小学奥数 设数法解题(2)
六年级奥数 第11讲 假设法解题(三)
第11讲设数法解题(2)讲义专题简析已知甲是乙的几分之几、又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数各是多少,这样的应用题称为变倍问题。
应用題中的变倍同题、有两数同增、两数同减、一增一减等各种情况。
虽然其中的数量关系比较复杂,但解答的关健是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几、从而求出单位“1”的量,其他要求的量就迎刃而解了。
例1、水果店里西瓜的个数与白兰瓜的个数的比为7∶5,如果每天卖白兰瓜40个、西瓜50个,若十天后白兰瓜正好卖完,西瓜还剩36个。
水果店里原有西瓜多少个?练习:1、红星幼儿园里白皮球的个数与红皮球的个数的比是3∶5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。
红星幼儿园有多少个班?2、食堂里面粉的质量是大米质量的12,每天吃去30吨面粉,45吨大米。
若干天后,面粉正好吃完,大米还有150吨,食堂里原有面粉多少吨?3、师、徒两人加工一批零件,师傅的任务比徒弟的任务多15,徒弟每天加工7个,师傅每天加工12个,若干天后,师傅正好完成了任务,徒弟还有30个零件没有加工。
这批零件共有多少个?例2、王明平时积攒下来的零花钱比陈刚的3倍还多6.40元。
若两人各买了一本4.40元的故事书后,王明的钱数就是陈刚的7倍。
陈刚原来有零花钱多少元?练习:1、甲书架上的书比乙书架上书的3倍多50本。
若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上书的2倍。
甲、乙两个书架原来各有多少本书?2、上学年,马村中学的学生比牛庄小学的学生的2倍多54人。
本学年,马村中学增加了学生20人,牛庄小学减少了学生8人,则马村中学的学生比牛庄小学的学生的4倍少26人。
上学年,马村中学和牛庄小学各有学生多少人?3、箱子里有红、白两种玻璃球,红球的数量比白球的数量的3倍多2个,每次从箱子里取出7个白球和15个红球。
六年级奥数设数法解题
第9讲 设数法解题一、知识要点在小学数学竞赛中, 常常会遇到一些看起来缺少条件的题目, 按常规解法似乎无解, 但仔细分析就会发现, 题目中缺少的条件对于答案并无影响, 这时就可以采用“设数代入法”, 即对题目中“缺少”的条件, 随便假设一个数代入(当然假设的这个数要尽量的方便计算), 然后求出解答.二、精讲精练【例题1】如果△△=□□□, △☆=□□□□, 那么☆☆□=( )个△. 练习1:1、已知△=○○□□, △○=□□, ☆=□□□, 问△□☆=( )个○.2、五个人比较身高, 甲比乙高3厘米, 乙比丙矮7厘米, 丙比丁高10厘米, 丁比戊矮5厘米, 甲与戊谁高, 高几厘米?【例题2】足球门票15元一张, 降价后观众增加一倍, 收入增加51, 问一张门票降价多少元?练习2:1、某班一次考试, 平均分为70分, 其中43及格, 及格的同学平均分为80分, 那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中, 小学生占30%, 又来了一批学生后, 学生总数增加了20%, 小学生占学生总数的40%, 小学生增加百分之几?【例题3】小王在一个小山坡来回运动. 先从山下跑上山, 每分钟跑200米, 再从原路下山, 每分钟跑240米, 又从原路上山, 每分钟跑150米, 再从原路下山, 每分钟跑200米, 求小王的平均速度.练习3:1、小华上山的速度是每小时3千米, 下山的速度是每小时6千米, 求上山后又沿原路下山的平均速度.2、张师傅骑自行车往返A 、B 两地. 去时每小时行15千米, 返回时因逆风, 每小时只行10千米, 张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米, 其中男孩比女孩多51, 女孩平均身高比男孩高10%, 这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32, 男生平均身高为138厘米, 全班平均身高为132厘米. 问:女生平均身高是多少厘米?2、某班男生人数是女生的54, 女生的平均身高比男生高15%, 全班的平均身高是130厘米, 求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步, 马跑4步的距离狗跑7步, 现在狗已跑出30米, 马开始追它. 问狗再跑多远, 马可以追到它?练习5:1、猎狗前面26步远的地方有一野兔, 猎狗追之. 兔跑8步的时间狗只跑5步, 但兔跑9步的距离仅等于狗跑4步的距离. 问兔跑几步后, 被狗抓获?2、猎人带猎狗去捕猎, 发现兔子刚跑出40米, 猎狗去追兔子. 已知猎狗跑2步的时间兔子跑3步, 猎狗跑4步的距离与兔子跑7步的距离相等, 求兔再跑多远, 猎狗可以追到它?3、狗和兔同时从A地跑向B地, 狗跑3步的距离等于兔跑5步的距离, 而狗跑2步的时间等于兔跑3步的时间, 狗跑600步到达B地, 这时兔还要跑多少步才能到达B地?三、课后作业1、甲、乙、丙三个仓库原有同样多的货, 从甲仓库运60吨到乙仓库, 从乙仓库运45吨到丙仓库, 从丙仓库运55吨到甲仓库, 这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?2、五年级三个班的人数相等. 一班的男生人数和二班的女生人数相等, 三班的男生是全部男生的2/5, 全部女生人数占全年级人数的几分之几?3、小王骑摩托车往返A、B两地. 平均速度为每小时48千米, 如果他去时每小时行42千米, 那么他返回时的平均速度是每小时行多少千米?4、一个长方形每边增加10%, 那么它的周长增加百分之几?它的面积增加百分之几?面积计算一、知识要点计算平面图形的面积时, 有些问题乍一看, 在已知条件与所求问题之间找不到任何联系, 会使你感到无从下手. 这时, 如果我们能认真观察图形, 分析、研究已知条件, 并加以深化, 再运用我们已有的基本几何知识, 适当添加辅助线, 搭一座连通已知条件与所求问题的小“桥”, 就会使你顺利达到目的. 有些平面图形的面积计算必须借助于图形本身的特征, 添加一些辅助线, 运用平移旋转、剪拼组合等方法, 对图形进行恰当合理的变形, 再经过分析推导, 方能寻求出解题的途径.二、精讲精练【例题1】已知如图, 三角形ABC的面积为8平方厘米, AE=ED, BD=2/3BC, 求阴影部分的面积.练习1:1、如图, AE=ED, BC=3BD, S△ABC=30平方厘米. 求阴影部分的面积.2、如图所示, AE=ED, DC=1/3BD, S△ABC=21平方厘米. 求阴影部分的面积.3、如图所示, DE=1/2AE, BD=2DC, S△EBD=5平方厘米.求三角形ABC的面积.【例题2】两条对角线把梯形ABCD分割成四个三角形, 如图所示, 已知两个三角形的面积, 求另两个三角形的面积各是多少?练习2:1、两条对角线把梯形ABCD分割成四个三角形, (如图所示), 已知两个三角形的面积, 求另两个三角形的面积是多少?2、已知AO=1/3OC, 求梯形ABCD的面积(如图所示).【例题3】四边形ABCD的对角线BD被E、F两点三等分, 且四边形AECF的面积为15平方厘米. 求四边形ABCD的面积(如图所示).练习3:1、四边形ABCD的对角线BD被E、F、G三点四等分, 且四边形AECG的面积为15平方厘米. 求四边形ABCD的面积(如图).2、如图所示, 求阴影部分的面积(ABCD为正方形).【例题4】如图所示, BO=2DO, 阴影部分的面积是4平方厘米. 那么, 梯形ABCD的面积是多少平方厘米?练习4:1、如图所示, 阴影部分面积是4平方厘米, OC=2AO. 求梯形面积.2、已知OC=2AO, S△BOC=14平方厘米. 求梯形的面积(如图所示).3、已知S△AOB=6平方厘米. OC=3AO, 求梯形的面积(如图所示).【例题5】如图所示, 长方形ADEF的面积是16, 三角形ADB的面积是3, 三角形ACF的面积是4, 求三角形ABC的面积.练习5:1、如图所示, 长方形ABCD的面积是20平方厘米, 三角形ADF的面积为5平方厘米, 三角形ABE的面积为7平方厘米, 求三角形AEF的面积.2、如图所示, 长方形ABCD的面积为20平方厘米, S△ABE=4平方厘米, S△AFD=6平方厘米, 求三角形AEF的面积.三、课后练习1、已知三角形AOB的面积为15平方厘米, 线段OB的长度为OD的3倍. 求梯形ABCD的面积. (如图所示).2、已知四边形ABCD的对角线被E、F、G三点四等分, 且阴影部分面积为15平方厘米. 求四边形ABCD的面积(如图所示).3、如图所示, 长方形ABCD的面积为24平方厘米, 三角形ABE、AFD的面积均为4平方厘米, 求三角形AEF的面积.。
小学六年级奥数-第9讲 设数法解题后附答案
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数第9讲 设数法解题(含答案分析)
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学奥数 设数法解题综合练习
设数法解题综合练习1、已知甲校学生数是乙校学生数的52,甲校女生数是甲校学生数的103,乙校的 男生数是乙校学生数的5021,那么两校女生总数占两校学生总数的几分之几?2、在一城市中,中学生数是居民的51,大学生数是中学生数的41,那么占大学 生总数的52的理工科大学生是居民数的几分之几?3、某人在一次选举中,需43的选票才能当选,计算32的选票后,他得到的选票 已达到当选票数的65,他还要得到剩下选票的几分之几才能当选?4、某校有53的学生是男生,男生的201想当医生,全校想当医生的学生的43是男 生,那么全校女生的几分之几想当医生?5、在阅览室看书的学生中,男生占25%,又来了一些学生后,学生总人数增加 20%,男生占总人数的30%,男生增加百分之几?6、某班男生人数是女生人数的65,女生的平均身高比男生的高10%,全班平均 身高116厘米,求男、女生的平均身高各是多少厘米?7、六年级三个班的人数相等,一班的男生人数和二班的女生人数相等,三班的男生人数是全部男生人数的83,全年级女生人数占全年级总人数的几分之 几?8、甲、乙两班人数相同,甲班男生人数与女生人数的比是3:4,乙班男生人数 与女生人数的比是4:5,求甲、乙两班总人数中男、女生人数的比是多少?9、某公司彩电按原价格销售,每台可获利润600元,现在降价销售,结果彩电 的销量增加一倍,获得的总利润增加0.5倍,则每台彩电降价多少元?10、有一批饼干平均分给幼儿园大、小两个班,每人分得12块;如果只分给大班的同学,每人可分得21块。
如果只分给小班的同学,每人可分得多少块?11、体育馆入场券18元一张,降价后观众增加一半,收入增加31,那么每张入 场券降价多少元?。
小学奥数教案-第06讲-设数法解题(教)
甲仓货有
100-60+55=105(吨)
乙仓货有
100+60-45=115(吨)
丙仓货有
100+45-55=90(吨)
乙仓比丙仓多的货
115-90=25(吨)
2、某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?
答:兔还要跑100步才能到达B地.
课后反击
1、有一批饼干平均分给幼儿园大、小两个班,每人分得12块。如果只分给大班的同学,每人可分得21块;如果只分给小班的同学,每人分得多少块?
【解析】设这批饼干共有84块。
大、小两个班有:
84÷12=7(人)
大班有:
84÷21=4(人)
小班的同学,每人分得:
84÷(7-4)=28(块)
(10+30)÷(30×3)=
答:全部女生人数占全年级人数的 。
S(Summary-Embedded)——归纳总结
在小学奥数中,对于某些题目中看似缺少已知量的,我们通常通过设出某些量,譬如:班上学生人数、仓库存货量、单程距离等等,当我们设出量后便可以把它当作已知的条件使用,这样题目就会变得简单明了了。
【解析】题中四个速度的最小公倍数是1200,设一个单程是1200米。则
(1)四个单程的和:1200×4=4800(米)
(2)四个单程的时间分别是;
1200÷200=6(分)
1200÷240=5(分)
1200÷150=8(分)
1200÷200=6(分)
(3)小王的平均速度为:
4800÷(6+5+8+6)=192(米)
2021-2022年六年级奥数第9讲 设数法解题
1 第9讲 设数法解题
一、知识要点
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练
【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习1:
1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5
1,问一张门票降价多少元?。
小学奥数设数法解题之欧阳歌谷创编
设数法解题欧阳歌谷(2021.02.01)专题简析:在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
例题1。
如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
解:由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。
说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。
练习11.已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?3.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨、例题2。
足球门票15元一张,降价后观众增加一倍,收入增加15,问一张门票降价多少元?【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。
为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。
即:15-15×(1+15)÷2=6(元)答:每张票降价6元。
说明:如果设原来有a 名观众,则每张票降价:15-15a ×(1+15)÷2a =6(元)练习21. 某班一次考试,平均分为70分,其中34及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?3.五年级三个班的人数相等。
六年级奥数 设数法解题
答:每张票降价6元。
说明:如果设原来有a名观众,则每张票降价:
15-15a×(1+1/5)÷2a=6(元)
练习2: 1.某班一次考试,平均分为70分, 其中3/4及格,及格的同学平均分为80 分,那么不及格的同学平均分是多少 分? 设考试总人数为4人。
解题思路:设考试总人数为4人。 (70x4-80x3)÷(4-3)=40(分)
设一个单程为30km。
30x2÷(30÷15+30÷10) =12(平均速 度为每小时48千米,如果他去时每小时行 42千米,那么他返回时的平均速度是每小 时行多少千米?
因为48和42的最小公倍数是336,所 以设一个单程为336km。
336÷(336x2÷48-336÷42) =56(km/h)
设女生有5人,男生有4人。
男生的平均身高为单位一,则女生的平均身高 为(1+15%)。
男生的平均身高:130x(4+5)÷【4+5x (1+15%)】=120(厘米)
女生的平均身高:120x(1+15%)=138(厘米)
3.一个长方形每边增加10%,那么它 的周长增加百分之几?它的面积增加 百分之几?设长方形的长为a,宽为b。
休息10分钟。
【例题4】某幼儿园中班的小朋友平均身高115 厘米,其中男孩比女孩多1/5,女孩平均身高比 男孩高10%,这个班男孩平均身高是多少?
【思路导航】题中没有男、女孩的人数,我们可以假设 女孩有5人,则男孩有6人。 (1)总身高:115×【5+5×(1+1/5)】=1265(厘米) (2) 由于女孩平均身高是男孩的(1+10%),所 以5个女孩的身高相当于5×(1+10%)=5.5个男孩的 身高,因此男孩的平均身高为: 1265÷【(1+10%)×5+6】=110(厘米) 答:这个班男孩平均身高是110厘米。
小学六年级上奥数教程:第九讲 设数法解题--学生版
第9讲设数法解题【解题秘钥】在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
【经典例题】例题1:如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习1:1.已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2.五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?例题2:足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?练习2:1.某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2.游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?例题3:小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1.小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2.张师傅骑自行车往返A、B两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?例题4:某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多1/5,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1.某班男生人数是女生的2/3,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2.某班男生人数是女生的4/5,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?例题5:狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
六年级下册奥数讲义-奥数方法:设数法
我们在解答一些数学问题时,会发现其中的一些数量关系改变后,并不影响整个问题的解答,这时我们可以考虑用一个具体的数字来替代,便问题变得简单。
这种将问题中的某些对象用适当的数表示之后,再进行运算、推理、解题的方法叫做设数法。
一些百分数问题、工程问题及许多组合问题和解传统的数论问题均可用设数法解决。
常见的设数方式有:对点设数、对线段设数、对区域设数及对其他对象设数等。
[例1] 去年实验小学参加各种体育兴趣小组的同学中,女生占总数的1/5,今年本校的学生数与去年一样,为迎接2008年奥运会,全校今年参加各种体育兴趣小组的学生增加了20%,其中女生占总数的1/4。
那么。
今年女生参加各种体育兴趣小组的人数比去年增加百分之[例2]如果一个三角形的底边长增加10%,底边上的高缩短10%,那么这个新三角形的面积是原来三角形面积的分析与解答(用设数法)设原三角形的底是4,高是2,则原三角形的面积为[例3】某水果店到苹果产地去收购苹果,收购价为每千克0.84元,从产地到水果店距离200千米,运费为每吨每运1千米收1.20元,如果在运输及销售过程中的损耗是10%,商店要想实现25%的利润,零售价应是分析与解答假设收购苹果1000千克,则成本为:1000×0.84+l×200×1.2=1080 (元),在运输及销售过程中损耗1000×10%=100(千克),剩下1000-100 =900(千克),要想实现25%的利润,必须卖出后收回1080×(1+25%)= 1350(元),故零售价应是每千克1350÷900=1.5(元)。
[例4]有两个杯子,甲盛水,乙盛果汁,先将甲杯的水倒进乙杯,使乙杯里的液体增加一倍,调匀;再将乙杯的果汁倒进甲杯,使甲杯的液体增加一倍,调匀;再将甲杯的果汁倒进乙杯,使乙杯内的液体增加一倍……,如此倒五次,最后乙杯里果汁占果汁水的百分之几?思路剖析本题中甲、乙两杯的容量均不可知,但考察题意,经过若干次的变动后,乙杯果汁与水的比例跟开始容量无关,为便于计算,可先对甲、乙杯中容器进行数字假设。
六年级奥数:第9讲 设数法解题
第9講設數法解題一、知識要點在小學數學競賽中,常常會遇到一些看起來缺少條件的題目,按常規解法似乎無解,但仔細分析就會發現,題目中缺少的條件對於答案並無影響,這時就可以採用“設數代入法”,即對題目中“缺少”的條件,隨便假設一個數代入(當然假設的這個數要儘量的方便計算),然後求出解答。
二、精講精練【例題1】如果△△=□□□,△☆=□□□□,那麼☆☆□=()個△。
練習1:1、已知△=○○□□,△○=□□,☆=□□□,問△□☆=()個○。
2、五個人比較身高,甲比乙高3釐米,乙比丙矮7釐米,丙比丁高10釐米,丁比戊矮5釐米,甲與戊誰高,高幾釐米?1,問一【例題2】足球門票15元一張,降價後觀眾增加一倍,收入增加5張門票降價多少元?練習2:3及格,及格的同學平均分為801、某班一次考試,平均分為70分,其中4分,那麼不及格的同學平均分是多少分?2、游泳池裏參加游泳的學生中,小學生占30%,又來了一批學生後,學生總數增加了20%,小學生占學生總數的40%,小學生增加百分之幾?【例題3】小王在一個小山坡來回運動。
先從山下跑上山,每分鐘跑200米,再從原路下山,每分鐘跑240米,又從原路上山,每分鐘跑150米,再從原路下山,每分鐘跑200米,求小王的平均速度。
練習3:1、小華上山的速度是每小時3千米,下山的速度是每小時6千米,求上山後又沿原路下山的平均速度。
2、張師傅騎自行車往返A、B兩地。
去時每小時行15千米,返回時因逆風,每小時只行10千米,張師傅往返途中的平均速度是每小時多少千米?1,【例題4】某幼稚園中班的小朋友平均身高115釐米,其中男孩比女孩多5女孩平均身高比男孩高10%,這個班男孩平均身高是多少?練習4:2,男生平均身高為138釐米,全班平均身高為1、某班男生人數是女生的3132釐米。
問:女生平均身高是多少釐米?4,女生的平均身高比男生高15%,全班的平均2、某班男生人數是女生的5身高是130釐米,求男、女生的平均身高各是多少?【例題5】狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。
六年级奥数--设数法解题
六年级奥数——设数法解题2019.06一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
【思路导航】由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。
说明:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。
练习11. 已知△=○○□□,△○=□□,☆=□□□,问△□☆=( )个○。
2. 五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加15 ,问一张门票降价多少元?【思路导航】初看似乎缺少观众人数这个条件,实际上观众人数于答案无关,我们可以随便假设一个观众数。
为了方便,假设原来只有一个观众,收入为15元,那么降价后有两个观众,收入为15×(1+15)=18元,则降价后每张票价为18÷2=9元,每张票降价15-9=6元。
即:15-15×(1+15 )÷2=6(元)答:每张票降价6元。
说明:如果设原来有a 名观众,则每张票降价:15-15a×(1+15 )÷2a =6(元)练习21. 某班一次考试,平均分为70分,其中34 及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2. 游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
六年级奥数 第9讲 设数法解题
第9讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?1,问一张门票降价多【例题2】足球门票15元一张,降价后观众增加一倍,收入增加5少元?练习2:3及格,及格的同学平均分为80分,那么不1、某班一次考试,平均分为70分,其中4及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A、B两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?1,女孩平均【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多5身高比男孩高10%,这个班男孩平均身高是多少?练习4:2,男生平均身高为138厘米,全班平均身高为132厘米。
1、某班男生人数是女生的3问:女生平均身高是多少厘米?4,女生的平均身高比男生高15%,全班的平均身高是1302、某班男生人数是女生的5厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数 第9周 设数法解题~例2
在小学数学竞赛中,常常会遇到一些看起来缺 少条件的题目,按常规解法似乎无解,但仔细分析 就会发现,题目中缺少的条件对于答案并无影响, 这时就可以采用“设数代入法”,即对题目中“缺 少”的条件,随便假设一个数代入(当然假设的这 个数要尽量的方便计算),然后求出解答。
经典例题
【例题2】
足球门票15元一张,降价后观众增加一倍,收入
设共有4名同学:
【(70×4-80× (4 ×
34)】÷【4×(1-
3 4
)】
= 40 ÷ 1
= 40(分)
答:不及格的同学平均分是40分。
举一反三练习
2、游泳池里参加游泳的学生中,小学生占30%, 又来了一批学生后,学生总数增加了20%,小学生占 学生总数的40%,小学生增加百分之几?
设游泳池里原有学生100人:
增加
1 5
,问一张门票降价多少元?
思路导航
初看似乎缺少观众人数这个条件,实际上 观众人数于答案无关,我们可以随便假设一 个观众数。
经典例题
【例题2】
足球门票15元一张,降价后观众增加一倍,收入
增加
1 5
,问一张门票降价多少元?
详细解答 设原来只有1个观众。
15-15×(1+
1 5
)÷2
= 15-9
【100×(1+20%)×40% - 100×30%】÷【 100×(1+20%) 】
= 18 ÷ 30 = 60%
答:小学生增加60%。
举一反三练习
3、五年级三个班的人数相等。一班的男生人数和
二班的女生人数相等,三班的男生是全部男生的
2 5
,
全部女生人数占全年级人数的几分之几?
小学数学难题特殊解题方法:设数法
小学数学难题特殊解题方法:设数法小学数学难题特殊解题方法:设数法【设数法】有些数学题涉及的概念易被混淆,解题时把握不定,还有些数学题是要求两个(或几个)数量间的等量关系或者倍数关系,但已知条件却十分抽象,数量关系又很复杂,凭空思索,则不易捉摸。
为了使数量关系变得简单明白,可以给题中的某一个未知量适当地设一个具体数值,以利于探索解答问题的规律,正确求得问题的答案。
这种方法就是设数法。
设数法是假设法的一种特例。
给哪一个未知量设数,要便于快速解题。
为了使计算简便,数字尽可能小一点。
在分数应用题中,所设的数以能被分母整除为好。
若单位“ 1”未知,就给单位“1”设具体数值。
例1 判断下列各题。
(对的打√,错的打×)(1)除1以外,所有自然数的倒数都小于1.()(2)正方体的棱长和它的体积成正比例。
()以上各数的倒数都小于1,就能猜测此题的说法是正确的。
第(2)小题,给正方体的棱长设数,分析棱长的变化与其体积变化的规律。
由上表看出,正方体的棱长扩大2倍,体积扩大8倍;棱长扩大4倍,体积扩大64倍……这不符合正比例的含义,就能断定此题的说法是错误的。
几分之几?分析:先把女生人数看作单位“1”,假定女生人数为60人。
男生人数则为女生人数比男生人数少几分之几,则为解:通过设数分析,理清了数量关系,找到了解题线索,便能顺利地列出综合算式。
分析:这道题似乎条件不够,不知从何下手。
不妨根据路程、时间、速度的关系,给从A地去B地的速度设一个具体数值试一试。
假设去时每小时走20千米,那么A、B两地的路程就是:沿原路回家的速度则为:回家时所需的时间则为:解:把全路程看作单位“1”。
例4 已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生总数占两校学生总数的百分比是____。
(1993年数学奥林匹克竞赛试题初赛B卷)分析:题中没有给出具体数量,且数量关系错综复杂,不易理清头绪。
六年级奥数第9讲 设数法解题
第 9 讲设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
二、精讲精练【例题 1】如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
练习 1:1、已知△=○○□□,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比较身高,甲比乙高 3 厘米,乙比丙矮 7 厘米,丙比丁高 10 厘米,丁比戊矮 5 厘米,甲与戊谁高,高几厘米?1【例题 2】足球门票15 元一张,降价后观众增加一倍,收入增加,问一张门票降价多5少元?练习 2:31、某班一次考试,平均分为70 分,其中及格,及格的同学平均分为80 分,那么不及4格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的 40%,小学生增加百分之几?【例题 3】小王在一个小ft坡来回运动。
先从ft下跑上ft,每分钟跑 200 米,再从原路下ft,每分钟跑 240 米,又从原路上ft,每分钟跑 150 米,再从原路下ft,每分钟跑 200 米,求小王的平均速度。
练习 3:1、小华上ft的速度是每小时 3 千米,下ft的速度是每小时 6 千米,求上ft后又沿原路下ft的平均速度。
2、张师傅骑自行车往返 A、B 两地。
去时每小时行 15 千米,返回时因逆风,每小时只行 10 千米,张师傅往返途中的平均速度是每小时多少千米?1 【例题 4】某幼儿园中班的小朋友平均身高115 厘米,其中男孩比女孩多,女孩平均5身高比男孩高 10%,这个班男孩平均身高是多少?练习 4:1、某班男生人数是女生的2,男生平均身高为 138 厘米,全班平均身高为 132 厘米。
问:3女生平均身高是多少厘米?42、某班男生人数是女生的,女生的平均身高比男生高15%,全班的平均身高是1305厘米,求男、女生的平均身高各是多少?【例题 5】狗跑 5 步的时间马跑 3 步,马跑 4 步的距离狗跑 7 步,现在狗已跑出 30 米,马开始追它。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设数法解题(2)
例1:五年级三个班的人数相等,一班的男生人数与二班的女生人数相等,三班
的男生人数是全部男生人数的5
2,全部的女生人数占全年级人数的几分之 几?
练习:
1、某班期末考试中,男生平均分为82分,女生平均分为85分,其中男生占全
班人数的5
2,求全班平均分。
2、阳光小学合唱团中有3
1是男生,今年六年级毕业一部分学生后,总人数减少 了72,此时男生占学生总数的5
1,求男生减少了几分之几?
3、已知甲校学生人数是乙校学生人数的53,甲校女生是甲校学生人数的12
5,乙 校男生是乙校学生人数的20
9,那么两校女生总数占两校学生总数的几分之 几?
例2:小林要买一些圣诞卡,由于圣诞卡减价20%,用同样多的钱他可以多买6 张。
问:小林原来可以买多少张圣诞卡?
练习:
1、由于物价上涨,练习本单价上涨10%,老师用同样多的钱比原来要少买5本。
老师原来可以买多少本练习本?
2、圆环外圆周长比内圆周长多25.12厘米,求环宽。
能力检测:
1、某班一次考试,平均分为70分,其中
43及格,及格的同学平均分为80分, 那么不及格的同学平均分为多少分?
2、某班男生人数是女生的
3
2,男生平均身高138厘米,全班平均身高为132厘 米。
问:女生平均身高多少厘米?
3、有一堆苹果,平均分给甲、乙两班的每个人,第人分得6个;若只分给甲班, 则每人分得10个;若只分给乙班,那么每人分得几个?
4、 一、二两班人数相等,一班男生是女生的
32,二班男生是女生的5
4。
这两个 班的男生总数是女生总数的几分之几?
5、育红小学科技兴趣小组去年男生人数是女生人数的54,今年男生增加了203, 女生减少了5
1。
今年科技兴趣小组的男生人数是女生人数的几分之几?
6、妈妈准备买一些面包,面包店每到晚上8:00后,面包会减价30%,那么用 同样多的钱晚上可以多买3个面包,请问妈妈原来准备买几个面包?
7、有两个同心圆,内圆周长比外圆周长小31.4厘米,求两圆之间的距离。