变量之间的关系测试题及答案

合集下载

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(有答案解析)(4)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(有答案解析)(4)

一、选择题1.某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:定价/元708090100110120销量/把801001101008060A.115元B.105元C.95元D.85元2.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气3.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度()A.保持不变B.越来越慢C.越来越快D.快慢交替变化4.在圆的面积公式S=πr2中,是常量的是()A.S B.πC.r D.S和r5.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图(1)所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图(2)所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是()A.①③B.②③C.③D.①②6.已知△ABC的底边BC上的高为8 cm,当底边BC从16 cm变化到5 cm时,△ABC的面积 ( )A.从20 cm2变化到64 cm2B.从40 cm2变化到128 cm2C.从128 cm2变化到40 cm2D.从64 cm2变化到20 cm27.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.8.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D9.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1) 10.下列说法不正确的是()A.表格可以准确的表示两个变量的数值关系B.图象能直观的反应两个变量之间的数量关系C.关系式是表示两个变量之间关系的唯一方法D.当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应11.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 12.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=2x+D.y=12 x+二、填空题13.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).14.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为_____,该汽车最多可行驶_____小时.15.球的表面积S与半径R之间的关系是S=4πR2.对于各种不同大小的圆,请指出公式S=4πR2中常量是________ ,变量是________16.已知方程x﹣3y=12,用含x的代数式表示y是______.17.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.18.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.19.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.20.函数f(x)=+3-2xx的定义域是________.三、解答题21.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.22.观察下图,回答问题.(1)反映了哪两个变量之间的关系?(2)点A,B分别表示什么?(3)说一说速度是怎样随时间变化而变化的;(4)你能找到一个实际情境,大致符合下图所刻画的关系吗?23.某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖+⨯=;第3次拼成的图案如图4 4块;第2次拼成的图案如图3所示,共用地砖42412+⨯+⨯=,….所示,共用地砖4242624(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第n次拼成的图案共用地砖的数量为y块,求y与n之间的函数表达式24.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据:轿车行驶的路程010203040···()s km油箱剩余5049.248.447.646.8···油量()w L (1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?25.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的平面直角坐标系中,画出符合他们行驶的路程S (千米)与行驶时间t (时)之间的函数图象.26.青春期男、女生身高变化情况不尽相同,如图是小军和小蕊青春期身高的变化情况.(1)如图反映了哪两个变量之间的关系?自变量是什么?因变量是什么? (2)A ,B 两点表示什么? (3)小蕊10岁时身高多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据表格中定价的变化和销量的变化即可解答.【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.2.C解析:C【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.C解析:C【分析】此容器不是一个圆柱体,从下到上直径越来越小,因为相同体积的水在直径较大的地方比在直径较小的地方的高度低,因此,若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快.【详解】由图可知:此容器不是一个圆柱体,从下到上直径越来越小∵相同体积的水在直径较小的地方比在直径较大的地方的高度更高∴若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快故答案选:C【点睛】本题考查了体积、直径、高之间的关系,寻找出三者之间的变化关系是解题关键.4.B解析:B【分析】根据常量、变量的定义,可得答案.【详解】在圆的面积公式S=πr2中,π是常量,S、r是变量,故选B.【点睛】本题考查常量与变量,常量是在事物的变化中保持不变的量.5.C解析:C【分析】根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.【详解】①0点到1点既进水,也出水;②1点到4点同时打开两个管进水,和一只管出水;③4点到6点只进水,不出水.正确的只有③.故选C.【点睛】本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.D解析:D【分析】根据S=12(底×高)计算分别计算得出最值即可.【详解】当△ABC的底边BC上的高为8cm,底边BC=16cm时,S1=(8×16)÷2=64cm2;底边BC=5cm时,S2=(5×8)÷2=20cm2.故选D.【点睛】此题主要考查了函数关系,利用极值法得出△ABC的最大值和最小值是解题关键.7.A解析:A【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.8.A【解析】由题意可知,符合实际情况的是A 选项中的图象,而选项B 、C 、D 中的图象都与实际情况不符. 故选A.9.A解析:A 【解析】 观察可知:当n=1时,y=4=3×1+1, 当n=2时,y=7=3×2+1, 当n=3时,y=10=3×3+1, ……所以有n 个正方形时,y=3n+1, 故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.10.C解析:C 【解析】A. 表格可以准确的表示两个变量的数值关系,正确;B. 图象能直观的反应两个变量之间的数量关系,正确;C. 两个变量间的关系能用关系式表示,还能用列表法和图象法表示,故错误;D. 当关系式中的一个变量的值确定,另一个变量总有唯一的一个值与之对应,正确, 故选C.11.D解析:D 【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y 之间的关系式为: y=8+1.8(x-3)=1.8x+2.6. 故选D.12.C解析:C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误; B .22y x =+,x 为任意实数,故错误;C .y =20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.二、填空题13.【分析】根据题目所给的数据和利息公式即可得答案【详解】解:某种储蓄的月利率是02存入100元本金后则本息和y (元)与所存月数x 之间的关系式为:y=02x+100故答案为:y=100+02x 【点睛】本 解析:1000.2y x =+【分析】根据题目所给的数据和利息公式,即可得答案. 【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为: y=0.2x+100,故答案为:y=100+0.2x . 【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键.14.y =40﹣5x8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量可列出函数关系式进而得出行驶的最大路程【详解】依题意得油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x 当y =解析:y =40﹣5x 8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程. 【详解】依题意得,油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x , 当y =0时,40﹣5x =0, 解得:x =8,即汽车最多可行驶8小时. 故答案为:y =40﹣5x ,8. 【点睛】本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x 小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.15.4πS 和R 【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量常量是数值始终不变的量根据定义即可确定【详解】解:公式是S=4πR2中常量是4π变量是S 和R 故答案是:4π;S 和R 【点睛】本题解析:4π S和R【解析】【分析】变量是指在程序的运行过程中随时可以发生变化的量,常量是数值始终不变的量,根据定义即可确定.【详解】解:公式是S=4πR2中常量是4π,变量是S和R.故答案是: 4π;S和R.【点睛】本题考查了常量与变量的定义,属于简单题,理解定义是关键.16.y=x﹣4【解析】要用含x的代数式表示y就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可解:移项得:﹣3y=12﹣x 系数化为1得:y=x﹣4故答案为y=x﹣4解析:y=13x﹣4【解析】要用含x的代数式表示y,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解:移项得:﹣3y=12﹣x,系数化为1得:y=x﹣4.故答案为y=x﹣4.17.100【解析】当x=120时y=x==20120-20=100即在月求上重量减少了100千克故答案为:100解析:100【解析】当x=120时,y=16x=11206=20,120-20=100,即在月求上重量减少了100千克,故答案为:100.18.340元【解析】根据题意可知行李质量的大小为自变量x托运费为因变量y 结合图形可知当行李质量为200kg时y=2×200-60=340即他需要付托运费340元故答案为340元解析:340元【解析】根据题意可知,行李质量的大小为自变量x,托运费为因变量y,结合图形可知,当行李质量为200kg时,y=2×200-60=340即他需要付托运费340元.故答案为340元19.-40【详解】试题分析:当y=x时解得x=-40故答案为-40考点:求代数式的值解析:-40【详解】试题分析:当y=x时,9325x x=+,解得x=-40.故答案为-40考点:求代数式的值.20.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.三、解答题21.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分.【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可;(3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案;(4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可.【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.22.(1)反映速度与时间的关系;(2)A点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)见解析;(4)见解析【分析】(1)根据横坐标和纵坐标进行判断即可;(2)根据图象进行判断即可;(3)根据图象进行判断即可;(4)根据图象写出一个实际情境即可.【详解】(1)由图象可得,该图象反映速度与时间的关系;(2)A 点表示当时间过了3分钟后,速度为40千米/时,B 点表示当时间为15分钟时,速度为0;(3)当时间在0~3分钟时,速度随时间的增加而增大,当时间在3~6分钟时,速度保持40千米/时不变,6到7.5分钟时速度从40千米/时增加到60千米/时,7.5到9分钟时保持60千米/时,9到10.5分钟时,从60千米/时降到40千米/时,10.5到12分钟时,保持40千米/时,12到15分钟时,速度从40千米/时降到0;(4)小明从家开车到图书馆借书,汽车从启动到速度为40km/h 用了3分钟,此后3分钟匀速行驶,然后用了1.5分钟加速到60km/h ,然后再匀速行驶1.5分钟,随后用1.5分钟减速到40km/h ,然后再匀速行驶1.5分钟,最后用3分钟减速行驶到停止.【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.23.(1)40;(2)()21y n n =+.【分析】(1)根据拼成图案的地砖块数规律,即可得到答案;(2)根据()4212=⨯⨯,()12223=⨯⨯,()24234=⨯⨯,()40=24⨯⨯5,……,进而得到y 与n 之间的函数表达式.【详解】(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案,共用地砖42412+⨯=;第3次拼成的图案,共用地砖4242624+⨯+⨯=,…,∴第4次拼成的图案,共用地砖424262840+⨯+⨯+⨯=.故答案是:40;(2)第1次拼成如图2所示的图案共用4块地砖,即()4212=⨯⨯,第2次拼成如图3所示的图案共用12块地砖,即()12223=⨯⨯,第3次拼成如图4所示的图案共用24块地砖,即()24234=⨯⨯,第4次拼成的图案共用40块地砖,即()40=24⨯⨯5,……第n 次拼成的图案共用地砖:()21y n n =+,∴y 与n 之间的函数表达式为:()21y n n =+.【点睛】本题主要考查探究图案与数的规律,找到图案与数的规律,是解题的关键.24.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42; (2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.25.详见解析.【解析】第一阶段匀速行驶1.5小时的时候,这段时间路程是时间的正比例函数;修车,用了半个小时,这段时间路程不随时间的变化而变化;然后以原速继续前行,行驶1小时到达目的地,这一段应是一个一次函数,函数图象与第一段平行.利用描点法即可求解. 解:如图(4分)26.(1)反映了身高和年龄的关系,自变量是年龄,因变量是身高;(2)A 点表示小军和小蕊在11岁半时身高都是143 cm,B 点表示小军和小蕊在15岁时身高都是156 cm ;(3)127cm【解析】试题分析:(1)根据横坐标与纵坐标表示的量解答;(2)根据交点的纵坐标相等可知二人身高相等;(3)根据平面直角坐标系确定横坐标为10时的身高值即可.试题解:(1)反映了身高随年龄的变化而变化的关系,自变量是年龄,因变量是身高;(2)A点表示小军和小蕊在11岁半时身高都是143厘米,B点表示小军和小蕊在15岁时身高都是156厘米;(3)小蕊10岁时身高127厘米.点睛:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的解决.。

变量之间的关系练习题附答案

变量之间的关系练习题附答案

变量之间的关系练习(1)附答案一、选择题(每题3分,共24分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是()2.秋天到了,葡萄熟了,一阵微风吹过,一颗葡萄从架上落下来,葡萄下落过程中速度与3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()4.某人骑车外出,所走的路程$(千米)与时间t(小时)的关系如图1所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②③B.①③C①④ D.②④5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图2所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4, 5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4, 5两月生产总量与3月持平C1月至3月生产总量逐月增加,4, 5两月均停止生产D.1月至3月生产总量不变,4, 5两月均停止生产6.如图3是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系7.如图4,射线/甲,/乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快 C甲、乙同速 D.不一定8. 2004年6月3日中央新闻报道.为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水%立方米,水费为y元,则%与y的关系用图象表示正确的是()二、填空题(每题3分,共24分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数%之间的关系式为(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间》(小时)的关系式为,该汽车最多可行驶小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_____ 是自变量,是因变量。

七年级数学专项习题——变量之间的关系(附参考答案)

七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(有答案解析)(4)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(有答案解析)(4)

一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快2.一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为() A.y=x(15-x) B.y=x(30-x) C.y=x(30-2x) D.y=x(15+x) 3.已知变量x,y满足下面的关系:x…-3-2-1123…y…1 1.53-3-1.5-1…则x,y之间的关系用函数表达式表示为()A.y=3xB.y=-3xC.y=-3xD.y=3x4.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A.B.C.D.5.如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地之间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.甲比乙晚到B地2h C.乙的速度是10km/h D.乙比甲晚出发2h7.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.8.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1)9.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量10.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 11.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个12.函数y=中自变量x的取值范围是( )A.x≤2B.x≥2C.x<2 D.x>2二、填空题13.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).14.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要km h的平均速度行驶20min到达单位,下班按原路返的聚集.小华爸爸早上开车以60/km h)之回,若返回时平均速度为v,则路上所用时间t(单位:h)与速度v(单位:/间的关系可表示为________.15.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.16.梯形的上底长是2,下底长是8,则梯形的面积y关于高x之间的关系式是______,自变量是____,因变量是______.17.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表:人的年龄x(岁)x≤6060<x<80x≥80“老人系数”06020x1按照这样的规定,“老人系数”为0.6的人的年龄是__岁.19.由于地球引力和月球引力的不同,因此,同一物体在地球上的重量和在月球上的重量是不相等的.同一物体在月球上的重量y(千克)与同一物体在地球上的重量x(千克)之间的关系式为y=16x,则在地球上重量为120千克的物体,在月球上重量减少了_______千克.20.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=6x;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是______(只填序号).三、解答题21.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.22.某地移动公司的通话时间(分)和需要的电话费(元)之间有如下表所示的关系:通话时1234567…间/分电话费0.40.81.21.62.02.42.8…/元(2)用x表示通话时间,用y表示电话费,请写出随着x的变化,y的变化趋势是什么?23.下面的统计图反映了某中国移动用户5月份手机的使用情况,该用户的通话对象分为三类:市内电话,本地中国移动用户,本地中国联通用户。

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)

第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。

C.变量是C、r。

D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。

x<2.D。

x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。

B点透露表现此时快车抵达乙地B。

B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。

D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。

发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。

S=10+t。

B.C。

S=D。

S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。

(好题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(包含答案解析)

(好题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(包含答案解析)

一、选择题1.为了更好地保护水资源,造福人类,某工厂计划建一个容积为200m3的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:S•h=200,则S关于h的函数图象大致是()A.B.C.D.2.已知圆柱的高为3 cm,当圆柱的底面半径r(cm)由小变大时,圆柱的体积V(cm3)随之变化,则V与r的关系式是 ( )A.V=πr2B.V=9πr2C.V=13πr2D.V=3πr23.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A.B.C.D.4.在弹性限度内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表,下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5A.x与y都是变量,且x是自变量,y是x的函数B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为23.5 cm5.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数6.下列各图给出了变量x 与y 之间的对应关系,其中y 是x 的函数的是( )A .B .C .D .7.根据图示的程序计算变量y 的对应值,若输入变量x 的值为-1,则输出的结果为( )A .-2B .2C .-1D .08.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q(升)与流出时间t(分钟)的函数关系是( )A .Q =0.2tB .Q =20﹣0.2tC .t =0.2QD .t =20﹣0.2Q9.如图,在ABC △中,6BC ,AD 为BC 边上的高,A 点沿AD 所在的直线运动时,三角形的面积发生变化,当ABC △的面积为48时,AD 的长为( ).A .8B .16C .4D .2410.如图,在梯形ABCD 中,AD ∥BC ,∠ABC=60º,AB=DC=2,AD=1,R 、P 分别是BC 、CD 边上的动点(点R 、B 不重合,点P 、C 不重合),E 、F 分别是AP 、RP 的中点,设BR=x ,EF=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A.B.C.D.11.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是A.B.C.D.12.某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了1,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解5析式和自变量取值范围分别是( )A .y=0.12x ,x >0B .y=60﹣0.12x ,x >0C .y=0.12x ,0≤x≤500D .y=60﹣0.12x ,0≤x≤500 二、填空题13.拖拉机工作时,油箱中的余油量Q (升)与工作时间t (时)的关系式为406Q t =-.当4t =时,Q =_________,从关系式可知道这台拖拉机最多可工作_________小时.14.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是____.15.如图,都是由边长为1的正方体叠成的图形。

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)

【精选】北师大版七年级下册数学第四章《变量之间的关系》综合测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P68习题T1变式】地表以下岩层的温度随着所处深度的变化而变化,在这一问题中因变量是( )A.地表B.岩层的温度C.所处深度D.时间2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为( )A.1 B.3 C.-1 D.-33.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的售价,x(支)表示圆珠笔的数量,那么y与x之间的关系应该是( )A.y=12x B.y=18x C.y=23x D.y=32x4.【教材P78复习题T6变式】小明从家出发,外出散步,到一个公共阅报栏前看了一会儿报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(m)与散步所用时间t(min)之间的关系.根据图象,下列信息错误..的是( )A.小明看报用时8 minB.公共阅报栏距小明家200 mC.小明离家最远的距离为400 mD.小明从出发到回家共用时16 min5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b(cm)与下降高度d(cm)的关系,下面能表示这种关系的式子是( )A.b=d2B.b=2d C.b=d2D.b=d+256.【2022·合肥一六八中学模拟】一个长方形的周长为24 cm,其中一边长为x cm,面积为y cm2,则y与x的关系式可写为( )A.y=x2B.y=(12-x)2 C.y=x(12-x) D.y=2(12-x) 7.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是( )A.861B.863C.865D.8678.【教材P74随堂练习T2改编】【2022·雅安】一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )9.如图是甲、乙两车在某时间段速度随时间变化的图象,下列结论错误..的是( )A.乙前4 s行驶的路程为48 mB.在0 s到8 s内甲的速度每秒增加4 mC.两车到第3 s时行驶的路程相等D.在4 s到8 s内甲的速度都大于乙的速度10.【2022·河北】某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),下列各图中正确的是( )二、填空题(每题3分,共24分)11.已知圆的半径为r,则圆的面积S与半径r之间有如下关系:S=πr2.在这个关系中,常量是__________,变量是__________.12.小虎拿6元钱去邮局买面值为0.8元的邮票,买邮票后所剩的钱数y(元)与买邮票的枚数x(枚)的关系式为________________,最多可以买________枚.13.【数学运算】根据如图所示的程序,当输入x=3时,输出的结果y是________.(第13题) (第14题) (第15题) 14.假定甲、乙两人在一次赛跑中,路程s(m)与时间t(s)的关系如图所示,则甲、乙两人中先到达终点的是________,乙在这次赛跑中的速度为__________.15.如图,长方形ABCD的四个顶点在互相平行的两条直线上,AD=10 cm.当点B,C在平行线上运动时,长方形的面积发生了变化.(1)在这个变化过程中,自变量是__________________,因变量是__________________________;(2)如果长方形的边AB长为x(cm),那么长方形的面积y(cm2)与x(cm)的关系式为____________.16.声音在空气中传播的速度y(m/s)与气温x(℃)之间的关系式为y=35x+331.(1)当气温为15 ℃时,声音在空气中传播的速度为__________;(2)当气温为22 ℃时,某人看到烟花燃放5 s后才听到响声,则此人与燃放的烟花所在地相距__________.17.某市自来水收费实行阶梯水价,收费标准如下表所示.月用水量不超过12 t的部分超过12 t不超过18 t的部分超过18 t的部分收费标准/(元/t)2.00 2.503.00 某户5月份交水费45元,则所用水量为__________.18.火车匀速通过隧道时,火车在隧道内的长度y(m)与火车行驶时间x(s)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120 m;②火车的速度为30 m/s;③火车整体都在隧道内的时间为25 s;④隧道的长度为750 m.其中,正确的结论是__________(把你认为正确结论的序号都填上).三、解答题(19,20,23题每题14分,其余每题12分,共66分)19.【教材P63随堂练习T2变式】下表是橘子的销售额随橘子卖出质量的变化表:质量/kg 1 2 3 4 5 6 7 8 9 …销售额/元 2 4 6 8 10 12 14 16 18 …(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是________元.(3)如果用x表示橘子卖出的质量,y表示销售额,按表中给出的关系,y与x之间的关系式为____________.(4)当橘子的销售额是100元时,共卖出多少千克橘子?。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(含答案解析)(1)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试(含答案解析)(1)

一、选择题1.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.2.如图,y与x之间的关系式为()A.y=x+60 B.y=x+120 C.x=60+y D.y=30+x3.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地之间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.甲比乙晚到B地2h C.乙的速度是10km/h D.乙比甲晚出发2h4.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个5.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度h1020304050607080(cm)小车下滑时间t4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50(s)下列说法错误的是()A.当h=50cm时,t=1.89sB.随着h逐渐升高,t逐渐变小C.h每增加10cm,t减小1.23sD.随着h逐渐升高,小车的速度逐渐加快6.在关于圆的面积的表达式S=πr2中,变量有( )A.4个B.3个C.2个D.1个7.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.8.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H是AC 边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH9.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F,设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图象是A.B.C.D.11.一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A.①② B.①③ C.②③ D.①②③12.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积12S ah,当高h为定值时,下列说法正确的是( )A.S,a是变量;12,h是常量B.S,a,h是变量;12是常量C.a,h是变量;S是常量D.S是变量;12,a,h是常量二、填空题13.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为406Q t=-.当4t=时,Q=_________,从关系式可知道这台拖拉机最多可工作_________小时.14.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势年份200620072008…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.15.园林队在某公司进行绿化,中间休息了一段时间,已知绿化面积S(平方米)与工作时间t(小时)的关系的图象如图所示,则休息后园林队每小时绿化面积为__平方米.16.已知方程x﹣3y=12,用含x的代数式表示y是______.17.某龙舟队参加“国际龙舟节”1000 米比赛项目时,路程 y(米)与时间 x(分钟)之间的图象如图所示.根据图中提供的信息,该龙舟队的比赛成绩_____ 分钟.18.下列是关于变量x与y的八个关系式:① y = x;② y2 = x;③ 2x2− y = 0;④ 2x − y2= 0;⑤ y = x 3 ;⑥ y =∣x ∣;⑦ x = ∣y ∣;⑧ x =2y.其中y 不是x 的函数的有_____.(填序号)19.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x (千克)表示,售价用y (元)表示,则y 与x 的关系式为_________;20.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.三、解答题21.在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:所挂物体的质量()x kg 01 2 3 45弹簧长度()y cm18 20 222426 28(1)在这个变化的过程中,自变量是 ;因变量是 ;(2)写出y 与x 之间的关系式,并求出当所挂重物为6kg 时,弹簧的长度为多少? 22.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下: 日期1 2 3 4 5 6 7 8 电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少. 23.观察图形,回答问题:(1)设图形的周长为L ,梯形的个数为n ,试写出L 与n 的关系式;(2)当n=11时,图形的周长是多少?24.某机动车出发前油箱内有油42L.行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图象回答问题.(1)机动车行驶几小时后加油?(2)中途加油________L;(3)如果加油站距目的地还有240km,车速为40km/h,要到达目的地,油箱中的油是否够用?并说明原因.25.将长为40 cm、宽为15 cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.…(1)根据上图,将表格补充完整:白纸张数12345…纸条长度40110145…(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为多少张白纸黏合起来总长度可能为2 018 cm吗?为什么?26.如图,在Rt△ABC中,已知∠C=90°,边AC=4cm,BC=5cm,点P为CB边上一点,当动点P沿CB从点C向点B运动时,△APC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)如果设CP长为x cm,△APC的面积为y cm,则y与x的关系可表示为_____;(3)当点P从点D(D为BC的中点)运动到点B时,则△APC的面积从____cm2变到_____cm2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.2.A解析:A【解析】【分析】由三角形外角性质可得结论.【详解】∵三角形一个外角等于与它不相邻的两个内角和,∴y=x+60.故选:A.【点睛】考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.3.B解析:B【解析】分析:根据图象可知,甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度.详解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象可知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选:B.点睛:本题考查了函数图像,一定要清楚的知道横纵坐标表示的实际意义.4.B解析:B【解析】根据图表可知随着排数的增大,座位数也增大.所以排数x是自变量,座位数y是因变量;根据图标中的数据可得y=47+3x.故①④正确.则选:B.5.C解析:C【解析】A.当h=50cm时,t=1.89s,故A正确;B.随着h逐渐升高,t逐渐变小,故B正确;C.h每增加10cm,t减小的值不一定,故C错;D.随着h逐渐升高,小车的时间减少,小车的速度逐渐加快,故D正确;故选:C.6.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C.7.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.8.D解析:D【解析】若CG的长为y,则y=2-x,故A选项不符合;若AG的长为y,随着x的增大,y是先减小后增大的,故B选项不符合;随着BG的逐渐增大,AH是先减小再增大,故C选项不符合;线段CH随着BG的逐渐增大是先增大后逐渐减小的,故D符合;故选D9.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10.A解析:A【分析】利用三角形相似求出y关于x的函数关系式,根据函数关系式进行分析求解.【详解】解:∵BC=4,BE=x,∴CE=4﹣x.∵AE⊥EF,∴∠AEB+∠CEF=90°,∵∠CEF+∠CFE=90°,∴∠AEB=∠CFE.又∵∠B=∠C=90°,∴Rt△AEB∽Rt△EFC,∴,即,整理得:y=(4x﹣x2)=﹣(x﹣2)2+∴y与x的函数关系式为:y=﹣(x﹣2)2+(0≤x≤4)由关系式可知,函数图象为一段抛物线,开口向下,顶点坐标为(2,),对称轴为直线x=2.故选A.【点睛】点评:本题考查了动点问题的函数图象问题,根据题意求出函数关系式是解题关键.11.C解析:C【解析】试题分析:看图,可知当X为0时函数不是最大值;当0<x<2时,函数的y随x的增大而减小,故②正确;如图可知在0<x0<1,当x=x0时,函数值为0.解:函数值大,就是对应的点高,因而①当x=0时,函数值最大;不正确.②当0<x<2时,函数对应的点函数对应的点越向右越向下,即y随x的增大而减小.函数在大于0并且小于1这部分,存在值是0的点,即图象与x轴有交点,③存在0<x0<1,当x=x0时,函数值为0,正确.故选C.考点:函数的图象.12.A解析:A 【详解】因为高h 为定值,所以h 是不变的量,即h 是常量,所以S ,a 是变量,12,h 是常量. 故选A.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题目意思将t=4代入计算Q 即可得到答案令Q≥0即可求出最多工作的时间【详解】解:当t=4时Q=40-24=16;根据台拖拉机工作时必须有油得到:Q≥0代入得到:解得:故答案为(1)16( 解析:203【分析】根据题目意思,将t=4代入计算Q 即可得到答案,令Q≥0即可求出最多工作的时间. 【详解】解:当t=4时,Q=40-24=16; 根据台拖拉机工作时必须有油得到: Q≥0,代入得到: 4060Q t =-≥, 解得:203t ≤, 故答案为(1). 16 (2). 203【点睛】本题主要考查了一次函数、一次函数在生活中的应用,做题是要注意自变量的取值范围,例如油量不可以为负数.14.年份入学儿童人数2014【分析】(1)根据题意每一年的递减人数相等判断出y 与x 是一次函数关系设y=kx+b 再取两组数据代入得到二元一次方程组求出kb 即可得到答案;(2)根据不超过1000人列出不等式解析:年份 入学儿童人数 2014 【分析】(1)根据题意,每一年的递减人数相等判断出y 与x 是一次函数关系,设y=kx+b ,再取两组数据代入得到二元一次方程组,求出k 、b 即可得到答案; (2)根据不超过1000人列出不等式,然后求解即可得到答案.【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量,故答案为:年份 ;入学儿童人数;(2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000,解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人.故答案为: 2014.【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.15.50【解析】试题分析:根据图像得:休息后园林队2小时绿化面积为160-60=100平方米休息后园林队每小时绿化面积为100÷2=50(平方米)故答案为50考点:函数图象解析:50【解析】试题分析:根据图像得:休息后园林队2小时绿化面积为160-60=100平方米,休息后园林队每小时绿化面积为100÷2=50(平方米).故答案为50考点:函数图象16.y=x ﹣4【解析】要用含x 的代数式表示y 就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可解:移项得:﹣3y=12﹣x 系数化为1得:y=x ﹣4故答案为y=x ﹣4解析:y =13x ﹣4【解析】 要用含x 的代数式表示y ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可.解:移项得:﹣3y=12﹣x ,系数化为1得:y=x ﹣4.故答案为y=x ﹣4.17.8【解析】由图中的信息可知该龙舟队前4分钟航行了800米从第4分钟开始速度为:(925-800)÷05=250(米/分)∴该龙舟队的比赛成绩为:4+(1000-800)÷250=4+08=48(分钟解析:8【解析】由图中的信息可知,该龙舟队前4分钟航行了800米,从第4分钟开始,速度为:(925-800)÷0.5=250(米/分),∴该龙舟队的比赛成绩为:4+(1000-800)÷250=4+0.8=4.8(分钟).故答案为:4.8.18.②④⑦【解析】根据函数的定义:在一个变化过程中若有两个变量xy 在一定的范围内当变量x 每取定一个值时变量y 都有唯一确定的值和它对应我们就说变量y 是变量x 的函数分析可知在上述反映变量y 与x 的关系式中y 不 解析:②④⑦【解析】根据函数的定义:“在一个变化过程中,若有两个变量x 、y ,在一定的范围内当变量x 每取定一个值时,变量y 都有唯一确定的值和它对应,我们就说变量y 是变量x 的函数”分析可知,在上述反映变量y 与x 的关系式中,y 不是x 的函数的有②④⑦,共3个. 故答案为②④⑦.19.y=3x 【解析】观察表中数据可知y 与x 之间是一次函数关系设y=kx+b(k≠0)将x=05y=15和x=1y=3代入y=kx+b(k≠0)中得解得故y 与x 的关系式为y=3x;点睛:根据实际问题确定一解析:y=3x【解析】观察表中数据可知y 与x 之间是一次函数关系,设y=kx+b(k≠0)将x=0.5,y=1.5和x=1,y=3代入y=kx+b(k≠0)中,得1.50.5{3k b k b=+=+, 解得=3{=0k b 故y 与x 的关系式为y=3x;点睛:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象再判断时一次函数还是其他函数,再利用待定系数法求解相关的问题.20.8【解析】【详解】解:由表格中的数据可知每上升05km 温度大约下降3℃∴向上攀登的海拔高度为23km 时登山队所在位置的气温约为﹣88℃故答案为﹣88解析:-8【解析】【详解】解:由表格中的数据可知,每上升0.5km ,温度大约下降3℃,∴向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为﹣8.8℃,故答案为﹣8.8.三、解答题21.(1)所挂物体的质量;弹簧的长度(2)y =2x +18,30cm .【分析】(1)利用自变量与因变量的定义分析得出答案;(2)利用表格中数据的变化进而得出答案.【详解】解:(1)所挂物体质量是自变量,弹簧长度是因变量;(2)由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,物体每增加1kg ,弹簧伸长2cm∴y =2x +18;当所挂重物为6kg 时,弹簧的长度为:y=12+18=30(cm ).【点睛】考查了函数的表示方法,本题需仔细分析表中的数据,进而解决问题.明确变量及变量之间的关系是解好本题的关键.22.120千瓦时【解析】试题分析:根据样本估计总体的统计思想,可先求出7天中用电量的平均数,作为6月份用电量的平均数,则一个月的用电总量即可求得.试题145117 301207-⨯=(千瓦时), 所以李明家6月份的总用电量是120千瓦时.点睛:本题主要考查了用样本估计总体的知识,解决本题的关键是要求得样本的平均数. 23.(1)L=3n+2;(2)35.【解析】试题分析:(1)由图可知,每增加一个梯形,就增加一个上下底的和,据此可得规律; (2)将数值代入解析式即可.试题(1)根据图,分析可得梯形的个数增加1,周长L 增加3.故L 与n 的关系式L =5+(n -1)×3=3n +2;(2)当n =11时,L =3×11+2=35.点睛:主要考查了函数的解析式的求法,首先审清题意,发现变量间的关系,再列出关系式或通过计算得到关系式,需注意结合实际意义,关注自变量的取值范围.24.(1)5小时(2)24(3)油箱中的油刚好够用.【解析】试题分析:(1)根据图象可得,5小时时,机动车内的油从12升变为了36升,故5小时后加油;(2)用36-12即可;(3)首先计算出耗油量,再根据路程和速度计算出行驶240km的时间,然后用时间乘以耗油量可得所消耗的油,和油箱里的油量进行比较即可.试题(1)根据图象可直接得到:机动车行驶5小时后加油;(2)36−12=24(L);(3)够用,耗油量:(42−12)÷5=6(km/L),240÷40=6(小时), 6×6=36(L),故够用.25.(1) 75,180;(2)y=35x+5;(3)不能.理由见解析.【分析】(1)根据题意找出白纸张数跟纸条长度之间的关系,然后求解填表即可;(2)x张白纸黏合,需黏合(x-1)次,重叠5(x-1)cm,所以总长可以表示出来;(3)当y=2018时,列出方程并解之,注意x是整数,若x为自变量取值范围内的值则能,反之不能.【详解】(1)由题意可得,2张白纸粘合后的长度为:402⨯-5=75cm,5张白纸黏合后的长度为:405⨯-54⨯=180cm,故答案为75,180;(2)根据题意和所给图形可得出:y=40x-5(x-1)=35x+5.(3)不能.理由如下:令y=2018得:2018=35x+5,解得x≈57.5.∵x为整数,∴不能使黏合的纸片总长为2018cm【点睛】本题主要考查了函数关系式的知识,解答本题的关键在于熟读题意发现题目中纸张长度的变化规律,并求出正确的函数关系式.26.(1) 自变量是CP的长,因变量是△APC的面积;(2) y=2x;(3)5,10【解析】【分析】(1)根据函数自变量和因变量的概念解答即可;(2)根据三角形的面积公式列出关系式;(3)计算出CD的长度,求出相应的面积,求差得到答案.【详解】(1)自变量是CP的长,因变量是△APC的面积;(2)y=12×4×x=2x所以y与x的关系可表示为y=2x;(3)当x=52时,y=5;当x=5时,y=10,所以△APC的面积从5cm2变到10cm2.【点睛】考查的是函数关系式、自变量和因变量、求函数值的知识,属于基础题,学生认真阅读题意即可作答.。

七年级下册数学《第三章-变量之间的关系》测试题(有答案)

七年级下册数学《第三章-变量之间的关系》测试题(有答案)

第三章《变量之间的关系》水平测试一、选一选,看完四个选项后再做决定呀!(每小题3分,共30分)1.下面说法中正确的是 【 】. A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系 C.借助表格可以表示出因变量随自变量的变化情况 D.以上说法都不对2.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是 【 】. A .y=12x B.y=18x C.y=x D.y=x3. 一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程(千米)和行驶时间(小时)的关系的是 【 】.A B C D 4.在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为,则当时,该物体所经过的路程为 【 】. A.28米 B . 48米 C .57米 D . 88米 5.在某次试验中,测得两个变量和之间的4组对应数据如下表:1 2 3 40.012.98.0315.1则与之间的关系最接近于下列各关系式中的 【 】.A .B .C .D .6.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点….用S 1,S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是 【 】.7.正常人的体温一般在左右,但一天中的不同时刻不尽相同,如图1反映了一天24小时内小红的体温变化情况,下列说法错误的是 【 】.A.清晨5时体温最低36.5 1712 5 0 T/t/h24 37.5 图1B.下午5时体温最高C.这一天小红体温T 的范围是36.5≤T ≤37.5D.从5时至24时,小红体温一直是升高的8.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 … 1 2 345… 输出……那么,当输入数据8时,输出的数据是 【 】. A.B.C.D.9. 如图2,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是 【 】. A.第3分时汽车的速度是40千米/时 B.第12分时汽车的速度是0千米/时 C.从第3分到第6分,汽车行驶了120千米D.从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. 向高为10厘米的容器中注水,注满为止,若注水量V (厘米3)与水深h (厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【 】.二、填一填,要相信自己的能力!(每小题3分,共30分) 1.对于圆的周长公式c=2r ,其中自变量是____,因变量是____. 2.在关系式y=5x+8中,当y=120时,x 的值是 .3.一蜡烛高20 厘米,点燃后平均每小时燃掉4厘米,则蜡烛点燃后剩余的高度h(厘米)与燃烧时间t(时)之间的关系式是__________(0≤t ≤5). 4.等腰三角形的周长为12厘米,底边长为厘米,腰长为厘米. 则与的之间的关系式是 .5.如图4所示的关系图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.6.小亮帮母亲预算家庭月份电费开支情况,下表是小亮家月初连续天每天早上电表显示的读数. 日期︳日 1 2 3 4 5 6 7 8图2图3图4电表读数︳度21 24 28 33 39 42 46 49(1)表格中反映的变量是______,自变量是______,因变量是______.(2)估计小亮家月份的用电量是______,若每度电是元,估计他家月份应交的电费是______.7.如图5所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 .8.根据图6中的程序,当输入x =3时,输出的结果y = .9. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图7所示,若返回时上、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是_______分.10. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围)三、做一做,要注意认真审题呀!(本大题共38分)1.(8分)下表是三发电器厂2007年上半年每个月的产量:x/月 1 2 3 4 5 6y/台10 000 10 000 12 000 13 000 14 000 18 000(1)根据表格中的数据,你能否根据x的变化,得到y的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高?(3)试求2007年前半年的平均月产量是多少?2.(10分)星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶1.5小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在右面的图8中,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.3.(10分)将若干张长为20厘米、宽为10厘米的长方形白纸,按图9所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x 之间的关系式,并求当x=20时,y的值.图9时间/分18 363696路程/百米图7图84.(10分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间? (2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)四、拓广探索(本大题共22分)1.(10分)如图11所示,是小杰在上学路上,行车的速度随时间的变化情况,请你运用生动、形象的语言描述一下他在不同的时间里,都做了什么事情.2.(12分)某公司有2位股东,20名工人. 从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图12所示.(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?参考答案年 份2006年2007年2008年工人的平均工资/元 5 000股东的平均利润/元 25 000图 12时间速度 0图11甲乙 1 234565 10 15 20 25 30 x ︱分0 图10 y ︱公里一、1~10 CC C CD BA C CB二、1.r,c. 2.22.4. 3.h=20-4t. 4.y=12-2x. 5.6.6.(1)日期和电表读数;日期;电表读数;(2)度,元.7.38.2. 8.2. 9. 37.2. 10. 18,y=13+0.5x.三、1. (1)随着月份x的增大,月产量y正在逐渐增加;(2)1月、2月两个月的月产量不变,3月、4月、5月三个月的产量在匀速增多,6月份产量最高;(3)约为13 000(台).2.图象略.3.(1)4张白纸粘合后的总长度是20×4-3×2=74(厘米).(2)y=20x-2(x-1).当x=20时,y=20×20-2×(20-1)=362.4.(1)甲先出发;先出发10分钟;乙先到达终点;先到5分钟.(2)甲的速度为每分钟0.2公里,乙的速度为每分钟0.4公里.(3)在甲出发后10分钟到25分钟这段时间内,两人都行驶在途中.四、1. 略.2. (1) 工人的平均工资:2007年6 250元,2008年7 500元.股东的平均利润:2007年37 500元,2008年50 000元.(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x. 解得x=6 .所以到2006年每位股东年平均利润是每位工人年平均工资的8倍.。

(好题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)

(好题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(含答案解析)

一、选择题1.一个长方形的周长为30,则长方形的面积y 与长方形一边长x 的关系式为( ) A .y=x(15-x) B .y=x(30-x) C .y=x(30-2x) D .y=x(15+x) 2.下面说法中正确的是( )A .两个变量间的关系只能用关系式表示B .图象不能直观的表示两个变量间的数量关系C .借助表格可以表示出因变量随自变量的变化情况D .以上说法都不对3.在圆的面积计算公式2S r π=,其中r 为圆的半径,则变量是( )A .SB .RC .π,rD .S ,r 4.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系5.下表反映的是某地区电的使用量x (千瓦时)与应交电费y (元)之间的关系,下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是x 的函数B .用电量每增加1千瓦时,电费增加0.55元C .若用电量为8千瓦时,则应交电费4.4元D .y 不是x 的函数6.甲、乙两同学从A 地出发,骑自行车在同一条公路上行驶到距A 地60千米的B 地,他们距出发地的距离s(千米)和行驶时间t(小时)之间的关系如图所示,根据图中提供的信息,符合图象描述的说法是( )A .乙在行驶过程中休息了一会儿B .甲在行驶过程中没有追上乙C .甲比乙先出发1小时D .甲行驶的速度比乙行驶的速度快7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是A .B .C .D . 8.函数y=5x x -中,自变量x 的取值范围为( ) A .x >5B .x≠5C .x≠0D .x≠0或x≠5 9.在关于圆的面积的表达式S =πr 2中,变量有( )A .4个B .3个C .2个D .1个 10.如图1,在等边三角形ABC 中,AB =2,G 是BC 边上一个动点且不与点B 、C 重合,H 是AC 边上一点,且°.设BG=x ,图中某条线段长为y ,y 与x 满足的函数关系的图象大致如图2所示,则这条线段可能是图中的( )A .线段CGB .线段AGC .线段AHD .线段CH 11.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,两人行驶的路程y (km)与甲出发的时间x (h)之间的函数图象如图所示.根据图象得到如下结论,其中错误的是( )A .甲的速度是60km/hB .乙比甲早1小时到达C .乙出发3小时追上甲D .乙在AB 的中点处追上甲12.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x +二、填空题13.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要km h的平均速度行驶20min到达单位,下班按原路返的聚集.小华爸爸早上开车以60/km h)之回,若返回时平均速度为v,则路上所用时间t(单位:h)与速度v(单位:/间的关系可表示为________.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.函数y=中自变量x的取值范围是________.x+316.一辆汽车出发时邮箱内有油48升,出发后每行驶1 km耗油0.6升,如果设剩油量为y(升),行驶路程为x(km).则y与x的关系式为_________________;这辆汽车行驶35 km 时,汽车剩油____升;当汽车剩油12升时,行驶了_______千米.17.某兴趣小组从学校出发骑车去植物园参观,先经过一段上坡路后到达途中一处景点,停车10分钟进行参观,然后又经一段下坡路到达植物园,行程情况如图,若他们上、下坡路速度不变,则这个兴趣小组的同学按原路返回所用的时间为________分钟.(途中不停留)18.用一水管向某容器内持续注水,设单位时间内注入的水量保持不变;在注水过程中,表示容器内水深h与注水时间t的关系有如图所示的A,B,C,D四个图象,它们分别与E,F,G,H四种容器中的其中一种相对应,请你把相对应容器的字母填在下面的横线上.A→____________;B→____________;C→____________;D→____________.19.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).20.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.三、解答题21.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.22.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?23.某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话).若一个月通话x分钟,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系式;(2)一个月内通话多少分钟,两种方式费用相同?(3)某人估计一个月内通话300分钟,应选择哪种方式更合算些?24.如图所示,梯形的上底AD=4,下底BC=6,CD=8,∠C=∠D=90°,点M从点C出发向点D移动,连接AM,BM,假设阴影部分的面积是y,CM的长度为x.(1)写出变量y与x之间的关系式;(2)当x=2时,阴影部分的面积是多少?(3)在点M的移动过程中,是否存在阴影部分的面积等于梯形面积的14,若存在,求出x的值;若不存在,简单说明理由.25.星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.26.如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点……数(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n 层所对应的点数,以及n 层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【详解】∵长方形的周长为30,其中一边长为x ,∴该长方形的另一边长为:15x -,∴该长方形的面积:(15)y x x =-.故选A.2.C解析:C【解析】表示函数的方法有三种:解析法、列表法和图象法.解:A 、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误; B 、图象能直观的表示两个变量间的数量关系,故错误;C 、借助表格可以表示出因变量随自变量的变化情况,正确;D 、以上说法都不对,错误;故选C .3.D解析:D【分析】在圆的面积计算公式2S r π=中,π是圆周率,是常数,变量为S ,R .【详解】在圆的面积计算公式2S r π=中,π是圆周率,是常数,变量为S ,R .故选D.【点睛】本题主要考查常量与变量,解题关键是熟练掌握圆的面积S 随半径的变化而变化. 4.B解析:B【分析】根据图象信息可知,是s 随t 的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s 随t 的增大而增大,A :热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B :汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C :飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D :踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B .【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.5.D解析:D【分析】结合表格中数据变化规律进而得出y 是x 的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A 、x 与y 都是变量,且x 是自变量,y 是x 的函数,正确,不合题意;B 、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C 、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D 、y 不是x 的函数,错误,符合题意.故选:D .【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.6.D解析:D【解析】【分析】如图,依题意,该图象是路程与时间的关系,而且甲线的倾斜度比乙的大,故甲行驶的速度比乙的快.【详解】根据题意和图象可知:图象时连续的乙在行驶过程中没有休息;甲在行驶过程中追上乙,并超过了乙;甲比乙晚出发1小时;甲行驶速度比乙行驶的速度快.故选:D.【点睛】本题考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.7.C解析:C【解析】容器上粗下细,杯子里水面的高度上升应是先快后慢.故选C.8.B解析:B【解析】【分析】根据分式的意义的条件:分母不等于0,可以求出x的范围.【详解】根据题意得:x-5≠0,解得:x≠5.故选B.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 10.D解析:D【解析】若CG的长为y,则y=2-x,故A选项不符合;若AG的长为y,随着x的增大,y是先减小后增大的,故B选项不符合;随着BG的逐渐增大,AH是先减小再增大,故C选项不符合;线段CH随着BG的逐渐增大是先增大后逐渐减小的,故D符合;故选D11.C解析:C【解析】A.根据图象得:360÷6=60km/h,故正确;B. 根据图象得,乙比甲早到1小时;C.乙的速度为:360÷4=90km/h,设乙a 小时追上甲,90a=60(a+1)解之得a=2,故不正确;D. ∵90×2=180km, ∴乙在AB 的中点处追上甲,故正确;12.C解析:C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .y =20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.二、填空题13.【分析】根据路程=速度×时间可计算出家与单位之间的总路程再根据速度v =路程÷时间t 即可得出答案【详解】解:∵∴小华爸爸下班时路上所用时间(单位:)与速度v (单位:)之间的关系可表示为:故答案为:【点 解析:20t v =【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间t 即可得出答案.【详解】解:∵20602060km ⨯= ∴小华爸爸下班时路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为:20t v=.故答案为:20tv .【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时应该是取让两个条件都满足的公共部分【详解】根据题意得到:x+3>0解得x>-3故答案为x>-3解析:x>﹣3【解析】【分析】根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【详解】根据题意得到:x+3>0,解得x>-3,故答案为x>-3.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.16.y=48-06x2760【解析】(1)由题意可得y与x的关系式是:y=48−06x;(2)当x=35时y=48−06×35=48−21=27当y=12时12=48−06x解得x=60即这辆汽车行驶3解析:y=48-0.6x 27 60【解析】(1)由题意可得,y与x的关系式是:y=48−0.6x;(2)当x=35时,y=48−0.6×35=48−21=27,当y=12时,12=48−0.6x,解得,x=60,即这辆汽车行驶35km时,剩油27升;汽车剩油12升时,行驶了60千米。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测(包含答案解析)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测(包含答案解析)

一、选择题1.某品牌热水壶的成本为50元,销售商对其销量与定价的关系进行了调查,结果如下:定价/元708090100110120销量/把801001101008060A.115元B.105元C.95元D.85元2.为了更好地保护水资源,造福人类,某工厂计划建一个容积为200m3的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:S•h=200,则S关于h的函数图象大致是()A.B.C.D.3.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.4.从甲地到乙地的铁路路程约为615千米,高铁速度为300千米/小时,直达;动车速度为200千米/小时,行驶180千米后,中途要停靠徐州10分钟,若动车先出发半小时,两车与甲地之间的距离y(千米)与动车行驶时间x(小时)之间的函数图象为()A.B.C.D.5.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D6.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( )A.B.C.D.7.某大剧场地面的一部分为扇形,观众席的座位数按下列方式设置:排数(x)1234…座位数(y)50535659…有下列结论:①排数x是自变量,座位数y是因变量;②排数x是因变量,座位数y是自变量;③y=50+3x;④y=47+3x,其中正确的结论有( )A.1个B.2个C.3个D.4个8.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( )A.-2 B.2 C.-1 D.09.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A.B.C.D.10.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而()高度x/km012345678气温y/℃282216104-2-8-14-20A.升高B.降低C.不变D.以上答案都不对11.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=2x+D.y=12 x+12.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x 与售价y如下表:长度x/m1234…售价y/元8+0.316+0.624+0.932+1.2…下列用长度x表示售价y的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x二、填空题13.拖拉机工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为406Q t=-.当4t=时,Q=_________,从关系式可知道这台拖拉机最多可工作_________小时.14.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(小时)的关系式为_____,该汽车最多可行驶_____小时.15.在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间(分)和温度T(℃)的数据:在水烧开之前(即),温度T与时间的关系式为__________.16.下表是某报纸公布的我国“九五”期间国内生产总值(GDP)的统计表,那么这几年间我国国内生产总值平均每年比上一年增长___万亿元.年份19961997199819992000GDP/万亿元 6.67.37.98.28.917.在一个边长为2的正方形中挖去一个边长为x (0<x <2)的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是_____.18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表: 人的年龄x (岁) x≤60 60<x <80x≥80 “老人系数”6020x - 1按照这样的规定,“老人系数”为0.6的人的年龄是__岁.19.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.20.如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8点从同一地点出发,请你根据图中给出的信息,算出乌龟在___点追上兔子.三、解答题21.如图,已知在Rt ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,点D 在斜边AB 上,将ABC 沿着过点D 的一条直线翻折,使点B 落在射线BC 上的点B '处,连接DB '并延长,交射线AC 于E .(1)当点B'与点C重合时,求BD的长.(2)当点E在 AC的延长线上时,设BD为x,CE为y,求y关于x函数关系式,并写出定义域.(3)连接AB',当AB D'是直角三角形时,请直接写出BD的长.22.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同图反映了一天24小时内小明体温的变化情况:(1)什么时间体温最低?什么时间体温最高?最低和最高体温各是多少?(2)一天中小明体温T(单位:℃)的范围是多少.(3)哪段时间小明的体温在上升,哪段时间体温在下降.(4)请你说一说小明一天中体温的变化情况.23.某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元.该店制定了两种优惠方案.方案1:买一个书包赠送一个文具盒;方案2:按总价的9折(总价的90%)付款.某班学生需购买8个书包,文具盒若干(不少于8个),如果设文具盒数为x(个),付款数为y(元).(1)分别求出两种优惠方案中y与x之间的关系式;(2)购买文具盒多少个时两种方案付款相同;购买文具盒数大于8个时,两种方案中哪一种更省钱?24.由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t (天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米? (2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?25.设路程为s km ,速度为v km/h ,时间t h ,指出下列各式中的常量与变量. (1)v=8s; (2)s=45t ﹣2t 2; (3)vt=100. 26.在数轴上,若点A,B 表示的数分别为3和x,则A,B 之间的距离y 与x 之间的关系式为3y x =-.(1)当x 的值为-5时,求y 的值; (2)根据关系式,完成下表: x -1123456y【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据表格中定价的变化和销量的变化即可解答. 【详解】解:由表中数据可知,定价为90元时,销量达到最大为110把,而销售105把水壶,销量位于100把到110把之间,而当定价在80元到90元时,定价每增加1元,销量增加1把,销量呈递增趋势,当定价在90元到100元时,定价每增加1元,销量减少1把,销量呈递减趋势,故定价约为80+(105-100)÷1=85元,故选:D.【点睛】本题考查了用表格法表示两个变量之间的关系,解答的关键是读懂题意,能从表格中找到有效信息解决问题.2.C解析:C【解析】【分析】首先利用已知得出S与h的函数关系式,进而利用h的取值范围得出函数图象.【详解】解:∵S•h=200,∴S关于h的函数关系式为:S=200,故此函数图象大致是:反比例函数图象,即双曲h线,故选C.【点睛】本题考查函数图象,得出S与h的函数关系式是解题关键.3.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.4.B解析:B【分析】先根据两车并非同时出发,得出D选项错误;再根据高铁从甲地到乙地的时间以及动车从甲地到乙地的时间,得出两车到达乙地的时间差,结合图形排除A、 C选项,即可得出结论.【详解】解:由题可得,两车并非同时出发,故D选项错误;高铁从甲地到乙地的时间为615÷300=2.05h 动车从甲地到乙地的时间为615÷200+16≈3.24h,动车先出发半小时,∴两车到达乙地的时间差为3.24-2.05-0.5=0.69h,该时间差小于动车从甲地到乙地所需时间的一半,故C选项错误;0.69>0.5,∴两车到达乙地的时间差大于半小时,故A选项错误,动车行驶180千米所需的时间为180÷200=0.9h,而高铁迟出发0.5h,∴0.9>0.5,故B选项符合题意,A选项不合题意.所以B选项是正确的.【点睛】本题主要考查函数与函数的图像.5.A解析:A【解析】由题意可知,符合实际情况的是A选项中的图象,而选项B、C、D中的图象都与实际情况不符.故选A.6.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.7.B解析:B【解析】根据图表可知随着排数的增大,座位数也增大.所以排数x是自变量,座位数y是因变量;根据图标中的数据可得y=47+3x.故①④正确.则选:B.8.B解析:B 【解析】当x=−1时,y=x 2+1=(−1)2+1=1+1=2, 故选B.9.C解析:C 【解析】从速度变化情况来看,先匀加速行驶,再匀速行驶,最后减速为0, 故选C .【点睛】本题考查了函数的图象,解题的关键是此题主要看速度变化即可,时间只是个先后问题.10.B解析:B 【解析】从表格中的数据可以看出,高度一直在变大,而气温一直在降低. 所以气温y 随高度x 的增大而降低. 故应选B.11.C解析:C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误; B .22y x =+,x 为任意实数,故错误;C .y =20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.12.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题13.【分析】根据题目意思将t=4代入计算Q 即可得到答案令Q≥0即可求出最多工作的时间【详解】解:当t=4时Q=40-24=16;根据台拖拉机工作时必须有油得到:Q≥0代入得到:解得:故答案为(1)16( 解析:203【分析】根据题目意思,将t=4代入计算Q 即可得到答案,令Q≥0即可求出最多工作的时间. 【详解】解:当t=4时,Q=40-24=16; 根据台拖拉机工作时必须有油得到: Q≥0,代入得到: 4060Q t =-≥, 解得:203t ≤, 故答案为(1). 16 (2). 203【点睛】本题主要考查了一次函数、一次函数在生活中的应用,做题是要注意自变量的取值范围,例如油量不可以为负数.14.y =40﹣5x8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量可列出函数关系式进而得出行驶的最大路程【详解】依题意得油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x 当y =解析:y =40﹣5x 8【分析】根据:油箱内余油量=原有的油量﹣x 小时消耗的油量,可列出函数关系式,进而得出行驶的最大路程. 【详解】依题意得,油箱内余油量y (升)与行驶时间x (小时)的关系式为:y =40﹣5x , 当y =0时,40﹣5x =0, 解得:x =8,即汽车最多可行驶8小时. 故答案为:y =40﹣5x ,8. 【点睛】本题考查了列函数关系式以及代数式求值.关键是明确油箱内余油量,原有的油量,x 小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.15.T=7t+30【解析】【分析】由表知开始时温度为30℃再每增加2分钟温度增加14℃即每增加1分钟温度增加7℃可得温度T与时间t的关系式【详解】解:∵开始时温度为30℃每增加1分钟温度增加7℃∴温度T解析:T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T与时间t的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T与时间t的关系式为:T=30+7t.故答案为:T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.16.575【分析】由表中可知这几年国内生产总值增长的数量用总的增长数量除以年数可以得出这几年我国国内生产总值平均比上一年增长的数量【详解】(07+06+03+07)÷4=0575故答案为0575【点睛】解析:575【分析】由表中可知这几年国内生产总值增长的数量,用总的增长数量除以年数可以得出这几年我国国内生产总值平均比上一年增长的数量【详解】(0.7+0.6+0.3+0.7)÷4=0.575.故答案为0.575.【点睛】本题结合增长率的有关计算考查统计的有关知识.17.y=4-x2【解析】分析:根据剩下部分的面积=大正方形的面积-小正方形的面积得出y与x的函数关系式即可详解:由题意知:剩余面积大正方形面积小正方形面积即y=2²-x²=-x²+4故答案为y=2²-x解析:y=4-x2【解析】分析:根据剩下部分的面积=大正方形的面积-小正方形的面积,得出y与x的函数关系式即可.详解:由题意知:剩余面积大正方形面积小正方形面积,即y=2²-x²=-x²+4.故答案为y=2²-x²=-x²+4(0<x<2).点睛:本题考查了根据实际问题列出二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积的得出是解答本题的关键.18.72【分析】根据所给的函数关系式所对应的自变量的取值范围发现:当y=06时在60<x <80之间所以将y 的值代入对应的函数解析式即可求得函数的值【详解】解:设人的年龄为x 岁∵老人系数为06∴由表得60解析:72 【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当y=0.6时,在60<x <80之间,所以将y 的值代入对应的函数解析式即可求得函数的值. 【详解】解:设人的年龄为x 岁, ∵“老人系数”为0.6, ∴由表得60<x <80, 即6020x -=0.6,解得,x=72, 故“老人系数”为0.6的人的年龄是72岁. 故答案为:7219.【解析】小红家与学校的距离为6km 从图象可知她从学校到家用时为3-2=1小时故从学校到家的平均速度等于6÷1=6km/h 故答案为:6【点睛】本题考查了函数的图象分段函数解此题的关键是找到相应的路程与解析:【解析】小红家与学校的距离为6km ,从图象可知她从学校到家用时为3-2=1小时,故从学校到家的平均速度等于6÷1=6 km/h , 故答案为:6.【点睛】本题考查了函数的图象,分段函数,解此题的关键是找到相应的路程与时间,根据速度=路程÷时间得到相应的速度.20.18【解析】两个函数图形的交点的横坐标是10说明10小时后乌龟追上兔子此时的时间为:8+10=18时故答案为18解析:18 【解析】两个函数图形的交点的横坐标是10,说明10小时后,乌龟追上兔子,此时的时间为:8+10=18时. 故答案为18.三、解答题21.(1)BD=1;(2)1(01)y x x =-+<<;(3)23或43. 【分析】(1)由直角三角形中,30°角所对的直角边等于斜边的一半,解得AC 的长,再根据勾股定理解得BC 的长,根据折叠的性质可得DB DB '=,结合三角形外角性质可得60ADB '∠=︒,当点B '与点C 重合时,可证明△ADC 是等边三角形,最后由等边三角形的性质解题即可;(2)过D 作DH BC ⊥于H ,在Rt BDH △中,设BD x =,由含30°角的直角三角形性质解得则3,3BH x BB x '==,在Rt B EC '△中,设EC y =,3B C y '=,最后由BC BB B C ''=+解题即可;(3)设DH a =,先证明60ADB '∠=︒,当AB D '是直角三角形时,再分类讨论①当90AB D '∠=︒时或②当90B AD '∠=︒时,分别利用含30°角的直角三角形性质和勾股定理解得a 的值即可解题. 【详解】解:(1)在Rt △ABC 中,90,30,2ACB B AB ∠=︒∠=︒=,112AC AB ∴==,根据勾股定理得,3BC =, ∵由折叠知,DB DB '=, 30B BB D '∴∠=∠=︒,60ADB B BB D ''∴∠=∠+∠=︒,当点B '与点C 重合时,DC=DB ,60A ADC ∠=∠=︒, ∴△ADC 是等边三角形, ∴AD= AC=1, ∴BD=AB-AD=1;(2)如图1,过D 作DH BC ⊥于H ,在Rt BDH △中,设,30BD x B =∠=︒,则3,3BH BB x '==, 在Rt B EC '△中,设,30EC y EB C '=∠=,则3B C '=,333BC BB B C x y ''∴=+=+=,1(01)y x x ∴=-+<<;(3)设DH a =,在Rt BDH △中,2,3BD a BH a ==,2,23DB BD a BB BH a ''====,由(1)知,60ADB '∠=︒,AB D '△是直角三角形,∴①当90AB D '∠=︒时,如图2,在Rt AB D '△中,9030B AD ADB ''∠=︒-∠=︒,24,323AD B D a AB B D a '''∴====,在Rt ACB '△中,323B C BC BB a ''=-=-, 根据勾股定理得,222AB B C AC ''=+, 即22(23)(323)1a a =-+, 解得13a =, 223BD a ∴==; ②当90B AD '∠=︒时,如图3,同①的方法得,43BD =,综上所述,当AB D '是直角三角形时,满足条件的23BD =或43【点睛】本题考查含30°角的直角三角形、三角形的外角、一次函数、勾股定理、等边三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃.(2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)见解析 【分析】(1)根据图象进行作答即可; (2)根据图象进行作答即可; (3)根据图象进行作答即可; (4)根据图象进行作答即可.(1)5时最低,17时最高,最低气温为36.5℃,最高气温为37.5℃. (2)36.5℃至37.5℃之间.(3)5时至17时体温上升,0时至5时和17时至24时体温在下降.(4)凌晨0至5时,小明体温在下降,5时体温最低是36.5℃;5至17时,小明体温在上升,17时体温最高是37.5℃;17至24时,小明体温在下降. 【点睛】本题考查了图象与变量的问题,掌握图象与变量的关系是解题的关键.23.(1)方案1:5200y x =+,方案2:92162y x =+;(2)32个;当文具盒数量多于32个时,方案2省钱,当文具盒数量多于8个而少于32个时,方案1省钱. 【分析】(1)对方案1,根据付款数=8个书包的价钱+(x -8)个文具盒的价钱列式解答即可;对方案2:根据付款数=(8个书包的价钱+x 个文具盒的价钱)×90%列式解答即可; (2)先计算出两种付款方案相同时文具盒的个数,再分情况讨论. 【详解】解:(1)方案1:()830585200y x x =⨯+-=+;方案2:()9830590%2162y x x =⨯+⨯=+; (2)若两种方案付款相同,则有952002162x x +=+,解得32x =. 当文具盒数量多于32个时,方案2省钱,当文具盒数量多于8个而少于32个时,方案1省钱. 【点睛】本题考查的是用关系式表示变量之间的关系、一元一次方程的解法和代数式求值,正确理解题意、弄清题目中的数量关系、全面分类是解题的关键.24.(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米;(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报;(3)持续干旱50天后水库将干涸. 【解析】 【分析】(1)原蓄水量即t =0时v 的值,t=50时,v=0,得v 与t 的函数关系,持续干旱10天后的蓄水量即t =10时v 的值;(2)即找到v =400时,相对应的t 的值;(3)从第10天到第30天,水库下降了800−400=400万立方米,一天下降=20万立方米,第30天的400万立方米还能用=20天,即50天时干涸.解:(1)当t=0时,v=1000∴水库原蓄水量为1000万米3,干涸的速度为1000÷50=20,所以v=1000-20t,当t=10时,v=800,∴水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)当v=400时,t=30,∴持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库下降了(800﹣400)万立方米,一天下降=20万立方米,故根据此规律可求出:30+=50天,那么持续干旱50天后水库将干涸.【点睛】本题考查了函数图象的问题,解题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,得到相应的点的意义.25.(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.【解析】【分析】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可直接得到答案.【详解】(1)常量是8,变量是v,s;(2)常量是45,2,变量是s,t;(3)常量是100,变量是v,t.【点睛】本题考查了常量和变量的定义,常量就是在变化过程中不变的量,变量就是可以取到不同数值的量.26.(1) 8.(2)4 3 2 1 0 1 2 3【解析】试题分析:(1)把x=-5代入y=|x-3|进行计算即可得;(2)根据y=|x-3|把相应的x值代入进行计算即可得.试题--=8;(1)当x的值为-5时,y=53(2)填表如下:x-10123456y43210123。

七年级数学下册《变量之间的关系》练习题附答案(北师大版)

七年级数学下册《变量之间的关系》练习题附答案(北师大版)

七年级数学下册《变量之间的关系》练习题附答案(北师大版)班级:___________姓名:___________考号:___________一、选择题1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器2.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数3.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm4.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃-20 -10 0 10 20 30声速/(m/s) 318 324 330 336 342 34下列说法错误的是( )A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s5.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各表达式中的( )m 1 2 3 4v 0.01 2.9 8.03 15.1A.v=2m-2B.v=m2-1C.v=3m-3D.v=m+16.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )d 50 80 100 150b 25 40 50 75A.b=d2B.b=2dC.b=12d D.b=d+257.李大爷想围成一个如图所示的长方形菜园,已知长方形菜园ABCD的面积为24平方米,设BC边的长为x米,AB边的长为y米,则y与x之间的函数解析式为()A.y=24xB.y=-2x+24C.y=2x-24D.y=12x-128.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s(千米)与行驶时间t(时)之间的函数关系式及自变量的取值范围是( )A.s=120﹣30t(0≤t≤4)B.s=30t(0≤t≤4)C.s=120﹣30t(t>0)D.s=30t(t=4)9.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小10.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )11.某学校组织团员举行“伏羲文体旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是( )A.33分钟B.46分钟C.48分钟D.45.2 分钟12.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35 h时,选择B方式最省钱D.每月上网时间超过70 h时,选择C方式最省钱二、填空题13.小丽烧一壶水,发现在一定时间内温度随时间的变化而变化,即随时间的增加,温度逐渐增高,如果用t表示时间,T表示温度,则_____是自变量,_____是因变量.14.已知3x﹣y=7中,变量是,常量是 .把它写成用x的式子表示y的形式是 .15.一辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的关系式为,自变量是,因变量是.16.弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为 .17.有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水高度y(米)与注水时间x(小时)之间的函数图象如图,若要使甲、乙两个蓄水池蓄水深度相同,则注水时间应为小时.18.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发小时,快车追上慢车行驶了千米,快车比慢车早小时到达B地.三、解答题19.已知高度每增加1000米,气温下降6℃,如果某地面气温为22℃(1)分别计算出该地1000米、2000米高空的气温.(2)若h米高空的气温为T,试写出T与h的关系,并指出关系式中的常量和变量.20.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).提出概念所用时间(x) 2 5 7 10 12 13 14 17 20对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.21.下列是三种化合物的结构式及分子式⑴请按其规律,写出下一种化合物的分子式....⑵每一种化合物的分子式中H的个数m是否是分子式中C的个数n的函数?如果是,请你其写出关系式.22.一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?23.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图.请你根据图象解决下列问题:⑴谁先出发?先出发多少时间?谁先到达终点?先到多少时间?⑵分别求出甲、乙两人的行驶速度;⑶在什么时间段内,两人均行驶在途中(不包括起点和终点)?请你根据图中的情形,分别求出关于行驶时间x与行程y之间的函数关系式,根据图象回答:①两人相遇;②甲在乙的前面;③甲在乙后面.24.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图象进行以下探究:【信息读取】(1)甲、乙两地相距千米,两车出发后小时相遇;(2)普通列车到达终点共需小时,普通列车的速度是千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车到达乙地,求此时普通列车还需行驶多少千米到达甲地?25.小刚周末骑单车从家出发去少年宫,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的深圳书城,买到书后继续前往少年宫,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小刚从家到深圳书城的路程是多少米?(2)小刚在书城停留了多少分钟?(3)买到书后,小刚从书城到少年宫的骑车速度是多少米/分?(4)小刚从家到少年宫的整个过程中,骑车一共行驶了多少米?参考答案1.C2.A3.A4.C5.B6.C.7.A8.A.9.A10.D11.D12.D13.答案为:t 是自变量,T 是因变量.14.答案为:答案是:x 和y ;3和7;y=3x ﹣7.15.答案为:s=45t ;t ;s.16.答案为:y=0.5x+12.17.答案为:3518.答案为:2,276,4.19.解:∵离地面距离每升高1 km ,气温下降6℃∴该地空中气温T(℃)与高度h(km)之间的函数表达式为:T =22﹣6h ;(1)把h =1km 代入T =22﹣6h =16把h =2km 代入T =22﹣6h =22﹣12=10答:该地1000米、2000米高空的气温分别为16℃、10℃;(2)T =22﹣6h ,其中22,6是常量,T ,h 是变量.20.解:(1)反映了提出概念所用的时间x 和对概念接受能力y 两个变量之间的关系; 其中x 是自变量,y 是因变量.(2)提出概念所用的时间为13分钟时,学生的接受能力最强.(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强.当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.(4)估计当提出概念所用的时间为23分钟时,学生的接受能力为49.9.21.解:⑴ C4H10;⑵m=2n+2.22.解:(1)根据题意,每行程x,耗油0.1x,即总油量减少0.1x则油箱中的油剩下50﹣0.1x∴y与x的函数关系式为:y=50﹣0.1x;(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值50即0.1x≤50,解得,x≤500.综上所述,自变量x的取值范围是0≤x≤500;(3)当x=200时,代入x,y的关系式:y=50﹣0.1×200=30.所以,汽车行驶200km时,油桶中还有30L汽油.23.解:⑴甲比乙早10分钟出发,乙比甲早5分钟到达;⑵ V甲=12km/t V乙=24km/t ;⑶当10<t<25两人均在途中,y甲=12x, y乙=24x-4①t=20两人相遇②10<t<20甲在乙前面③20<t<25,甲在乙后面.24.解:(1)由图象可得甲、乙两地相距1400千米,两车出发后4小时相遇,故答案为:1400,4;(2)由图象可知普通列车到达终点共需14小时,普通列车的速度是:1400÷14=100千米/小时故答案为:14,100;(3)动车的速度为:1400÷4﹣100=350﹣100=250千米/小时即动车的速度为250千米/小时;(4)t=1400÷250=5.6动车到达乙地时,此时普通列车还需行驶:1400﹣100×5.6=840(千米)即此时普通列车还需行驶840千米到达甲地.25.解:(1)根据函数图象,可知小刚从家到深圳书城的路程是4000米;(2)30﹣20=10(分钟).所以小刚在书城停留了10分钟;(3)小刚从书城到少年宫的路程为6250﹣4000=2250米,所用时间为35﹣30=5分钟小刚从书城到少年宫的骑车速度是:2250÷5=450(米/分);(4)6000+(6000﹣4000)+(6250﹣4000)=6000+2000+2250=10250(米).答:小刚从家到少年宫的整个过程中,骑车一共行驶了10250米.第11 页共11 页。

(好题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(含答案解析)

(好题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(含答案解析)

一、选择题1.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的图象,那么符合小明行驶情况的图象大致是( ) A .B .C .D .2.下表反映的是某地区电的使用量x (千瓦时)与应交电费y (元)之间的关系,下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是x 的函数B .用电量每增加1千瓦时,电费增加0.55元C .若用电量为8千瓦时,则应交电费4.4元D .y 不是x 的函数3.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-4.如图是九年级某考生做的水滴入一个玻璃容器的示意图(滴水速度保持不变),能正确反映容器中水的高度(h )与时间(t )之间对应关系的大致图象是( ).A .B .C .D .5.已知A ,B 两地相距4千米,上午8:00,甲从A 地出发步行到B 地,8:20乙从B 地出发骑自行车到A 地,甲、乙两人离A 地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A 地的时刻为( )A.8:30 B.8:35 C.8:40 D.8:456.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是()A.①②③B.①②④C.①③⑤D.①②⑤7.按如图的方式用火柴棒摆放正方形,若用n表示正方形个数,y表示摆放正方形所用火柴棒根数,则y与n之间的关系式为()A.y=3n+1 B.y=4n-1 C.y=4+3n D.y=n+n+(n-1)8.学校计划买100个乒乓球,买的乒乓球的总费用w(元)与单价n(元/个)的关系式w=100n中()A.100是常量,w、n是变量B.100、w是常量,n是变量C.100、n是常量,w是变量D.无法确定9.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程收费(元)3千米以下(含3千米)8.003千米以上,每增加1千米 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 10.如图1,在等边三角形ABC中,AB=2,G是BC边上一个动点且不与点B、C重合,H 是AC边上一点,且°.设BG=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图2所示,则这条线段可能是图中的()A.线段CG B.线段AG C.线段AH D.线段CH11.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.12.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.二、填空题13.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势年份200620072008…入学儿童人数252023302140…(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.14.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发______小时,快车追上慢车行驶了______千米,快车比慢车早______小时到达B地.从A地到B地快车比慢车共少用了______小时.15.如图所示的是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的关系图象.下列说法:①买2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元.其中正确的说法是__.16.甲、乙两人在一条直线道路上分别从相距1500米的A,B两点同时出发,相向而行,当两人相遇后,甲继续向点B前进(甲到达点B时停止运动),乙也立即向B点返回.在整个运动过程中,甲、乙均保持匀速运动.甲、乙两人之间的距离y(米)与乙运动的时间x(秒)之间的关系如图所示.则甲到B点时,乙距B点的距离是_____米.17.下列是关于变量x与y的八个关系式:① y = x;② y2 = x;③ 2x2− y = 0;④ 2x − y2= 0;⑤ y = x3;⑥ y =∣x∣;⑦ x = ∣y∣;⑧ x =2y.其中y不是x的函数的有_____.(填序号)18.小英、爸爸、妈妈同时从家中出发到达同一目的地后都立即返回,小英去时骑自行车,返回时步行;妈妈去时步行,返回时骑自行车;爸爸往返都步行,三人步行的速度不等,小英与妈妈骑车的速度相等,每个人的行走路程与时间的关系分别是下图中的一个,走完一个往返,小英用时____________,爸爸用时____________,妈妈用时____________.19.如图,圆柱的高是3cm,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm变化到10cm时,圆柱的体积增加了______cm3.20.函数f(x)=+3-2xx的定义域是________.三、解答题21.如图,圆柱的高是,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)写出体积与半径的关系式;(3)当底面半径由变化到时,通过计算说明圆柱的体积增加了多少. 22.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.23.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.24.在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为y x=-.3(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x-10123456y25.已知水池中有800立方米的水,每小时抽出50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的关系式及t的取值范围;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?26.如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;第三层每边有三个点,依此类推:(1)填写下表:层数 1 2 3 4 5 6 ……该层的点数……所有层的点……数(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化的?(3)此题中的自变量和因变量分别是什么?(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;(5)如果某一层的点数是96,它是第几层?(6)有没有一层,它的点数是100?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.【详解】解:因为开始以正常速度匀速行驶---停下修车---加快速度匀驶,可得S先缓慢减小,再不变,在加速减小.故选D.【点睛】此题主要考查了学生从图象中读取信息的能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.2.D解析:D【分析】结合表格中数据变化规律进而得出y是x的函数且用电量每增加1千瓦时,电费增加0.55元.【详解】A、x与y都是变量,且x是自变量,y是x的函数,正确,不合题意;B、用电量每增加1千瓦时,电费增加0.55元,正确,不合题意;C、若用电量为8千瓦时,则应交电费4.4元,正确,不合题意;D、y不是x的函数,错误,符合题意.故选:D.【点睛】此题主要考查了函数的概念以及常量与变量,正确获取信息是解题关键.3.C解析:C【分析】根据周长关系求出另一边的长,再用面积公式即可表示y与x的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.4.D解析:D 【解析】 【分析】先根据容器的上下的大小,判断水上升快慢和对应的图象,再对题中的每一种结论进行判断. 【详解】解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快. 表现出的函数图形为先缓,后陡. 故选:D . 【点睛】本题考查单式折线统计图,解题关键在于根据容器的上下的大小,判断水上升快慢和对应的图象5.C解析:C 【解析】 【分析】根据甲60分走完全程4千米,求出甲的速度,再由图中两图象的交点可知,两人在走了2千米时相遇,从而可求出甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的20分,即可求出答案. 【详解】因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5-13)小时,所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40. 故选C . 【点睛】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.6.D解析:D【解析】【分析】根据一次函数的定义可知,x为自变量,y为函数,也叫因变量;x取全体实数;y随x的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.【详解】①x是自变量,y是因变量;正确;②x的数值可以任意选择;正确;③y是变量,它的值与x无关;而y随x的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y与x的关系还可以用列表法和图象法表示,正确.故选D.【点睛】本题考查了一次函数的定义,是基础知识,比较简单.7.A解析:A【解析】观察可知:当n=1时,y=4=3×1+1,当n=2时,y=7=3×2+1,当n=3时,y=10=3×3+1,……所以有n个正方形时,y=3n+1,故选A.【点睛】本题考查了规律型——图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8.A解析:A【解析】∵买的乒乓球的总费用W(元)与单价n(元/个)的关系式W=100n,∴100是常量,在此式中W、n是变量.故选:A.点睛:此题主要考查了常量与变量,关键是掌握常量和变量的定义.9.D解析:D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.10.D解析:D【解析】若CG的长为y,则y=2-x,故A选项不符合;若AG的长为y,随着x的增大,y是先减小后增大的,故B选项不符合;随着BG的逐渐增大,AH是先减小再增大,故C选项不符合;线段CH随着BG的逐渐增大是先增大后逐渐减小的,故D符合;故选D11.C解析:C【解析】解:由题意,得以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.【点评】本意考查了函数图象,根据题意判断路程与时间的关系是解题关键,注意休息时路程不变.12.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.二、填空题13.年份入学儿童人数2014【分析】(1)根据题意每一年的递减人数相等判断出y与x是一次函数关系设y=kx+b再取两组数据代入得到二元一次方程组求出kb 即可得到答案;(2)根据不超过1000人列出不等式解析:年份入学儿童人数 2014【分析】(1)根据题意,每一年的递减人数相等判断出y与x是一次函数关系,设y=kx+b,再取两组数据代入得到二元一次方程组,求出k、b即可得到答案;(2)根据不超过1000人列出不等式,然后求解即可得到答案.【详解】解:(1)从上表可以得到信息,入学儿童的人数随着年份的变化而变化,所以年份是自变量,入学儿童人数是因变量, 故答案为:年份 ;入学儿童人数; (2):①设y=kx+b ,将x=2006,y=2520和x=2007,y=2330代入得到二元一次方程组,2006252020072330k b k b +⎧⎨+⎩==, 190383660k b -⎧⎨⎩==, 所以,y=-190x+383660;∴根据题意得,-190x+383660≤1000, 解得x≥2014,所以,该地区从2014年起入学儿童人数不超过1000人. 故答案为: 2014. 【点睛】本题主要考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,观察出y 与x 是一次函数关系、灵活运用所学知识是解题的关键.14.27646【分析】根据横纵坐标的意义分别分析得出即可【详解】由图象直接可得出:一慢车和一快车沿相同路线从A 地到B 地所行的路程与时间的图象如图则慢车比快车早出发2小时快车追上慢车行驶了276千米快车比解析:276 4 6 【分析】根据横纵坐标的意义,分别分析得出即可. 【详解】由图象直接可得出:一慢车和一快车沿相同路线从A 地到B 地,所行的路程与时间的图象如图,则慢车比快车早出发2小时,快车追上慢车行驶了276千米,快车比慢车早4小时到达B 地,从A 地到B 地快车比慢车共少用了18-(14-2)=6小时. 故答案为2,276,4,6. 【点睛】此题主要考查了函数图象,从图象上获取正确的信息是解题关键.15.①②③【分析】分析图象x=2时y 值相等故买两件时售价一样当买1件时乙家的售价比甲家低买3件时甲家较合算【详解】分析题意和图象可知:①售2件时甲乙两家售价一样故此题正确;②买1件时买乙家的合算故此题正解析:①②③ 【分析】分析图象,x=2时y 值相等,故买两件时售价一样,当买1件时乙家的售价比甲家低.买3件时,甲家较合算.【详解】分析题意和图象可知:①售2件时甲、乙两家售价一样,故此题正确;②买1件时买乙家的合算,故此题正确;③买3件时买甲家的合算,故此题正确;④买乙家的1件售价约为1元,故此题错误.故答案为①②③.【点睛】本题考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16.5【解析】试题解析:5【解析】试题由题可得,甲从A到达B运动的时间为375秒,∴甲的速度为:1500÷375=4m/s,又∵甲乙两人从出发到相遇的时间为200秒,∴乙的速度为:1500÷200﹣4=3.5m/s,又∵甲从相遇的地点到达B的路程为:175×4=700米,乙在两人相遇后运动175秒的路程为:175×3.5=612.5米,∴甲到B点时,乙距B点的距离为:700﹣612.5=87.5米,故答案为87.5.17.②④⑦【解析】根据函数的定义:在一个变化过程中若有两个变量xy在一定的范围内当变量x每取定一个值时变量y都有唯一确定的值和它对应我们就说变量y是变量x的函数分析可知在上述反映变量y与x的关系式中y不解析:②④⑦【解析】根据函数的定义:“在一个变化过程中,若有两个变量x、y,在一定的范围内当变量x每取定一个值时,变量y都有唯一确定的值和它对应,我们就说变量y是变量x的函数”分析可知,在上述反映变量y与x的关系式中,y不是x的函数的有②④⑦,共3个.故答案为②④⑦.18.min24min26min【解析】∵小英去时骑自行车返回时步行∴小英去的时候速度比回来的快即它去的时候花的时间比回来时少∴小英对应的应该是图(2)因此一个往返的时间是21分钟∵妈妈去时步行返回时骑自解析:min 24 min 26 min【解析】∵小英去时骑自行车,返回时步行,∴小英去的时候速度比回来的快,即它去的时候花的时间比回来时少, ∴小英对应的应该是图(2). 因此一个往返的时间是21分钟. ∵妈妈去时步行,返回时骑自行车, ∴妈妈去的时候的速度比回来时速度慢, 即妈妈去的时候用的时间比回来时长. ∴妈妈对应的是图(1).因此妈妈一个往返需要的时间是26分钟. ∵爸爸往返都是步行, 所以爸爸的往返速度是一样的, 即爸爸往返所花的时间一样, ∴爸爸对应的是图(3).因此爸爸往返用时是24分钟.故答案为: 21 min , 24 min , 26 min.点睛:本题的关键是找准对应的图象,需要我们从题目出发,根据给出的交通工具,根据实际经验来判断所用的时间.19.半径体积297π【解析】(1)由题意可知:在上述变化过程中自变量是圆柱的底面半径因变量是圆柱的体积;(2)设圆柱的底面半径为体积为则由题意可得:∴当时当时∵∴当底面半径由1cm 变化到10cm 时圆柱的解析:半径 体积 297π 【解析】(1)由题意可知:在上述变化过程中,自变量是“圆柱的底面半径”,因变量是“圆柱的体积”;(2)设圆柱的底面半径为r ,体积为v ,则由题意可得:23v r π=, ∴当1r =时,2313v ππ=⨯=, 当10r =时,2310300v ππ=⨯=, ∵3003297πππ-=,∴当底面半径由1cm 变化到10cm 时,圆柱的体积增加了297πcm 3. 故答案为:(1). 半径 (2). 体积 (3). 297π.20.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2 【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.三、解答题21.(1)半径;体积;(2);(3).【分析】(1)根据常量和变量的定义来判断自变量、因变量和常量;(2)圆柱体的体积等于底面积乘以高,底面积等于π乘以半径的平方,将它用含有V 和r的关系式表达出来即可;(3)利用圆柱的体积计算方法计算增加的体积即可.【详解】(1)根据函数的定义可知,对于底面半径的每个值,体积按照一定的法则有一个确定的值与之对应,所以自变量是:半径,因变量是:体积.(2)根据圆柱体的体积计算公式:.(3)体积增加了(π×102−π×12)×3=297πcm3.【点睛】本题考查变量之间的关系,(1)考查自变量与因变量,理解自变量与因变量的定义是解题关键;(2)考查用关系式法表示变量之间的关系,在本题中掌握圆柱体体积的计算方法尤为重要;(3)分别代入求值做差即可.22.(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【解析】【分析】根据自变量的定义,函数值的定义以及二次函数的最值和增减性,观察函数图象分别写出即可.【详解】解:(1)自变量x的取值范围是﹣4≤x≤3;(2)函数y的取值范围是﹣2≤y≤4;(3)当x=0时,y的对应值是3;(4)当x为1时,函数值最大;(5)当y随x的增大而增大时,x的取值范围是﹣2≤x≤1.(6)当y随x的增大而减少时,x的取值范围是﹣4≤x≤﹣2和1≤x≤3;故答案为(1)﹣4≤x≤3;(2)﹣2≤y≤4;(3)3;(4)1;(5)﹣2≤x≤1(6)﹣4≤x≤﹣2和1≤x≤3.【点睛】本题考查二次函数的性质,函数图象,熟练掌握函数自变量的定义,函数值的定义以及函数的增减性并准确识图是解题关键.23.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟).即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.24.(1) 8.(2)4 3 2 1 0 1 2 3【解析】试题分析:(1)把x=-5代入y=|x-3|进行计算即可得;(2)根据y=|x-3|把相应的x值代入进行计算即可得.试题(1)当x的值为-5时,y=53--=8;(2)填表如下:25.(1)Q=800-50t(0≤t≤16);(2)6小时后,池中还剩500立方米的水;(3)12小时后,池中还有200立方米的水.【解析】【分析】(1)根据函数的概念和所给的已知条件即可列出关系式,Q=800-50t;(2)根据(1)中的函数关系式,将t=6代入即可得出池中的水;(3)结合已知,可知Q=200,代入函数关系式中即可得出时间t.【详解】(1) 由已知条件知,每小时抽50立方米水,则t小时后抽水50t立方米,而水池中总共有800立方米的水,那么经过t时后,剩余的水为800-50t,故剩余水的体积Q立方米与时间t(时)之间的函数关系式为: Q=800-50t(0≤t≤16);(2)当t=6时,Q=800-50×6=500(立方米),答:6小时后,池中还剩500立方米的水;(3)当Q=200时,800-50t=200,解得t=12,答:12小时后,池中还有200立方米的水.【点睛】本题考查了一次函数的应用,弄清题意,找准各量间的关系是解题的关键.26.(1)见解析;(2)每层点数是随层数增加而增加,所有层的总点数是随层数的增加而增加;;(3) 自变量是层数,因变量是点数;(4) 第n层上的点数为6n-6, n层六边形点阵的总点数为1+3n(n-1);(5)在第17层;(6)没有一层,它的点数为100点,理由见解析【分析】(1)观察点阵可以写出答案;(2)观察由(1)中表格得出结论;(3)根据自变量、因变量的定义即可得出结论;(4)根据六边形有六条边,则第一层有1个点,第二层有2×6-6=6(个)点,第三层有3×6-6=12(个)点,进一步得出第n层有6(n-1)个点,总点数根据求和公式列式计算即可;(5)将96代入6n-6求得答案即可;(4)将100代入6n-6建立方程求解即可判定;【详解】(1)如表:(3)自变量是层数,因变量是点数;(4)第一层上的点数为1;第二层上的点数为6=1×6;第三层上的点数为6+6=2×6;第四层上的点数为6+6+6=3×6;…第n层上的点数为(n-1)×6=6n-6.所以n层六边形点阵的总点数为:1+1×6+2×6+3×6+…+(n-1)×6=1+6[1+2+3+4+…+(n-1)]=1+6[(1+2+3+…+n-1)+(n-1+n-2+…+3+2+1)]÷2=1+6×(1)2n n=1+3n(n-1);(5)第n层有(6n-6)个点,则有6n-6=96,解得n=17,即在第17层;(6)6n-6=100解得n=533,不合题意,所以没有一层,它的点数为100点.【点睛】考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(答案解析)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》检测题(答案解析)

一、选择题1.从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气2.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t的关系的大致图象是()A.B.C.D.3.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…A.861B.863C.865D.8674.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.5.下列说法中正确的是 ( )A.变量 x , y 满足 x + 3y = 1 ,则 y 是 x 的函数B.变量 x , y 满足23y x=--,则 y 是 x 的函数C.变量 x , y 满足∣ y ∣= x ,则 y 是 x 的函数D.变量 x , y 满足 y2 = x ,则 y 是 x 的函数6.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )A.A B.B C.C D.D7.新农村社区改造中,有一部分楼盘要对外销售. 某楼共30层,从第八层开始,售价x (元/平方米)与楼层n(8≤n<30)之间的关系如下表:楼层n89101112…售价x(元/平方米)20002050210021502200…则售价x(元/平方米)与楼层n之间的关系式为()A.x=2000+50n B.x=2000+50(n-8) C.n=2000+50(x-8) D.n=2000+50x 8.根据图示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为( )A.-2 B.2 C.-1 D.09.下列各曲线中表示y是x的函数的是()A.B.C.D.10.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.2x+D.y=12 x+11.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.12.一根弹簧原长12 cm,它所挂的重量不超过10 kg,并且挂重1 kg就伸长1.5 cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12(0≤x≤10)C.y=1.5x+12(x≥0)D.y=1.5(x-12)(0≤x≤10)二、填空题13.下面是用棋子摆成的“上”字型图案:按照以上规律继续摆下去,通过观察,可以发现:(1)第五个“上”字需用_________枚棋子;(2)第n个“上”字需用_________枚棋子.14.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数x之间的关系式为____(不考虑利息税).15.夏季高山上的温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为_____________.16.根据图中的程序,当输入x=2时,输出的结果y=_______.17.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的函数关系式为__.18.已知方程x﹣3y=12,用含x的代数式表示y是______.19.一个三角形的面积始终保持不变,它的一边的长为xcm,这边上的高为ycm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2;-(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x 多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).20.函数f(x)=+3x的定义域是________.三、解答题21.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:汽车行驶时间t(h)0123…油箱剩余油量Q(L)100948882…①根据上表的数据,请你写出Q与t的关系式;②汽车行驶5h后,油箱中的剩余油量是多少;③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.22.如图所示,是反映了爷爷每天晚饭后从家中出发去散步的时间与距离之间的关系的一幅图.(1)下图反映了哪两个变量之间的关系?(2)爷爷从家里出发后20分钟到30分钟可能在做什么?(3)爷爷每天散步多长时间?(4)爷爷散步时最远离家多少米?(5)分别计算爷爷离开家后的20分钟内、30分钟内、45分钟内的平均速度.23.公路上依次有A,B,C三个汽车站,上午8时,小明骑自行车从A,B两站之间距离A站8km处出发,向C站匀速前进,他骑车的速度是每小时16.5km,若A,B两站间的路程是26km,B,C两站的路程是15km.(1)在小明所走的路程与骑车用去的时间这两个变量中,哪个是自变量?哪个是因变量?(2)设小明出发x小时后,离A站的路程为y km,请写出y与x之间的关系式.(3)小明在上午9时是否已经经过了B站?(4)小明大约在什么时刻能够到达C站?24.商店在出售某商品时,在进价的基础上增加一定的利润,其质量x与售价y之间的关系如下表所示:质量x/千克1234…售价y/元8+0.416+0.824+1.232+1.6…(1)请根据表中提供的信息,写出y与x的关系式;(2)求x=2.5时,y的值;(3)当x取何值时,y=126?25.如图,圆柱的高是4cm,当圆柱底面半径r(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出自变量,因变量;(2) 写出圆柱的体积V与底面半径r的关系式;(3)当圆柱的底面半径由2cm变化到8cm时,圆柱的体积由多少cm3变化到多少cm3.26.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据函数的定义解答.【详解】解:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故选C.【点睛】本题考查了常量与变量,关键是掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.2.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.3.C解析:C【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解. 【详解】 输出数据的规律为2+1nn , 当输入数据为8时,输出的数据为288+1=865. 故答案选:C. 【点睛】本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.4.A解析:A 【解析】根据题意小三角形的面积减小,梯形的面积增大,而且x 与y 满足一次函数关系. 故选A.5.A解析:A 【解析】A 选项中,“若变量x 、y 满足x+3y=1,则y 是x 的函数”这种说法是正确的;B 选项中,因为无论x 取何值,式子y =都无意义;所以“若变量x 、y 满足y = ,则y 是x 的函数”的说法是错误的;C 选项中,因为当x 的值为正时,和它对应的y 的值有两个,所以“变量 x , y 满足| y ∣= x ,则 y 是 x 的函数”的说法是错误的;D 选项中,因为当x 的值为正时,和它对应的y 的值有两个,所以“变量 x , y 满足 y2 = x ,则 y 是 x 的函数”的说法是错误的. 故选A.点睛:判断一个含有两个变量x 、y 的关系式中,变量y 是否是变量x 的函数,需注意以下两点:(1)变量x 的取值要使式子要有意义;(2)对于变量x 每取定的一个值,变量y 都有唯一确定的值与之对应.6.A解析:A 【解析】由题意可知,符合实际情况的是A 选项中的图象,而选项B 、C 、D 中的图象都与实际情况不符. 故选A.7.B解析:B 【解析】观察表格可知楼层n(8≤n <30)每增加1,售价x 就增加50元, 所以:x=2000+50(n-8) (8≤n <30), 故选B.8.B解析:B 【解析】当x=−1时,y=x 2+1=(−1)2+1=1+1=2, 故选B.9.D解析:D 【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D .10.C解析:C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误; B .22y x =+,x 为任意实数,故错误;C .y =20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C .考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.11.D解析:D 【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B ,清洗时水量大致不变,函数图象与x 轴平行,排水时水量减少,函数图象的走势向下,排除A ,对于C 、D ,因为题目中明确说明了一开始时洗衣机内无水.故选D .12.B解析:B 【分析】根据函数的概念:函数中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,解答即可. 【详解】解:设挂重为x ,则弹簧伸长为1.5x ,挂重后弹簧长度y (cm )与挂重x (kg )之间的函数关系式是: y=1.5x+12 (0≤x≤10). 故选B . 【点睛】关键在于根据题意列出等式,然后再变形为要求的形式.二、填空题13.4n+2【分析】将每个图形中的上字所用的棋子找出来再寻找数字规律即可【详解】第一个上字需用6枚棋子;第二个上字需用10枚棋子;第三个上字需用14枚棋子;发现61014之间相差4所以规律与4有关∴第五解析:4n+2 【分析】将每个图形中的“上”字所用的棋子找出来,再寻找数字规律即可. 【详解】第一个“上”字需用6枚棋子; 第二个“上”字需用10枚棋子; 第三个“上”字需用14枚棋子;发现6、10、14之间相差4,所以规律与4有关6=14+2,10=24+2,14=34+2,⨯⨯⨯...∴第五个“上”字需用54222⨯+=枚棋子,第n 个“上”字需用42n +枚棋子. 故答案为:(1)22;(2)42n + 【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.14.【分析】根据题目所给的数据和利息公式即可得答案【详解】解:某种储蓄的月利率是02存入100元本金后则本息和y (元)与所存月数x 之间的关系式为:y=02x+100故答案为:y=100+02x 【点睛】本 解析:1000.2y x =+【分析】根据题目所给的数据和利息公式,即可得答案. 【详解】解:某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为: y=0.2x+100,故答案为:y=100+0.2x . 【点睛】本题主要考查了函数关系式,利用利息公式和题目数据列出关系式是解题关键.15.y=23-0007x 【解析】【分析】每升高l00m 降低07℃则每上升1m 降低0007℃则上升的高度xm 下降0007x ℃据此即可求得函数解析式【详解】每升高l00m 降低07℃则每上升1m 降低0007℃ 解析:【解析】 【分析】每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃,则上升的高度xm ,下降0.007x ℃,据此即可求得函数解析式. 【详解】每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃, 则关系式为:y=23-0.007x ; 故答案为:y=23-0.007x . 【点睛】本题考查了列函数解析式,理解每升高l00m 降低0.7℃,则每上升1m ,降低0.007℃是关键.16.3【解析】解:当输入x=2时因为x >1所以y=﹣x+5=﹣2+5=3故答案为3解析:3 【解析】解:当输入x =2时,因为x >1,所以y =﹣x +5=﹣2+5=3.故答案为3.17.y=4x+1000【解析】根据题意可得总收费y 与制作纪念册的册数x 的函数关系式为解析:y=4x+1000 【解析】根据题意可得总收费y 与制作纪念册的册数x 的函数关系式为41000y x =+.18.y=x ﹣4【解析】要用含x 的代数式表示y 就要将二元一次方程变形用一个未知数表示另一个未知数先移项再将系数化为1即可解:移项得:﹣3y=12﹣x 系数化为1得:y=x ﹣4故答案为y=x ﹣4解析:y =13x ﹣4【解析】要用含x 的代数式表示y ,就要将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再将系数化为1即可. 解:移项得:﹣3y=12﹣x , 系数化为1得:y=x ﹣4.故答案为y=x ﹣4.19.(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果【详解】(1)当x越来越大时y越来越小;(2)这个三角形的面积等于xy=2cm2;(3)无论x多么的大y总是大于解析:(1)小;(2)2;(3)大于【分析】根据三角形的面积公式及函数图象的特征即可得到结果.【详解】(1)当x越来越大时,y越来越小;(2)这个三角形的面积等于12xy=2cm2;(3)无论x多么的大,y总是大于零.考点:本题考查的是三角形的面积公式,函数的图象【点睛】解答本题的关键是读懂题意,得到图象的特征及规律,再根据这个规律解决问题. 20.x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0即x≥-3且x≠2解析:x≥-3且x≠2【解析】由题意可得x+3≥0且x-2≠0,即x≥-3且x≠2.三、解答题21.①Q=100﹣6t;② 10L;③25003km.【分析】①由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q 的关系式;②求汽车行驶5h后,油箱中的剩余油量即是求当t=5时,Q的值;③贮满50L汽油的汽车,理论上最多能行驶几小时即是求当Q=0时,t的值.【详解】解:①Q与t的关系式为:Q=100﹣6t;②当t=5时,Q=100﹣6×5=70,答:汽车行驶5h后,油箱中的剩余油量是70L;③当Q=0时,0=50﹣6t,6t=50,解得:t=253,100×253=25003km.答:该车最多能行驶25003km.22.(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息;(3)爷爷每天散步45分钟;(4)爷爷散步时最远离家为900米;(5)爷爷离开家后:20分钟内平均速度是45米/分;30分钟内平均速度是30米/分;45分钟内平均速度是40米/分.【分析】(1)根据图象中的横纵坐标的意义解答即可;(2)根据图象可看出20分钟到30分钟之间,时间在增加,而路程不变,据此解答即可;(3)根据图象可得45分钟后爷爷离家的距离为0,说明回到了家中,由此可得答案;(4)图象最高点的纵坐标即为爷爷散步时最远离家的距离,据此即可解答;(5)利用时间=路程÷速度求解即可.【详解】解:(1)爷爷散步的时间与距离之间的关系;(2)可能在某处休息.(3)爷爷每天散步45分钟(4)爷爷散步时最远离家为900米(5)爷爷离开家后:①20分钟内平均速度:900÷20=45(米/分);②30分钟内平均速度:900÷30=30(米/分);③45分钟内平均速度:9002⨯÷45=40(米/分).【点睛】本题考查了利用图象表示变量之间的关系,属于常考题型,正确理解图象的横纵坐标表示的意义是解题关键.23.(1)骑车时间是自变量,所走过的路程是因变量;(2)小明出发x小时后所行驶的路程是16.5xkm,离A站的路程为:y=16.5x+8;(3)上午9时小明还没有经过B站;(4)小明大约在上午10时到达C站.【解析】【分析】(1)在函数中,给一个变量x一个值,另一个变量y就有对应的值,则x是自变量,y是因变量,据此即可判断;(2)首先表示出小明出发x小时后所行驶的路程,再加上8km 就是离A站的路程;(3)小明8时出发到9时行驶了1小时,计算出小明此时距离A站的路程,与AB两站之间的路程进行比较即可;(4)根据题意可得方程16.5x+8=26+15,解方程即可.【详解】解:(1)骑车时间是自变量,所走过的路程是因变量;(2)小明出发x小时后所行驶的路程是16.5xkm,离A站的路程为:y=16.5x+8;(3)当x=1时,y=16.5+8=24.5<26,可知上午9时小明还没有经过B站;(4)解方程16.5x+8=26+15,得x=2,8+2=10,故小明大约在上午10时到达C站.【点睛】本题考查列函数关系式,求函数值,关键是正确理解题意,列出函数关系式.24.(1) y=8x+0.4x=8.4x;(2)当x=2.5时,y=21(元);(3)当y=126时, x=15.【解析】【分析】(1)根据表格中数据得出y与x的函数关系式即可;(2)将x=2.5千克时,代入求出即可;(3)将y=126代入求出x即可.【详解】(1)由表中数据规律可知:y=8x+0.4x=8.4x.(2)当x=2.5时,y=8.4×2.5=21(元).(3)当y=126时,由8.4x=126,解得x=15.【点睛】本题考查了函数关系式的求法,要注意观察、比较和归纳,本题的解题过程体现了从特殊到一般,再从一般到特殊的数学思想方法.25.(1)半径r体积V;(2)V=4πr2;(3) 圆柱的体积由16πcm3变化到256πcm3.【解析】【分析】(1)根据函数间两变量的变化关系,可得答案;(2)根据圆柱的体积公式,可得函数解析式;(3)根据自变量与函数值的关系,可得答案.【详解】解:(1)在这个变化过程中,自变量是r,因变量是V.(2)圆柱的体积V与底面半径r的关系式是V=4πr2.(3)当圆柱的底面半径由2变化到8时,圆柱的体积由16πcm3变化到256πcm3.故答案为:(1)r,V;(2)V=4πr2;(3)16π,256π.【点睛】本题考查了函数关系式,利用圆柱的体积公式得出函数关系式是解题关键.26.(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时【分析】(1)根据函数图象,可得自变量、因变量;(2)根据函数图象的纵坐标,可得答案;(3)根据函数图象的横坐标、纵坐标,可得答案;(4)根据函数图象的横坐标,可得函数值,根据函数值相减,可得答案;(5)根据函数图象的纵坐标,可得答案;(6)根据函数图象的纵坐标,可得距离,根据函数图象的横坐标,可得时间,根据路程除以时间,可得答案.【详解】解:(1)图象表示了时间、距离的关系,自变量是时间,因变量是距离.(2)由图象看出10时他距家10千米,13时他距家30千米.(3)由图象看出12:00时他到达离家最远的地方,离家30千米.(4)由图象看出11时距家19千米,12时距家30千米,11时到12时他行驶了30- 17=13(千米).(5)由图象看出12:00~13:00时距离没变且时间较长,得12:00~13:00休息并吃午餐.(6)由图象看出回家时用了2小时,路程是30千米,所以回家的平均速度是30÷2=15(千米/时).。

北师大版数学七年级下册第三章变量之间的关系 测试题及答案

北师大版数学七年级下册第三章变量之间的关系 测试题及答案

北师大版数学七年级下册第三章变量之间的关系一、单选题1.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x间的函数关系式是()A.y=12-4x B.y=4x-12C.y=12-x D.以上都不对2.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x 3.下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是()A.B.C.D.4.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()A.y=0.05x B.y=5x C.y=100x D.y=0.05x+100 5.小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t(分钟),所走的路程为s(米),则s与t的函数图象大致是( )A.B.C.D.6.如图所示是某市6月20日的温度随时间变化的图象.通过观察可知,下列说法不正确的是().A.这天15时温度最高B.这天3时温度最低C.这天的温差是13℃D.这天21时温度是32℃7.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x的关系式可以写为( )A.y=x2B.y=(12-x)2C.y=(12-x)·x D.y=2(12-x)8.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm9.变量x与y之间的关系是y=12x2-3,当自变量x=2时,因变量y的值是()A.-2 B.-1 C.1 D.210.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有( )A.1个B.2个C.3个D.4个二、填空题11.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯__________元.12.“早穿皮袄,午穿纱,围着火炉吃西瓜”这句谚语反映了我国新疆地区一天中,_____随____变化而变化,其中自变量是___,因变量是___.13.在函数y=中,自变量x的取值范围是________ .14.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务.收割亩数与天数之间的关系如图所示,那么乙参与收割________天.15.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是________,________ ,常量是________ .16.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.17.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.18.如图所示的是某个计算y值的程序,若输入x的值是32,则输出的y值是_________.19.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费____________.20.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明始姥乘车路程为__________千米.三、解答题21.已知y=-x2+(a-1)x+2a-3,当x=-1时,y=0,(1)求a的值;(2)当x=1时,求y的值.22.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由____变化到____. 23.已知函数y=x3+2,不画图象,解答下列问题:(1)判断A(0,2)、B(2,0)、C﹣1)三点是否在该函数图象上,说明理由;(2)若点P(a,0)、Q b)都在该函数的图象上,试求a、b的值.24.如图,长方形ABCD中,AB=4,BC=8.点P在AB上运动,设PB=x,图中阴影部分的面积为y.(1)写出阴影部分的面积y与x之间的函数解析式和自变量x的取值范围;(2)点P在什么位置时,阴影部分的面积等于20?25.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?26.星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?27.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N 与n之间的关系可以表示为N=(n-2)·180°.(1)在这个关系式中,自变量、因变量各是什么?(2)在这个关系式中,n能取什么样的值?(3)利用这个关系式计算六边形的内角和.(4)当边数每增加1时,多边形的内角和如何变化?参考答案1.A【解析】试题分析:∵各边边长减少x cm,∴新正方形的边长为(3-x)cm,∴y=4(3-x)=12-4x,即y=12-4x.故选A.点睛:本题考查了列函数关系式,熟练掌握正方形的周长公式是解题的关键.2.D【解析】∵3千米以上每增加1千米收费1.80元,∴出租车行驶里程数x(x≥3)与收费y之间的关系式为:y=8+1.8(x-3)=1.8x+2.6.故选D.3.D【解析】【分析】根据函数的定义可知,对于x的每一个取值,y都有唯一确定的值与之对应,据此即可确定函数的个数.【详解】根据函数的定义可知,对于x的每一个取值,y都有唯一确定的值与之对应.A、对于x的每一个取值,y都有两个值,故A错误;B.对于x的每一个取值,y都有两个值,故B错误;C.对于x的每一个取值,y都有两个值,故C错误;D.对于x的每一个取值,y都有唯一确定的值,故D正确.故选D.【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.B【解析】试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x 分钟可滴100×0.05x毫升,据此即可求解.因此,y=100×0.05x,即y=5x.故选B.考点:函数关系式.5.B【解析】小刚取车的整个过程共分三个阶段:①徒步从家到同学家,s随时间t的增大而增大;②在同学家逗留期间,s不变;③骑车返回途中,速度是徒步速度的3倍,s随t的增大而增大,并且比徒步时的直线更陡;纵观各选项,只有B选项符合,故选B.6.C【解析】观察图象可知:这天15时温度最高、这天3时温度最低、这天的温差是15℃、这天21时温度是32℃,故A、B、D正确,C错误,故选C.7.C【解析】试题分析:长方形一边长为x,则另一边长为(12-x),则y=x(12-x),故选C.8.C【解析】【详解】A.x与y都是变量,且x是自变量,y是因变量,故A正确;B.所挂物体质量为4kg时,弹簧长度为12cm,故B正确;C.弹簧不挂重物时的长度为10cm,故C错误;D.物体质量每增加1kg,弹簧长度y增加0.5cm,故D正确.故选C.9.B【解析】试题分析:将x=2代入y=12x2-3,得:y=12×4-3=-1.故选B.点睛:本题考查函数值的知识,注意运用代入法进行计算.10.B【解析】由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,故选B.11.2【解析】由图中信息可知,每个茶杯2元.故答案为2.12.温度时间时间温度【解析】“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语中早、午、晚是时间,早穿皮袄说明早上冷,午穿纱说明中午热,说明温度随着时间在变化.故答案为:温度;.时间;时间;温度13.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知x﹣2≥0;分母不等于0,可知:x﹣2≠1,则可以求出自变量x的取值范围.【详解】根据题意得:2010x -≥⎧⎪≠,即2021x x -≥⎧⎨-≠⎩,解得:x ≥2且x ≠3. 故答案为:x ≥2且x ≠3.【点睛】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.4【解析】试题分析:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天. 故答案为:4.点睛:此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”. 15. c r 2π【解析】在圆的周长公式C=2πr 中,C 与r 是改变的,π是不变的,所以变量是C ,r ,常量是2π.16.-40【解析】【详解】试题分析:当y=x 时,9325x x =+,解得x=-40. 故答案为-40考点:求代数式的值.17.100 甲 8米/秒【解析】(1)由图可知,两人所跑路程最大值为100米,∴这是一次100米赛跑;(2)由图可知,甲先到达终点;(3)由图可知,乙跑完100米用了12.5秒,∴乙的速度为:100÷12.5=8(米/秒).故答案为:(1). 100 (2). 甲(3). 8米/秒.18.12(或0.5)【解析】x=32>1,∴y=-x+2=-32+2=0.5.故答案为12(或0.5).19.340元【解析】根据题意可知,行李质量的大小为自变量x,托运费为因变量y, 结合图形可知,当行李质量为200kg时,y=2×200-60=340即他需要付托运费340元.故答案为340元20.13【解析】设AB的解析式为y=kx+b,由题意,得63148k bk b=+⎧⎨=+⎩,解得:1.61.2kb=⎧⎨=⎩,∴直线AB的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为:13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.21.(1)a=3;(2)4【解析】试题分析:(1)把x=-1,y=0代入函数解析式解方程即可得出a的值;(2)把a的值代入y=-x2+(a-1)x+2a-3,得出函数解析式,再把x=1代入即可求出y 的值.试题解析:解:(1)由y=-x2+(a-1)x+2a-3,当x=-1时,y=0,得-1-(a-1)+2a-3=0,解得a=3;(2)由(1)知y =-x 2+2x +3,当x =1时,y =-1+2+3=4.点睛:本题考查了函数值,利用待定系数法是求函数解析式的关键,又利用了自变量与函数值的对应关系.22.(324π-1)cm 2 (324π-81)cm 2【解析】分析:(1)剩下部分的面积y 就是大圆的面积与挖去的正方形的面积的差;(2)在函数解析式中分别求出半径x ,分别是1cm 与9cm 时,面积的值,即可求解. 本题解析:(1)y 与x 之间的关系式为:y=22218324x x ππ⨯-=-;(2)当挖去圆的半径为1cm 时,由(1)中求出的函数关系式可得,圆环面积:y=324π-1²=(323π-1)cm²;当挖去圆的半径为9cm 时,圆环面积y=324π-9²=(243π-81)cm²,所以圆环面积由变化(323π-1)cm²到(243π-81)cm². 点睛:本题重点考查了函数关系式的表示方法,圆的面积,正方形的面积,函数的自变量与因变量;解题关键是熟知相关概念;剩下部分的面积y 就是大圆的面积与挖去的正方形的面积的差.23.(1) B ,C 点不在该函数图象上,A 点在该函数图象上;(2) a=,b=2【解析】试题分析:(1)分别将A ,B ,C 点代入函数关系式进而判断即可;(2)分别将P ,Q 点代入函数关系式进而得出答案.试题解析:(1)当x=0时,y=2,当x=2时,y=+2=,当x=时,y=5, 故B ,C 点不在该函数图象上,A 点在该函数图象上;(2)当y=0时,0=x 3+2,即0=a 3+2,解得;a==36-,当x=﹣时,b=×(﹣)3+2,解得:b=2﹣.点睛:本题主要考查了函数关系式以及函数图象上点的坐标性质,正确理解图象上点的坐标性质是解题关键.24.(1)阴影部分的面积为:y=32-4x(0<x≤4);(2)PB=3【解析】试题分析:(1)根据梯形的面积公式得出y与x的函数关系式即可;(2)利用(1)中所求得出y=20,求出x即可得出答案.试题解析:(1)设PB=x,长方形ABCD中,AB=4,BC=8,则图中阴影部分的面积为:y=12(4-x+4)×8=32-4x(0≤x≤4).(2)当y=20时,20=32-4x,解得x=3,即PB=3.25.(1) 2.5 km;(2) 20 min;(3) 187km/h.【解析】分析:(1)因为张阳从家直接到体育长,故第一段函数图象所对应的y轴的最高点即为体育场离张阳家的距离;(2)张阳从体育场到文具店是减函数,此段函数图象最低点y轴所对应的数值为张阳家到文具店的距离,中间一段平线是张阳在图书馆停留的时间;(3)先求出张阳家离文具店的距离,再求出从文具店到家的时间,求出二者的比值即可.本题解析:解:(1)由函数图象可知:体育场离张阳家2.5 km.(2)由函数图象可知;因为2.5-1.5=1(km),所以体育场离文具店1 km.因为65-45=20(min),所以张阳在文具店逗留了20 min.(3)由函数图象可知:文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100-65=35(min),所以张阳从文具店到家的速度为1.5÷3518607=(km/h).故答案为:(1) 2.5 km;(2) 20 min;(3) 18/7km/h.点睛;本题考查利用函数图象解决实际问题,正确理解函数图象横纵坐标表示的意义,是解决本题的关键.26.(1)玲玲到离家最远的地方需要12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲在返回的途中最快,速度为:15千米/时;(4)10千米/时.【解析】【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不再随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【详解】观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)在返回的途中,速度最快,速度为:30÷(15﹣13)=15千米/时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/时.【点睛】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.27.(1)n是自变量,N是因变量.(2)大于2的整数.(3)720°.(4)增加180°【解析】试题分析:(1)自变量是n,因变量是N;(2)多边形的边数最少为3,所以n 能取大于2的整数;(3)将n=6代入关系式中,计算出N的值即可;(4)设多边形原来边数为n,此时多边形的内角和为(n-2)×180度,多边形边数增加1后边数为n+1,此时多边形的内角和为(n+1-2)×180度,所以内角和增加了(n+1-2)×180-(n-2)×180=180度.试题解析:(1)自变量是n,因变量是N;(2)多边形的边数最少为3,所以n能取大于2的整数;(3)当n=6时,N=(6-2)×180=720°;(4)设原多边形边数为n,则边数增加1以后变为n+1,(n+1-2)×180-(n-2)×180=180度,所以当边数每增加1时,多边形的内角和增加180°.点睛:掌握自变量、因变量的概念以及对关系式的运用.。

七年级下册数学之变量之间的关系习题与答案

七年级下册数学之变量之间的关系习题与答案

变量之间的关系(导学案)知识过关1.如图,小明和课外小组一起利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高度/cm102030405060708090小车下滑时间/s4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 1.42(1)支撑物高度为70 cm时,小车下滑的时间是多少?(2)如果用h表示支撑物的高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?(3)h每增加10 cm,t的变化情况相同吗?(4)随着支撑物高度h的变化,哪些量发生了变化?哪些量始终不发生变化?1.在一个变化过程中,我们称数值发生变化的量为______,数值始终不变的量为______;变量分为______和________.2.表示变量之间的关系通常有三种方法,它们是__________、_____________、__________.3.看图的方法:____________、___________、___________.➢精讲精练1.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y与所挂物体质量x的一组对应值.所挂物体质量x/kg0 1 2 3 4 5弹簧长度y/cm18 20 22 24 26 28(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体质量为3 kg时,弹簧多长?不挂重物时,弹簧多长?(3)若所挂物体质量为7 kg(在允许范围内),你能说出此时的弹簧长度吗?2.如图,若输入x的值为-5,则输出的结果是_______;若输入x的值为5,则输出的结果是_______.是否y=x+1输入xx大于0吗?y=x 1输出y3. 如图是某地一天的气温随时间变化的图象,根据图象回答:(1)在这一天中,什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少? (2)20 h 的气温是多少? (3)什么时间气温为6 ℃? (4)哪段时间内气温保持不变?4. 一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车减速到达下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面哪一个图可以近似地刻画出汽车在这段时间内的速度变化情况?( )A .B .C .D .5. 某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下列图象中能大致表示水的深度和放水时间之间的关系的是( )A . B. C . D .6. 如图所示,向放在水槽底部的烧杯注水,注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h 与注水时间t 之间的关系大致是图中的( )h tA.B.C.D.7.星期天晚饭后,小红从家里出发去散步,图中反映了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家里出发到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了C.从家里出发一直散步(没有停留),然后回家了D.从家里出发散一会儿步,就找同学去了,18分钟后才开始返回8.小李讲了一个龟兔赛跑的故事,并用图象描绘了比赛过程中路程随时间的变化情况,请先回答下列问题,再讲述这个故事.(1)兔子和乌龟是否在同一地点同时出发?(2)兔子和乌龟在比赛途中相遇过几次?(3)哪一个先到达终点?9.男、女运动员在100米跑道的两端同时起跑,往返练习跑步,测得男运动员每跑一百米用12秒,女运动员每跑一百米用15秒,图中实线和虚线分别为这两名运动员距女运动员起跑点的距离s (米)与时间t(秒)之间的关系图象,请根据图象回答问题:(1)图中实线是_____运动员跑步的图象,虚线是_____运动员跑步的图象(填“男”或“女”);(2)在百米跑道上两运动员第一次在同一端点相遇时,两人均跑了________秒,其中男运动员跑了________米,女运动t员跑了________米;(3)两运动员从开始起跑到第一次在同一端点相遇止,共相 遇了__________次.10. 甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如图所示,则下列结论错误的是( )A .这是一次100米赛跑B .甲比乙先到达终点C .乙跑完全程需12.5秒D .甲的速度为8米/秒第10题图第11题图11. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s (千米)与时间t (分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为( ) A .12分B .13分C .14分D .15分12. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y (升)与时间x (分钟)之间的关系如图所示,则关闭进水管后,经过______分钟,容器中的水恰好放完.13. 如图,小明从家骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买一本练习册,于是又折回到刚经过的一家书店,买到书后继续赶去学校,他离家的距离s (米)与时间t (分)之间的关系如图所示,根据图中提供的信息回答下列问题: (1)小明家到学校的距离是多少米?书店到学校的距离是多 少米?(2)小明在书店停留了多少分钟?本次上学途中,小明一共 行驶了多少米?(3)在整个上学的途中,哪个时间段小明骑车速度最快?最 快速度是多少?(4)如果小明不买书,以往常的速度去学校,需要多少分钟? 本次上学比往常多用多少分钟?x /分钟14. 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的.....距.离.为 y (km ),图中的折线表示y 与x 之间的关系. 根据图象进行以下探究:(1)甲、乙两地之间的距离为________km ; (2)请解释图中点B 的实际意义; (3)求慢车和快车的速度.【参考答案】知识过关1.(1)1.59s ;(2)逐渐减小;(3)不同; (4)小车下滑的时间;木板的长度 1. 变量;常量;自变量;因变量2. 表格法;关系式法;图象法3. 一看轴;二看点;三看线 ➢ 精讲精练1. (1)表中反应了弹簧长度与所挂物体质量之间的关系;所挂物体质量是自变量;弹簧长度是因变量(2)当所挂物体质量为3kg 时,弹簧长24cm ;不挂重物时,弹簧长18cm (3)32cm 2. -6;63. (1)16h 气温最高;4h 气温最低;最高气温是10℃;最低气温是-4℃;(2)20h 的气温是8℃; (3)10h 和22h 的气温是6℃; (4)12h 到14h 的气温持续不变 4.Bt /分钟5. A6. B7. B8.(1)否;(2)两次;(3)乌龟9.(1)男;女;(2)60;500;400;(3)510.D11.C12.813.(1)1500米;900米;(2)4分钟;2700米;(3)12-14分钟小明骑车速度最快;450米/分钟;(4)如果不买书需要7.5分钟;本次比往常多用了6.5分钟14.(1)900;(2)点B的实际意义是甲、乙两车在出发4h时相遇;(3)慢车的速度是75km/h;快车的速度是150km/h每日一练(一)15.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车的行驶时间为x(h),两车之间的距离为s(km),y1,y2与x之间的关系图象如图1所示,s与x之间的关系图象如图2所示.(1)图中的a=________,b=__________.(2)从甲地到乙地依次有E,F两个加油站,相距200km,若慢车经过E加油站时,快车恰好经过F加油站,求F加油站到甲地的距离.16.小丽家离学校2km,步行到校需30min,小丽的同学小军骑车上学,而且上学要经过小丽家,小图1 图2军离学校的路程与时间的关系如图所示.(1)小军家离学校多远?骑车上学的平均速度是多少?(2)若小丽与小军同时从家里出发上学,试在小军离学校的路程与时间的关系图上画出小丽上学过程中离学校路程与时间的关系图.(3)若他们同时从家里出发,途中能相遇吗?若能相遇,求出相遇时小军所用的时间;若不能相遇,请说明理由.【参考答案】1.(1)6,15 4(2)250km或500km2.(1)3km;0.2km/min(2)图略(3)能相遇,在7.5min时相遇,理由略变量之间的关系(随堂测试)1.如图是某空蓄水池的横断面示意图,分为深水区和浅水区.若以固定的流量往这个空蓄水池中注水,则下列图象中,能大致表示水的深度h与时间t之间的关系的是()A.B.C.D.2.小明某天上午9时骑车离家,15时回家,如图描绘了他离家的距离与时间的具体变化情况,请结合图象回答以下问题:(1)小明经过多长时间到达离家最远的地方?此时他离家多远?(2)11时到12时,他行驶了多少千米?(3)他由离家最远的地方返回的平均速度是多少?【思路分析】读图,从图象中提取信息.时间/min时浅水区深水区①看轴:明确横轴、纵轴表示的意义.横轴表示____________,纵轴表示___________________.②看点:看起点、终点、状态转折点,与实际情景对应.起点表示上午9时从家出发,终点表示15时回家,与实际情景相符.状态转折点:10时离家__________,10.5时离家___________,11时离家________,12时离家________,13时离家_________.③看线,观察线段的变化趋势.线的变化较为复杂,9时—10时,距离增加了_________,此段的速度为________;10时—10.5时,速度为________;10.5时—11时,距离未发生变化;11时—12时,距离增加了________,此段的速度为________;12时—13时,距离未发生变化;13时—15时,距离减少了________,此段的速度为________.【过程书写】解:【参考答案】1. C2.(1)3小时,30千米(2)13千米(3)15千米/小时思路分析:①时间,离家的距离②10千米,17千米,17千米,30千米,30千米③10千米,10千米/小时14千米/小时13千米,13千米/小时30千米,15千米/小时过程书写略变量之间的关系(习题)➢例题示范1.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.如图,当输入数值x为-2时,输出的结果是()A.-2B.3C.-3D.2之间关系的是( ) D .t y t y t OytC.18分钟D.20分钟1.一元一次方程应用题数据都在题目中,所以通过_____、_____等手段梳理信息,根据等量关系建方程即可;变量之间关系应用题数据大部分都在图象里面,所以需要通过看图象的______、_______、______,把数据提取出来,转为一元一次方程应用题处理.2.“龟兔赛跑”讲述了这样的故事:乌龟和兔子从起点同时出发,领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s1,s2分别表示乌龟和兔子所行的路程,t为时间,请在下图中画出兔子和乌龟运动的大致图象.【参考答案】➢巩固练习1.B2.B3.(1)时间,气温(2)16,2,10,-2(3)5(4)9和224.B5.D6.C7.D8.(1)甲教师的平均速度是0.25千米/分钟,乙教师的平均速度是1千米/分钟(2)乙出发后追上甲所用的时间是6分钟9.(1)a=20,b=1 100,c=50(2)60分钟➢思考小结1.列表,画线段图,轴、点、线2.略。

北师大版数学七年级下册第三章变量之间的关系 达标测试卷(含答案)

北师大版数学七年级下册第三章变量之间的关系 达标测试卷(含答案)

第三章变量之间的关系达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光的强弱 B.热水器里的水温C.所晒时间D.热水器的容量2.已知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y的值为()A.1 B.3 C.-1 D.-33.汽车离开甲站10 km后,以60 km/h的速度匀速前进了t h,则汽车离开甲站所走的路程s(km)与时间t(h)之间的关系式是()A.s=10+60t B.s=60t C.s=60t-10 D.s=10-60t 4.已知某种野生动物原来由于人们的滥捕滥杀其数量一直在减少,现在我国加强了对它们的保护,该野生动物的数量也在逐渐增加,下列图象能够体现这种野生动物的数量和时间的对应关系的是()5.欣欣妈妈在超市购买某种水果所付金额y(元)与购买数量x(kg)之间的关系如图所示.若一次性购买6 kg,则比平均分2次购买可节省()(第5题)A.4元B.3元C.2元D.1元6.某科研小组在网上获取了声速与空气温度之间关系的一些数据(如下表),下列说法错误的是()空气温度(℃)-20-100102030声速(m/s)318324330336342348A.在这个变化过程中,自变量是空气温度,因变量是声速B.空气温度越高,声速越快C.当空气温度为20 ℃时,声音5 s可以传播1 740 mD.温度每升高10 ℃,声速增加6 m/s7.匀速向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为一折线),这个容器的形状是图中()(第7题)(第8题)(第11题)8.某图书馆租书的费用有两种收费方式,其中一种为有月租费,另一种为无月租费.这两种收费方式的租书费用y(元)与每月租书的次数x(次)之间的关系如图所示.明明根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月租书的次数为30次时,两种收费方式的租书费用一样多;④琳琳的家人都爱看书,一个月租书次数达到50次,她选择l1所描述的方式较为划算.其中结论正确的有()A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题3分,计15分)9.在直角三角形中两锐角的度数分别为x,y,其关系式为__________,其中变量为________,常量为________.10.亮亮拿6元钱去邮局买面值为0.8元的邮票,买邮票所剩的钱数y(元)与买邮票的枚数x(枚)之间的关系式为__________________.11.一天,小明从家里骑自行车到图书馆还书,小明离家的路程s(m)与时间t(min)之间的关系如图所示.若去图书馆时的平均车速为180 m/min,则从图书馆返回时的平均车速为__________m/min.12.根据如图中的程序,当输入x=3时,输出的结果y=__________.(第12题)(第13题)13.如图是小明从学校到家里行进的路程s(m)与时间t(min)之间的关系.观察图象,从中得到如下信息:①学校离小明家1 000 m;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快.其中正确的有________(填序号).三、解答题(共13小题,计81分,解答应写出过程)14.(5分)写出下列各问题中关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式为n=6t;(2)当一辆汽车沿直线以40 km/h的速度向前匀速行驶时,汽车行驶的路程s(km)与行驶时间t(h)之间的关系式为s=40t.315.(5分)已知每千克化工原料的售价为120元,若y(元)表示购买x千克化工原料的总价钱.(1)写出y与x之间的关系式;(2)写出关系式中的变量与常量.16.(5分)下表记录的是某地某天一昼夜温度变化的数据,请根据表格数据回答下列问题:(1)早晨6时和中午12时的温度各是多少?(2)这一天的温差是多少?(3)这一天内温度上升的时段是几时至几时?17.(5分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成图.请根据图象回答:(第17题)(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?(2)第二天12时这头骆驼的体温是多少?(3)从28时到36时,这头骆驼的体温上升了多少?18.(5分)下表给出了橘农王林去年橘子的销售额y(元)随橘子的卖出质量x(kg)的变化的有关数据:x(kg)123456789y(元)24681012141618(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当橘子卖出5 kg时,销售额是多少?(3)估计当橘子卖出50 kg时,销售额是多少?519.(5分)如图表示的是某辆汽车在行驶过程中速度随时间的变化情况,根据图象回答下列问题.(1)汽车在哪些时间段速度在增加?它的速度最大是多少?(2)汽车在哪些时间段保持匀速行驶?速度分别是多少?(3)求汽车从出发后第18 min到第22 min行驶的路程.(第19题)20.(5分)一辆汽车油箱内有油a L,从某地出发,每行驶1 h耗油6 L,若设剩余油量为Q L,行驶时间为t h,根据以上信息及图象回答下列问题.(1)开始时,汽车的油量a=________L;(2)在行驶了________h时汽车加油,加了________L,写出加油后Q与t之间的关系式____________________;(第20题)(3)当这辆汽车行驶了9 h时,剩余油量为多少?21.(6分)某弹簧的自然长度为3 cm,在弹性限度内,所挂物体的质量x每增加1 kg,弹簧长度y增加0.5 cm.(1)计算所挂物体的质量分别为1 kg、2 kg、3 kg、4 kg、5 kg时的弹簧长度,并填入下表:x /kg01234 5y/cm 3(2)你能写出x与y之间的关系式吗?22.(7分)如图,已知三角形ABC的底BC的长为6 cm,高AD的长为x cm.(第22题)(1)写出三角形的面积y与x之间的关系式;(2)指出关系式中的自变量与因变量;(3)当x=4时,三角形的面积为多少?723.(7分)某市按以下规定收取每月水费:若每月每户用水不超过30 m3,则每立方米按2.5元收费;若每月每户用水超过30 m3,则超过部分每立方米按3.5元收费.(1)李明家上个月用水35 m3,他上个月应交水费多少元?(2)设当月用水为x m3,请你用含x的式子表示当月所付水费的金额.24.(8分)周老师为锻炼身体一直坚持步行上下班.已知学校到周老师家总路程为2 000 m.一天,周老师下班后,以45 m/min的速度从学校往家走,走到离学校900 m时,正好遇到一个朋友,停下又聊了半小时,之后以110 m/min的速度走回了家.周老师回家过程中,离家的路程s(m)与所用时间t(min)之间的关系如图所示.(第24题)(1)求a的值;(2)b=________,c=________;(3)求周老师从学校到家的平均速度.25.(8分)某电影院地面的一部分是扇形,座位按下列方式设置:第1排第2排第3排第4排…座位数60646872…(1)在上述变化过程中,因变量是什么?(2)第n排有多少个座位?(3)若某排有124个座位,则该排是第几排?26.(10分)如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从点A出发,沿点A、B、C、D路线运动,到点D停止,点P的速度为每秒1 cm,a s 时点P的速度变为每秒b cm,图②是点P出发x s时,三角形APD的面积S(cm2)9与x(s)之间的关系图象.(1)根据图②中提供的信息,a=________,b=________,c=________;(2)当点P出发几秒时,三角形APD的面积S是长方形ABCD的面积的四分之一?(第26题)答案一、1.B 2.B 3.A 4.C 5.C 6.C7.C8.C点拨:因为当x=0时,y1=0,y2=20,所以l1描述的是无月租费的收费方式,l2描述的是有月租费的收费方式,故①②正确;因为当x=30时,y1=y2=40,所以当每月租书的次数为30次时,两种收费方式的租书费用一样多,故③正确;因为当x=50时,由题图可知y1>y2,所以选择l2所描述的方式较为划算,故④错误;故选C.二、9.y=90°-x;x,y;90°10.y=6-0.8x11.20012.913.①②④三、14.解:(1)关系式中的常量为6,变量为n,t.(2)关系式中的常量为40,变量s,t.15.解:(1)由题意得y与x之间的关系式为y=120x.(2)由(1)可知关系式中的变量为y和x,常量为120.16.解:(1)观察表格,得早晨6时的温度是-4 ℃,中午12时的温度是7.5 ℃.(2)10-(-6.5)=16.5(℃),答:这一天的温差是16.5 ℃.(3)观察表格,得这一天内温度上升的时段是4时至14时.17.解:(1)由图可知,第一天中,在4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要16-4=12(小时).(2)第二天12时这头骆驼的体温是38 ℃.(3)38-34=4(℃),答:从28时到36时,这头骆驼的体温上升了4℃.1118.解:(1)表中反映了橘子的卖出质量与销售额之间的关系,橘子的卖出质量是自变量,销售额是因变量.(2)当橘子卖出5 kg 时,销售额为10元.(3)由表格可知y 与x 之间的关系式为y =2x .所以当x =50时,y =2×50=100.即当橘子卖出50 kg 时,销售额为100元.19.解:(1)由图象可知,汽车在0 min 到2 min ,10 min 到18 min 速度在增加,它的速度最大是75 km/h.(2)汽车在2 min 到6 min ,18 min 到22 min 保持匀速行驶,速度分别是25 km/h 和75 km/h.(3)汽车从出发后第18 min 到第22 min 行驶的路程为75×22-1860=5(km).20.解:(1)42(2)5;24;Q =-6t +66(3)36-6×(9-5)=12(L)答:当这辆汽车行驶了9 h 时,剩余油量为12 L.21.解:(1)3.5;4;4.5;5;5.5(2)x 与y 之间的关系式为y =3+0.5x .22.解:(1)三角形的面积y 与x 之间的关系式为y =12×6x =3x .(2)在关系式y =3x 中,x 是自变量,y 是因变量.(3)当x =4时,y =3×4=12,即三角形的面积为12 cm 2.23.解:(1)30×2.5+(35-30)×3.5=92.5(元).答:他上个月应交水费92.5元.(2)当当月用水不超过30 m 3时,当月所付水费的金额为2.5x 元;当当月用水超过30 m 3时,当月所付水费的金额为2.5×30+3.5(x -30)=(3.5x -30)元.24.解:(1)由题意可知a 的值应为900÷45=20.(2)1 100;50(3)周老师从学校到家用的总时间为50+1 100÷110=50+10=60(min),周老师从学校到家的平均速度是2 000÷60=1003(m/min).25.解:(1)由表格可知因变量是座位数.(2)由表格可知第1排的座位数为60,往后每增加一排,座位数增加4个,则第n排有60+4(n-1)=4n+56(个)座位.(3)由题意可知4n+56=124,解得n=17.答:若某排有124个座位,则该排是第17排.26.解:(1)6;2;17(2)因为长方形ABCD的面积是10×8=80(cm2),所以当0≤x≤6时,12×8x=80×14,即x=5.当12≤x≤17时,12×8×2(17-x)=80×14,即x=14.5.所以当点P出发5 s或14.5 s时,三角形APD的面积S是长方形ABCD的面积的四分之一.13。

第三章 变量之间的关系单元测试卷(含答案)

第三章 变量之间的关系单元测试卷(含答案)

第3章《变量之间的关系》单元水平测试(满分:120分时间:90分钟)一、选择题(每题3分,共30分)1.如果没盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是()(A)y=12x (B)y=18x (C)y=23x (D)y=32x2.已知△ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC 的面积()(A)从20cm2变化到64cm2(B)从64cm2变化到20cm2(C)从128cm2变化到40cm2(D)从40cm2变化到128cm23.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出 (1)225310417526…那么,当输入数据8时,输出的数据是()(A)861(B)863(C)865(D)8674.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。

当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……。

用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()5.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d50 80 100 150b25 40 50 75(A )2b d = (B )2b d = (C )2db =(D )25b d =+ 6.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s (米)关于时间t (分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )7.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是( ) A 、①③ B 、②③ C 、③ D 、①②8.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度( )A 、保持不变B 、越来越慢C 、越来越快D 、快慢交替变化 9.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:( ) (1) 他们都行驶了18千米;A B C D图2水池蓄水量时间6418542111进水量时间进水量时间图1水池蓄水量时间6418542111进水量时间进水量时间出水量进水量S (千米)18t (小时)甲乙 O 第9题图12.5第7题图 第8题图yyyyOOOOxxxxABCD(2) 甲在途中停留了0.5小时; (3) 乙比甲晚出发了0.5小时; (4) 相遇后,甲的速度小于乙的速度; (5) 甲、乙两人同时到达目的地。

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)

(必考题)初中数学七年级数学下册第三单元《变量之间的关系》测试卷(含答案解析)

一、选择题1.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据温度/℃﹣20﹣100102030声速/m/s318324330336342348A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快2.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd3.是饮水机的图片.饮水桶中的水由图1的位置下降到图2的位置的过程中,如果水减少的体积是y,水位下降的高度是x,那么能够表示y与x之间函数关系的图象可能是()A.B.C.D.4.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内的余油量Q (升)与行驶时间t(小时)之间的函数关系的图象是()A.B.C .D .5.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =-6.某工厂去年底积压产品a 件(a >0),今年预计每月销售产品2b 件(b >0),同时每月可生产出产品b 件,则产品积压量y (件)与今年开工时间t (月)的关系的图象应是( )A .B .C .D .7.五一节,小丽独自一人去老家玩,家住在车站附近的姑姑到车站去接小丽.因为担心小丽下车后找不到路,姑姑一路小跑来到车站,结果客车晚点,休息一阵后,姑姑接到小丽,和小丽一起慢慢的走回了家.下列图象中,能反映以上过程中小丽姑姑离家的距离s 与时间t 的关系的大致图象是( )A .B .C .D .8.已知两个变量x 和y ,它们之间的3组对应值如下表,则y 与x 之间的函数关系式可能是( )A .y=3xB .y=x-4C .y=x 2-4D .y=3x9.小明周六参加绘画兴趣班,爸爸开车送他从家去公交车站,先加速行驶一段时间后匀速行驶,过了一段时间到达公交车站,等待一段时间后上了公交车,公交车一开始先加速,一段时间后又开始匀速行驶,下面可以近似地刻画出小明在这段时间内的速度变化情况的图象是( ) A .B .C .D .10.在关于圆的面积的表达式S=πr 2中,变量有( ) A .4个B .3个C .2个D .1个11.柿子熟了,从树上落下来.下面的( )图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.12.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.二、填空题13.如图所示,是护士统计一位病人的体温变化图,这位病人中午12时的体温约为_______.14.夏天高山上的气温从山脚起每升高l00m降低0.7℃,已知山脚下的气温是23℃,则气温y(℃)与上升的高度x(m)之间的关系式为____;当x=500时,y=__;当y=16时,x=__.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线0M为抛物线的一部分),则下列结论:①BC=BE=5cm;②=;③当0<t≤5时,y=t2;④矩形ABCD的面积是10cm2.其中正确的结论是________ (填序号).17.假定甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是__; (2)乙在这次赛跑中的速度为__m/s.18.某市家庭电话月租费为25元,市内通话费平均每次为0.2元.若莹莹家上个月共打出市内电话a次,那么上个月莹莹家应付话费y与a之间的关系为__;若莹莹家上个月共打出市内电话100次,那么莹莹家应付话费__元.19.一个装有10千克水的水箱,每小时流出0.5千克水,水箱中的余水量y(千克)与时间t(小时)之间的关系式是__________,自变量t的取值范围是__________.20.声音在空气中传播的速度y(m/s)(简称声速)与气温x(℃)的关系如下表所示.气温x/℃05101520声速y/(m/s)331334337340343上表中___________是自变量, __________是因变量.照此规律可以发现,当气温x为__________℃时,声速y达到346 m/s.三、解答题21.中国联通在某地的某套餐的月租金为59元,超出套餐部分国内拨打0.36元/分钟(不足1分钟按1分钟时间收费).下表是超出套餐部分国内拨打的收费标准:时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(2)如果用x表示超出套餐部分的拨打时间,y表示超出套餐部分的电话费,那么y与x的关系式是什么?(3)由于业务多,小明的爸爸上个月拨打电话的时间超出套餐部分25分钟,他需付多少电话费?(4)某用户某月国内拨打电话的费用超出套餐部分的是54元,那么他该月拨打电话的时间超出套餐部分几分钟?22.某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析式.(注:此题答案不唯一,以上答案仅供参考.若有其它答案,只要是根据图象得出的信息,并且叙述正确都可以)23.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示.求从关闭进水管起需要多少分钟该容器内的水恰好放完.24.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:x 121322523468…y 1343213122120763273…②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.25.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?26.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.2.C解析:C【解析】试题分析:A、根据人的身高变化关系;B、根据红旗高度与时间的关系;C、跳过运动员跳跃横杆时高度与时间的关系;D、汽车紧急刹车时速度与时间的关系.解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.3.C解析:C 【分析】水位随着水减少而下降,且饮水机是圆柱形,是同等变化的下降. 【详解】根据图片位置分析:水减少的体积随着水位下降的高度而增加,且饮水机是圆柱形,所以均匀增加 故答案选:C 【点睛】本题考查用图象法表示变量之间的关系,掌握变量之间的变化关系解题关键.4.B解析:B 【分析】根据油箱内余油量=原有的油量-t 小时消耗的油量,可列出函数关系式,得出图象. 【详解】解:由题意得,油箱内余油量Q (升)与行驶时间t (小时)的关系式为: Q=40-5t (0≤t≤8), 结合解析式可得出图象:故选:B . 【点睛】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.5.C解析:C 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.6.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.7.A解析:A【解析】【分析】根据每段中路程s随时间t的变化情况即可作出判断.【详解】姑姑在车站休息的一段时间,路程不随时间的变化而变化,因而这一段的图象应该平行于横轴;姑姑一路小跑来到车站,这段是正比例函数关系,回家的过程是一次函数关系,且s岁t 的增大而减小,因而B、D错误;回家的过程比姑姑一路小跑来到车站的过程速度要慢,即s随t的变化要慢,因而图象要平缓,故A正确,C错误.故选A.【点睛】正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.9.C解析:C【解析】试题分析:先加速行驶,可得速度变快,图象从原点开始,成上升趋势;再匀速行驶,可得速度不变,图象平行于x轴;到达公交车站,汽车减速,速度变慢,直至变为0,图象成下降趋势;根据等车,可得速度为零;根据公交加速,可得速度变快,图象成上升趋势;根据匀速行驶,可得速度不变,图象平行于x轴.由此可知只有选项C符合题意.故选C.点睛:本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数值随自变量的增大是增大还是减小.10.C解析:C【解析】在圆的面积公式S=πr2中,属于常量的是π,属于变量的是S和r,有2个.故选C. 11.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.12.D解析:D【详解】解:因为进水时水量增加,函数图象的走势向上,所以可以排除B,清洗时水量大致不变,函数图象与x轴平行,排水时水量减少,函数图象的走势向下,排除A,对于C、D,因为题目中明确说明了一开始时洗衣机内无水.故选D.二、填空题13.15℃【解析】【分析】由于图象是表示的是时间与体温的关系而在10-14时图象是一条线段根据已知条件可以求出这条线段的函数解析式然后利用解析式即可求出这位病人中午12时的体温【详解】∵图象在10-14解析:15℃.【解析】【分析】由于图象是表示的是时间与体温的关系,而在10-14时图象是一条线段,根据已知条件可以求出这条线段的函数解析式,然后利用解析式即可求出这位病人中午12时的体温.【详解】∵图象在10-14时图象是一条线段,∴设这条线段的函数解析式为y=kx+b,而线段经过(10,38.3)、(14,38.0),∴,∴k=-,b=39.05,∴y=-x+39.05,当x=12时,y=38.15,∴这位病人中午12时的体温约为38.15℃.【点睛】本题应首先看清横轴和纵轴表示的量,然后根据所给时间找对应的体温值.14.y=23-0007x1951000【解析】【分析】每升高l00m降低07℃则每上升1m 降低0007℃则上升的高度xm下降0007x℃据此即可求得函数解析式;当x=500时把x=500代入解析式求得y解析:y=23-0.007x 19.5 1000【解析】【分析】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则上升的高度xm,下降0.007x℃,据此即可求得函数解析式;当x=500时,把x=500代入解析式求得y的值;当y=16时,把y=16代入解析式求得x的值.【详解】每升高l00m降低0.7℃,则每上升1m,降低0.007℃,则关系式为:y=23-0.007x;当x=500时,y=23-0.007×500=19.5;当y=16时,23-0.007x=16,解得:x=1000.【点睛】考查了列函数解析式,理解每升高l00m降低0.7℃,则每上升1m,降低0.007℃是关键.15.v02st【分析】因为在公式s=v0t+2t2(v0为已知数)中再结合函数的概念即可作出判断【详解】解:因为在公式s=v0t+2t2(v0为已知数)所以v02是常量st是变量【点睛】本题考查了变量与解析:v0、2 s、t【分析】因为在公式s=v0t+2t2(v0为已知数)中,再结合函数的概念即可作出判断.【详解】解:因为在公式s=v0t+2t2(v0为已知数),所以v0、2 是常量,s、t是变量.【点睛】本题考查了变量与常量的识别,属于简单题,熟悉变量之间的定义是解题关键.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量;常量与变量:在某一变化过程中始终保持不变的量叫常量;不断变化的量叫变量.16.①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段可以判断出当点P到达点E时点Q到达点C从而得到BCBE的长度再根据MN是从5秒到7秒可得ED的长度然后表示出AE的长度根据勾股定理求出AB解析:①③【解析】【分析】根据图②可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【详解】解:①根据图②可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm,故①正确;②∵从M到N的变化是2秒,∴DE=2,∴AE=5−2=3,∴,∴,故②错误;③如图,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=,∴PF=PBsin∠PBF=,∴当0<t≤5时,y=BQ•PF=t•t=,故③正确;④∵AB=4cm,BC=5cm,∴S矩形ABCD=4×5=,故④错误.故答案为:①③.【点睛】本题考查的是动点问题的函数图象,能根据题意得出矩形的边长是解答此题的关键.17.(1)甲(2)8【分析】根据图象中的特殊点读出总路程和时间判断运动类型并利用速度公式计算和判断运动的快慢【详解】(1)在通过路程相同的情况下甲所用时间短速度快所以甲先到达终点;(2)乙的速度:v 乙=解析:(1)甲 (2)8【分析】根据图象中的特殊点,读出总路程和时间,判断运动类型并利用速度公式计算和判断运动的快慢.【详解】(1)在通过路程相同的情况下,甲所用时间短,速度快,所以甲先到达终点;(2)乙的速度:v 乙=100=12.5S m S 乙乙 =8m/s. 故答案为(1)甲;(3)乙的速度是8m/s.【点睛】本题考查了函数图象,观察函数图象的纵坐标得出路程,横坐标得出时间是解题的关键. 18.y=25+02a45【分析】根据题意莹莹家的电话费用是月租费+通话费即y=25+02a 若上个月共打出电话100次根据所求函数关系式计算即可【详解】∵应付话费=月租费+通话费∴y=25+02a ;将a=解析:y=25+0.2a 45【分析】根据题意,莹莹家的电话费用是月租费+通话费,即y=25+0.2a ,若上个月共打出电话100次,根据所求函数关系式计算即可.【详解】∵应付话费=月租费+通话费,∴y=25+0.2a ;将a=100代入上式,则话费=25+0.2×100=45(元).【点睛】本题考查了根据实际问题列一次函数关系式,解题的关键是根据题意,找出等量关系,然后列出含有x 、y 的式子,最后整理变形为一次函数的一般形式.19.【解析】依题意有y=10−05tt ⩾0且用水量不能超过原有水量∴05t ⩽10解得t ⩽20∴0⩽t ⩽20故函数关系式是y=10−05t 自变量t 的取值范围是0⩽t ⩽20故答案为 解析:100.5y t =- 020t ≤≤【解析】依题意有y=10−0.5t ,t ⩾0,且用水量不能超过原有水量,∴0.5t ⩽10,解得t ⩽20, ∴0⩽t ⩽20.故函数关系式是y=10−0.5t ,自变量t 的取值范围是0⩽t ⩽20.故答案为 100.5y t =- , 020t ≤≤20.气温声速25【解析】气温是自变量声速是因变量设函数解析式y=kx+b ∵该函数图象经过点(0331)和(5334)∴解得∴该函数关系式为y=x+331当y=346时x=25即当气温x 为25℃时声速y 达解析:气温 声速 25【解析】气温是自变量, 声速是因变量设函数解析式y=kx+b ,∵该函数图象经过点(0,331)和(5,334),∴3315334b k b ⎧⎨+⎩==, 解得35331k b ⎧⎪⎨⎪⎩==.∴该函数关系式为y=35x+331 . 当y=346时,x=25即当气温x 为25 ℃时,声速y 达到346 m/s.故答案为:25故答案为:气温 声速 25点睛:主要考查了函数关系式以及函数值的相关知识,解答本题的关键是:读懂表格数据,用待定系数法求函数解析式,本题难度不大,是一道基础题. 三、解答题21.(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)y=0.36x ;(3)195元;(4)150分钟.【分析】(1)根据图表可以知道:电话费随时间的变化而变化,因而打电话时间是自变量、电话费是因变量;(2)费用=单价×时间,即可写出解析式;(3)把x=25代入解析式即可求得;(4)在解析式中令y=54即可求得x 的值.【详解】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量; (2)由题意可得:y=0.36x ;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x=540.36=150(分钟).答:小明的爸爸打电话超出150分钟.【点睛】本题考查了列函数解析式以及求函数值.列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.22.①2月份每千克销售价是3.5元;② 7月份每千克销售价是0.5元;③ 1月到7月的销售价逐月下降;④ 7月到12月的销售价逐月上升.(答案不唯一,合理均可)【分析】分析得出图象是蔬菜的销售价与月份之间的关系:2月、7月的售价可以根据图中虚线直接得出,同时可以得出售价相差多少;根据图象的上升趋势和下降趋势可以分析哪些月份售价上升、哪些月份售价下降;根据图象的最低点和最高点可以得出售价最高和最低;根据图象的对称性可以得出哪些月份售价相同.【详解】观察图象可得:(1)2月份每千克销售价是3.5元;(2)7月份每千克销售价是0.5元;(3)1月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价相同(答案不唯一,合理的答案均可)【点睛】本题考查根据图象与变量之间的关系,掌握图象与变量之间的关系是解题关键.23.从关闭进水管起需要8分钟该容器内的水恰好放完.【解析】【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【详解】解:由函数图象,得:进水管每分钟的进水量为:20÷4=5(升).设出水管每分钟的出水量为 m升,由函数图象,得:20+(5-m)×(12-4)=30.解得:m=15 4∴30÷154=8(分钟). 即从关闭进水管起需要8分钟该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.24.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-, (2)①根据解析式,补全下表:(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键25.(1)上午10时;(2)早上7时和晚上18时.【解析】【分析】分析曲线图可知,光合作用强度随光照强度增强而增强;在夏日中午10时;光合作用强度随光照强度减弱而减弱,早上7时和晚上18时的光合作用最弱.【详解】观察得到:(1)大约上午10时的光合作用最强;(2)大约早上7时和晚上18时的光合作用最弱.【点睛】此题考查函数图象问题,关键是根据图象分析得出的信息.26.(1)10;(2)1;(3)3;(4)不一样,理由见解析;【解析】【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下:乙骑自行车出故障前的速度7.50.5=15千米/小时.与修车后的速度22.57.53 1.5--=10千米/小时.因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《变量之间的关系》单元测试题
一、填空题(每空2分,共46分)
1、一个弹簧,不挂物体时长10厘米,挂上物体以后弹簧会变长,每挂上一千克物体,弹簧就会伸长厘米,如果所挂物体总质量为X(千克),那么弹簧伸长的长度y(CM)可以表示为___,在这个问题中自变量是___,因变量是___;如果所挂物体总质量为X(千克)那么弹簧的总长度Y(CM)可以表示为___,在这个问题中自变量是___,因变量是___。

2、为了美化校园,学校共划出84米²的土地修建4个完全相同的长方形花坛,如果每个花坛的一条边为X(米),那么另一条边y(米)可以表示为___。

3、一辆汽车正常行驶时每小时耗油8升,油箱内现有52升汽油,如果汽车行驶时间为t (时),那么油箱中所存油量Q(升)可以表示为___,行驶3小时后,油箱中还剩余汽油___升,油箱中的油总共可供汽车行驶___小时。

4.一圆锥的底面半径是5cm,当圆锥的高由2cm变到10cm时,圆锥的体积由________变到_________.
5.梯形上底长16,下底长x,高是10,梯形的面积s与下底长x间的关系式是_______.当x =0时,表示的图形是_______,其面积________.
4.如图6—1,甲、乙二人沿相同的路线前进,横轴表示时间,纵轴表示路程。

(1)刚出发时乙在甲前面___千米。

(2)两人各用了___小时走完路程。

(3)甲共走了___千米,乙共走了___千米。

5、如图6—2是我国某城市春季某一天气温随时间变化的图象,根据图象回答,在这一天中,
最低气温出现在___时,温度为___°C,在___时到___时的时段内,温度持续上升,这一天的温差是___°C。

10121416182022
1
2
B
A
c
b
a
图6—1 图6—2 图6—3
6、如图6—3,ay=100+ B. y=100+ C. y=1+136x D. Y=1+
2、某次实验中,测得两个变量v和m的对应数据如下表,则v和m之间的关系最接近于下列
关系中的()。

=m ²+1 B. v=2m C. v=3m-1 D. v=2/ m
3、某市1960年只有5%的成年工作者在家工作,至1970年在家工作的人数增 到8%,1980年大约有15%的人在家工作,而在1990年则有30%,试问图6—4中( )是这种情形的最佳说明。

图6—4
4、某同学骑自行车上学,开始以正常速度匀速行驶,但行至中途因车出了毛病,只好停下修车,车修好后,因怕耽误上课,他比修车前加快了骑车速度,继续匀速行驶,图6—5是行驶路程S 关于行驶时间t 的图象。

其中横轴表示行驶时间,纵轴表示行驶路程,那么符合这个同学形式情况的图象大致是( )。

图6—5
5、报载:我省人均耕地已从1951年的亩减少到1999年的亩,平均每年约减少亩。

若不采取措施,继续按此速度减下去,若干年后我省将无地可耕。

无地可耕的情况最早会发生在( )
A 、2022年
B 、2023年
C 、2024年
D 、2025年
6根据图示的程序计算变量y 的对应值,若输入变量x 的值为2
3,则输出的结果为( )
三、某种药物服下后,血液中含药量随时间的变化如图6—7所示,横轴表示时间,纵轴表示每毫升血液中的含药量,读图象回答下列问题。

(12分)
图6—7
(1) 服药___小时时,血液中的含药量最大,最大的含药量是___微克/毫升。

(2) 血液含药量4微克/毫升为有效期,这种药物的有效期大约有___小时。

(3) 血液大约___小时后,血液中将不再含有该药物。

四、小明在同样的两个容器中盛满水,加热到相同温度,然后用厚度相同的1,2两种保温材料包好,每隔5分钟测量一次两个容器的水的温度,实验过程中室温保持不变。

最后他把记录的温度画成了如图6—8的图象,其中横轴表示时间,纵轴表示温度,仔细观察图象,然后回答问题。

(12分)
图6—8
(1)小明把水加热到了多少度,后来降到了多少度?
(2)过半小时时,哪个容器中水的温度稍高些,你是怎样看出来的,
(3)你估计当时室温可能是多少度?说一说你估计的依据。

(4)你认为那种保温材料保温性能更好些,说说你的理由。

五.声音在空气中传播的速度y(m/s)与气温x(ºC)之间在如下关系:。

(1)当气温x=15 ºC时,声音的速度是多少?
(2)当气温x=22 ºC时,某人看到烟花燃放5s后才听到声音响,则此人与燃放的烟花所在地相距多少米?。

相关文档
最新文档