变量之间的关系综合练习题

合集下载

变量之间的关系练习题附答案

变量之间的关系练习题附答案

变量之间的关系练习(1)附答案一、选择题(每题3分,共24分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是()2.秋天到了,葡萄熟了,一阵微风吹过,一颗葡萄从架上落下来,葡萄下落过程中速度与3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()4.某人骑车外出,所走的路程$(千米)与时间t(小时)的关系如图1所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②③B.①③C①④ D.②④5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图2所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4, 5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4, 5两月生产总量与3月持平C1月至3月生产总量逐月增加,4, 5两月均停止生产D.1月至3月生产总量不变,4, 5两月均停止生产6.如图3是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系7.如图4,射线/甲,/乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快 C甲、乙同速 D.不一定8. 2004年6月3日中央新闻报道.为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水%立方米,水费为y元,则%与y的关系用图象表示正确的是()二、填空题(每题3分,共24分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数%之间的关系式为(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间》(小时)的关系式为,该汽车最多可行驶小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_____ 是自变量,是因变量。

鲁教版六年级下用表达式表示变量之间的关系练习50题及参考答案(难度系数0.58)

鲁教版六年级下用表达式表示变量之间的关系练习50题及参考答案(难度系数0.58)

六年级用表达式表示变量之间的关系(0.58)一、单选题(共20题;共40分)1.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y 与x之间的解析式为().A. y=32x B. y=23x C. y=12x D. y=18x【答案】A【考点】函数解析式2.已知腰围的长度“cm”与裤子的尺码“英寸”之间存在一种换算关系如下:小聪量了一下自己所穿裤子的腰围长是70cm,那么他的裤子尺码是()A. 30英寸B. 28英寸C. 27英寸D. 26英寸【答案】 D【考点】函数解析式3.用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式()A. y=n(100m +0.6) B. y=n(100m)+0.6 C. y=n(100m+0.6) D. y=100mn+0.6【答案】A【考点】函数解析式4.如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中,常量是().A. aB. SC. pD. p,a【答案】C【考点】函数解析式5.某校组织学生到距学校6km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为( )A. y=8xB. y=1.8xC. y=8+1.8xD. y=2.6+1.8x【答案】 D【考点】函数解析式6.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y 元,则y与x的函数关系为()A. y=10x+30B. y=40xC. y=10+30xD. y=20x【答案】A【考点】函数解析式7.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. y=- xB. y= xC. y=-2xD. y=2x【答案】D【考点】函数解析式8.某地的地面温度为21℃,如果高度每升高1千米,气温下降3℃,则气温T(℃)与高度h(千米)之间的表达式为()A. T=21-3hB. T=3h-21C. T=21+3hD. T=(21-3)h【答案】A【考点】函数解析式9.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为()A. y=40xB. y=32xC. y=8xD. y=48x【答案】B【考点】函数解析式10.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是()A. s=10+60tB. s=60tC. s=60t-10D. s=10-60t【答案】A【考点】函数解析式11.已知一个长方形的周长为24cm,其中一条边长为xcm(x>0),面积为ycm2,则y与x的关系为()A. y=x2B. y=(12-x)2C. y=(12-x)xD. y=2(12-x)【答案】C【考点】函数解析式12.一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R(欧)表示为温度t(℃)的函数关系式为()A. R=0.008tB. R=0.008t+2C. R=2.008tD. R=2t+0.008 2【答案】B【考点】函数解析式13.如图,矩形的长和宽分别为8cm和4cm,截去一个宽为x的小矩形(阴影部分)后余下另一个矩形的面积S与x之间的关系可表示为().A. S=4xB. S=4(8-x)C. S=8(4-x)D. S=8x【答案】B【考点】函数解析式14.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是()A. 11B. 8C. 7D. 5【答案】B【考点】函数解析式15.一个长方体木箱的长为4㎝,宽为xcm,高为宽的2倍,则这个长方体的表面积S与x的关系及长方体的体积V与x的关系分别是()A. S=2x2+12x,V=8x2B. S=8x2,V=6x+8C. S=4x+8,V=8xD. S=4x2+24x ,V=8x2【答案】 D【考点】函数解析式16.以等腰三角形底角的度数x(单位:度)为自变量,顶角的度数y为因变量的函数关系式为()A. y=180﹣2x(0<x<90)B. y=180﹣2x(0<x≤90)C. y=180﹣2x(0≤x<90)D. y=180﹣2x(0≤x≤90)【答案】A【考点】函数解析式17.新农村社区改造中,有一部分楼盘要对外销售. 某楼共30层,从第八层开始,售价x(元/平方米)与楼层n(8≤n<30)之间的关系如下表:则售价x(元/平方米)与楼层n之间的关系式为()A. x=2000+50nB. x=2000+50(n-8)C. n=2000+50(x-8)D. n=2000+50x【答案】B【考点】函数解析式18.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是()A. Q=8xB. Q=8x﹣50C. Q=50﹣8xD. Q=8x+50【答案】C【考点】函数关系式19.某同学带100元钱去买书,已知每册定价8.2元,买书后余下的钱y元和买的册数x之间的函数关系式是()A. y=8.2xB. y=100﹣8.2xC. y=8.2x﹣100D. y=100+8.2x【答案】B【考点】函数解析式20.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A. y=(x+3)2B. y=x2+6x+6C. y=x2+6xD. y=x2【答案】C【考点】函数关系式二、填空题(共15题;共17分)21.如图所示,长方形的长和宽分别为8cm和6cm,剪去一个长为xcm(0<x<8)的小长方形(阴影部分)后,余下另个长方形的面积S(cm2)与x(cm)的关系式可表示为________.【答案】S=-6x+48【考点】函数解析式22.已知x3−2y=1,用含x的代数式表示y为:y=________.【答案】16x−12【考点】函数解析式23.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为________.【答案】y=23-0.007x【考点】函数解析式24.为了积极响应习近平主席的号召,关注民生,为老百姓干实事,某工程队在某村修建一条长48km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路的长度y(km)与施工时间x(天)之间的关系式为y=________.【答案】48−0.4x【考点】函数解析式25.某水库的水位在6小时内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤6)之间的关系式为________.【答案】y=0.2x+8【考点】函数解析式26.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:则写出用t表示s的关系式s=________.【答案】2t2【考点】函数关系式27.设地面气温为20℃,如果每升高1km,气温下降6℃.如果高度用h(km)表示,气温用t(℃)表示,那么t随h的变化而变化的关系式为________.【答案】t=﹣6h+20【考点】函数解析式28.已知函数y=2x﹣1,当y=﹣9时,相应的自变量x的值是________.【答案】-4【考点】函数解析式29.梯形的上底长是x,下底长是16,高是8,则梯形的面积y与上底长x之间的关系式是________ .【答案】y=4x+64【考点】函数解析式30.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:则写出用t表示s的关系式s=________.【答案】2t2【考点】函数关系式31.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是________;【答案】y=30-4x【考点】函数解析式32.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,它的高度h与n的函数关系是________.【答案】h=n+6【考点】函数解析式33.火车以40千米/时的速度行驶,它走过的路程s(千米)与时间t(小时)之间的关系式________ ,其中自变量是________,因变量是________ .【答案】s=40t;t;s【考点】函数解析式34.一列火车以60千米/时的速度行驶,它驶过的路程s(千米)是所用时间t(时)的函数,这个函数关系式可表示为________ .【答案】s=60t【考点】函数关系式35.小王在一家公司打工,报酬为20元/小时,设小王这个月工作的时间为t时,应得报酬为m元,则m 关于t的解析式是________.【答案】m=20t【考点】函数关系式三、解答题(共13题;共65分)36.写出下列函数关系式,并指出关系式中的自变量和函数:圆锥的底面半径为定值r,则圆锥的体积V 与圆锥的高h之间的关系.【答案】解:圆锥的体积公式为:V= πr2h,∴圆锥的体积V与圆锥的高h之间的函数关系式为:V= πr2h,函数自变量为h,V为自变量h的函数【考点】函数解析式37.某剧院的观众席的座位为扇形,且按下列分式设置:(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.【答案】解:(1)由图表中数据可得:当x每增加1时,y增加3;(2)由题意可得:y=50+3(x﹣1)=3x+47;(3)某一排不可能有90个座位,理由:由题意可得:y=3x+47=90,".解得:x="433故x不是整数,则某一排不可能有90个座位.【考点】函数解析式38.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?【答案】解:(1)y甲=0.1x+100,y乙=0.2x;(2)由题意得:y甲=y乙,∴0.1x+100=0.2x解之得:x=1000答:当印刷1000份时,两个印刷厂费用一样多.(3)当x=800时,y甲=0.1×800+100=180;y乙=0.2×800=160;∵180>160∴选择乙印刷厂划算.【考点】函数关系式39.一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?【答案】解:(1)y=﹣0.6x+48;(2)当x=35时,y=48﹣0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48﹣0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0时,则0=﹣0.6x+48,解得x=80(千米).故这车辆在中途不加油的情况下最远能行驶80千米.【考点】函数关系式40.一根80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米(1)写出弹簧总长度y (厘米)与所挂物体的质量x (千克)之间的数量关系.(2)若在这根弹簧上挂上某一物体后,弹簧总长为96厘米,求所挂物体的质量?【答案】解:(1)弹簧的总长度等于弹簧挂重物伸长的长度加弹簧的长度,得y=2x+80,(2)当y=96时,2x+80=96,解得x=8,答:所挂重物的质量是8千克.【考点】函数解析式41.如图,正方形ABCD 的边长为4,P 为CD 边上一点(与点D 不重合).设DP=x ,△APD 的面积y 关于x 的函数关系式.【答案】解:△APD 的面积:y=12AD•DP=12×4x=2x (0<x≤4).【考点】函数解析式42.已知:如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,点P 在BC 上运动,点P 不与点B ,C 重合,设PC=x ,若用y 表示△APB 的面积,求y 与x 的函数关系式,并求自变量x 的取值范围.【答案】解:∵BC=8,CP=x ,∴PB=8﹣x ,∴S △APB =12PB•AC=12×(8﹣x )×6=24﹣3x自变量的取值范围是:0<x <8.【考点】函数关系式43.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q (立方米)与时间t (时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?【答案】解:(1)Q=800﹣50t;(2)当t=6时,Q=800﹣50×6=500(立方米).答:6小时候,池中还剩500立方米;(3)当Q=200时,800﹣50t=200,解得t=12.答:12小时后,池中还有200立方米的水.【考点】函数关系式44.将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.【答案】解:(1)2张白纸粘合后的总长度=2×20﹣2×1=40﹣2=38(厘米);3张白纸粘合后的总长度=3×20﹣2×2=60﹣4=56(厘米);4张白纸粘合后的总长度=4×20﹣2×3=80﹣6=74(厘米);(2)由题意得:b=20a﹣(a﹣1)×2=18a+2.当a=100时,b=18×100+2=1802.【考点】函数关系式45.在一次实验中,小华把一根弹簧上端固定,在其下端悬挂物体,弹簧挂上物体后的长度l(cm)与所挂物体的质量m(kg)之间的关系如下表:观察表中的数据,回答下列问题:(1)用关系式表示出弹簧的长度l(cm)与所挂物体的质量m(kg)之间的关系.(2)当所挂物体质量为3千克时弹簧的长度为多少cm?没挂物体时呢?(3)如果在允许范围内,弹簧的长度为36cm时,所挂物体的质量应为多少kg?【答案】解:(1)根据表格可知;所挂物体每增加1千克,弹簧伸长3厘米,∵弹簧长度=原长+伸长长度,∴l=15+3m(2)将m=3代入得l=24cm,没挂物体时,l=15cm;(3)将l=36代入得m=7,∴所挂物体的质量为7千克.【考点】函数解析式46.一个梯形,它的下底比上底长2cm,它的高为3cm,设它的上底长为xcm,它的面积为y cm2.(1)写出y与x之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x由5cm变到7cm时,y如何变化?(3)用表格表示当x从3cm变到10cm时(每次增加1cm),y的相应值.(4)当x每增加1cm时,y如何变化?说明理由.(5)这个梯形的面积能等于9cm2吗?能等于2cm2吗?为什么?【答案】解:(1)y=3x+3,x是自变量,y是因变量;(2)当x由5cm变到7cm时,y由18到24;(3)如图:(4)每增加1cm时,y增加3cm,理由3(x+1)+3﹣(3x+3)=3;(5)面积能等于9cm23x+3=9,解得:x=2,上底是2;面积不能等于2cm23x+3=2,底边不能是负数.解得:x=﹣13【考点】函数解析式47.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍一副定价60元,乒乓球每盒定价10元.今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买一副乒乓球拍赠两盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需要y1元,在乙商店购买需要y2元.(1)请分别写出y1、y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.【答案】解:(1)y1=10x+80,y2=9x+108;(2)当y1=y2时,∴10x+80=9x+108,∴x=28时,在甲商店购买所需商品和在乙商店购买所需商品一样便宜;当y 1<y 2时,10x+80<9x+108,而已知不少于4盒,∴4≤x <28时,在甲商店购买所需商品比较便宜;当y 1>y 2时,10x+80>9x+108,∴x >28时,在乙商店购买所需商品比较便宜;(3)最佳的购买方案是:到甲商店购买2付乒乓球拍,获赠4盒乒乓球;到乙商店购买16盒乒乓球.【考点】函数解析式48.圆柱的底面半径是2cm ,当圆柱的高h (cm )由大到小变化时,圆柱的体积V (cm 3)随之发生变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)在这个变化过程中,写出圆柱的体积为V 与高h 之间的关系式?(3)当h 由5cm 变化到10cm 时,V 是怎样变化的?(4)当h=7cm 时,v 的值等于多少?【答案】解:(1)自变量是圆柱的高,因变量是圆柱的体积;(2)体积V 与高h 之间的关系式V=4πh ;(3)当h=5cm 时,V=20πcm 3;当h=10cm 时,V=40πcm 3 .当h 越来越大时,V 也越来越大;(4)当h=7cm 时,V=4π×7=28πcm 3 .【考点】函数解析式四、综合题(共2题;共20分)49.现代营养学家用体重指数判断人体的健康状况,这个指数等于人体质量(千克)与人体身高(米)的平方的商,一个健康人的体重指数在18.5〜26.9之间,体重指数低于18.5,属于不健康的消瘦;体重指数高于26.9,属于不健康的肥胖.(1)A 同志的体重为90千克,身高为1.6米,A 同志的健康状况如何?(2)B 同志的体重在65〜70千克之间,经测定该同志的体重指数为23,请估算B 同志的身高.【答案】 (1)解:A 同志的指数= 901.62 =35.16,身体质量指数高于26.9,所以A 同志属于不健康的胖; (2)解:B 同志的指数= 重量身高2 =23,身高2= 重量23,又∵B 同志的体重在65~70之间, 如果体重为65千克,则身高= √6523 =1.68(米);如果体重为70千克,则身高= √7023=1.74(米),∴B 同志的身高在1.68至1.74之间.【考点】函数解析式50.如图,在长方形ABCD 中,AB =4,BC =8.点P 在AB 上运动,设PB =x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y与x之间的函数表达式和自变量x的取值范围.(2)当PB的长为多少时,阴影部分的面积等于20?【答案】(1)解:设PB=x,长方形ABCD中,AB=4,BC=8,(4-x+4)×8=32-4x(0≤x≤4).则图中阴影部分的面积为:y= 12(2)解:当y=20时,20=32-4x,解得x=3,即PB=3【考点】函数解析式。

变量之间的关系,附练习题含答案

变量之间的关系,附练习题含答案

变量之间的关系学案知识梳理:1.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量;变量分为自变量和因变量.2.表示变量之间的关系通常有三种方法,它们是列表法、图像法、表达式法.1.看图的方法:一看轴;二看点;三看线练习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x /kg 0 1 2 3 4 5 弹簧长度y /cm 182022242628(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体质量为3 kg 时,弹簧多长?不挂重物时,弹 簧多长?(3)若所挂物体质量为7 kg (在允许范围内),你能说出此时 的弹簧长度吗?2. 如图,若输入x 的值为-5,则输出的结果是_______;若输入x 的值为5,则输出的结果是_______.3. 如图是某地一天的气温随时间变化的图象,根据图象回答:(1)在这一天中,什么时间气温最高?什么时间气温最低? 最高气温和最低气温各是多少? (2)20 h 的气温是多少? (3)什么时间气温为6 ℃? (4)哪段时间内气温保持不变?4. 一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车减速到达下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面哪一个图可以近似地刻画出汽车在这段时间内的速度变化情况?( )A .B .C .D .时间O速度时间速度O时间速度O时间速度O是 否 y =x +1输入xx 大于0吗? y =x 1输出yt /hT /°C-4-22468100242220161814121086425.某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下列图象中能大致表示水的深度和放水时间之间的关系的是()A.B.C.D.6.如图所示,向放在水槽底部的烧杯注水,注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的关系大致是图中的()A.B.C.D.7.星期天晚饭后,小红从家里出发去散步,图中反映了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家里出发到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了C.从家里出发一直散步(没有停留),然后回家了D.从家里出发散一会儿步,就找同学去了,18分钟后才开始返回8.小李讲了一个龟兔赛跑的故事,并用图象描绘了比赛过程中路程随时间的变化情况,请先回答下列问题,再讲述这个故事.(1)兔子和乌龟是否在同一地点同时出发?(2)兔子和乌龟在比赛途中相遇过几次?(3)哪一个先到达终点?9.男、女运动员在100米跑道的两端同时起跑,往返练习跑步,测得男运动员每跑一百米用12秒,女运动员每跑一百米用15秒,图中实线和虚线分别为这两名运动员距女运动员起跑点的距离s(米)与时间t(秒)之间的关系图象,请根据图象回答问题:(1)图中实线是_____运动员跑步的图象,虚线是_____运动员跑步的图象(填“男”或“女”);(2)在百米跑道上两运动员第一次在同一端点相遇时,两人均跑了________秒,其中男运动员跑了________米,女运动htt员跑了________米;(3)两运动员从开始起跑到第一次在同一端点相遇止,共相 遇了__________次.10. 甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如图所示,则下列结论错误的是( ) A .这是一次100米赛跑B .甲比乙先到达终点C .乙跑完全程需12.5秒D .甲的速度为8米/秒第10题图第11题图11. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s (千米)与时间t (分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为( ) A .12分B .13分C .14分D .15分12. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y (升)与时间x (分钟)之间的关系如图所示,则关闭进水管后,经过______分钟,容器中的水恰好放完.13. 如图,小明从家骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买一本练习册,于是又折回到刚经过的一家书店,买到书后继续赶去学校,他离家的距离s (米)与时间t (分)之间的关系如图所示,根据图中提供的信息回答下列问题: (1)小明家到学校的距离是多少米?书店到学校的距离是多少米? (2)小明在书店停留了多少分钟?本次上学途中,小明一共行驶了多少米? (3)在整个上学的途中,哪个时间段小明骑车速度最快?最快速度是多少?(4)如果小明不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?x /分钟14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离.......为y(km),图中的折线表示y与x之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为________km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度.15.如图是某空蓄水池的横断面示意图,分为深水区和浅水区.若以固定的流量往这个空蓄水池中注水,则下列图象中,能大致表示水的深度h与时间t之间的关系的是()A.B.C.D.16.小明某天上午9时骑车离家,15时回家,如图描绘了他离家的距离与时间的具体变化情况,请结合图象回答以下问题:(1)小明经过多长时间到达离家最远的地方?此时他离家多远?(2)11时到12时,他行驶了多少千米?(3)他由离家最远的地方返回的平均速度是多少?【思路分析】读图,从图象中提取信息.①看轴:明确横轴、纵轴表示的意义.横轴表示____________,纵轴表示___________________.②看点:看起点、终点、状态转折点,与实际情景对应.起点表示上午9时从家出发,终点表示15时回家,与实际情景相符.状态转折点:10时离家__________,10.5时离家___________,11时离家________,12时离家________,13时离家_________.③看线,观察线段的变化趋势.线的变化较为复杂,9时—10时,距离增加了_________,此段的速度为________;10时—10.5时,速度为________;10.5时—11时,距离未发生变化;11时—12时,距离增加了________,此段的速度为________;12时—13时,距离未发生变化;13时—15时,距离减少了________,此段的速度为________.【过程书写】解:时浅水区深水区17.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器18.如图,当输入数值x为-2时,输出的结果是()A.-2B.3C.-3D.2t y t y t O yt【参考答案】1.(1)表中反应了弹簧长度与所挂物体质量之间的关系;所挂物体质量是自变量;弹簧长度是因变量(2)当所挂物体质量为3kg时,弹簧长24cm;不挂重物时,弹簧长18cm(3)32cm2.-6;63.(1)16h气温最高;4h气温最低;最高气温是10℃;最低气温是-4℃;(2)20h的气温是8℃;(3)10h和22h的气温是6℃;(4)12h到14h的气温持续不变4. B5. A6. B7. B8.(1)否;(2)两次;(3)乌龟9.(1)男;女;(2)60;500;400;(3)510. D11. C12.813.(1)1500米;900米;(2)4分钟;2700米;(3)12-14分钟小明骑车速度最快;450米/分钟;(4)如果不买书需要7.5分钟;本次比往常多用了6.5分钟14.(1)900;(2)点B的实际意义是甲、乙两车在出发4h时相遇;(3)慢车的速度是75km/h;快车的速度是150km/h15. C16.(1)3小时,30千米(2)13千米(3)15千米/小时思路分析:①时间,离家的距离②10千米,17千米,17千米,30千米,30千米③10千米,10千米/小时14千米/小时13千米,13千米/小时30千米,15千米/小时17.B18.B19.(1)时间,气温(2)16,2,10,-2(3)5(4)9和2220.B21.D22.C23.D24.(1)甲教师的平均速度是0.25千米/分钟,乙教师的平均速度是1千米/分钟(2)乙出发后追上甲所用的时间是6分钟25.(1)a=20,b=1 100,c=50(2)60分钟。

北师大版七年级数学下册第三章 变量之间的关系 综合压轴题练习题(无答案,Word版)

北师大版七年级数学下册第三章 变量之间的关系 综合压轴题练习题(无答案,Word版)

北师大版七年级数学下册第三章变量之间的关系综合压轴题练习1、某城市规定:出租车起步价允许行驶的最远路程为3 千米.超过3 千米的部分按每千米另行收费,甲说:“我乘这种出租车走了8 千米,付了17 元”;乙说:“我乘这种出租车走了18 千米,付了35 元”.(1)请你算一算这种出租车的起步价是多少元?以及超过3 千米后,每千米的车费是多少元?(2)若某人乘这种出租车行驶了x 千米,请写出付费w 元与x 的函数关系式.2、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1y2 与x 之间的函数关系图象如图所示:(1)根据图象,直接写出y1,y2 与x 之间的函数关系;(2)分别求出当x=3,x=5,x=8 时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S 关于x 的函数关系式.3、如图,在正方形ABCD 中,对角线的长为2,动点P 沿对角线BD 从点B 开始向点D 运动,到达点D 后停止运动.设BP=x,△PBC 的面积为S,试确定S 与x 之间的函数表达式,并写出x 的取值范围.(2)某用户想月所缴水费控制在 20 元至30 元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为 m 吨,请用含 m 的代数式表示该用户月所缴水费.5、某市电信局推出上网包月制三种类型,见下表.若不包月或包月后超出的时间,则按每6、下图表示甲、乙两名选手在一次自行车越野赛中,各时间段的平均速度 v (千米/小时) 随时间 t (分)变化的图象(全程),根据图象提供的信息:(1)求这次比赛全程是多少千米;(2)求比赛开始后多少分钟两人相遇.7、上网费包括网络使用费(每月38 元)和上网通信费(每时2 元),某电信局对拨号上网用户实行优惠,具体优惠政策如下:(2)若小敏家8 月份上网90 小时,应缴上网费多少元?8、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3 时,每立方米收费1.0 元,并加收0.2 元的城市污水处理费;超过7m3 的部分每立方米收费1.5 元,并加收0.4 元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3 时,y 与x 之间的函数关系式;(2)写出用水多于7m3 时,y 与x 之间的函数关系式.9、某市电力公司为了鼓励居民节约用电,采用分段计费的方法计算电费:每月用电不超过100 度时,按每度0.37 元计费;每月用电超过100 度时,其中超过部分按每度0.50 元计费.(1)用电x 度时,应交电费y 元,当x≤100 和x>100 时,分别写出y 关于x 的关系式.(2)小王家第一季度交纳电费如下:10、如图①,在长方形ABCD 中,AB=10cm,BC=8cm、点P 从A 出发,沿A、B、C、D路线运动,到D 停止;点P 的速度为每秒1cm,a 秒时点P 的速度变为每秒bcm,图②是点P 出发x 秒后,△APD 的面积S1(cm2)与x(秒)的函数关系图象;(1)根据图②中提供的信息,求a、b 及图②中c 的值;(2)设点P 离开点A 的路程为y(cm),请写出动点P 改变速度后y 与出发后的运动时间x(秒)的函数关系式;(3)点P 出发后几秒,△APD 的面积S1 是长方形ABCD 面积的14?11、如图,有一边长为5cm 的正方形ABCD 和等腰Rt△PQR,QR=8cm,点B、C、Q、R 在同一条直线上,当C、Q 两点重合时,△PQR 以1cm/秒的速度向左开始匀速运动,设与正方形重合部分的面积为S cm2.(1)求S 与运动时间t(秒)的函数关系式,并指出自变量的取值范围;(2)求S 的最大值.12、如图在矩形ABCD 中,AB=8cm,Bc=6cm,动点P,Q 分别从A,B 向B、C 运动,运动速度为1cm/s,当P、Q 一点停止运动则另一点停止运动.设△PBQ 的面积为y,点P、Q 运动时间为x(s).(1)求y 与x 的函数关系;(2)当x 为多少时,五边形APQCD 的面积最小,并求最小面积.13、如图,长方形ABCD 中,AB=6,CB=8,点P 以2 个单位/s 的速度从A 沿AB 向B 运动,同时点Q 以1 个单位/s 的速度从C 沿CB 向B 运动,当其中的一个点到达终点时,另一个点随之停止运动,设运动时间为t s.(1)当QB=2PB 时,求t 的值;(2)在(1)的条件下,求图中阴影部分的面积.14、四边形ABCD 中,AD∥BC,AB=CD=5,AD=7,BC=13,S 四边形ABCD=40,P 是一动点,沿AD,DC 由A 经D 点向C 点移动,设P 点移动的距离为x.(1)当P 点在AD 上运动时,求△PAB 的面积y 与x 的函数关系式并画出图象;(2)当P 点继续沿DC 向C 点运动时,求四边形ADPB 的面积y 与x 的函数关系式.15、如图①,在长方形ABCD 中,AB=10cm,BC=8cm.点P 从A 出发,沿A、B、C、D 路线运动,到D 停止;点P 的速度为每秒1cm,a 秒时点P 的速度变为每秒bcm,图②是点P 出发x 秒后,△APD 的面积S1(cm2)与x(秒)的函数关系图象.(1)当点P 在AB 上运动时,△APD 的面积会点P 在BC 上运动时,△APD 面积不点P 在CD 上运动,△APD 面积会(填“增大”或“减小”或“不变”)(2)根据图②中提供的信息,求a、b 及图②中c 的值;(3)设点P 离开点A 的路程为y(cm),请写出动点P 改变速度后y 与出发后的运动时间x(秒)的函数关系式.。

七年级数学专项习题——变量之间的关系(附参考答案)

七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。

C.变量是C、r。

D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。

x<2.D。

x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。

B点透露表现此时快车抵达乙地B。

B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。

D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。

发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。

S=10+t。

B.C。

S=D。

S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。

2020-2021学年七年级数学北师大版下册 第三章 变量之间的关系 单元综合测试卷【含答案】

2020-2021学年七年级数学北师大版下册 第三章 变量之间的关系   单元综合测试卷【含答案】

人教版七年级数学下册第3章 变量之间的关系单元综合测试卷(时间90分钟,)一. 选择题(共10小题,3*10=30)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化.在这一问题中,自变量是( ) A.沙漠B.骆驼C.时间D.体温2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如图所示,OA. BA分别表示甲. 乙两名学生运动的路程与时间的关系图象,图中S和T分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )A. 2.5mB. 2mC. 1.5mD. 1m4.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x.其中正确的结论有( )A.1个B.2个C.3个D.4个5.沈阳市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是( )A.在8时至14时,风力不断增大B.在8时至12时,风力最大为7级C .8时风力最小D .20时风力最小6. 汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车刹车距离s(m)与车速x(km/h)之间有下列关系:s =0.01x +0.01x 2,在一个限速40 km/h 以内的弯道上的刹车距离不能超过( )A.15.8 m B .16.4 m C .14.8 m D .17.4 m7.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是( )8.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路. 上坡路. 下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是( )A .12分钟B .15分钟C .25分钟D .27分钟9.贝贝利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…1225310417526…那么,当输入数据8时,输出的数据是( )A.eq B.eq C.eqC. D.eq10.如图所示,三角形ABC 的底边BC =x ,顶点A 沿BC 边上高AD 向D 点移动,当移动到E 点,且DE =AD 时,三角形ABC 的面积将变为原来的( )13A.eqB.eq B.eqC.eq C.eqD.eq二.填空题(共8小题,3*8=24)11. 某人以每小时4.5 km 的速度步行,他走过的路程s(km)与所花时间t(h)之间的关系式为s =4.5t ,其中,t 是自变量,s 是因变量,当t =4 h 时,s =__________km.12. 某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了________米.(1)水库的水位高度y(米)与时间x(小时)(0≤x≤10)之间的关系式为___________________;(2)经过______小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由______米变化到______米;13. 如图是甲. 乙两名运动员在自行车比赛中所行路程与时间的关系图象,则甲的速度________乙的速度(用“大于”“等于”或“小于”填空).14.某工厂计划用煤800吨,每天平均耗煤10吨,如果每天节约煤x(0<x<10)吨,那么800吨煤可用y 天,写出变量y 与x 的关系式为___________.15.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y =x +32.若某一温度的摄氏95度数值与华氏度数值恰好相等,则此温度的摄氏度数为________℃.16.已知某等腰三角形的周长是50 cm,底边长是x cm,一腰长为y cm,则y 与x 之间的关系式是_____________,x 的取值范围是_________.17.如图,长方形ABCD 的四个顶点在互相平行的两条直线上,AD =10 cm.当点B ,C 在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是_____________,因变量是_________________;(2)如果长方形的边AB 长为x(cm),那么长方形的面积y(cm 2)与x 的关系式为____.18. 如图①,在长方形ABCD 中,动点P 从A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 面积为y ,如果y 与x 的之间的关系的图象如图②所示,则长方形ABCD 的面积为__________.三.解答题(7小题,共66分)19.(8分) 心理学家发现,学生对概念的接受能力y与提出概念所用时间x(单位:分)之间有如下关系(其中0≤x≤30).提出概念所用时间(x)257101213141720对概念的接受能力(y)47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内时,学生的接受能力逐步降低?20.(8分) 2020年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?21.(8分) 科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关:当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35℃时,估计音速y可能是多少?(4)用一个式子来表示两个变量之间的关系;22.(10分) 文具店出售书包和文具盒,书包每个定价为30元,文具盒每个定价为5元.该店制定了两种优惠方案:①买一个书包赠送一个文具盒;②按总价的九折(总价的90%)付款.某班学生需购买8个书包. 若干个文具盒(不少于8个),如果设文具盒个数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买文具盒多少个时,两种方案付款相同?23.(10分) 弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg01234567弹簧的长度/cm1212.51313.51414.51515.5(1)当所挂物体的质量为3 kg时,弹簧的长度是__________;(2)在弹性限度内如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,那么该弹簧最多能挂质量为多少的物体?24.(10分) “十一”期间,小华约同学一起开车到距家100千米的景点旅游,出发前,汽车油箱内储油35升,当行驶80千米时,发现油箱剩余油量为25升(假设行驶过程中汽车的耗油量是均匀的).(1)求该汽车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;(2)当x=60时,求剩余油量Q的值;(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.25.(12分) 如图,用一根长是20 cm的细绳围成一个长方形,这个长方形的一边长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,自变量的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(写出一条即可)(4)从表格中可以发现怎样围,得到的长方形的面积最大?最大面积是多少?答案1-5CBCBD 6-10BCBCB11.18 12.(1)y=0.25x+5;(2)6;(3)5.25,7.5; 13.大于 14. y = 15. -40 16.80010-x y =25-;0<x<25 17.(1)AB(或CD)的长度;长方形ABCD 的面积 (2)y =10x 18. 24x 219. 解:(1)反映了提出概念所用时间x 和对概念的接受能力y 两个变量之间的关系;其中x 是自变量,y 是因变量.(2)提出概念所用时间为13分钟时,学生的接受能力最强.(3)当x 在2分钟至13分钟内时,学生的接受能力逐步增强;当x 在13分钟至20分钟内时,学生的接受能力逐步降低.20. 解:(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)持续干旱30天后将发出严重干旱警报.(3)持续干旱50天后水库将干涸.21. 解:(1)(2)音速和温度,温度是自变量,音速是因变量; (3)352米/秒;(4)y =331+x.3522. 解:(1)依题意,得y 1=5x +200,y 2=4.5x +216.(2)令y 1=y 2,即5x +200=4.5x +216.解得x =32. 当购买32个文具盒时,两种方案付款相同.23.解:(1)13.5 cm(2)由表格可知,y 与x 之间的关系式为y =12+0.5x.(3)当x =5.5时,y =12+0.5×5.5=14.75,即弹簧的长度为14.75 cm.(4)当y =20时,20=12+0.5x ,解得x =16. 故该弹簧最多能挂质量为16 kg 的物体.24. 解:(1)该汽车平均每千米的耗油量为(35-25)÷80=0.125(升/千米),所以行驶路程x(千米)与剩余油量Q(升)的关系式为Q =35-0.125x.(2)当x =60时,Q =35-0.125×60=27.5(升).(3)他们能在汽车报警前回到家.理由如下:(35-3)÷0.125=256(千米),因为256>200,所以他们能在汽车报警前回到家.25. 解:(1)y =-x 2+10x ,自变量x 的取值范围为0<x <10(2)x123456789x(℃)0510152025…y(米/秒)331334337340343346…y9162124252421169(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值由小变大的过程中,变大的速度越来越慢;③当x取距5等距离的两数时,得到的两个y值相等(4)从表中可以发现x=5时,y取得最大的值25,此时围成的是边长为5 cm的正方形。

北师大版七年级下数学第三章《变量之间的关系》练习题1

北师大版七年级下数学第三章《变量之间的关系》练习题1

《变量之间的关系》练习题一、选择题(每小题3分,共24分)1、2021年春节期间,许多在西安市的外地员工都响应政府号召留在西安过春节,滞留的小豪在西安给远在北京的妻儿打电话,电话费随着通话时间的变化而变化,在这个过程中,自变量和因变量分别是()。

A、小豪和妻儿B、小豪和电话费C、电话费和通话时间D、通话时间和电话费2、下列哪幅图可以大致刻画出苹果成熟后从树上下落过程中(落地前)的速度变化情况()。

3、汽车离开甲站10km后,以60k/h的速度匀速前进了th,则汽车离开甲站所走的路程s(km)与时间t (h)之间的关系式是()A、s=10+60tB、s=60tC、s=60t -10D、s=10-60t4、一个蓄水池有水50m3,打开放水闸门匀速放水,水池中的水量和放水时间的关系如下表,下面说法不正确的是()。

放水时间(min)1234……水池剩余水量(m3)48464442……A、放水时间是自变量,水池剩余水量是因变量B、每分钟放水2m3C、放水25min后,水池中的水全部放完D、放水10min后,水池中还有水28m35、张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则比较符合题意的图象是()。

6、如图,用每片长6cm的纸条,重叠1cm粘贴成一条纸带,纸带的长度y(cm)与纸片的张数x之间的关系式是()。

A、y=6x+1B、y=4x+1C、y=4x+2D、y=5x+17、如图(1),在长方形ABCD中,动点P从点A处出发,沿ABCD方向运动至点D处停止,设点P出发时的速度为每秒bcm,a秒后点P改变速度,以每秒1cm向点D运动,直到停止,图(2)是△APD的面积S(cm2)与时间x(s)的图象,则b的值是()。

8、一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图所示的折线图描述了他上班途中整个过程的情景,下列四种说法:①李师傅上班的 单位距他家2000米;②李师傅路上耗时20分钟;③自行车发生故障时离家的距离为1000米;④李师傅修车用了15分钟。

北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)

北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)

北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)北师大版2020七年级数学下册第三章变量之间的关系单元综合测试题(附答案)1.教师运动会中,甲,乙两组教师参加“两人背夹球”往返跑比赛,即:每组两名教师用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.若距起点的距离用y(米)表示,时间用x(秒)表示.下图表示两组教师比赛过程中y与x的函数关系的图象.根据图象,有以下四个推断:①乙组教师获胜②乙组教师往返用时相差2秒③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3其中合理的是()A.①② B.①③ C.②④ D.①④2.下列变量之间的关系中,是函数关系的是( )A.人的体重与年龄B.正方形的周长与边长C.长方形的面积与长D.y=±x中,y与x3.函数11yx=+中自变量x的取值范围是( )A.x≥-1 B.x≤-1 C.x≠-1 D.x=-14.下列图象不可能是函数图象的是()A.B.C.D.5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C 的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.2A.4个B.3个C.2个D.1个7.如图,OA,BA分别表示甲、乙两学生运动的路程S随时间t的变化图象,根据图象判断快者的速度比慢者的速度每秒快()A.1米B.1.5米C.2米D.2.5米8.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器9.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.10.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()A.B.C.D.11.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B 地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需________分钟到达终点B.北师大版2020七年级数学下册第三章变量之间的关系单元综合测考试试题(附答案)12.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为_________;13.使函数1xy+=有意义的x的取值范围是_____.14.一辆汽车出发时邮箱内有油48升,出发后每行驶1 km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).则y与x的关系式为_________________;这辆汽车行驶35 km时,汽车剩油____升;当汽车剩油12升时,行驶了_______千米.15.函数121=-yx的自变量的取值范围是__________16.下岗职工购进一批苹果,到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)的关系如下表:则y与x之间的关系式为__________________.17.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费________元.+3x19.如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有_____(填序号).20.图为小强在早晨8时从城市出发到郊外所走的路程与时间的变化图。

变量之间的关系测试题及答案

变量之间的关系测试题及答案

第六章《变量之间的关系》测试题一、填空题(每空2分,共46分)1、一个弹簧,不挂物体时长10厘米,挂上物体以后弹簧会变长,每挂上一千克物体,弹簧就会伸长1.5厘米,如果所挂物体总质量为X(千克),那么弹簧伸长的长度y(CM)可以表示为___,在这个问题中自变量是___,因变量是___;如果所挂物体总质量为X(千克)那么弹簧的总长度Y(CM)可以表示为___,在这个问题中自变量是___,因变量是___。

2、为了美化校园,学校共划出84米²的土地修建4个完全相同的长方形花坛,如果每个花坛的一条边为X(米),那么另一条边y(米)可以表示为___。

3、一辆汽车正常行驶时每小时耗油8升,油箱内现有52升汽油,如果汽车行驶时间为t (时),那么油箱中所存油量Q (升)可以表示为___,行驶3小时后,油箱中还剩余汽油___升,油箱中的油总共可供汽车行驶___小时。

4.一圆锥的底面半径是5cm,当圆锥的高由2cm变到10cm时,圆锥的体积由________变到_________.5.梯形上底长16,下底长x,高是10,梯形的面积s与下底长x间的关系式是_______.当x=0时,表示的图形是_______,其面积________.4.如图6—1,甲、乙二人沿相同的路线前进,横轴表示时间,纵轴表示路程.(1)刚出发时乙在甲前面___千米。

(2)两人各用了___小时走完路程。

(3)甲共走了___千米,乙共走了___千米。

5、如图6-2是我国某城市春季某一天气温随时间变化的图象,根据图象回答,在这一天中,最低气温出现在___时,温度为___°C,在___时到___时的时段内,温度持续上升,这一天的温差是___°C。

图6-1 图6—2 图6-36、如图6—3,a//b,直线c与a、b分别交于A、B两点,当直线b绕B点旋转时,∠1的大小会发生变化。

直线a为保证与b平行,相应的∠2的大小也会发生变化,如果∠1度数为x度,那么∠2的度数y可以表示为___,在这个问题中自变量是___,因变量是___,当∠1为70°时,角∠2的度数为___.二、选择(每题5分,共30分)1、某种储蓄的月利率是0.36%,现存入本金100元,本金与利息和y(元)与所存月数x(月)之间的关系式为()。

人教版苏科版初中数学—变量之间的关系(经典例题 )

人教版苏科版初中数学—变量之间的关系(经典例题 )

班级小组姓名成绩满分(120)一、用表格表示的变量间关系(一)变量、自变量和因变量的定义(共4小题,每题3分,题组共计12分)例1.小明的妈妈自小明出生时起每隔一段时间就给小明称一下体重,得到下面的数据:从表中可以得到:小明体重的变化是随小明的的变化而变化的,这两个变量中,是自变量,是因变量,虽然随着年龄的增大,小明的体重,但体重增加的速度越来越.例1.变式1.据国家统计局统计,新中国成立以来至2000年我国各项税收收入合计如下表:从表中可以得出:新中国成立以来我国的税收收入总体趋势是,其中,年与5年前相比,增长百分数最大,年与5年前相比增长百分数最小,算一算,2000年与1950年相比,税收收入增长了倍.(保留一位小数)例1.变式2.某电动车厂2014年各月份生产电动车的数量情况如下表:(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?例1.变式3.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.(1)找出题目中的自变量和因变量.(2)印制一本纪念册的制版费为多少元?(3)若印制2千册,则共需多少费用?(二)用表格表示的变量间关系(共4小题,每题3分,题组共计12分)cm的长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量例2.要画一个面积为202分别为()A.常量为20,变量为,x yB.常量为20,y,变量为xC.常量为20,x变量为yD.常量为x,y,变量为20例2.变式1.赵先生手中有一张记录他从出生到24岁期间的身高情况表:下列说法错误的是()A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到24岁平均每年增高7.1cmD.赵先生的身高从0岁到24岁平均每年增高5.1cm例2.变式2.2002年1~12月某地大米的平均价格如下表表示:(1)表中反映了哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米的平均价格在上涨?哪一段时间大米的平均价格在下落?(4)从表中可以得到该地大米的平均价格变化方面的哪些信息?平均价格比年初降低了,还是上涨了?例2.变式3.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y (cm)与所挂物体的质量x (kg)的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内)你能说出此时弹簧的长度吗?二、用关系式表示的变量间关系(一)用关系式表示两个变量之间的关系(共4小题,每题3分,题组共计12分)例3.我国政府为解决老百姓看病难的问题,决定大幅度下调药品价格.某种药品在2009年涨价30%,2013年降价70%至a ,那么这种药品在2009年涨价前的价格为.例3.变式1.如图,ABC ∆的底边BC 的长是10cm ,当顶点A 在BC 的垂线PD 上由点D 向上移动时,三角形的面积随之发生了变化.(1)在这个变化的过程中,自变量是,因变量是.(2)如果AD 长为x (cm ),面积为y (2cm ),则y =.(3)当AD BC =时,ABC ∆的面积为.例3.变式2.如图,圆柱的底面半径为2cm ,当圆柱的高由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量是,因变量是.(2)如果圆柱的高为x (cm ),圆柱的体积V (3cm )与x 的关系式为.(3)当圆柱的高由2cm 变化到4cm 时,圆柱的体积由3cm 变化到3cm .(4)当圆柱的高每增加1cm 时,它的体积增加3cm .例3.变式3.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温升高8℃,烧了x 分钟后的水温为y ℃,当水烧开时就不再烧了.(1)y 与x 的关系式为,其中自变量是,它应在范围内变化.(2)1x =时,y =;5x =时,y =.(3)x =时,48y =;x =时,80y =.(二)列关系式并求值(共4小题,每题3分,题组共计12分)例4.学校为优胜班级买篮球作为奖品,若一个篮球30元,总价y 元随篮球个数x 的变化而变化,写出y 与x 的关系式:,其中自变量是,因变量是.当篮球个数为10时,总价为.例4.变式1.齿轮每分钟转120转,如果n (转)表示转数,t (分)表示转动时间,那么n 与t 之间的关系式是,其中为变量,为常量.当10t =时,n=.例4.变式2.一个梯形,它的下底比上底长2cm ,它的高为3cm ,设它的上底长为x cm ,它的面积为y 2cm .(1)写出y 与x 之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x 由5变到7时,y 如何变化?(3)用表格表示当x 从3变到10时(每次增加1),y 的相应值.(4)当x 每增加1时,y 如何变化?说明你的理由.(5)这个梯形的面积能等于92cm 吗?能等于22cm 吗?为什么?例4.变式3.ABC ∆的底边BC 为8cm ,当BC 边上的高从小到大变化时,ABC ∆的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)ABC ∆的面积y 2cm 与高x cm 之间的关系式是什么?(3)当x 增加1cm 时,y 如何变化?(三)关系式的综合应用(共4小题,每题3分,题组共计12分)例5.根据如图所示的程序计算y 值,若输入的x 值为1-,则输出的结果为()A.72B.94C.1D.92例5.变式1.在关系式35y x =+中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是自变量,它的值与x 的值无关;④y 与x 的关系不能用表格表示;⑤y 与x 的关系可以用表格表示。

北师大版七年级数学下册第三章变量之间的关系单元综合练习题3(附答案)

北师大版七年级数学下册第三章变量之间的关系单元综合练习题3(附答案)

北师大版七年级数学下册第三章变量之间的关系单元综合练习题3(附答案)1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:m 1 2 3 4v 0.01 2.9 8.03 15.1则m与v之间的关系最接近于下列各关系式中的( )A.v=2m-1 B.v=m2-1 C.v=3m-3 D.v=m+1 2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.某市一周平均气温(℃)如图所示,下列说法不正确的是()A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低4.足球比赛时,守门员大脚踢出去的球的高度h随时间t变化而变化,下列各图中,能刻画h与t的关系的是( )A.B.C.D.5.如图,y与x之间的关系式为()A.y=x+60 B.y=x+120 C.x=60+y D.y=30+x 6.如果用总长为60 m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中,常量是().A.a B.SC.p D.p,a7.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图(1)所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图(2)所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是( )A .①③B .②③C .③D .①②8.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化的情况,并画出了风力随时间变化的图象如图所示,则下列说法正确的是( )A .在8时至14时,风力不断增大B .在8时至12时,风力最大为7级C .8时风力最小D .20时风力最小9.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表: 香蕉数量(千克) 0.5 1 1.5 2 2.5 3 3.5 … 售价(元)1.534.567.5910.5…上表反映了两个变量之间的关系,其中,自变量是________,因变量是________. 10.小亮早晨从家骑车到学校,先上坡后下坡,所行路程()y m 与时间(min)x 的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡、下坡的速度分别相同,则小明从学校骑车回家用的时间是__________min .11.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.12.每张电影票的售价为10元,某日共售出x 张票,票房收入为y 元,在这一问题中,_____是常量,_____是变量.13.球的表面积S 与半径R 之间的关系是S=4πR 2 . 对于各种不同大小的圆,请指出公式S=4πR 2中常量是________ ,变量是________14.假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为________. (填“常量”或“变量”)15.在圆周长公式2πC r =中,C 随着r 的变化而变化,此问题中,______是常量,______和______是变量.16.摄氏温度C 与华氏温度F 之间的对应关系为5(32)9C F =-,则其中变量是________,常量是________.17.已知变量y 与x 的部分对应值如表格所示,则y 与x 的关系式是________.18.某种树木的分枝生长规律如下表所示,则预计到第6年时,树木的分枝数为__.19.“十一”期间,小明和父母一起开车到距家200 km 的景点旅游,出发前,汽车油箱内储油45 L ,当行驶150 km 时,发现油箱余油量为30 L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式; (2)当x =280 km 时,求剩余油量Q 的值.20.某电影院地面的一部分是扇形,座位按下列方式设置:排数 1 2 3 4座位数60 64 68 72(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由;(4)若某排有136座,则该排的排数是多少?21.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人. 22.将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.纸条的总长度y(cm)与白纸的张数x(张)的关系可以用下表表示:(1)表格中:a= ,b=(2)直接写出y与x的关系式;(3)要使粘合后的长方形周长为2028cm,则需要用多少张这样的白纸?23.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.24.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的关系式是____________.25.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?26.日常生活中,我们经常要烧开水,下表是对烧水的时间与水的温度的描述:时间(分)1 2 3 4 5 6 7 8 9 10 11 12 13温度(℃)25 29 32 43 52 61 72 81 90 98 100 100 100(1)上表反映了哪些变量之间的关系?(2)根据表格的数据判断:在第15分钟时,水的温度为多少?(3)随着加热时间的增加,水的温度是否会一直上升?27.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.28.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.参考答案1.B【解析】【分析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.【详解】解:当m=4时,A、v=2m-2=6;B、v=m2-1=15;C、v=3m-3=9;D、v=m+1=5.故选B.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式.2.C【解析】【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选:C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.C【解析】【分析】根据图象分析判断即可.【详解】由图象可得:星期二的平均气温最高,故A正确;星期四到星期日天气逐渐转暖,故B正确;这一周最高气温与最低气温相差12-4=8℃,故C错误;星期四的平均气温最低,故D正确;故选C.【点睛】此题考查函数图象问题,关键是根据函数图象得出信息进行分析解答.4.A【解析】【分析】根据足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落,进行判断即可.【详解】解:A、足球受力的作用后会升高,并向前运动,当足球动能减小后,足球不再升高,而逐渐下落.正确;B、球在飞行过程中,受重力的影响,不会一直保持同一高度,所以错误;C、球在飞行过程中,总是先上后下,不会一开始就往下,所以错误;D、受重力影响,球不会一味的上升,所以错误.故选A.【点睛】此题主要考查函数的图象的知识点,根据函数图象的意义,注意纵横坐标变化得出是解决问题的关键.5.A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.6.C【解析】【分析】根据篱笆的总长确定,即可得到周长是常量、一边长及面积是变量.【详解】解:根据题意长方形的周长p=60m,所以常量是p,故选C.【点睛】本题考查了常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.7.C【解析】【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【详解】①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故选C.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.8.D【分析】首先弄清横轴、纵轴表示的实际含义,然后观察图象即可得出.【详解】解:A、11时至12时风力减小,选项A错误;B、在8时至12时,风力最大不到4级,选项B错误;C、20时风力最小,选项C错误;D、20时风力最小,选项D正确.故选D.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.9.香蕉数量售价【解析】【分析】首先根据表格,可得上表反映了两个变量(香蕉数量和售价)之间的关系;然后根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【详解】∵香蕉的售价随着香蕉数量的变化而变化,∴上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价.故答案为:香蕉数量,售价.【点睛】本题主要考查了函数的概念,在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.10.37.2【解析】【分析】根据图表可计算出上坡的速度以及下坡的速度,又已知返回途中的上下坡的路程正好相反,故可计算出共用的时间.【详解】由图可得,去校时,上坡路的距离为2000米,所用时间为18分,∴上坡速度=3600÷18=200米/分,下坡路的距离是9600-3600=6000米,所用时间为30-18=12分,∴下坡速度=6000÷ 12=500米/分;∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小明从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2分钟.故答案为37.2.【点睛】本题主要考查学生的读图获取信息的能力,解题时需要注意去学校时的上坡,返回家时是下坡,而去学校时的下坡,返回家时是上坡.11.时间温度【解析】【分析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.【详解】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是时间,因变量是温度.故答案为时间、温度.【点睛】本题考查了正比例好反比例的意义,一个量在变化另一个量也在变化,时间好温度都在变化.12.电影票的售价电影票的张数,票房收入.【解析】【分析】根据常量,变量的定义进行填空即可.【详解】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为:电影票的售价;电影票的张数,票房收入.【点睛】本题考查了常量和变量,掌握常量和变量的定义是解题的关键.13.4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR 2中常量是4π,变量是S 和R.故答案是: 4π;S 和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.14.常量.【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行解答即可.【详解】解:假期即将开始,李伟制定了一张“假期每天时间分配表”,其中课外阅读时间为1.5小时,这里的“1.5小时”为常量,故答案为:常量.【点睛】此题主要考查了常量,关键是掌握常量定义.15.2π r C【解析】【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量可直接得到答案.【详解】解:根据定义,数值发生变化的量称为变量,数值始终不变的量称为常量,所以在2πC r 中,2π是常量,r 和C 是变量.故答案为:2π;r ;C【点睛】本题考查常量和变量的定义,理解定义是解答此题的关键.16.C,F5,329- 【解析】【分析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.【详解】 5(32)9C F =-,则其中的变量是C,F,常量是5,329-, 故答案为C,F; 5,329-; 【点睛】此题考查常量与变量,解题关键在于掌握其定义17.210y x =+【解析】【分析】本题考查用关系式法表示变量之间的关系,用关系式表示的变量间关系经常是根据题目中的已知条件和两个变量之间的关系,利用公式、变化规律或者数量关系得到等式.【详解】x 每增加1,y 增加2,易得当x =0时y =10,所以y =2x +10.【点睛】在做此类题时,如果发现x 增加1时,y 增加的数值固定,那么y=kx+b ,k 就是这个固定的值,b 为x=0时y 对应的值.18.8【解析】【分析】通过所给数据应当发现:后边的每一个数据总是前面两个数据的和.【详解】根据所给的具体数据发现:从第三个数据开始,每一个数据是前面两个数据的和,则第6年的时候是3+5=8个.故答案为8.【点睛】本题考查了图形的变化类问题,仔细观察树枝的分叉的个数后找到规律是解题的关键.19.(1)该车平均每千米的耗油量为0.1(L/km),Q=45-0.1x;(2)当x=280 km时,剩余油量Q的值为17 L.【解析】【分析】(1)根据平均每千米的耗油量=总耗油量÷行驶路程即可得出该车平均每千米的耗油量,再根据剩余油量=总油量-平均每千米的耗油量×行驶路程即可得出Q关于x的函数关系式;(2)将x=280代入Q关于x的函数关系式,求出Q值即可;【详解】(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280 km时,剩余油量Q的值为17L.【点睛】本题考查了列函数的关系式以及一次函数图象上点的坐标特征,根据数量关系列出函数关系式是解题的关键.20.(1)排数与座位数在变化.自变量是排数,因变量是座位数;(2)第5排有76座,第6排有80座;(3)第n排有60+4×(n-1)座,理由见解析;(4)该排的排数是20.【解析】【分析】(1)根据变量的定义得出变化的量,再根据座位数随着排数的变化而变化,从而确定自变量和因变量.(2)从具体数据中,不难发现:后一排总比前一排多4,由此得出第5排、第6排的座位数即可;(3) 根据(2)中的规律,第n排有60+4(n-1)个,再化简即可.(4)根据第n排的座位数列出方程即可.【详解】(1)排数与座位数在变化.其中自变量是排数,因变量是座位数.(2) ∵后一排总比前一排多4个座,∴第5排有76个座,第6排有80个座.(3) 第n排有(4n+56)个座;理由如下:∵第1排有60座,即60+4×(1-1);第2排有64个座,即60+4×(2-1);第3排有68个座,即60+4×(3-1);…;第n排有60+4×(n-1) 个座.∴第n排有60+4×(n-1)=(4n+56)个座.(4) ∵第n排有(4n+56)个座,∴4n+56=136.解得n=20.∴该排的排数是20.【点睛】本题主要考查了函数的定义,列函数关系式,以及解一元一次方程,本题的关键规律是“后一排总比前一排多4个座”.21.(1)每月的乘车人数,每月利润;(2)2000;(3)3000;(4)4500.【解析】【分析】(1)直接利用常量与变量的定义分析得出答案;(2)直接利用表中数据分析得出答案;(3)利用由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,进而得出答案;(4)由(3)得出当利润为5000元时乘客人数,即可得出答案.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;(2) ∵观察表中数据可知,当每月乘客量达到2000人以上时,每月利润为0,∴每月乘客量达到2000人以上时,该公交车才不会亏损;(3) ∵每月乘客量增加500人时,每月利润增加1000元,∴当每月乘车人数为3500人时,每月利润为3000元;(4) ∵每月乘客量增加500人时,每月利润增加1000元,∴若5月份想获得利润5000元,5月份的乘客量需达4500人.【点睛】本题主要考查了常量与变量以及函数的表示方法,正确把握函数的定义是解题关键.22.(1)a=37 ,b=88(2)y=17x+3(3)需要59张白纸.【解析】【分析】(1)根据题意知:2张白纸粘合有1个粘合部分,故可求出粘合后的长方形长度;5张白纸粘合有4个粘合部分,故可求出粘合后的长方形长度;(2)依题意可知y与x的关系式为y=17(x-1)+20即可求出;(3)设需要n张,根据周长公式及y与x的关系式即可列方程进行求解.【详解】(1)根据题意知:2张白纸粘合有1个粘合部分,故a=20×2-3=375张白纸粘合有4个粘合部分,故b=5×20-4×3=88(2)依题意可知y与x的关系式为y=17(x-1)+20=17x+3(3)设需要n张,则2(8+17n+3)=2028解得n=59故需要59张白纸.【点睛】此题主要考查函数的关系式,解题的关键是根据题意找到规律进行关系式的推导. 23.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.24.y=-x+8【解析】【分析】根据梯形的面积公式,可得函数解析式.【详解】解:梯形上底长、下底长分别是x,y,高是6,面积是24,则y与x之间的表达式是:24=(x+y)×6÷2,即y=-x+8.故答案为:y=-x+8.【点睛】本题考查了函数关系式,利用了梯形的面积公式,题目较为简单.25.(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27℃,这一天的最高温度是37℃.(2)这一天的温差是37-23=14(℃),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.故答案为:(1)27℃,37℃;(2)14℃,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实26.(1)烧水的时间与水的温度;(2)100 ℃;(3) 水的温度不会一直上升【解析】【分析】(1)根据表中数据是对烧水的时间与水的温度的描述,即可得出变量;(2)根据表格可得在11分钟后温度保持不变,都为100℃,从而得出第15分钟时,水的温度.(3)根据表格可得100℃水达到烧开状态,水温不再升高;【详解】(1) ∵表中数据是对烧水的时间与水的温度的描述,∴上表反映了烧水的时间与水的温度两个变量之间的关系.(2) 根据表格的数据判断:在第15分钟时,水的温度为100 ℃.(3) 随着加热时间的增长,水的温度不会一直上升,因为在11分钟时水温升高到100℃,水达到烧开状态,水温不再升高.【点睛】此题主要考查了函数的表示方法,关键是认真观察表格,从表中得到正确信息.27.(1)半径r体积V;(2)V=4πr2;(3) 圆柱的体积由16πcm3变化到256πcm3.【解析】【分析】(1)根据函数间两变量的变化关系,可得答案;(2)根据圆柱的体积公式,可得函数解析式;(3)根据自变量与函数值的关系,可得答案.【详解】解:(1)在这个变化过程中,自变量是r,因变量是V.(2)圆柱的体积V与底面半径r的关系式是V=4πr2.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由16πcm3变化到256πcm3.故答案为:(1)r,V;(2)V=4πr2;(3)16π,256π.【点睛】本题考查了函数关系式,利用圆柱的体积公式得出函数关系式是解题关键.28.(1)y=9x(0<x≤2);(2)△ABE的面积是18cm2.【分析】根据三角形的面积公式,可得答案.【详解】(1)由图2可知E点的速度为3,∴y=12×3x×AD=9x,即y=9x(0<x≤2);(2)当E点停止后,BE=6,∴x=2时,y=9×2=18.∴△ABE的面积是18cm2.【点睛】本题考查了函数关系式,三角形的面积公式是解题关键.。

北师大版七年级下数学第三章变量之间的关系单元综合练习题

北师大版七年级下数学第三章变量之间的关系单元综合练习题

北师大版七年级数学下册第三章变量之间的关系单元综合练习题1.某科研小组在网上获取了声音在空气中传播的速度y 与空气温度x 关系的一些数据(如下表):下列说法错误的是( )A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20℃时,声音5s 可以传播1740mD .温度每升高10℃,声速提高6m/s. 2.2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v 为110千米/时,若用s (千米)表示小亮家汽车行驶的路程,行驶时间用t (小时)表示,下列说法正确的是( ) A .s 是自变量, t 是因变量B .s 是自变量, v 是因变量C .t 是自变量, s 是因变量D .v 是自变量, t 是因变量3.在某次试验中,测得两个变量x 和y 之间的4组对应数据如下表: x 12 3 4 y0 3 8 15 则y 与x 之间的关系满足下列关系式( )A .22y x =-B .33y x =-C .21y x =-D .1y x =+4.函数y=22x x x+的图象为( ) A . B .C.D.5.甲、乙两同学从A地出发,骑自行车在同一条公路上行驶到距A地60千米的B地,他们距出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图中提供的信息,符合图象描述的说法是()A.乙在行驶过程中休息了一会儿B.甲在行驶过程中没有追上乙C.甲比乙先出发1小时D.甲行驶的速度比乙行驶的速度快6.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s与时间t的关系的大致图象是()A.B.C.D.7.如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C.BC边上的高随之增大D.边AB的长度随之增大8.若一辆汽车以50 km/h的速度匀速行驶,行驶的路程为s(km),行驶的时间为t(h),则用t表示s的关系式为( )A.s=50+50t B.s=50t C.s=50-50t D.以上都不对9.一根弹簧长8 cm,它所挂物体的质量不能超过5 kg,并且所挂的物体每增加1 kg,弹簧就伸长0.5 cm,则挂上物体后弹簧的长度y(cm)与所挂物体的质量x(kg)(0≤x≤5)之间的关系式为( )A.y=0.5(x+8) B.y=0.5x-8 C.y=0.5(x-8) D.y=0.5x+810.如图是用火柴棒拼成的图案,需用火柴棒的根数m随着拼成的正方形的个数n的变化而变化,在这一变化过程中,下列说法中错误的是( )A.m,n都是变量B.n是自变量,m是因变量C.m是自变量,n是因变量D.m随着n的变化而变化11.梯形的上底长是2,下底长是8,则梯形的面积y与高x之间的关系式是______,自变量是____,因变量是______.12.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40- 6t.当t=4时,Q=__,从关系式可知道这台拖拉机最多可工作__小时.13.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,温度随时间变化而变化,其中自变量是______,因变量是______.14.在函数121yx=--中,自变量x的取值范围是________ .15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.16.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.17.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.18.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.19.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:年份2015 2016 2017 …入学儿童人数2520 2330 2140 …(1)上表中_____是自变量,_____是因变量;(2)你预计该地区从_____年起入学儿童的人数不超过2000人.20.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.21.如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积3Vcm也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)写出体积V与半径r的关系式;cm.(3)当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少322.圣诞老人上午8:00从家里出发,骑车去一家超市购物,然后从这家超市回到家中,圣诞老人离家的距离s(千米)和所经过的时间t(分钟)之间的关系如图所示,请根据图象回答问题:(1)圣诞老人去超市途中的速度是多少?回家途中的速度是多少?(2)圣诞老人在超市逗留了多长时间?(3)圣诞老人在来去的途中,离家2千米处的时间是几时几分?23.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?24.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用-支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的);(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.。

期末复习(变量之间的关系经典必刷题)

期末复习(变量之间的关系经典必刷题)

第三章 变量之间的关系1、下列各情境分别可以用哪幅图来近似地刻画?正确的顺序是( )①紧急刹车的汽车(速度与时间的关系);②人的身高变化(身高与年龄的关系);③跳跃横杆的跳高运动员(高度与时间的关系);④一面冉冉上升的红旗(高度与时间的关系).A .abcdB .dabcC .dbcaD .cabd2、向一个容器内均匀地注入水,液面的高度y 与注水时间x 满足如图所示的图象,则符合图象条件的容器为( )3、一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为 h .注水时间t (h )0.5 1 1.5 2 2.5 … 水的深度h (m ) 0.8 1.6 2.4 3.2 4 …4、如图1,在直角△ABC 中,∠C =90°,点D 是BC 的中点,动点P 从点C 沿出发沿CA −AB 运动到点B ,设点P 的运动路程为x ,△PCD 的面积为y ,y 与x 的图象如图2所示,则△ABC 的面积为( )A .9B .12C .16D .325、某图书馆对外出租书的收费方式是:每本书出租后的前两天,每天收0.6元,以后每天收0.3元,那么一本书在出租后x (x >2)天后,所收租金y 与天数x 的表达式为 .6.一蜡烛高18厘米,点燃后平均每小时燃掉3厘米,则蜡烛点燃后剩余的高度h (厘米)与燃烧时间t (时)之间的关系式是ℎ= (0≤t ≤6).7.某商店为减少某种商品的积压,采取降价销售的策略.商品原价为520元/件,随着不同幅度的降价,日销量发生相应的变化,如下表所示:降价/元10 20 30 40 50 60 ⋯日销量/件 155 160 165 170 175 180 ⋯根据以上日销售量随降价幅度的变化情况,当售价为440元时,日销量为件.8、已知动点P以每秒2cm的速度沿图1的边框按B→C→D→E→F→A的路径移动,△ABP的面积S(cm2)与时间t(秒)之间的关系如图2所示.其中AB=6cm,a=,当t=时,△ABP的面积是18cm2.9、某市出租车收费标准如下:3千米以内(含3千米)收费8元;超过3千米的部分每千米收费1.6元,当出租车行驶路程为x千米时,应收费为y元.(1)请写出当x≥3时,y与x之间的关系式;(2)小亮乘出租车行驶5千米,应付多少元?(3)小亮付车费19.2元,出租车行驶了多少千米?10、已知小明家距学校1200m,一天,小明从家出发匀速步行前往学校,4min后,小明的爸爸发现他忘了带数学书.于是,爸爸立即出发沿同一路线匀速追赶小明,在中途追上了小明后,爸爸以原速原路返回家中.小明与爸爸之间的距离y(m)与小明出发的时间x(min)之间的关系如图所示,请解答下列问题:(1)小明步行的速度是_______m/min,爸爸的速度是m/min.a的值为;(2)当小明与爸爸相距120m时,求小明出发后的时间.11、某车间的甲、乙两名工人分别同时生产同种零件,在开始生产的前2个小时为生产磨合期,2个小时后有一人停工一段时间对设备进行改良升级,以提升生产效率,另一人进入正常的生产模式.他们每人生产的零件总数y(个)与生产时间t(小时)的关系如图所示.根据图象回答:(1)在生产过程中,哪位工人对设备进行改良升级,停止生产多少小时?(2)当t为多少时,甲、乙所生产的零件个数第一次相等?甲、乙中,谁先完成一天的生产任务?(3)设备改良后每小时生产零件的个数是多少?与另一工人的正常生产速度相比每小时多生产几个?12、如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的关系的是()。

变量之间的关系单元综合测试题

变量之间的关系单元综合测试题

变量之间的关系单元综合测试题 (总分100分 时间60分钟)一.填空题1.在变化过程中,我们把变化着的量叫做变量,其中一个叫________,一个叫________.2.若某长方体底面积是602cm ,高为hcm ,则体积V 3cm 与h 的关系式为________________,若h 从1cm 变化到10cm 时,长方体的体积由________3cm 变化到________3cm .3.小明用40元钱购买5元/件的某商品,则他剩余的钱y (元)与购买这种商品的件数x (件)之间的关系式为________.4.某文具商店进一批精制的数学练习本,销售数量与销售价格如下表:((2)若用x 表示销售练习本的数量,y 表示销售额,则y 与x 的关系式为______________; (3)在这个变化过程中,自变量是_______,因变量是_______; (4)小明买10本比小强买5本需多付_______元钱.5.已知两个变量x 、y ,满足3x-2y=4,则y=________(用含x 的代数式表示),x=________(用含y 的代数式表示).6.已知关系式y=kx-2,当自变量x=-2时,因变量y=4,则当因变量y=7时,自变量x 的值是________.7.一个小球由静止在一个斜坡上向下滚动,通过仪器观察测得小球滚动的距离s (m )与时间t(s )的数据如下表,则s 与t 的关系式为______________.8.“(1)赛跑中,兔子共睡了________min ; (2)乌龟在这次赛跑中的平均速度为________m/min.二.选择题:1.一辆汽车以30千米/时的速度行驶,下面有关行驶的路程s (千米)与行驶的时间t (时)之间的关系( A.路程、时间、速度都是变量 B.路程s 随时间t 的增大而减小C.s=30tD.当行驶的时间为10小时时,行驶的路程为3千米 2.则下列有关叙述中错误的是( )A.y=2xB.豆子的质量是4.5千克时,豆子的总售价为8元C.x 是自变量,y 是因变量D.豆子的总售价随豆子的质量的增大而增大3.拒报道,某省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年约减少0.04亩,若不采取措施,继续按此速度减下去,若干年后该省将无地可耕,则该省无地可耕的情况最早发生在( )A.2022年B.2023年C.2024年D.2025年 4.一游泳池已注满水,现按一定的速度将水排尽,然后进行清洗,再按相同的速度注满清水,使用一段时间后又按相同的速度将水排尽,则游泳池存水量V (米3)与时间t (时)的大致图象为( )5.小明早上7∶00出发到社区做好事,开始匀速步行,后碰到小亮,小明便停下来和小亮聊了一会儿,为了保证能准时到达,他加快了速度,但仍保持匀速步行,如果能准时到达,以下四个图象,能准确描述小明离家的距离与时间的关系的是() 6.在物理学中,导线的电阻随温度的变化而变化,有一段导线0C 0时电阻为5欧姆,温度每增加1C 0,电阻会增加0.01欧姆,则电阻R 与温度t 的关系是( )A.R=5+0.01tB.R=5t+0.01C.R=0.01tD.R=5.01t7.小红放学后帮助奶奶用电饭锅煮饭,饭熟后拔掉电源,下图可以近似的刻画电饭锅内的温度随时间变化的情况的是( )7题图8.小红骑车去玩,沿直线先前进了3千米,然后休息一会儿,又原路返回0.5千米,再前进4.5千米后到达目的地,那么小红离起点的路程s (千米)与行驶时间t (时)的关系大致可以是图中的( )三.解答题:1. (1)说出自变量,因变量;(2)当汽车行驶路程S 为20km 时,所花时间t 是多少分钟?(3)从表中说出路程S 随时间t 而变化的趋势;(4)按照这一行程规律,估计当路程S=400km 时,所需时间t 是多少分钟?2.某厂现有煤180吨,每天需烧5吨,那么剩余煤量y (吨)与燃烧天数x (天)的关系可用y=180-5x 来表示.(1)在燃烧的过程中,自变量和因变量各是什么?(2)当燃烧了8天后,剩余煤量是多少吨?(33.下列各情境分别可以用图中的哪幅图来近似刻画?(1)一杯敞口放在桌子上的开水(水温与时间的关系)________; (2)匀速行驶的火车(速度与时间的关系)________________; (3)足球守门员用脚踢开的球(高度与时间的关系)________; (4)一面冉冉上升的旗子(高度于时间的关系)________________.4.某市广电局与长江证券公司联合推出广电宽带网业务,影视欣赏等服务项目,其上网费用有一种方式是如图所示进行交纳的,其中y (元)表示每月上网费用,x (时)表示每月上网时间. (1)若某人5月上网48小时,则他应交多少网费?(2)李华在7月出差没有在家,那么李华就不必交纳上网费了,你认为呢?(3)请你求出上网时间若超过50小时,超过后的部分平均每小时的上网费用是多少钱?5.王老师上午9时骑自行车离开家,15时回家,他描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是 自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米? (5)他可能在哪段时间内休息,并吃午饭?(6)他由离家最远的地方返回时的平均速度是多少?6.如图所示,正方形ABCD 的边长为2cm ,有一点P 在BC 上运动,梯形APCD 的面积会发生变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果BP 长为xcm ,那么梯形APCD 的面积ycm 2可以表示为什么?(3)如果APCD ABP S S 梯形21=∆,试确定P 点的位置.。

变量之间的关系专题训练题

变量之间的关系专题训练题

变量之间的关系专题训练1、 如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x + 70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.2、 A 市场和B 市场分别有库存某种机器12台和6台,现决定支援给C 市10台,D 市8台,已知从A 市调运一台机器到C 市、D 市的运费分别为4百元和8百元;从B 市调运一台机器到C 市、D 市的运费分别为3百元和5百元。

设B 市运往C 市机器x 台,求总运费W 关于x 的函数关系式;3、 在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)解释P 点所表示的实际意义; (3)求两船的距离为10 km 时的时刻4、某蓄水池的排水管每时排水8m 3,6小时(h )可将满水池全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每时的排水量达到Q (m 3),那么将满池水排空所需的时间t(h)将如何变化?(3)写出t 与Q之间的关系式(4)如果准备在5h 内将满池水排空,那么每时的排水量至少为多少?(5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?5如图1,在底面积为l00cm2、高为20cm 的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h 与注水时间t 之间的函数关系如图2所示.(1)写出函数图象中点A 、点B 的实际意义; (2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.6.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧元/件)甲乙图 1 图2吨))时剩余部分的高度y (厘米)与燃烧时间x (小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是----------- ,从点燃到燃尽所用的时间分别是 --------------------(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的关系式;(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?7.2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.哪个队先到达终点?乙队何时追上甲队?8. 2008年春节前夕,南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销.为了减少果农的损失,政府部门出台了相关补贴政策:采取每千克补贴0.2元的办法补偿果农.下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y (万元)与销售量x (吨)的关系图.请结合图象回答以下问题: (1)在出台该项优惠政策前,脐橙的售价为每千克多少元? (2)出台该项优惠政策后,“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?9.已知:甲、乙两车分别从相距300千米的A 、B 两地同时出发相向而行,甲到B 地后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)请直接写出甲、乙两车离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并标明自变量x 的取值范围;(2)它们在行驶的过程中有几次相遇?并求出每次相遇的时间.(8分)为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的A,B 两地同时出发相向而行,甲到A 后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)请直接写出甲离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量x 的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?10.某汽车生产厂对其生产的A 型汽车进行耗油量实验,实验中汽车视为匀速行驶。

变量之间的关系典型练习题

变量之间的关系典型练习题

变量之间的关系典型练习题之相礼和热创作题型一、用关系式暗示变量之间的关系1、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x之间的关系式为__________(不考虑利息税).2、某挪动通讯公司开设了两种通讯业务,“环球通”:运用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为y元和2y元.1(1)写出y、2y与x之间的关系式;1(2)一个月内通话多少分钟,两种挪动通讯费用相反?(3)某人估计一个月内通话300分钟,应选择哪种挪动通讯合算些?题型二、用图象暗示变量之间的关系3、小明在暑期社会实距活动中,以每千克0.8元的价格从零售市场购进多少千克瓜到市场上往贩卖,在贩卖了40千克西瓜之后,余下的每千克降价0.4元,全部售完.贩卖金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下成绩:(1)求降价前贩卖金额y(元)与售出西瓜x(千克)之间的关系式;(2)小明从零售市场共购进多少千克西瓜?(3)小明这次卖瓜赚子多少钱?图74小明某天上午9时骑自行车离开家,15时回家,他有意描画了离家的距离与工夫的变更状况(如右图所示).(1)图象暗示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分分别家多远?(3)他到达离家最远的地方是什么工夫?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段工夫内苏息,并吃午餐?(6)他由离家最远的地方前往时的均匀速率是多少?5 小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的工夫与路程如图所示.假如前往时,上、下坡速率依然坚持不变,那么他从学校回到家必要的工夫是多少6、某空军加油飞机接到命令,马上给另一架正在飞行的运输飞机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油工夫为t分钟,Q1、Q2与t之间的函数图像如图所示,结合图像回答下列成绩:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?(2)运输飞机加完油后,以原速继续Q(吨)飞行,需10小时到达目的地,油料能Array否够用?阐明理由.7、某机动车辆出发前油箱中有油42升,行驶多少小时后,在途中加油站加油多少.油箱中余油量Q(升)与行驶工夫t(时)⑴机动车辆行驶了小时后加油.⑻⑵加油后油箱中的油最多可行驶小时.⑶假如加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量之间的关系综合练习题
一、选择题(每小题3分,共30分)
( )1、下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)
从表中获取的的信息错误的是( )
A 、人口随时间的变化而变化,时间是自变量,人口是因变量
B 、1969~1979年10年间人口增长最快
C 、若按1949~1999这50年的增长平均值预测,我国2009年人口总数为14亿
D 、从1949~1999这50年人口增长的速度逐渐加大
( )2、甲、乙二人在一次赛跑中,路程s (米)与时间t(分)的关系
如图所示,从图中可以看出,下列结论错误的是( ) A 、这是一次100米赛跑 B 、甲比乙先到达终点 C 、乙跑完全程需12.5秒 D 、甲的速度为8米/秒
( )3、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。

当它
醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…….用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )
( )4、变量x 与y 之间的关系是y=1/2 x 2
-1,当自变量x=2时,因变量y 的值是( )
A 、―2
B 、―1
C 、1
D 、2
( )5、 一辆汽车以平均速度60千米/时的速度在公路上行驶,则它所走的路程s (千米)与所用的
时间t (时)的关系表达式为( ) A 、s=60t B 、t s 60=
C 、60
t
s = D 、 s=60t ( )6、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )
A 、沙漠
B 、体温
C 、时间
D 、骆驼
( )7、长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2
cm ,则这样的长方形中y 与x
的关系可以写为( )
A 、y=2
x B 、y=12x 2
C 、y=(12-x)·x
D 、y=2·x ·(12-x)
( )8、、某辆汽车油箱中原有汽油100L ,汽车每行驶50km ,耗油10L ,则油箱中剩余油量y(L)与汽车
行驶路程x(km)之间的图像大致是( )
时间(年) 1949 1959 1969 1979 1989 1999 人口(亿)
5.42
6.72
8.07
9.75
11.07
12.59
100
12 12.5
t/秒
s/米


s t
S 1 S 2 A
s t
B
S 1 S 2 s t
S 1 S 2 C
s t
S 2 S 1
D
( )9、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s (米)与散步
所用的时间t (分)之间的关系,依据图象,下面描述符合小红散步情景的是( )
A 、从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.
B 、从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.
C 、从家里出发,一直散步(没有停留),然后回家了
D 、从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.
( )10、如图3,在矩形MNPQ 中,动点R 从点N 出发,沿N→P→Q→M 方向运动至点M 处停止.设点R
运动的路程为x ,△MNR 的面积为y ,如果y 关于x 的函数图象如图4所示,则当x=9时,点R
应运动到( )
二 耐心填一填:(共15分)
11、表示变量之间的关系常常用 、 、 三种方法。

12、 1~6个月的婴儿生长发育得非常快,他们的体重y(克)和月龄x(月)间的关系可以用y=a+700x ,其中a 是婴儿出生时体重.一个婴儿出生时的体重4000克,请用表格表示,在1~6个月内,这个婴儿的体重y 与x 之间的关系: 月龄/月 1 2 3 4 5 6 体重/月
13、如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化。

①在这个变化中,自变量、因变量分别是_____________、_____________; ②如果高为h(cm)时,体积为V(cm3),则V 与h 的关系为___________________; ③当高为5cm 时,棱柱的体积是_______________; 14、下表中的数据是根据某地区入学儿童人数编制的:
年 份
1998
1999 2000 2001 2002 入学儿童人数 2930
2720
2520
2330
2140
上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
答:反映了________和______之间的关系.其中自变量是__________,因变量是____________。

随着自变量的变化,因变量变化的趋势是什么?
答:___________________________________________________________ 15、有一个附有进出水管的容器,每单位时间内进水量都是一定的,
设从某时刻开始的4分钟内只进水、不出水,在随后的8分钟 内既进水、又出水,得到时间x (分)与水量y (升)关系
如图所示,每分钟进水量是 、每分钟的出水量是 。

三、解答题(共75分)
16、(10分)小明某天上午9时骑车离家,15时回家,他描绘离家的距离与时间的变化情况(如图所示). (1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量? (2) 10时和13时,他分别离家多远?
· · · · · · · · · · · · · ·
2 4 6 8 10 12 14 16 18
100
300
400
500
200
S (米)
t (分)
(3)他到达离家最远的地方是什么时间?离家多远? (4) 11时到12时他行驶了多少千米?
(5)他由离家最远的地方返回的平均速度是多少?
17、(9分)一位旅行者在早晨8时出发到乡村,中途休息30分钟;在中午12时到达乡村。

根据右图回答问题:(1)旅行者9时、10时30分、11时离开城市的距离为多少?
(2)乡村离城市有多少路程?(3)旅行者离开城市6千米、12千米、14千米的时间分别为多少?
18、(9分)如图,它表示甲乙两人从同一个地点出发后的情况。

根据图象回答:(1)甲是几点钟出发?乙
是几点钟出发? (2)到十点为止,哪个人的速度快? (3)两人最终在几点钟相遇?
19、(10分)东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为了促销制定了两种优惠方法,甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x (x >10)本.
(1)写出每种优惠办法实际付款金额 y 甲(元)、y 乙(元)与x (本)之间的关系式; (2)对较购买同样多的书法练习本时,按哪种优惠方法付款更省钱?


8:009:0011:00
10:0040302010
时间
路程(千米)
20、(10分) “5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路
线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象. (1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的关系式 (2)写出客车和出租车行驶的速度分别是多少? (3)试求出出租车出发后多长时间赶上客车?
21、(12分)小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图8所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是多少.
22、(15分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:

1)某工厂一名工人2008年3月的收入为2 400元, 问 他应交税款多少元?
(2)设x 表示公民每月收入(单位:元),y 表示应交税 款(单位:元),请写出y 与x 的关系式; (3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?
级 别
全月应纳税所得额 税率(%) 1 不超过500元的
5 2 超过500元至2 000元的部分 10 3 超过2 000元至5 000元的部分
15 4
超过5 000元至20 000元的部分 20
… …
…。

相关文档
最新文档