第25章-概率初步单元测试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章概率初步单元测试题B卷
(考试时间:120分钟满分:150分)
一、选择题(每小题3分,共30分)
1.一个袋中只装有3个红球,从中随机摸出一个是红球()
A.可能性为B.属于不可能事件C.属于随机事件D.属于必然事件2.一个盒中装有4个均匀的球,其中2个白球,2个黑球,今从中取出2个球,“两球同色”
与“两球异色”的可能性分别记为a,b,则()
A.a>b B.a<b C.a=b D.不能确定3.下列说法正确的是()
A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是
B.国家级射击运动员射靶一次,正中靶心是必然事件
C.如果在若干次试验中一个事件发生的频率是,那么这个事件发生的概率一定也是
D.如果车间生产的零件不合格的概率为,那么平均每检查1000个零件会查到1个次品
4.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()
A.B.C.D.
5.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()
A.B.πC.πD.
6.如图,一只蚂蚁在如图所示位置向上爬,在树枝上寻觅食物,假定蚂蚁在每一个岔路口都会随机的选择一条路径,那么这只蚂蚁爬到树枝头A和E的概率的大小关系是()A.A的概率大B.E的概率大C.同样大D.无法比较
第5题第6题第10题
7.在平面直角坐标系中给定以下五个点A(﹣2,0)、B(1,0)、C(4,0)、D(﹣2,)、E(0,﹣6),在五个形状、颜色、质量完全相同的乒乓球上标上A、B、C、D、E代表以上五个点.玩摸球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y轴)的概率是()
A.B.C.D.
8.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功()A.P(摸到白球)=,P(摸到黑球)=
B.P(摸到白球)=,P(摸到黑球)=,P(摸到红球)=
C.P(摸到白球)=,P(摸到黑球)=P(摸到红球)=
D.摸到白球黑球、红球的概率都是
9.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任取出一把钥匙去开任意的一把锁,一次打开锁的概率为()
A.B.C.D.
10.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积记为S.点N是正方形ABCD内任一点,把N点到四个顶点A,B,C,D的距离均不小于1的概率记为P,则S=()A.(4﹣π)P B. 4(1﹣P)C. 4P D.(π﹣1)P
二、填空题(每小题3分,共18分)
11.将四张花纹面相同的扑克牌的花纹面都朝上,两张一叠放成两堆不变.若每次可任选一堆的最上面的一张翻看(看后不放回),并全部看完,则共有种不同的翻牌方式.
12.明天下雨的概率为0.99,是事件.
13.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(﹣2≤x≤2,﹣2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率
是.
14.如图,有三个同心圆,由里向外的半径依次是2cm,4cm,6cm将圆盘分为三部分,飞镖可以落在任何一部分内,那么飞镖落在阴影圆环内的概率是.
第14题第16题
15.我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另一项“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”
或“推铅球”中选择同一个测试项目的概率是.
16.王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;
数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是.
三、解答题(共9小题,共102分)
17.甲、乙两人各进行一次射击,若两人击中目标的概率均为0.6.求:(8分)(1)两人均击中目标的概率;(2)至少有1人击中目标的概率.
18.有A、B两个口袋,A口袋中装有两个分别标有数字2,3的小球;B口袋中装有三个分别标有数字﹣1,4,﹣5的小球.小明先从A口袋中随机取出一个小球,用m表示所取球上的数字,再从B口袋中随机取出一个小球,用n表示所取球上的数字之和.(10分)(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;
(2)求的值是整数的概率.
19.“十一”期间,老张在某商场购物后,参加了出口处的抽奖活动.抽奖规则如下:每张发票可摸球一次,每次从装有大小形状都相同的1个白球和2个红球的盒子中,随机摸出一个球,若摸出的是白球,则获得一份奖品;若摸出的是红球,则不获奖.(10分)(1)求每次摸球中奖的概率;
(2)老张想:“我手中有两张发票,那么中奖的概率就翻了一倍.”你认为老张的想法正确吗?用列表法或画树形图分析说明.
20.(10分)(1)把一个木制正方体的表面涂上红颜色,然后将其分割成64个大小相同的小正方体,如图所示.若将这些小正方体均匀地搅混在一起,则任意取出一个正方体,其两面涂有红色的可能性为;各面都没有红色的可能性为;(2)若将大正方体用同样的方法分割成n3(n为正整数,n≥5)个大小相同的小正方体,试分别回答上面两个问题.
21.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.(12分)
“字母棋”的游戏规则为:
①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;
②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;
③相同棋子不分胜负.
(1)若小玲先摸,问小玲摸到C棋的概率是多少?
(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?
(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?