偏微分方程中的椭圆方程的matlab解法
偏微分方程Matlab数值解法(补充4)
偏微分方程Matlab 数值解法(补充4)Matlab 可以求解一般的偏微分方程,也可以利用偏微分方程工具箱中给出的函数求解一些偏微分方程。
1 偏微分方程组求解Matlab 语言提供了pdepe()函数,可以直接求解偏微分方程(,,,)[(,,,)](,,,)m mu u u u C x t u x x f x t u s x t u x t x x x-∂∂∂∂∂=+∂∂∂∂∂ (4.1)这样,偏微分方程可以编写为以下函数的描述,其入口为[,,](,,,)x c f s pdefun x t u u =其中:pdefun 为函数名。
由给定输入变量可计算出,,c f s 这三个函数。
边界条件可以用下面的函数描述(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂+=∂ (4.2) 这样的边值函数可以写为Matlab 函数[,,,](,,,)a a b b x p q p q pdebc x t u u =初始条件数学描述为00(,)u x t u =,编写一个简单的函数即可0()u pdeic x =还可以选择x 和t 的向量,再加上描述这些函数,就可以用pdepe ()函数求解次偏微分方程,需要用如下格式求解(,@,@,@,,)sol pdepe m pdefun pdeic pdebc x t =【例1】 试求下列偏微分方程2111222221220.024()0.17()u u F u u t x u u F u u tx ⎧∂∂=--⎪⎪∂∂⎨∂∂⎪=+-⎪∂∂⎩ 其中: 5.7311.46()xx F x e e -=-,且满足初始条件1(,0)1u x =,2(,1)0u x =及边界条件1221(0,)0,(0,)0,(1,)1,(1,)0u u t u t u t t x x∂∂====∂∂解:对照给出的偏微分方程和(4.1),可将原方程改写为111222120.024/()1.*10.17/()u u x F u u u u x F u u t x ∂∂--⎡⎤⎡⎤⎡⎤⎡⎤∂∂=+⎢⎥⎢⎥⎢⎥⎢⎥∂∂-∂∂⎣⎦⎣⎦⎣⎦⎣⎦可知0m =,且1122120.024/()1,,10.17/()u x F u u c f s u x F u u ∂∂--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥∂∂-⎣⎦⎣⎦⎣⎦编写下面的Matlab 函数function [c,f,s]=c7mpde(x,t,u,du)c=[1;1];y=u(1)-u(2);F=exp(5.73*y)-exp(-11.46*y);s=F*[-1;1]; f=[0.024*du(1);0.17*du(2)];套用(4.2)中的边界条件,可以写出如下的边值方程左边界2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,右边界1100.*100u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 编写下面的Matlab 函数function [pa,qa,pb,qb]=c7mpbc(xa,ua,xb,ub,t) pa=[0;ua(2)];qa=[1;0];pb=[ub(1)-1;0];qb=[0,1]; 另外,描述初值的函数function u0=c7mpic(x) u0=[1;0];有了这三个函数,选定x 和t 向量,则可以由下面的程序直接求此微分方程,得出解1u 和2u 。
(完整版)偏微分方程的MATLAB解法
引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
最新偏微分方程的matlab解法
求解双曲型方程的例子
例24.2.1 用 MATLAB 求解下面波动方程定解问题并动态显示解的分布
2u (2u t 2 x2
2u ) 0 y 2
u
|x
1
u
|x1
0,
u y
y 1
u y
y1 0
π
π
u(x,
y, 0)
atan[ sin(
2
x)], ut
( x,
y,
0)
2
cos(πx)
保持在100 °C,板的右边热量从板向环境空气定常流动,
t t 其他边及内孔边界保持绝缘。初始
°C ,于是概括为如下定解问题;
是板的温度为0 0
d u u0 , t
u 1 0 0 ,在 左 边 界 上
u 1, 在 右 边 界 上 n u = 0, 其 他 边 界 上 n
u t to 0
区域的边界顶点坐标为(-0.5,-0.8), (0.5,-0.8), (-0.5,0.8), (0.5,0.8)。 内边界顶点坐标(-0.05,-0.4), (-0.05,0.4) ,(0.05,-0.4), (0.05,0.4)。
第七步:单击Plot菜单中Parameter选项,打开Plot Selection对话框,选中Color,Height(3D plot)和 Show mesh三项.再单击Polt按钮,显示三维图形解, 如图22.5所示.
第八步:若要画等值线图和矢量场图,单击plot菜单 中parameter 选项,在plot selection对话框中选中 contour 和arrow两选项。然后单击plot按钮,可显示 解的等值线图和矢量场图,如图2.6所示。
网格划分,细化
(完整版)偏微分方程的MATLAB解法
引言偏微分方程定解问题有着广泛的应用背景。
人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。
然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。
现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。
偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
常用的方法有变分法和有限差分法。
变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。
虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。
随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。
从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。
从这个角度说,偏微分方程变成了数学的中心。
一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。
《偏微分方程概述及运用matlab求解偏微分方程常见问题》
北京航空航天大学偏微分方程概述及运用matlab求解微分方程求解常见问题姓名徐敏学号********班级380911班2011年6月偏微分方程概述及运用matlab求解偏微分方程常见问题徐敏摘要偏微分方程简介,matlab偏微分方程工具箱应用简介,用这个工具箱解方程的过程是:确定待解的偏微分方程;确定边界条件;确定方程所在域的几何形状;划分有限元;解方程关键词MATLAB 偏微分方程程序如果一个微分方程中出现的未知函数只含有一个自变量,这个方程叫做常微分方程,也简称微分方程:如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
一,偏微分方程概述偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。
许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。
早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。
逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。
偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。
在国外,对偏微分方程的应用发展是相当重视的。
很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。
比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。
五点差分法(matlab)解椭圆型偏微分方程
用差分法解椭圆型偏微分方程-(Uxx+Uyy)=(pi*pi-1)e^xsi n(pi*y) 0<x<2; 0<y<1U(0,y)=sin(pi*y),U(2,y)=e^ 2sin(pi*y); 0=<y<=1 U(x,0)=0, U(x,1)=0; 0=<x<=2先自己去看一下关于五点差分法的理论书籍Matlab程序:unction[p e u x y k]=wudianchafenfa(h,m, n,kmax,ep)% g-s迭代法解五点差分法问题%kmax为最大迭代次数%m,n为x,y方向的网格数,例如(2-0)/0.01=200;%e为误差,p为精确解syms temp;u=zeros(n+1,m+1);x=0+(0:m)*h;y=0+(0:n)*h;for(i=1:n+1)u(i,1)=sin(pi*y(i));u(i,m+1)=exp(1)*exp(1) *sin(pi*y(i));endfor(i=1:n)for(j=1:m)f(i,j)=(pi*pi-1)*exp(x (j))*sin(pi*y(i));endendt=zeros(n-1,m-1);for(k=1:kmax)for(i=2:n)for(j=2:m)temp=h*h*f(i,j)/4+(u(i ,j+1)+u(i,j-1)+u(i+1,j )+u(i-1,j))/4;t(i,j)=(temp-u(i,j))*( temp-u(i,j));u(i,j)=temp;endendt(i,j)=sqrt(t(i,j));if(k>kmax)break;endif(max(max(t))<ep)break;endendfor(i=1:n+1)for(j=1:m+1)p(i,j)=exp(x(j))*sin(p i*y(i));e(i,j)=abs(u(i,j)-exp( x(j))*sin(pi*y(i)));endEnd在命令窗口中输入:[p e u x y k]=wudianchafenfa(0.1,20, 10,10000,1e-6) k=147 surf(x,y,u) ;xlabel(‘x’);ylabel(‘y’); zlabel(‘u’);Title(‘五点差分法解椭圆型偏微分方程例1’)就可以得到下图surf(x,y,p)surf(x,y,e)[p e u x y k]=wudianchafenfa(0.05,4 0,20,10000,1e-6)[p e u x y k]=wudianchafenfa(0.025,80,40,10000,1e-6)为什么分得越小,误差会变大呢?我们试试运行:[p e u x y k]=wudianchafenfa(0.025, 80,40,10000,1e-8)K=2164surf(x,y,e)误差变小了吧还可以试试[p e u x y k]=wudianchafenfa(0.025, 80,40,10000,1e-10)K=3355误差又大了一点再试试[p e u x y k]=wudianchafenfa(0.025, 80,40,10000,1e-11)k=3952误差趋于稳定总结:最终的误差曲面与网格数有关,也与设定的迭代前后两次差值(ep,看程序)有关;固定网格数,随着设定的迭代前后两次差值变小,误差由大比变小,中间有一个最小值,随着又增大一点,最后趋于稳定。
偏微分方程(PDEs)的MATLAB数值解法
偏微分方程的MATLAB求解精讲©MA TLAB求解微分/偏微分方程,一直是一个头大的问题,两个字,“难过”,由于MA TLAB对LaTeX的支持有限,所有方程必须化成MA TLAB可接受的标准形式,不支持像其他三个数学软件那样直接傻瓜式输入,这个真把人给累坏了!不抱怨了,还是言归正传,回归我们今天的主体吧!MA TLAB提供了两种方法解决PDE问题,一是pdepe()函数,它可以求解一般的PDEs,据用较大的通用性,但只支持命令行形式调用。
二是PDE工具箱,可以求解特殊PDE问题,PDEtool有较大的局限性,比如只能求解二阶PDE问题,并且不能解决偏微分方程组,但是它提供了GUI界面,从繁杂的编程中解脱出来了,同时还可以通过File->Save As直接生成M代码一、一般偏微分方程组(PDEs)的MA TLAB求解 (3)1、pdepe函数说明 (3)2、实例讲解 (4)二、PDEtool求解特殊PDE问题 (6)1、典型偏微分方程的描述 (6)(1)椭圆型 (6)(2)抛物线型 (6)(3)双曲线型 (6)(4)特征值型 (7)2、偏微分方程边界条件的描述 (8)(1)Dirichlet条件 (8)(2)Neumann条件 (8)3、求解实例 (9)一、一般偏微分方程组(PDEs)的MATLAB 求解1、pdepe 函数说明MA TLAB 语言提供了pdepe()函数,可以直接求解一般偏微分方程(组),它的调用格式为sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)【输入参数】@pdefun :是PDE 的问题描述函数,它必须换成下面的标准形式(,,)[(,,,)](,,,)()m m u u u uc x t x x f x t u s x t u x t x x x−∂∂∂∂∂=+∂∂∂∂∂式1 这样,PDE 就可以编写下面的入口函数 [c,f,s]=pdefun(x,t,u,du)m,x,t 就是对应于(式1)中相关参数,du 是u 的一阶导数,由给定的输入变量即可表示出出c,f,s 这三个函数@pdebc :是PDE 的边界条件描述函数,必须先化为下面的形式(,,)(,,).*(,,,)0up x t u q x t u f x t u x∂+=∂ 于是边值条件可以编写下面函数描述为 [pa,qa,pb,qb]=pdebc(x,t,u,du)其中a 表示下边界,b 表示下边界@pdeic :是PDE 的初值条件,必须化为下面的形式00(,)u x t u =我们使用下面的简单的函数来描述为 u0=pdeic(x)m,x,t :就是对应于(式1)中相关参数【输出参数】sol :是一个三维数组,sol(:,:,i)表示u i 的解,换句话说u k 对应x(i)和t(j)时的解为sol(i,j,k)通过sol ,我们可以使用pdeval()直接计算某个点的函数值2、实例讲解试求解下面的偏微分2111222221220.024()0.17()u u F u u t xu u F u u tx ∂∂=−− ∂∂ ∂∂ =−− ∂∂ 其中, 5.7311.46()x x F x e e −=−,且满足初始条件12(,0)1,(,0)0u x u x ==及边界条件1221(0,)0,(0,)0,(1,)1,(1,)0u ut u t u t t x x∂∂====∂∂【解】(1)对照给出的偏微分方程,根据标注形式,则原方程可以改写为111222120.024()1.*1()0.17u u F u u x u u F u u t t x ∂−−∂∂∂=+ ∂−∂∂∂可见m=0,且1122120.024()1,,1()0.17u F u u x c f s u F u u x ∂−− ∂===∂−∂%% 目标PDE 函数function [c,f,s]=pdefun (x,t,u,du) c=[1;1];f=[0.024*du(1);0.17*du(2)]; temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp));(2)边界条件改写为12011010.*.*00000u f f u −+=+=下边界上边界%% 边界条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t) %a 表示下边界,b 表示上边界 pa=[0;ua(2)];qa=[1;0]; pb=[ub(1)-1;0]; qb=[0;1];(3)初值条件改写为1210u u =%% 初值条件函数function u0=pdeic(x) u0=[1;0];(4)最后编写主调函数 clcx=0:0.05:1; t=0:0.05:2; m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t);figure('numbertitle','off','name','PDE Demo ——by Matlabsky') subplot(211)surf(x,t,sol(:,:,1)) title('The Solution of u_1') xlabel('X') ylabel('T') zlabel('U') subplot(212)surf(x,t,sol(:,:,2)) title('The Solution of u_2') xlabel('X') ylabel('T') zlabel('U')二、PDEtool 求解特殊PDE 问题MATLAB 的偏微分工具箱(PDE toolbox)可以比较规范的求解各种常见的二阶偏微分方程,但是惋惜的是只能求解特殊二阶的PDE 问题,并且不支持偏微分方程组!PDE toolbox 支持命令行形式求解PDE 问题,但是要记住那些命令以及调用形式真的很累人,还好MATLAB 提供了GUI 可视交互界面pdetool ,在pdetool 中可以很方便的求解一个PDE 问题,并且可以帮我们直接生成M 代码(File->Save As)。
偏微分数值解(2,MATLAB求解方法)
初始条件:
u1 ( x,0) 1,
u2 ( x,0) 0
边界条件:
u1 (0, t ) 0, u1 (1, t ) 1 x u2 u2 (0, t ) 0, (1, t ) 0 x
方程来自电动力学中关于电磁场理论的一个 偏微分方程组。
2.1 用偏微分方程工具箱求解微分方程
直接使用图形用户界面( Graphical User Interface,简记作GUI)求解.
图22.1 所讨论定解问题的区域
第三步:选取边界 首先选择Boundary菜单中Boundary Mode命 令,进入边界模式.然后单击Boundary菜单中 Remove All Subdomain Borders选项,从而去掉子 域边界,如图22.2.单击Boundary菜单中Specify Boundary Conditions选项,打开Boundary Conditions对话框,输入边界条件.本例取默认条 件,即将全部边界设为齐次Dirichlet条件,边界显 示为红色.如果想将几何与边界信息存储,可选择 Boundary菜单中的Export Decomposed Geometry,Boundary Cond‟s命令,将它们分别存储 在g、b变量中,并通过MATLAB形成M文件.
第八步:若要画等值线图和矢量场图,单击 Plot 菜单中 Parameter 选项,在 Plot selection 对话框中选中 Contour 和 Arrows 两项.然后单击 Plot 按钮,可显示解的等值 线图和矢量场图,如图 2. 6 所示。
图 2.6 解的等值线图和矢量场图
(1) u1=hyperbolic(u0,ut0,tlist,b,p,e,t,c,a,f,d)
matlab求解偏微分
matlab求解偏微分
在MATLAB中,求解偏微分方程可以使用偏微分方程工具箱(Partial Differential Equation Toolbox)提供的函数来实现。
偏微分方程工具箱提供了许多函数来求解各种类型的偏微分方程,包括椭圆型、双曲型和抛物型偏微分方程。
首先,你需要定义你的偏微分方程。
然后,你可以使用偏微分方程工具箱中的函数来求解这个方程。
例如,如果你的偏微分方程是一个二维的波动方程,你可以使用 "pdepe" 函数来求解。
如果你的偏微分方程是一个二维的热传导方程,你可以使用 "pdepe" 函数来求解。
在使用这些函数时,你需要提供偏微分方程的边界条件、初始条件和空间网格。
你还可以指定求解的时间范围,如果你的方程是一个时间相关的偏微分方程的话。
除了偏微分方程工具箱提供的函数,MATLAB还提供了其他一些函数来求解偏微分方程,比如 "pdepe" 和 "pdepe"。
这些函数可以用来求解更加复杂的偏微分方程,或者对于一些特殊的情况。
总之,在MATLAB中求解偏微分方程可以通过偏微分方程工具箱提供的函数来实现,你需要先定义你的偏微分方程,然后使用相应的函数来求解。
当然,具体的求解方法还会根据你的偏微分方程的类型和具体情况而有所不同。
matlab 求解偏微分方程
matlab 求解偏微分方程使用MATLAB求解偏微分方程摘要:偏微分方程(partial differential equation, PDE)是数学中重要的一类方程,广泛应用于物理、工程、经济、生物等领域。
MATLAB 是一种强大的数值计算软件,提供了丰富的工具箱和函数,可以用来求解各种类型的偏微分方程。
本文将介绍如何使用MATLAB来求解偏微分方程,并通过具体案例进行演示。
引言:偏微分方程是描述多变量函数的方程,其中包含了函数的偏导数。
一般来说,偏微分方程可以分为椭圆型方程、双曲型方程和抛物型方程三类。
求解偏微分方程的方法有很多,其中数值方法是最常用的一种。
MATLAB作为一种强大的数值计算软件,提供了丰富的工具箱和函数,可以用来求解各种类型的偏微分方程。
方法:MATLAB提供了多种求解偏微分方程的函数和工具箱,包括pdepe、pdetoolbox和pde模块等。
其中,pdepe函数是用来求解带有初始条件和边界条件的常微分方程组的函数,可以用来求解一维和二维的偏微分方程。
pdepe函数使用有限差分法或有限元法来离散化偏微分方程,然后通过求解离散化后的常微分方程组得到最终的解。
案例演示:考虑一维热传导方程的求解,偏微分方程为:∂u/∂t = α * ∂^2u/∂x^2其中,u(x,t)是温度分布函数,α是热扩散系数。
假设初始条件为u(x,0)=sin(pi*x),边界条件为u(0,t)=0和u(1,t)=0。
我们需要定义偏微分方程和边界条件。
在MATLAB中,可以使用匿名函数来定义偏微分方程和边界条件。
然后,我们使用pdepe函数求解偏微分方程。
```matlabfunction [c,f,s] = pde(x,t,u,DuDx)c = 1;f = DuDx;s = 0;endfunction u0 = uinitial(x)u0 = sin(pi*x);endfunction [pl,ql,pr,qr] = uboundary(xl,ul,xr,ur,t)pl = ul;ql = 0;pr = ur;qr = 0;endx = linspace(0,1,100);t = linspace(0,0.1,10);m = 0;sol = pdepe(m,@pde,@uinitial,@uboundary,x,t);u = sol(:,:,1);surf(x,t,u);xlabel('Distance x');ylabel('Time t');zlabel('Temperature u');```在上述代码中,我们首先定义了偏微分方程函数pde,其中c、f和s分别表示系数c、f和s。
偏微分方程中的椭圆方程的matlab解法
偏微分方程中的椭圆方程的matlab解法
摘要:对偏微分方程中的椭圆方程的matlab解法进行研究,给出几个椭圆型方程的例子,然后用matlab软件进行求解。
分析结果,比较结果。
关键词:偏微分方程;椭圆方程;matlab
一问题的提出
椭圆型方程已经被许多学者所关注,关于其的边值得问题的研究有很多的工作,已经有了不少的结果,我们看一下。
在xy平面的某区域Ω中,未知函数u满足Laplace方程,将边界分成若干弧段,要求u在每一弧段上满足不同类型的边界条件。
讨论此类定解问题的差分模拟。
例如,求解如下定解问题:
类似于此类的问题有很多很多种,我们在这里考虑一些比较简单的问题。
二记号及引理
引理 1 若令 c ( x ) ∈ C ( Ω), c ( x ) ≥ 0 且 c ( x ) 不恒为零,β ( x ) ≡ 0 ,x ∈∂Ω, 假使 u ∈ C (Ω) I C ( Ω ) 且满足下述不等式
Li u + c( x)u ≥ 0 x ∈Ω,
B u ( x) ≥ 0 x ∈∂Ω,
则u ( x) ≥ 0 ,∀x ∈Ω .
进而,若Li u + c( x)u不恒等于0,
或者x ∈Ω,Bi u ( x)不恒等于0, x ∈∂Ω ,
则u ( x, t ) > 0 ( x, t ) ∈Ω×[0, ω ].
引理 2 α(i = 1,2,L, n),如果 f i 满足 ( F1 ) ,那么 H i 和 hi 也满足 ( F1 ) .
三主要结果及证明。
偏微分方程的matlab解法pdf
偏微分方程的matlab解法pdf
MATLAB提供了多种用于求解偏微分方程的方法,包括:
1.有限差分法:将空间域离散化,用有限差分代替偏导数。
2.有限元法:将空间域划分为有限元,用有限元的代数方程代替偏微分方程。
3.有限体积法:将空间域划分为有限体积,用有限体积的积分代替偏微分方程。
4.谱方法:利用空间域的正交函数来求解偏微分方程。
5.变分法:将偏微分方程转化为变分问题,然后用数值方法求解变分问题。
具体选择哪种方法,需要根据偏微分方程的类型、边界条件和初始条件等因素来决定。
matlab用p-r迭代格式求解椭圆型方程的五点差分格式的数值解
Matlab用P-R迭代格式求解椭圆型方程的五点差分格式的数值解本文介绍了使用Matlab编程语言,采用P-R(Peaceman-Rachford)迭代格式,来求解椭圆型方程的五点差分格式的数值解。
背景椭圆型方程是一类常见的偏微分方程,广泛应用于科学和工程领域。
五点差分格式是一种常用的数值方法,可用于近似求解椭圆型方程。
P-R迭代格式P-R迭代格式是一种迭代求解椭圆型方程的方法,它通过将椭圆型方程转化为一个隐式差分方程的系统,然后使用迭代方法逐步求解。
在Matlab中,可以使用以下代码实现P-R迭代格式:% 初始化参数和网格n = 100; % 网格点数h = 1/n; % 空间步长x = linspace(0, 1, n+1); % 网格节点u = zeros(n+1, 1); % 数值解f = @(x) 4*pi^2*sin(2*pi*x); % 方程右端项函数% 迭代求解for iteration = 1:100for i = 2:nu(i) = (u(i-1) + u(i+1) + h^2*f(x(i)))/2;endend% 绘制数值解图像plot(x, u);xlabel('x');ylabel('u');title('Numerical Solution');结果分析通过P-R迭代格式求解椭圆型方程的五点差分格式,可以得到方程的数值解。
根据实际情况,可以调整迭代次数、网格点数等参数,来获得更精确的数值解。
在上述代码中,通过绘制数值解图像,可以直观地观察到数值解随着空间变量的变化情况。
总结本文介绍了如何使用Matlab编程语言,利用P-R迭代格式求解椭圆型方程的五点差分格式。
希望读者通过学习本文内容,对于数值解椭圆型方程有更深入的理解,并能够灵活运用该方法解决实际问题。
matlab有限差分法求解椭圆型偏微分方程
matlab有限差分法求解椭圆型偏微分方程
有限差分法是一种求解偏微分方程的经典数值方法,它将连续的
偏微分方程转化为离散的代数方程,从而能够使用计算机进行计算。
在 MATLAB 中,我们可以使用有限差分法来求解椭圆型偏微分方程。
椭圆型偏微分方程通常用来描述有稳态的空间分布的物理现象,
如稳态的温度分布。
其通用的数学形式为:
∇·(a(x,y)∇u(x,y)) + f(x,y) = 0
其中,u(x,y) 是要求解的函数,a(x,y) 是定义在区域Ω上的
函数,它代表了该区域内各点的材料特性,f(x,y) 是特定的源项函数。
有限差分法将区域Ω划分为离散的点集,然后通过对这些点之
间的差分运算进行逐点计算,得到离散式。
例如,可以使用中心差分
法对 u(x,y) 在某个点(x0,y0) 的二阶偏导数进行离散化,得到:(u(x0+Δx,y0) - 2u(x0,y0) + u(x0-Δx,y0)) / Δx^2
同样,对于 a(x,y)在点(x0,y0)的取值,我们也可以使用中心差
分法进行离散化:
(a(x0+Δx,y0) + a(x0,y0)) / 2
经过离散化后,我们可以将偏微分方程变为一个线性代数方程组,使用 MATLAB 的矩阵运算功能进行求解。
需要注意的是,在实际计算中,由于矩阵求逆时存在数值不稳定的问题,因此需要对矩阵进行一
定的处理,如使用迭代法或预处理技术等。
总之,有限差分法是一种常用的求解偏微分方程的数值方法,在MATLAB 中也有相应的实现。
通过离散化连续的偏微分方程,我们能够
在计算机上高效地求解椭圆型偏微分方程,提高计算效率,解决实际
问题。
偏微分的MATLAB求解
2.动画图形显示 为了将所得的解形象地表示出来,还要通过一些动画图形命 令.为了加速绘图,首先把三角形网格转化成矩形网格.调用形 式如下: (1)uxy=tri2grid(p,t,u1,x,y) p、t是描述三角形网格的矩阵,x、y是求解区域中矩形网格的坐 标点(矩阵x、y必须都是递增顺序),u1是各时刻三角形网格中 的解.输出矩阵uxy是用线性插值法在矩形网格点上得出的相应u 值. (2) [uxy,tn,a2,a3]=tri2grid(p,t,u,x,y) uxy、p、t、u、x、y意义同上,tn是格点的指针矩阵,a2、a3是内 插法的系数. (3) uxy=tri2grid(p,t,u,tn,a2,a3) 用此命令之前,应先用一个tri2grid命令得出矩阵tn、a2、a3.用此 方法可以加快速度.
1用matlab求解下面波动方程定解问题并动态显示解的分布2220txy???????????0atansin2222111100xxyyyyuuuuuuu??????????????????????0uxy2costyyuxyx????expcos?2xy已知求解域是方形区域空间坐标的个数由具体问题确定
特征值问题: (cu) au du 特征值偏微分方程中不含参数 f .
(2)用M文件编程求解. 本章首先对可视化方法(GUI)求解作初步介绍, 然后详细介绍用M文件编程解几类基本偏微分方 程,并对典型偏微分的解的静态(或动态)显示曲 线分布进行了讨论。
3.偏微分方程的求解 考虑如下的偏微分方程:
具体操作上可用两个途径: (1) 直接使用图形用户界面(Graphical User Interface, 简记作 GUI)求解. 计算机仿真求解的偏微分方程类型分为: 椭圆型方程: (cu ) au f
五点差分法(matlab)解椭圆型偏微分方程
用差分法解椭圆型偏微分方程-(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0<x<2; 0<y<1U(0,y)=sin(pi*y),U(2,y)=e^2sin(pi*y); 0=<y<=1U(x,0)=0, U(x,1)=0; 0=<x<=2先自己去看一下关于五点差分法的理论书籍Matlab程序:unction [p e u x y k]=wudianchafenfa(h,m,n,kmax,ep)% g-s迭代法解五点差分法问题%kmax为最大迭代次数%m,n为x,y方向的网格数,例如(2-0)/0.01=200;%e为误差,p为精确解syms temp;u=zeros(n+1,m+1);x=0+(0:m)*h;y=0+(0:n)*h;for(i=1:n+1)u(i,1)=sin(pi*y(i));u(i,m+1)=exp(1)*exp(1)*sin(pi*y(i));endfor(i=1:n)for(j=1:m)f(i,j)=(pi*pi-1)*exp(x(j))*sin(pi*y(i));endendt=zeros(n-1,m-1);for(k=1:kmax)for(i=2:n)for(j=2:m)temp=h*h*f(i,j)/4+(u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j))/4; t(i,j)=(temp-u(i,j))*(temp-u(i,j));u(i,j)=temp;endendt(i,j)=sqrt(t(i,j));if(k>kmax)break;endif(max(max(t))<ep)break;endendfor(i=1:n+1)for(j=1:m+1)p(i,j)=exp(x(j))*sin(pi*y(i));e(i,j)=abs(u(i,j)-exp(x(j))*sin(pi*y(i)));endEnd在命令窗口中输入:[p e u x y k]=wudianchafenfa(0.1,20,10,10000,1e-6) k=147surf(x,y,u) ;xlabel(‘x’);ylabel(‘y’);zlabel(‘u’);Title(‘五点差分法解椭圆型偏微分方程例1’)就可以得到下图surf(x,y,p)surf(x,y,e)[p e u x y k]=wudianchafenfa(0.05,40,20,10000,1e-6)[p e u x y k]=wudianchafenfa(0.025,80,40,10000,1e-6)为什么分得越小,误差会变大呢?我们试试运行:[p e u x y k]=wudianchafenfa(0.025,80,40,10000,1e-8)K=2164surf(x,y,e)误差变小了吧还可以试试[p e u x y k]=wudianchafenfa(0.025,80,40,10000,1e-10) K=3355误差又大了一点再试试[p e u x y k]=wudianchafenfa(0.025,80,40,10000,1e-11) k=3952误差趋于稳定总结:最终的误差曲面与网格数有关,也与设定的迭代前后两次差值(ep,看程序)有关;固定网格数,随着设定的迭代前后两次差值变小,误差由大比变小,中间有一个最小值,随着又增大一点,最后趋于稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏微分方程中的椭圆方程的matlab解法
摘要:对偏微分方程中的椭圆方程的matlab解法进行研究,给出几个椭圆型方程的例子,然后用matlab软件进行求解。
分析结果,比较结果。
关键词:偏微分方程;椭圆方程;matlab
一问题的提出
椭圆型方程已经被许多学者所关注,关于其的边值得问题的研究有很多的工作,已经有了不少的结果,我们看一下。
在xy平面的某区域Ω中,未知函数u满足Laplace方程,将边界分成若干弧段,要求u在每一弧段上满足不同类型的边界条件。
讨论此类定解问题的差分模拟。
例如,求解如下定解问题:
类似于此类的问题有很多很多种,我们在这里考虑一些比较简单的问题。
二记号及引理
引理 1 若令 c ( x ) ∈ C ( Ω), c ( x ) ≥ 0 且 c ( x ) 不恒为零,β ( x ) ≡ 0 ,x ∈∂Ω, 假使 u ∈ C (Ω) I C ( Ω ) 且满足下述不等式
Li u + c( x)u ≥ 0 x ∈Ω,
B u ( x) ≥ 0 x ∈∂Ω,
则u ( x) ≥ 0 ,∀x ∈Ω .
进而,若Li u + c( x)u不恒等于0,
或者x ∈Ω,Bi u ( x)不恒等于0, x ∈∂Ω ,
则u ( x, t ) > 0 ( x, t ) ∈Ω×[0, ω ].
引理 2 α(i = 1,2,L, n),如果 f i 满足 ( F1 ) ,那么 H i 和 hi 也满足 ( F1 ) .
三主要结果及证明。