3.81±0.911 0.173.394.18 -2.36*5.50 45.31 Fruit branch number11.40-18.2014.48±1.4080.0913.70 14.31-1.1916.20 15.67Note: *difference significant at the 0.05 level; **difference significant at the 0.01 level.WANG Bao-Hua et al .: QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers 1652. 3 Tagging of QTL for plant architecture 2.3. 1 Single-locus analysis of QTL for plant ar-chitectureUsing composite interval mapping method of QTL Cartographer2.0, altogether 4 QTL for plant architecture traits were identified (Fig.1, Table 2).Fruit branch length : A total of three QTL were detected for fruit branch length. The QTL located on Chr.20 explained 9.06% of the phenotypic variance (PV). The other two QTL located on Chr.25 explained 7.56% and 9.50% of the PV respectively. Alleles from ZMS12 at the three QTL were in the direction of in-creasing fruit branch length (Fig.1, Table 2).Ratio of fruit branch length to plant height: A QTL located on Chr.14 was detected, which ex-plained 7.96% of the PV . The ZMS12 genotype con-tributed to the increase of ratio of fruit branch length to plant height (Fig.1, Table 2).The detailed information of the main-effect QTL detected for these two traits were listed in Fig.1 and Table 2.2. 3. 2 Epistatic QTL detected in two yearsQTLMapper1.0 was used to determine main-effect and epistatic QTL conditioning plant architecture traits (Fig.1, Table 3). Many loci without main effects interacted and more epistatic QTL than main-effect QTL were detected.Plant height: One QTL located on Chr.25 was detected, which explained 7.13% of the PV . The other QTL located on Chr.14 explained 9.72% of the PV (Table 3). Two loci on LGA03 and Chr.23 without main effects interacted, and the epistatic effects ex-plained 10.72% of the PV (Fig.1, Table 3).Fig. 1 Main-effect and epistatic QTL for plant architecture detected by QTLCartographer2.0 and QTLMapper1.0respectively166 遗传学报 Acta Genetica Sinica V ol.33 No.2 2006Fruit branch length: Two main-effect QTL lo-cated on Chr.20 and Chr.25 were detected, which explained 9.22% and 8.93% of the PV respectively (Table 3). A locus on Chr.10 and Chr.9 without main effects interacted and explained 8.06% of the PV (Fig.1, Table 3).Altogether 15 loci involved in interactions were detected. The detailed information of the epistatic QTL detected for all traits are listed in Fig.1 and Table 3.3 DiscussionPlant architecture means the spatial distribution of various parts of a plant. To improve the utilization efficiency of sunlight energy so as to further increase and stabilize yield, plant architecture must be consid-ered in breeding programs. Ideal architecture can be understood as having the least competition among individuals of a population, while it can influence photosynthesis and plant growth and finally contrib-ute to the largest economic gain. A crop with ideal plant architecture should have a moderately lower plant height, a sturdy stem resistant to wind and rain, enough leaf area, sturdy roots, a higher economic coefficient and high resistance to insects, disease and environmental stress.Plant architecture traits might influence cotton yield and fiber quality in two ways: ① Plant archi-tecture influences the formation of yield and fiber quality. For example, fruit branch angle, ratio of fruit branch length to plant height might have effects on air circulation and sunlight supply,which would influence net photosynthetic rate and photosynthetic efficiency. Accordingly, the accumulation of solids and economic output were different due to different plant architecture.②Plant architecture affected the maintenance of yield and fiber quality traits. For example, lower bolls tend to fall off due to disadvantageous environmental fac-tors such as moist etc, and therefore a larger percentage of middle and upside bolls might be better to maintain yield and fiber quality.Ideal and efficient plant architecture has long been identified as a key factor underlying the physio-logical basis of yield. QTL for plant architecture can be used to develop ideal architecture and finally im-prove the productivity[41].Plant architecture breeding can be combined with heterosis application to accelerate the process of crop breeding. Former researches showed that high yield of hybrids came from fast and high accumula-tion of solids. Early distribution of nutrient fromTable 2 The location and effects of QTL for plant architecture traits in two years independentlyTrait QTL1) Interval Position LOD LOD threshold by1 000 permutationtestA2) R2 3) Direction4)Fruit branch length qFBL-20-1 TML05-BNL39480.01 4.1273 2.3306 -0.9464 0.0906 ZMS12 qFBL-25-1CIR071-NAU9056.01 3.0567-0.8488 0.0756 ZMS12 qFBL-25-2CIR407-TMG1012.46 4.1371-0.9562 0.0950 ZMS12Ratio of fruit branch to plant height qRFBH-14-1 CIR246-CIR381b8.01 2.8076 2.2763 -0.0097 0.0796 ZMS121)QTL were named with “q”, followed by an abbreviation of the trait name and the name of chromosome or linkage group, and then followed by the number of QTL affecting the trait on the chromosome or linkage group;2)A=additive genetic effects estimated at the testing points. A negative value means the ZMS12 genotype having a positive effect on the trait;3)R2=phenotypic variation explained by a single QTL;4)Direction= the parent giving the positive value for the additive effect.WANG Bao-Hua et al .: QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers 167vegetative organs to generative organs and high abil-ity of nutrient reallocation were the physiological foundations of cotton heterosis expressed at nutri-mental level [42]. In our research, the cotton hybrid XZM2 had ideal plant architecture and had high het-erosis in yield. In Yangtze River Valley and partial Yellow River Valley cotton-growing regions of China, due to the abundance of rain or sunlight, an appropri-ately large cotton plant architecture with sturdy main stem, lower ratio of fruit branch length to plant height, comparatively higher position of the first fruit branch, more leaf area and big bolls would be the aim of plant architecture breeding.In our research, besides main-effect QTL, many epistatic QTL were detected for plant architecture, which would provide evidence to reveal the influenc-ing factors of plant architecture at molecular level and might be helpful for selection of optimal plant archi-tecture.Former researches showed that epistasis played an important role in heredity and variation [43], and might be the genetic basis of the evolution of plant adaptation [44]. Classical quantitative genetics has in-dicated that epistasis is the foundation of complexTable 3 Epistastic QTL for plant architecture traitsTrait Chr.Flankingmarkers Chr.Flanking markersLOD H 2(Ai ) 1)H 2(Aj ) 2)H 2(AAij ) 3)H 2(A ) 4)H 2(AA )5)Plant heightA03NAU470-BNL1231Chr.23 JESPR110-CIR194 4.57 0.1072 Chr.25 CIR407-TMG10D08 NAU1187-NAU12693.310.0713Chr.5 NAU569-NAU2026 Chr.14 CIR246-CIR381b 3.78 0.0972 0.1684 0.1072Fruit branch length Chr.20 TML05-BNL3948Chr.14 CIR246-CIR381b5.070.0922 Chr.25 CIR407-T MG10 Chr.5 BNL3452-NAU879 3.750.0893Chr.10 NAU980-NAU1233 Chr.9 NAU1423-JESPR274 4.26 0.0806 0.1816 0.0806 Fruit branchangleChr.3 NAU997-NAU998Chr.14 CIR246-CIR381b 3.87 0.1045 0.1045 Lower boll number Chr.26 BNL3994-JESPR234 Chr.9 NAU1423-JESPR274 3.34 0.0821 0.0821 Middle boll number Chr.14 CIR246-CIR381b Chr.5 NAU1426-P1 3.85 0.1645 0.1645 Fruit branch numberA03 NAU470-BNL1231Chr.9 JESPR274-NAU859 3.29 0.0871 A03 NAU470-BNL1231 Chr.5 BNL3452-NAU879 4.25 0.04140.0643Chr.25 CIR071-NAU905Chr.3 NAU997-NAU9983.680.0938 0.0414 0.24511),2)H 2(Ai ) and H 2(Aj ) represent the relative contribution of QTL i and QTL j in digenetic interaction respectively;3) H 2(AAij ) means the contribution of epistatic effects; 4) H 2(A ) means the general contribution of additive effects;5)H 2(AA ) means the general contribution of epistatic effects.168 遗传学报 Acta Genetica Sinica V ol.33 No.2 2006traits[45,46]. The influence of epistasis on quantitative traits has been reported in research of QTL map-ping[47]. Based on the research of heterosis in rice, Yu et al. found that epistasis played an important role in the inheritance of quantitative traits and heterosis[48]. Xing et al. further reported that epistasis, in the form of additive-by-additive interactions, played a very important role in controlling the expression of yield and yield-component traits[38]. In our research, many digenetic gene loci contributing notably to plant ar-chitecture traits were detected, most of which did not have the main effects themselves. In fact, more epistatic QTL than main-effect QTL were detected and contributed significantly to plant architecture traits (Table 3). This would explain the phenomenon that though there were large differences of plant ar-chitecture between ZMS12 and 8891, few polymor-phic molecular marker loci could be detected. From the results we presumed that main effects as well as epistatic effects of the QTL played an important role in cotton plant architecture traits. Our previous re-search with the same cotton material indicated that both epistastic effects and additive effects of QTL played an important role as the genetic basis of cotton yield and fiber quality (data not shown). The hybrid XZM2 had elite heterosis, which might be mostly due to digenetic epistatic effects. All these results sug-gested that epistasis might be of great importance as the genetic basis of heterosis in the cotton hybrid of XZM2.References:[1] Reinhardt D, Kuhlemeier C. Plant architecture. EMBOReports, 2002, 3(9) : 846-851.[2] Peng J, Richards D E, Hartley N M, Murphy G P, DevosK M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400 : 256-261.[3] Kulwal P L, Roy J K, Balyan H S, Gupta P K. QTL map-ping for growth and leaf characters in bread wheat. Plant Science, 2003, 164 : 267-277.[4] Barua U M, Chalmers K J, Thomas W T B, Hackett C A,Lea V, Jack P, Forster B P, Waugh R, Powell W. Mo-lecular mapping of genes determining height, time to heading and growth habit in barley. Genome, 1993, 36 : 1080-1087.[5] Cock J H, El-Sharkawy M A. Physiological characteris-tics for cassava selection. Exp Agric, 1988, 24 : 443-448.[6] Cock J H, Franklin D, Sandoval G, Juri P. The ideal cas-sava plant for maximum yield. Crop Science, 1979, 19 : 271-279.[7] Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S,Huang N, Zheng K L. Analysis of QTL×environment in-teraction for yield components and plant height in rice.Theor Appl Genet, 1997, 95 : 799-808.[8] Qian Q, He P, Teng S, Zeng D L, Zhu L H. QTLs analy-sis of Tiller angle in Rice (Oryza sativa L.). Acta Ge-netica Sinica, 2001, 28 (1) : 29-32(in Chinese with an English abstract).[9] Ye Z H, Zhu J. Genetic analysis on flowering and bollsetting in upland cotton (Gossypium hirsutum L.) II. the genetic behavior of different fruiting sites. Acta Agronomica Sinica, 2001, 27(2) : 243-252(in Chinese with an English abstract).[10] Perreira M G, Lee M. Identification of genomic regionsaffecting plant height in sorghum and maize. Theor Appl Genet, 1995, 90 : 380-388.[11] Yu S C, Wang Y J, Zheng X Y. Mapping and analysisQTL controlling some morphological traits in Chinese cabbage (Brassica campestris L. ssp. pekinensi s). Acta Genetica Sinica, 2003, 30 (12) : 1153-1160(in Chinese with an English abstract).[12] Wu R L. Genetic mapping of QTL affecting tree growthand architecture in Populus: implication for ideotype breeding. Theor Appl Genet,1998, 96 : 447-457.[13] Burr B, Burr F A, Thompson K H, Albertson M C, StuberC W. Gene mapping with recombinant inbred in maize.Genetics, 1988, 118(3) : 519-526.[14] Simpson S P. Detection of linkage between quantitativetrait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet, 1989, 77 : 815-819.[15] Groh S, González-de-León D, Khairallah M M, Jiang C,Bergvinson D, Bohn M, Hoisington D A, Melchinger A E.QTL mapping in tropical maize:Ⅲ genomic regions for resistance to diatraea spp and associated traits in two RIL populations. Crop Sci, 1998, 38 : 1062-1072.[16] Mucella T, Dipak K S, Walter J K, Fred J M. Ascochytablight resistance inheritance in three chickpea recom-binant inbred line populations. Crop Sci, 2000, 40 : 1251-1256.[17] Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W,Zheng K L. Analysis on additive effects and addi-。

作物驯化和品种改良所选择的关键基因及其特点

作物驯化和品种改良所选择的关键基因及其特点

作物学报 ACTA AGRONOMICA SINICA 2017, 43(2): 157 170/ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@本研究由国家重点研发计划专项(2016YFD0100300)资助。

The Principal Investigator was supported by the National Research and Development Program (2016YFD0100300).*通讯作者(Corresponding author): 张学勇, E-mail: zhangxueyong@Received(收稿日期): 2016-09-22; Accepted(接受日期): 2016-11-03; Published online(网络出版日期): 2016-11-18. URL: /kcms/detail/11.1809.S.20161118.1356.002.htmlDOI: 10.3724/SP.J.1006.2017.00157作物驯化和品种改良所选择的关键基因及其特点张学勇1,* 马 琳1 郑 军21中国农业科学院作物科学研究所, 北京 100081; 2山西省农业科学院小麦研究所, 山西临汾 041000摘 要: 近15~20年作物基因组学迅速发展, 特别是第2代测序技术的普及, 显著降低了测序成本, 使单核苷酸多态性(SNP)分析和单元型区段(也称单倍型区段)分析渗透到生命科学的各个领域, 对系统生物学、遗传学、种质资源学和育种学影响最为深刻, 使其进入基因组学的全新时代。

一批驯化选择基因的克隆, 特别是对一些控制复杂性状形成的遗传基础及其调控机制的解析, 更清晰地揭示了作物驯化和品种改良的历史, 提升了人们对育种的认知, 推动育种方法的改进。

驯化和育种既有相似之处, 也存在明显的差异。

驯化选择常常发生在少数关键基因或位点, 对基因的选择几乎是一步到位; 而现代作物育种虽然只有100年左右的历史, 但其对基因组影响更为强烈, 是一些重要代谢途径不断优化的过程。

genetic词根词缀

genetic词根词缀

genetic 词根词缀探究genetic 是一个常见的英语单词,它的意思是“遗传的,基因的,起源的”。

它是由词根 gen- 和词缀 -etic 组成的。

词根 gen- 表示“产生,出生;出身,天性,血统,种族,种类”。

本文将介绍 genetic 的一些常见单词和派生词。

与 genetic 相关的一些常见单词和派生词单词释义例句gene n. 基因,遗传因子The gene for blue eyes is recessive. 蓝眼睛的基因是隐性的。

genetics n. 遗传学Genetics is the study of how traits are inherited. 遗传学是研究性状如何遗传的。

genetical adj. 遗传学的He is a genetical engineer. 他是一名遗传工程师。

geneticallyadv. 遗传地;基因地They are genetically identical twins. 他们是基因相同的双胞胎。

geneticist n. 遗传学家He is a famous geneticist who discovered a new gene. 他是一位著名的遗传学家,发现了一种新基因。

genetic engineering n. 遗传工程Genetic engineering can create new varieties of plants and animals. 遗传工程可以创造新品种的植物和动物。

genetic code n. 遗传密码The genetic code is the set of rules that determines how DNA is translated into proteins. 遗传密码是决定 DNA 如何转化为蛋白质的一套规则。

genetic disorder n. 遗传性疾病Hemophilia is a genetic disorder that affects blood clotting. 血友病是一种影响血液凝固的遗传性疾病。

地被菊‘中国红’再生及遗传转化体系的建立

地被菊‘中国红’再生及遗传转化体系的建立

地被菊‘中国红’再生及遗传转化体系的建立毛洪玉;周杨;刘迪;贾红梅【摘要】Different plant growth regulators that affect adventitious buds induction rate were studied in regeneration system of ground-cover chrysanthemumˊChina Redˊ using the leaves of the aseptic seedings as explants. In order to establish an efficient genetic transformation system with leaves of ground-cover chrysanthemumˊChina Redˊ, several factors affected genetic transformation mediated by Agrobacterium were studied. The results showed that the highest rate of adventitious buds(89.6%) of ground-cover chrysanthemumˊChina Redˊwas obtained on MS + 2.0 mg•L-1 6-BA + 0.2 mg•L-1 NAA medium. The medium of 1/2MS+0.3 mg•L-1 NAA was the optimal for rooting, which had rooting rate of 100%. The conditions of genetic transformation: OD600=0.6, agrobacterium infection time for 7min, co- culture time for 48h, delayed screen time for 2 d, the kanamycin concentration was 15 mg•L-1 and the cefsulodin concentration was 300 mg•L-1. The establishment of high-efficiency transformation system laid a sound foundation for improving chrysanthemum by gene engineering.%为建立地被菊‘中国红’的再生和遗传转化体系,以其无菌苗叶片为外植体,通过添加不同浓度的生长调节剂,研究其对诱导愈伤组织、不定芽的影响,并利用根瘤农杆菌介导法对地被菊‘中国红’叶片进行遗传转化,研究影响菊花转化的若干因素,建立一套高效的遗传转化体系。

蚕豆有限生长习性的遗传分析与种质筛选

蚕豆有限生长习性的遗传分析与种质筛选

蚕豆有限生长习性的遗传分析与种质筛选作者:龙珏臣张继君王萍武云霞杜成章来源:《南方农业·上》2023年第09期摘要蠶豆是重要的冷季豆类作物,目前生产中应用广泛的品种多为无限生长习性,成熟期常发生倒伏,难以满足机械化收获的要求。

团队创制出有限生长习性的蚕豆材料,并通过构建F1、F2、BC1群体进行遗传分析。

杂交F1表型分析结果表明,蚕豆生长习性受核基因调控,与细胞质遗传无关,且无限生长习性相对有限生长习性为显性;χ2测验结果及杂交F2群体的表型分析结果表明,蚕豆生长习性的性状受1对基因调控,且无限生长习性相对有限生长习性为显性,BC1群体的表型分析结果进一步印证了F2群体的表型分析结果。

创制的有限生长习性材料为蚕豆机械化生产提供了坚实的种质保证,同时厘清了蚕豆生长习性的遗传规律,为蚕豆在生长习性方向的育种工作打下了理论基础。

还筛选得到了3个适宜机械化收获的优良蚕豆种质材料。

关键词蚕豆;生长习性;遗传分析;种质筛选中图分类号:S643.6 文献标志码:A DOI:10.19415/ki.1673-890x.2023.17.012无限生长习性是豆科作物的主要特点,这可以延长作物生殖生长的持续时间,在部分生殖器官受损的情况下重新获得营养和生殖器官,并形成产量[1],但无限生长习性也导致了营养生长和生殖生长对同化产物的过度竞争,使产量和收获指数变得不稳定[2]。

有限生长习性作物的特征是顶端花序完成分化后茎的生长也随之停止[3],这使得株高和倒伏率显著降低,促进同化产物在营养生长和生殖生长之间更好地分配,从而获得更稳定的收获指数[1]。

此外,荚果在时间和空间上更加集中,便于田间管理和机械化收获[4]。

目前生产中常用的控制作物株高的方法,仍以喷施植物生长调节剂为主,但生长调节剂残留对农产品质量安全造成了巨大的隐患,还会影响后茬作物的正常生长,不利于土地周年生产。

通过育种手段控制作物株高,加快农业机械化生产进程势在必行。

亚洲棉主要农艺性状的遗传多样性分析

亚洲棉主要农艺性状的遗传多样性分析

亚洲棉主要农艺性状的遗传多样性分析苗鹏飞1,2,李慧琴3,马亚杰1,张霞1,秦文强1,2∗㊀(1.中国农业科学院棉花研究所/棉花生物育种与综合利用全国重点实验室,河南安阳455000;2.三亚中国农业科学院国家南繁研究院,海南三亚572000;3.石河子农业科学研究院,新疆石河子832000)摘要㊀[目的]旨在通过对150份亚洲棉种质资源的7个农艺性状和5个纤维品质性状进行遗传多样性㊁相关性㊁主成分和聚类分析,以期为棉花遗传改良和种质利用提供一定的理论参考依据㊂[方法]选取150份亚洲棉种质资源,采用随机区组设计种植于试验田,在整个生育期内调查株高㊁第一果枝长度㊁果枝数㊁结铃数㊁第一果枝节位㊁单铃重㊁衣分㊁上半部平均长度㊁整齐度指数㊁断裂比强度㊁马克隆值㊁伸长率12个性状,进行变异分析㊁相关性分析㊁主成分分析和聚类分析㊂[结果]该批棉花种质资源具有丰富的遗传多样性,12个农艺性状的变异系数从大到小依次为衣分(29.2%)㊁结铃数(23.0%)㊁第一果枝长度(22.6%)㊁单铃重(19.8%)㊁第一果枝节位(15.6%)㊁株高(15.5%)㊁果枝数(10.0%)㊁马克隆值(7.6%)㊁上半部平均长度(6.4%)㊁伸长率(5.7%)㊁断裂比强度(4.4%)和整齐度指数(2.3%);相关性分析表明,株高与第一果枝长度㊁果枝数㊁结铃数㊁第一果枝节位及单铃重呈显著正相关,第一果枝长度与结铃数㊁单铃重及衣分呈显著正相关,果枝数与结铃数呈显著正相关,单铃重与衣分呈显著正相关,衣分与伸长率呈显著正相关,上半部平均长度与断裂比强度呈显著负相关;主成分分析表明前5个主成分累计贡献率达到64.536%,第Ⅰ主成分主要和纤维品质有关,第Ⅱ主成分主要与结铃数有关,第Ⅲ和第Ⅳ主成分主要与果枝数有关,第Ⅴ主成分主要与第一果枝节位有关;通过聚类分析将150份亚洲棉种质资源在遗传距离为41.3时划分为4类,第Ⅰ类群和第Ⅳ类群的棉花材料可作为改良棉花衣分的材料加以利用,最具有代表性的材料分别为江苏常熟鸡脚棉和乐业逻西中棉1-3;第Ⅱ类群和第Ⅲ类群的棉花材料可作为株型改良的材料加以利用,最具有代表性的材料分别为河南商丘灰籽和山东惠民德平县一窝猴㊂[结论]该研究结合多个指标综合评价棉花种质资源,可为棉花育种工作中优良品种的选育提供理论依据㊂关键词㊀亚洲棉;种质资源;农艺性状;遗传多样性中图分类号㊀S 562㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2024)07-0019-05doi :10.3969/j.issn.0517-6611.2024.07.005㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):Genetic Diversity Analysis of the Main Agronomic Traits in Asiatic CottonMIAO Peng-fei 1,2,LI Hui-qin 3,MA Ya-jie 1et al㊀(1.State Key Laboratory of Cotton Biology,Institute of Cotton Research of Chinese Academy of Agricultural Sciences,Anyang,Henan 455000;2.National Nanfan Research Institute (Sanya),Chinese Academy of Agricultural Sciences,Sanya,Hainan 572024;3.Shihezi Academy of Agricultural Sciences,Shihezi,Xinjiang 832000)Abstract ㊀[Objective]In order to provide references for genetic improvement and germplasm utilization in cotton,the variation,correlation,principal component and cluster of seven agronomic traits and five fiber quality traits were analyzed for 150asiatic cotton germplasm resources.[Method]In this experiment,150Asian cotton germplasm resources were selected and planted in the experimental field using a random block design.12traits,including plant height,first branch length,fruit branch number per plant,boll number per plant,fruit branch position,boll weight,lint percentage,upper half mean length,regularity degree,fiber strength,micronaire value,elongation ratio were investigated during the whole growth period;the variation,correlation,principal component and cluster analysis were carried out.[Result]The data analysis showed that this collection represented an abundant genetic diversity.Twelve agronomic traits showed different levels of genetic variation (lint percentage,29.2%;boll number per plant,23.0%;first branch length,22.6%;boll weight,19.8%;first branch position,15.6%;plant height,15.5%;fruit branch number per plant,10.0%;micronaire value,7.6%;upper half mean length,6.4%;elongation ratio,5.7%;fiber strength,4.4%and regularity degree,2.3%).The plant height was positively correlated with first branch length,fruit branch number per plant,boll number per plant,first branch position and boll weight;the first branch length was positively correlated with boll number per plant,lint percentage and boll weight;the branch number per plant was positively correlated with boll number per plant;the boll weight was positively correlated with lint percentage;the lint percentage was positively correlated with elongation ratio;the upper half mean length was negatively cor-related with fiber strength.The cumulative contribution of the top five principal factors reached 64.536%in the principal component analysis.The first principal factor was mainly related to fiber quality;the second was mainly related to boll number per plant;the third and fourth was mainly related to fruit branch number per plant;and the fifth was mainly related to fruit branch position.Cluster analysis classified 150cotton germplasms into four groups.Therefore,the cotton resources of the first and fourth cluster could be used as materials to improve the lint per-centage of cotton.The Jiangsu Changshu Jijiaomian and Leye Luoxizhongmian 1-3were most representative resources,respectively.The cot-ton resources of the second and third cluster could be used to improve the cotton architecture.The Henan Shangqiu Huizi and Shandong Huimin Depingxian Yiwohou were most representative materials,respectively.[Conclusion]This study combined with multiple indexes to comprehensively evaluate cotton germplasm resources,which could provide theoretical basis for the breeding of excellent varieties in cotton breeding.Key words ㊀Asiatic cotton;Germplasm resources;Agronomic traits;Genetic diversity基金项目㊀海南省科技计划三亚崖州湾科技城联合项目(320LH045)㊂作者简介㊀苗鹏飞(1993 ),男,河南许昌人,助理研究员,硕士,从事棉花分子生物学研究㊂∗通信作者,副研究员,博士,从事棉花分子生物学研究㊂收稿日期㊀2023-04-12;修回日期㊀2023-05-17㊀㊀棉花是世界上产量最大的天然纤维作物,也是重要的油料作物之一[1]㊂棉花种质资源是棉花育种和产业生产发展的物质基础,也是研究棉属分类㊁进化和性状遗传的基础材料㊂棉花遗传改良的潜力主要取决于遗传资源是否拥有丰富的种质基因库,它是决定育种工作成败的关键因素之一㊂因此,系统性地评价各种质资源特征特性,对棉花科研育种和生产具有重要的促进作用和现实意义[2-4]㊂亚洲棉在我国和世界棉花基因库中占有极其重要的位置,具有早熟㊁适应性广㊁抗逆性强㊁纤维强力高㊁抗枯萎病㊁抗虫和铃病轻等优良特性,这些正是当前陆地棉栽培种所欠缺的特征[5],故而亚洲棉的遗传多样性可作为拓宽陆地棉品安徽农业科学,J.Anhui Agric.Sci.2024,52(7):19-23㊀㊀㊀种遗传基础的优异基因源[6-7]㊂亚洲棉是一个古老的二倍体种,在我国有2000多年的栽培史,从东北到海南种植范围很广,经过长期的自然选择和人工选择,形成表型多样的亚洲棉地方品种[8]㊂我国亚洲棉地方品种具有丰富的形态类型和遗传多样性[9],但目前除广西㊁云南㊁贵州仍有零星种植外,生产上已很少见,对其研究也较少,且国内有关亚洲棉多样性研究文献所用试验材料偏少[10],徐秋华等[11]对我国棉花抗枯萎病品种的遗传多样性进行分析,认为我国陆地棉品种资源整体上遗传多样性水平较低,并指出从亚洲棉㊁海岛棉及其他棉属种内引进抗病基因是棉花抗枯萎病育种取得突破性进展的关键㊂鉴于此,笔者以150份亚洲棉种质资源为研究对象,以农艺㊁产量及纤维品质性状为切入点,进行变异分析㊁相关性分析㊁主成分分析和聚类分析,通过4个指标综合评价棉花种质资源,以期为筛选优质棉花种质材料㊁创新棉花种质资源㊁发掘可利用的优异基因提供一定的理论依据㊂1㊀材料与方法1.1㊀试验材料㊀供试棉花种质资源材料共150份,由中国农业科学院棉花研究所种质资源库提供,2021 2022年在河南安阳扩繁与试种鉴定㊂1.2㊀试验方法㊀试验材料种植于河南省安阳市中国农业科学院棉花研究所白璧试验基地㊂采用随机区组设计,3次重复,每小区3行,行长5.00m,行距0.80m,株距0.25m,理论密度6万株/hm2,小区面积12m2,田间管理方法同常规大田㊂1.3㊀数据采集整理1.3.1㊀数据采集㊂在生育期内,每小区选取中间区域有代表性的棉花10株,主要调查第一果枝长度㊁第一果枝节位㊁株高㊁果枝数㊁单株结铃数㊂每个处理按照小区随机采收棉株中部内围正常开裂棉铃35个,分析单铃重和衣分㊂收花后各小区取棉样30g,送至中国棉花研究所棉花品质监督检验测试中心对纤维品质进行检测,采用国际上先进的乌斯特HVI1000型大容量纤维测试仪进行测定[12]㊂对棉纤维上半部平均长度㊁伸长率㊁断裂比强度㊁整齐度指数㊁马克隆值等纤维指标进行测定㊂1.3.2㊀数据标准化及统计分析㊂试验数据经Microsoft Excel 2010整理后,利用SPSS20.0和R4.1.1进行遗传变异分析㊁相关性分析㊁主成分分析和聚类分析㊂2㊀结果与分析2.1㊀种质资源的遗传多样性分析㊀150份亚洲棉种质资源材料的变异分析结果表明,种质资源间的变异系数为2.3%~29.2%(表1),变幅较大㊂其中,衣分变异系数最大,为29.2%,变异幅度为9.4%~39.0%;整齐度指数变异系数最小,为2.3%,变异幅度为73.5%~81.5%,其他性状变异系数由高到低排序依次为结铃数(23.0%)>第一果枝长度(22.6%)>单铃重(19.8%)>第一果枝节位(15.6%)>株高(15.5%)>果枝数(10.0%)>马克隆值(7.6%)>上半部平均长度(6.4%)>伸长率(5.7%)>断裂比强度(4.4%)㊂一般而言,变异系数大于10.0%表示样本间差异较大[11]㊂该研究中5个纤维品质性状变异系数均小于10.0%,其他7个农艺性状的变异系数均大于10.0%㊂由图1可知,第一果枝节位与断裂比强度2个性状具有一部分明显的离群材料,这可能与材料选取密切相关㊂综合以上分析表明,150份亚洲棉种质资源间(除纤维品质性状)存在较大的差异,种质资源类型丰富,有利于特异种质材料的比较和筛选㊂表1㊀150份亚洲棉种质资源性状变异情况Table1㊀The phenotypic variation of major agronomic traits in150asiatic cotton项目Item株高PH cm 第一果枝长度FBLʊcm果枝数FBNʊ个结铃数BNʊ个第一果枝节位FBPʊ节单铃重BWʊg衣分LPʊ%上半部平均长度UHMLʊmm整齐度指数RDʊ%断裂比强度FScN/tex马克隆值MV伸长率ERʊ%极小值Minimum67.111.312.19.9 3.4 1.29.419.773.521.3 5.0 5.8极大值Maximum135.735.720.636.111.7 3.639.026.781.528.77.87.5极差Range68.624.48.426.38.3 2.429.77.08.07.4 2.8 1.7均值Mean101.220.316.221.5 6.3 2.223.822.078.024.1 6.9 6.6标准差SD15.7 4.6 1.6 4.9 1.00.47.0 1.4 1.8 1.00.50.4变异系数CVʊ%15.522.610.023.015.619.829.2 6.4 2.3 4.47.6 5.7㊀注:株高.PH;第一果枝长度.FBL;第一果枝长度.FBL;果枝数.FBN;结铃数.BN;第一果枝节位.FBP;单铃重.BW;衣分.LP;上半部平均长度.UHML;整齐度指数.RD;断裂比强度.FS;马克隆值.MV;伸长率.ER㊂㊀Note:PH:Plant height;FBL:First branch length;FBN:Fruit branch number per plant;BN:Boll number per plant;FBP:Fruit branch position;BW:Boll weight;LP:Lint percentage;UHML:Upper half mean length;RD:Regularity degree;FS:Fiber strength;MV:Micronaire value;ER:Elongation ratio.2.2㊀主要性状的相关性分析㊀对150份亚洲棉种质资源12个主要农艺性状进行相关性分析,结果见表2㊂由表2可知,株高与结铃数㊁整齐度指数呈显著正相关,与第一果枝长度㊁果枝数㊁第一果枝节位及单铃重呈极显著正相关;第一果枝长度与单铃重㊁衣分呈显著正相关,与结铃数呈极显著正相关;果枝数与结铃数呈显著正相关;结铃数与衣分呈显著正相关,与马克隆值呈极显著正相关;第一果枝节位与整齐度指数呈显著负相关,与马克隆值呈极显著正相关;单铃重与衣分㊁整齐度指数呈极显著正相关;衣分与伸长率呈显著正相关;上半部平均长度与断裂比强度呈显著负相关,与马克隆值㊁伸长率呈极显著负相关,与整齐度指数呈极显著正相关;整齐度指数与马克隆值㊁伸长率呈显著负相关㊂以上分析表明亚洲棉主要农艺性状间相互影响㊁相互制约,在种质创新与利用时需要结合分析㊂02㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年图1㊀亚洲棉种质资源农艺性状小提琴图Fig.1㊀The vioplot of major agronomic traits in asiatic cotton germplasms表2㊀150份亚洲棉种质资源性状相关性分析Table2㊀The correlation analysis among major agronomic traits in150asiatic cotton性状Traits株高PH 第一果枝长度FBL果枝数FBN结铃数BN第一果枝节位FBP单铃重BW衣分LP上半部平均长度UHML整齐度指数RD断裂比强度FS马克隆值MV第一果枝长度FBL0.320∗∗果枝数FBN0.433∗∗-0.086结铃数BN0.176∗0.302∗∗0.192∗第一果枝节位FBP0.230∗∗0.1310.0070.160单铃重BW0.266∗∗0.179∗0.007-0.0990.010衣分LP0.1190.201∗0.0490.194∗-0.0170.282∗∗上半部平均长度UHML0.0670.0010.0400.019-0.1420.136-0.160整齐度指数RD0.164∗0.150-0.0320.005-0.181∗0.225∗∗-0.1220.737∗∗断裂比强度FS-0.087-0.101-0.031-0.092-0.072-0.062-0.105-0.161∗-0.140马克隆值MV0.0780.0510.0740.222∗∗0.236∗∗0.0050.124-0.293∗∗-0.198∗-0.124伸长率ER-0.0080.0460.0840.0490.038-0.0010.167∗-0.213∗∗-0.194∗-0.0150.115㊀注:∗表示在0.05水平显著相关;∗∗表示在0.01水平极显著相关㊂㊀Note:∗indicated significant correlation at0.05level;∗∗indicated extremely significant correlation at0.01level.2.3㊀主要性状的主成分分析㊀对150份亚洲棉种质资源的7个农艺性状和5个纤维品质性状进行主成分分析,提取特征值大于1的主成分,前5特征值的累计贡献率达64.536%,包含了农艺性状和纤维品质性状的绝大部分信息㊂由表3可知,第Ⅰ主成分的特征值为2.175,相应的贡献率为18.126%,第Ⅰ主成分中马克隆值特征向量值正值最大(0.556),说明马克隆值对第Ⅰ主成分影响最大,其次是伸长率(0.417),因此第Ⅰ主成分为棉花纤维品质因子㊂第Ⅱ主成分的特征值为2.098,相应的贡献率为17.481%,第Ⅱ主成分中株高特征向量值正值最大(0.726),其次是第一果枝长度(0.591)㊁结铃数(0.484)㊁单铃重(0.471),因此第Ⅱ主成分为结铃数因子㊂第Ⅲ主成分的特征值为1.264,相应的贡献率为10.532%,第Ⅳ主成分的特征值为1.169,相应的贡献率为9.745%,第Ⅲ主成分和第Ⅳ主成分中果枝数特征向量值均为正值最大(0.559,0.612)㊂第Ⅴ主成分的特征值为1.038,相应的贡献率为8.652%,第Ⅴ主成分中第一果枝节位特征向量值为正值最大(0.485)㊂1252卷7期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀苗鹏飞等㊀亚洲棉主要农艺性状的遗传多样性分析表3㊀150份亚洲棉种质资源性状的主成分分析Table 3㊀Principal component analysis of characters in 150asiatic cotton主成分Maincomponent株高PH 第一果枝长度FBL果枝数FBN 结铃数BN 第一果枝节位FBP单铃重BW 衣分LP上半部平均长度UHML 整齐度指数RD 断裂比强度FS 马克隆值MV 伸长率ER 特征值Charact-eristicvalue贡献率Contri-butions rateʊ%累计贡献率Accumulative contributions rateʊ%Ⅰ0.0730.0970.1390.2840.399-0.1520.339-0.812-0.7850.0540.5560.417 2.17518.12618.126Ⅱ0.7260.5910.3720.4840.2550.4710.3780.3010.401-0.3610.1930.0322.09817.48135.607Ⅲ0.253-0.2710.5590.2590.258-0.538-0.5640.13300.0250.103-0.210 1.26410.53246.139Ⅳ0.312-0.3230.612-0.307-0.3480.2940.183-0.083-0.1080.345-0.2500.240 1.1699.74555.884Ⅴ0.3060.175-0.194-0.3220.4850.301-0.244-0.166-0.0790.446-0.083-0.3841.0388.65264.5362.4㊀主要性状的聚类分析㊀对150份亚洲棉种质资源计算欧式距离,按照类平均法进行系统聚类,根据遗传距离41.3将150份材料划分为4大类群(图2),同时计算各类群的性状平均值(表4)㊂第Ⅰ类群包含52份,最具有代表性的材料为江苏常熟鸡脚棉,属于株高适中㊁第一果枝长度较长㊁衣分较高(30.18%)的棉花材料;第Ⅱ类群包含9份,最具有代表性的材料为河南商丘灰籽,属于植株较矮㊁第一果枝长度较短㊁铃重较小㊁衣分适中的棉花材料;第Ⅲ类群包含44份,最具有代表性的材料为山东惠民德平县一窝猴,属于植株较高㊁第一果枝长度较长㊁衣分适中的棉花材料;第Ⅳ类群包含45份,最具有代表性的材料为乐业逻西中棉1-3,属于衣分较低(16.12%)的棉花材料㊂图2㊀亚洲棉种质资源聚类图Fig.2㊀Cluster analysis in asiatic cotton germplasm resources3㊀结论与讨论作物性状外在表型差异是遗传多样性最直接的表现,基于表型系统性地研究亚洲棉种质资源的遗传多样性,能够形象地展示种质资源群体的遗传结构,便于选择利用,对棉花遗传育种具有十分重要的意义㊂该研究基于黄河流域棉区150份亚洲棉种质资源进行分析,供试材料的性状涵盖面较广,有利于在育种工作中提取相应的性状进行遗传改良㊂22㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年表4㊀不同类群12个性状平均数的比较Table4㊀Comparison of the average values of12characters in different clusters类群Cluter 材料数目Number份株高PH第一果枝长度FBL果枝数FBN结铃数BN第一果枝节位FBP单铃重BW衣分LP上半部平均长度UHML整齐度指数RD断裂比强度FS马克隆值MV伸长率ERⅠ52102.8321.9316.3621.97 6.01 2.2330.1821.7477.6524.00 6.93 6.59Ⅱ975.9818.4115.2522.97 6.48 1.8924.0222.0778.4224.34 6.74 6.82Ⅲ44105.6420.4616.3221.20 6.70 2.2323.9822.0678.1524.05 6.84 6.55Ⅳ45100.0918.8016.2520.88 6.17 2.0516.1222.1978.0924.20 6.80 6.49㊀㊀该试验遗传多样性分析结果表明,株高㊁第一果枝长度㊁结铃数㊁第一果枝节位㊁果枝数㊁单铃重与衣分7个生育期内农艺性状的变异系数均达到10.0%,5个纤维品质相关性状的变异系数均低于10.0%,其中结铃数(23.0%)的变异系数很大,整齐度指数的变异系数最小(2.3%),与前人的部分研究结果一致[13-16],说明150份亚洲棉种质资源间存在较大的差异,资源类型丰富,有利于特异种质材料的比较和筛选㊂该试验相关分析表明,株高与第一果枝长度㊁果枝数㊁第一果枝节位和单铃重呈极显著正相关;第一果枝长度与结铃数呈极显著正相关;结铃数与马克隆值呈极显著正相关;第一果枝节位与马克隆值呈极显著正相关;单铃重与衣分㊁整齐度指数呈极显著正相关;上半部平均长度与马克隆值㊁伸长率呈极显著负相关,与整齐度指数呈极显著正相关㊂综合以上分析表明,亚洲棉各性状之间相互影响㊁相互制约,在种质创新利用时可结合分析应用㊂主成分分析结果表明,马克隆值增加,相应的伸长率和果枝节位逐渐增加,但上半部平均长度㊁整齐度指数和结铃数随之降低;株高增加,相应的第一果枝长度㊁果枝数㊁结铃数㊁单铃重㊁衣分㊁上半部平均长度和整齐度指数有所增加,但断裂比强度逐渐降低;果枝数增多,相应的第一果枝长度有所下降;第一果枝节位逐渐增加,相应的单铃重㊁株高和断裂比强度逐渐增加,但结铃数和衣分逐渐降低㊂聚类分析结果表明,鸡脚中棉具有较多的结铃数,可作为棉花产量构成的材料加以利用㊂聚类分析已经被广泛用于作物种质资源分类与遗传多样性研究,但应当注意的是,该试验中聚类分析所用的田间试验数据多为表型数据,作物表型是基因型与环境互作的结果,受环境条件影响较大[17]㊂因此,要在严格控制试验环境条件的基础上,结合分子标记等先进技术,对试验进行更加系统的研究,更好地为选配杂交亲本提供理论依据[18-20]㊂该研究进行的变异分析㊁相关性分析㊁主成分分析和聚类分析是将棉花7个农艺性状和5个纤维品质性状综合分析,其中7个农艺性状数据属于表型数据,易受环境因素影响㊂因此,在试验执行过程中只有严格控制环境因素,才能保证结果的准确性㊂该研究选取150份亚洲棉种质资源,通过规范的田间操作和严格的调查标准来控制试验误差,结果精准可靠,可为棉花品种选育工作提供理论依据㊂参考文献[1]喻树迅,范术丽,王寒涛,等.中国棉花高产育种研究进展[J].中国农业科学,2016,49(18):3465-3476.[2]吴巧娟,肖松华,刘剑光,等.棉花远缘杂交育种研究进展及发展对策[J].江西棉花,2006,28(5):3-6.[3]杜雄明,刘方,王坤波,等.棉花种质资源收集鉴定与创新利用[J].棉花学报,2017,29(S1):51-6l.[4]杨延龙,马志刚,吾买尔江㊃库尔班,等.189份引进棉花种质资源农艺性状与品质形状的遗传多样性分析[J].新疆农业科学,2022,59(12): 2870-2878.[5]冷春旭,李付广,刘传亮.亚洲棉再生体系研究进展[J].棉花学报, 2005,17(3):178-181.[6]别墅,孔繁玲,周有耀,等.中国3大主产棉区棉花品种遗传多样性的RAPD及其与农艺性状关系的研究[J].中国农业科学,2001,34(6): 597-603.[7]徐秋华,张献龙,聂以春.长江㊁黄河流域两棉区陆地棉品种的遗传多样性比较研究[J].遗传学报,2001,28(7):683-690.[8]中国农业科学院棉花研究所,江苏省农业科学院经济作物研究所.中国的亚洲棉[M].北京:农业出版社,1989.[9]周忠丽,吴仕勇,孙君灵,等.我国现存亚洲棉的表型多样性分析[J].植物遗传资源学报,2011,12(6):881-889.[10]董薇.棉花种质资源遗传多样性及其SSR丰度分析[D].北京:中国农业科学院,2007.[11]徐秋华,张献龙,聂以春,等.我国棉花抗枯萎病品种的遗传多样性分析[J].中国农业科学,2002,35(3):272-276.[12]唐淑荣,彭振,褚平,等.2012年我国生产领域棉花纤维品质抽检结果分析[J].中国棉花,2013,40(7):9-13.[13]尹会会,李秋芝,李海涛,等.134份国外陆地棉种质主要农艺性状与纤维品质性状的遗传多样性分析[J].植物遗传资源学报,2017,18(6):1105-1115.[14]钱玉源,刘祎,崔淑芳,等.基于表型的棉花种质资源遗传多样性分析及核心种质的抽提[J].华北农学报,2019,34(S1):29-35.[15]李慧琴,于娅,王鹏,等.270份陆地棉种质资源农艺性状与品质性状的遗传多样性分析[J].植物遗传资源学报,2019,20(4):903-910. [16]李腾宇,许超,李耀明,等.陆海杂交种纤维品质和产量相关性的鉴定与分析[J].棉花学报,2020,32(4):348-359.[17]金宇豪,阳会兵,高倩文,等.陆地棉纤维品质和农艺性状遗传多样性分析及优良材料鉴定[J].东北农业大学学报,2022,53(2):1-12. [18]孙铭,符开欣,范彦,等.15份多花黑麦草优良引进种质的表型变异分析[J].植物遗传资源学报,2016,17(4):655-662.[19]周丽艳,郭振清,马玉玲,等.春小麦品种农艺性状的主成分分析与聚类分析[J].麦类作物学报,2011,31(6):1057-1062.[20]庄萍萍,李伟,魏育明,等.波斯小麦农艺性状相关性及主成分分析[J].麦类作物学报,2006,26(4):11-14.3252卷7期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀苗鹏飞等㊀亚洲棉主要农艺性状的遗传多样性分析。

阳光对植物的作用英文作文

阳光对植物的作用英文作文

阳光对植物的作用英文作文Title: The Impact of Sunlight on Plants。

Sunlight, the radiant energy emitted by the sun, plays a pivotal role in the growth and development of plants. Its influence encompasses various physiological processes, shaping the morphology, metabolism, and overall health of plants. In this essay, we will delve into the multifaceted effects of sunlight on plants, exploring its significance from germination to fruition.Firstly, sunlight serves as the primary source of energy for photosynthesis, a fundamental process vital for plant survival. Through photosynthesis, plants convertlight energy into chemical energy, synthesizing glucose from carbon dioxide and water. This energy-rich compound fuels cellular activities, providing the necessary building blocks for growth and maintenance. Sunlight, absorbed by chlorophyll pigments in plant leaves, initiates this intricate biochemical pathway, facilitating the productionof oxygen as a byproduct. Thus, sunlight acts as a catalyst for the sustenance of life in the plant kingdom.Furthermore, sunlight influences photomorphogenesis, the process through which light regulates plant growth and development. Photoreceptors, such as phytochromes and cryptochromes, perceive variations in light quality and quantity, triggering diverse responses in plants. For instance, phototropism, the directional growth of plants in response to light, ensures optimal exposure for photosynthesis. Additionally, light intensity influences leaf expansion, stem elongation, and flowering time, thereby shaping the plant's architecture and reproductive strategy. Thus, sunlight acts as a master regulator, orchestrating the intricate dance of plant growth in harmony with environmental cues.Apart from its role in photosynthesis and photomorphogenesis, sunlight influences secondary metabolite production in plants. Secondary metabolites, such as flavonoids, alkaloids, and terpenoids, contribute to various physiological functions, including defenseagainst herbivores, attraction of pollinators, and adaptation to environmental stressors. Sunlight,particularly ultraviolet (UV) radiation, stimulates the synthesis of these compounds, enhancing the plant's resilience against biotic and abiotic challenges. Conversely, excessive UV exposure can induce photodamageand disrupt metabolic processes, necessitating mechanismsfor photoprotection and repair. Thus, sunlight acts as a double-edged sword, shaping both the defensive armamentarium and vulnerability of plants in theirecological niche.Moreover, sunlight influences circadian rhythms in plants, regulating the timing of physiological and biochemical processes in synchrony with the day-night cycle. Circadian clock genes, such as CCA1, TOC1, and LHY,modulate gene expression patterns in response to light-dark transitions, coordinating activities such as stomatal movement, hormone synthesis, and nutrient uptake.Disruptions to these rhythmic oscillations, caused byaltered light conditions or genetic mutations, can impair plant fitness and productivity. Thus, sunlight acts as atemporal cue, fine-tuning the internal clocks of plants to optimize their performance in dynamic environments.In conclusion, sunlight exerts profound effects on the biology of plants, influencing their growth, development, and adaptation to environmental challenges. From the initiation of photosynthesis to the synchronization of circadian rhythms, its radiant energy shapes every aspect of plant life. Understanding the intricate interplay between sunlight and plants not only deepens our appreciation for the wonders of nature but also holds implications for agriculture, ecology, and biotechnology. As stewards of the Earth, let us continue to harness the power of sunlight responsibly, ensuring a sustainable future for generations to come.。

烟草生物碱性状的QTL定位

烟草生物碱性状的QTL定位

作物学报ACTA AGRONOMICA SINICA 2024, 50(1): 42 54 / ISSN 0496-3490; CN 11-1809/S; CODEN TSHPA9E-mail:***************DOI: 10.3724/SP.J.1006.2024.34047烟草生物碱性状的QTL定位刘颖超1方敦煌2徐海明1童治军2,*肖炳光2,*1浙江大学农业与生物技术学院作物科学研究所, 浙江杭州 310058; 2云南省烟草农业科学研究院国家烟草基因工程研究中心, 云南昆明650021摘要: 生物碱是烟草的重要化学成分。

为明确烟草生物碱的遗传结构, 发掘控制相关性状的主效位点, 以烟草品种Y3、K326为亲本, 构建大小为271的重组自交系群体。

分别于2018、2019和2020年在云南省昆明市石林、玉溪市研和种植群体材料, 检测总植物碱(TPA)、烟碱(NIC)、降烟碱(NOR)、假木贼碱(ANAB)和新烟草碱(ANAT) 5种生物碱表型。

对群体进行基因组测序, 构建包含46,129个标记的遗传连锁图谱。

利用基于混合线性模型的QTL定位方法及软件QTLNetwork 2.0, 进行QTL定位分析。

共定位15个具有显著加性效应的QTL, 加性效应对表型贡献率为0.58%~11.57%。

其中4个主效QTL即控制总植物碱的qTPA14、烟碱的qNIC14、假木贼碱的qANAB14和新烟草碱的qANAT14, 均可以解释相应性状10%以上的表型变异, 且均位于14号连锁群上。

6个QTL具有显著的加性与环境互作效应, 对表型贡献率为0.80%~1.81%。

5对QTL具有显著加性-加性上位性效应, 对表型的贡献率为0.15%~2.31%。

2对QTL具有显著的上位性与环境互作效应, 对表型的贡献率为0.81%~1.16%。

研究结果为进一步分离候选基因、解析遗传机理和促进烟草生物碱性状分子改良奠定了基础。

纳米技术可以让人们更健康英语作文

纳米技术可以让人们更健康英语作文

纳米技术可以让人们更健康英语作文英文回答:Nanotechnology: A Revolutionary Path to Improved Health and Well-being.Nanotechnology, the manipulation of matter at theatomic and molecular scale, holds immense potential for revolutionizing healthcare and improving human health. By harnessing the unique properties of materials at the nanoscale, scientists can develop novel treatments, diagnostic tools, and drug delivery systems that offer unprecedented precision and efficacy.Enhanced Diagnostics and Monitoring.One of the most promising applications of nanotechnology in healthcare is in the field of diagnostics. Nanosensors can detect minute amounts of proteins, DNA, and other biomarkers in blood, urine, or saliva samples,enabling early detection of diseases and personalized treatment plans. Real-time monitoring of vital parameters using implantable or wearable nanosensors can provide continuous data for personalized health management andtimely intervention in case of emergencies.Targeted Drug Delivery.Nanoparticles can be engineered to carry drugs to specific parts of the body or target specific cells, reducing side effects and enhancing therapeutic efficacy. Nanomedicines can be designed to release their payload at controlled rates or in response to external stimuli, ensuring optimal drug delivery and minimizing the risk of toxicity. Furthermore, nanoscale drug delivery systems can bypass biological barriers, such as the blood-brain barrier, to target previously inaccessible areas.Tissue Engineering and Regeneration.Nanotechnology can revolutionize tissue engineering and regenerative medicine by providing tools for creatingartificial tissues and promoting cellular regeneration. Biocompatible nanomaterials can serve as scaffolds for tissue growth and promote angiogenesis, the formation of new blood vessels. By manipulating nanoscale structures, scientists can mimic the architecture and functionality of native tissues, facilitating organ repair and replacement.Personalized Medicine.Nanotechnology enables the development of personalized medicine by providing insights into individual genetic variations and disease susceptibilities. Nanoscale sensors can analyze DNA and protein markers in a patient's genome to predict disease risk and tailor treatment plans specifically to the individual's needs. This personalized approach can improve therapeutic outcomes and minimize the trial-and-error approach often associated with traditional medicine.Challenges and Future Directions.While the potential of nanotechnology in healthcare isundeniable, there are challenges that need to be addressed. Safety concerns, including potential toxicity and long-term effects, must be thoroughly evaluated before widespread clinical implementation. Additionally, the cost of nanotechnology-based treatments and devices may need to be carefully considered to ensure accessibility for all.Despite these challenges, the future of nanotechnology in healthcare is bright. Continued research and development hold the promise of novel therapies, diagnostic tools, and regenerative approaches that will transform the healthcare landscape and improve the health and well-being of individuals around the world.中文回答:纳米技术,通往更健康生活的革命性道路。

什么东西是从自然界获得灵感的英语作文

什么东西是从自然界获得灵感的英语作文

什么东西是从自然界获得灵感的英语作文Nature has long been a source of inspiration for countless creators and innovators throughout history. From the ancient philosophers who drew wisdom from the natural world to the modern-day scientists and engineers who look to nature for solutions to complex problems, the natural environment has proven to be an inexhaustible wellspring of inspiration. Whether it is the elegant symmetry of a flower petal, the efficient mechanics of a bird's wing, or the resilience of a towering redwood tree, the natural world is brimming with marvels that have captivated the human imagination and spurred us to new heights of creativity and ingenuity.One of the most prominent examples of nature-inspired design can be found in the field of architecture. For centuries, architects have looked to nature for guidance in constructing buildings that are not only functional but also aesthetically pleasing. The graceful arches and soaring spires of Gothic cathedrals, for instance, were inspired by the branching patterns of trees, while the domed roofs of many Islamic structures were modeled after the shapes of flowers and other natural forms. More recently, the principles of biomimicry – thepractice of emulating nature's strategies and designs to solve human problems – have become increasingly prevalent in architecture, leading to the creation of buildings that are more energy-efficient, durable, and environmentally-friendly.The natural world has also been a wellspring of inspiration for artists and designers working in a wide range of media. Painters and sculptors have long drawn inspiration from the colors, textures, and forms found in nature, creating works that capture the beauty and complexity of the natural world. Textile designers, for example, have often looked to the intricate patterns and vibrant hues of flowers, leaves, and other natural elements to inform their designs, while fashion designers have incorporated natural motifs and materials into their collections to create garments that are both stylish and sustainable.In the realm of product design, nature has also played a crucial role in shaping the form and function of countless everyday objects. The sleek, hydrodynamic shape of a modern bicycle, for instance, was inspired by the streamlined bodies of fish and other aquatic creatures, while the textured, non-slip grip of many tools and utensils was modeled after the rough, tactile surfaces of tree bark and animal skin. Even the design of common household items, such as brooms and scrubbing brushes, has been influenced by the structure and function of natural materials like plant fibers and animal hair.Beyond the realm of design, nature has also served as a wellspring of inspiration for scientists and engineers working to solve some of the world's most pressing problems. Biomimicry, as mentioned earlier, has become a growing field of research, with scientists and engineers studying the strategies and mechanisms employed by various organisms in nature to develop innovative solutions to challenges ranging from energy production to water purification to disease treatment. The lotus leaf, for example, has inspired the development of self-cleaning surfaces that can repel dirt and bacteria, while the remarkable adhesive properties of gecko feet have led to the creation of ultra-strong, reusable adhesives.In the field of robotics, engineers have drawn inspiration from the natural world to create machines that are more agile, efficient, and adaptable than traditional, rigidly-designed robots. The undulating motion of a swimming fish, for instance, has informed the design of underwater robots that can navigate complex aquatic environments with ease, while the flexible, multi-jointed limbs of insects and other arthropods have inspired the development of robots that can traverse challenging terrain and adapt to changing conditions.Even in the realm of computer science and information technology, nature has played a crucial role in shaping the development of new technologies. The concept of artificial neural networks, for example,was inspired by the structure and function of the human brain, while the principles of evolutionary algorithms and genetic programming were derived from the processes of natural selection and adaptation. These nature-inspired approaches have led to the creation of powerful machine learning algorithms, predictive models, and optimization techniques that are revolutionizing fields as diverse as healthcare, finance, and transportation.Ultimately, the natural world's ability to inspire and inform human creativity and innovation is a testament to the remarkable complexity, beauty, and resilience of the living systems that have evolved over billions of years. By studying and emulating the strategies and designs found in nature, we can not only develop more sustainable and efficient solutions to the challenges we face but also deepen our understanding and appreciation of the natural world that sustains us. As we continue to grapple with the pressing environmental and societal issues of our time, the natural world will undoubtedly remain a wellspring of inspiration and a source of hope for a more harmonious and sustainable future.。

基于遗传算法的高层建筑形态自动寻优设计

基于遗传算法的高层建筑形态自动寻优设计

建筑设计·理论2021年10月第18卷总第406期Urbanism and Architecture116基于遗传算法的高层建筑形态自动寻优设计吕 敏(青岛理工大学建筑与城乡规划学院,山东青岛 266033)摘要:高层建筑是城市化发展的重要组成部分,对城市气候环境有着至关重要的影响,所以高层建筑的形体设计不仅要符合现代化城市发展特点,还要对绿色建筑相关方面进行充分考虑,实现建筑造型美观、功能和节能的均衡统一。

以高层建筑造型设计中较为常用的旋转手法为例,结合高层建筑的太阳辐射问题,利用参数化设计软件Grasshopper和分析软件Ladybug,探索以气候和能耗为指导的建筑形体设计方法,对建筑形体设计加以理性制约,实现以绿色为核心的建筑设计和规划标准的落实。

关键词:建筑形态;自动寻优;参数化;遗传算法;高层建筑[中图分类号]TU-023 [文献标识码]A DOI:10.19892/ki.csjz.2021.29.32Automatic Optimization Design of High-Rise Building Form Based on Genetic AlgorithmLyu Min(College of Architecture and Urban Planning, Qingdao University of Technology, Qingdao Shandong 266033, China)Abstract: As an important part of urbanization development, high-rise buildings have a crucial impact on the urban climate and environments. Therefore, the morphology design of high-rise buildings should not only conform to the characteristics of modern cities, but also give a full consideration to relevant aspects of green buildings. The aim is to realize a good trade-off among building morphology, functions, and energy conservation. This paper takes the rotation method as an example, which is commonly used in the design of high-rise buildings. Grasshopper and Ladybug are used to explore a design method of building morphology that is guided by climate and energy consumption by taking sun radiation of high-rise buildings into consideration. Through parametric design and rational restriction, this design method can be applied in high-rise building design and urban planning, in order to implement the green standards for building design and urban planning.Key words: building morphology; automatic optimization; parametric; genetic algorithm (GA); high-rise buildings1引言随着城市化的日益发展及建筑材料和结构技术的进步,建筑师越来越不满足于方方正正的建筑形体,城市中的高层及超高层建筑的形体越来越复杂。

作物株型驯化研究进展

作物株型驯化研究进展

先的亲缘品种表型迥异、差别明显。而在众多差 异表型中最普遍、区分度最显著、对产量影响深远 的一个差异是株型差异[7,8]。相关研究表明株型 差异往往可以由一些关键基因的变化引起。本文 将依次对最重要的三大粮食作物水稻、玉米、小麦 的起源和主要株型驯化关键基因 (表 1)进行综 述。同时对如何利用这些驯化基因为分子设计育 种提供思路进行展望[9,10]。
Abstract Foralongtime,selectionanddomesticationofwildplantsbyhumanbeingsformedthecur rentmaincrops.Duetothechangeofgrowingenvironmentandtheinterventionofhumanactivities,theplant typeofmaincropschangedsignificantlyintheprocessofdomestication.Theexistingresearchessofarsugges tedthatthedomesticationofplantphenotypesinmajorcropswasusuallycausedbytheexpressionorgenotype changeofsomekeygenes.Inthispaper,wereviewedtheresearchprogressofgenesandgeneticlocusrelated tomaize,wheatandriceplantarchitecturedomestication,andexpectedtoprovidesomecluesformolecular designbreedingofidealplantarchitecture.
身的各 种 需 求[1]。 很 明 显,驯 化 者 是 人 类 祖 先, 被驯化对象则是同一时期的各种野生植物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract Outcrossing rate is an important determinant of cytoplasmic male sterile (CMS) breeding and hybrid seed production for heterosis in soybean. Parental lines with a high outcrossing rate were screened for backcross breeding to obtain the high outcrossi ng rate maintenance B・lines and sterile A・lines. Application in production practices will help to increase hybrid soybean production. In this study, JLCMS82B and JLCMS89B were selected as parents for the construction of outcrossing rate segregation populations, and the progeny-array approach (PAA) and glyphosate resista nt gene markers were used to determine outcrossing rates. We found that: (1) The outcrossing rate between JLCMS82B and JLCMS89B was significantly different; (2) the outcrossing rate of the F2 segregating populations was a quantitative trait, though whether an additive or epistatic effect exists required analysis with a triple test intersection analysis; (3) agronomic traits correlated with outcrossing rate; outcrossing rate was the highest with plant height of about 84 cm, lower number of plant branches, earlier flowering time, larger angle between the branches and the main stem, and with more divergent plant morphology. Correlation analysis between agronomic traits and outcrossing rate can effectively guide the screening of parents with a high outcrossing rate.
2 Soybean Research Institute, Jilin Academy of Agricultural Sciences/National Engineering Research Center for Soybean, Changchun 130033, P.R.China
3 University of Chinese Academy of Sciences, Beijing 100049, P.R. China
Keywords: soybean, outcrossing rate, stem height, branch number, initial bloom date
1. Introduction
Received 14 April, 2018 Accepted 17 July, 2018 YAN Hao, E-mail: yanhaoonline@; Correspondence LIU Bao-hui, Tel/Fax: +86-451-86685735, E-mail: liubh@iga. ; FENG Xian-zhong, Tel/Fax: +86-431-85655051, E-mail: fengxianzhong@; ZHAO Li-mei, Tel/Fax: +86-43187063125, E-mail: l_mzhao@
1 Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, P.R.China
YAN Hao12 3, ZHANG Jing-yong2, ZHANG Chun-bao2, PENG Bao2, ZHANG Wei-long2, WANG Peng-nian2, DINGXiao-yang2, LIU Bao-hui1, FENG Xian-zhong1, ZHAO Li-mei2
Journal of Integrative Agriculture 2019, 18(9): 1971-1979
Available online at
ScienceDirect
ELSEVIER
RESEARCH ARTICLE
Geneticitecture influences on outcrossing rate in soybean
相关文档
最新文档