变量之间的关系最新典型习题(汇编)

合集下载

变量之间的关系(含答案)

变量之间的关系(含答案)

变量之间的关系试卷简介:变量的相关概念,用表格、关系式、图象表示变量之间的关系一、单选题(共12道,每道7分)1.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y与所挂物体质量x的一组对应值:下列有关表格的分析中,不正确的是( )A.表格中两个变量是所挂物体质量和弹簧长度B.自变量是所挂物体质量C.在允许范围内,所挂物体质量越大,弹簧长度就越长D.所挂物体质量随弹簧长度的变化而变化答案:D解题思路:所挂物体质量x是自变量,弹簧长度y是因变量,弹簧长度y随着所挂物体质量的变化而变化,故正确选项是D试题难度:三颗星知识点:变量之间的关系2.中国电信公司电话收费标准:前3分钟(不足3分钟按3分钟计算)为0.2元,3分钟后每分钟收0.1元,则通话时间x分钟(x>3)与通话费用y之间的函数关系是( )A.y=0.1x+0.2B.y=0.1xC.y=0.1x-0.1D.y=0.1x+0.5答案:C解题思路:当通话时间超过3分钟时,计费分为两段,第一段是前3分钟话费为0.2元,第二段是超过3分钟的部分,超出部分时间为(x-3),超出部分的话费为0.1(x-3),故总的话费为y=0.2+0.1(x-3),化简的结果为y=0.1x-0.1,故正确选项为C试题难度:三颗星知识点:变量之间的关系3.如图,当输入数值x为-2时,输出数值y是( )A.4B.6C.8D.10答案:B解题思路:输入-2,-2<1则代入y=-0.5x+5=-0.5×(-2)+5=6,故正确选项是B试题难度:三颗星知识点:变量之间的关系4.一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的图象关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A.爸爸开始登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.10分钟以后小军还在爸爸的前面答案:D解题思路:横轴表示时间,纵轴表示小军和爸爸离开山脚登山的路程,由于小军先出发,所以当时小军先出发,10分钟时2人相遇,之前小军在爸爸前面,之后爸爸赶超小军先到达山顶.试题难度:三颗星知识点:变量之间的关系5.如图所示的图象描述了某汽车在行驶过程中速度与时间的变化关系,下列说法中错误的是( )A.第3分时汽车的速度是40千米/时B.第12分时汽车的速度是0千米/时C.从第9分到第12分,汽车速度从60千米/时减少到0千米/时D.从第3分到第6分,汽车行驶了120千米答案:D解题思路:横轴表示时间,纵轴表示对应时间汽车的速度,0-3汽车由0千米/时加速到40千米/时,3-6以40千米/时匀速行驶,行驶路程为千米,9-12汽车由60千米/时逐渐减速到0千米/时.试题难度:三颗星知识点:变量之间的关系6.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A.1个B.2个C.3个D.4个答案:C解题思路:由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.试题难度:三颗星知识点:变量之间的关系7.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A. B.C. D.答案:C解题思路:父亲先到车站,2人最后一起回家,终点应在x轴上试题难度:三颗星知识点:变量之间的关系8.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是( )A. B.C. D.答案:A解题思路:水池上款下窄,所以在相等的时间内,水的高度为开始下降慢之后下降快.试题难度:三颗星知识点:变量之间的关系9.如图1,在长方形ABCD中,动点P从点B出发,以每秒2个单位的速度沿BC,CD,DA运动至点A停止.设点P运动的时间为x,△ABP的面积为y,如果y与x的关系图象如图2所示,则m的值是( )A.3B.5C.6D.8答案:B解题思路:x=2时,P点位于C处,BC=4.P位于DC上时,三角形面积为12,可求出AB长,DC=AB,由速度可求出时间.试题难度:三颗星知识点:变量之间的关系10.小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟答案:D解题思路:首先求得上坡,下坡,平路时的速度分别为80米/分,200米/分,100米/分,所以小高从学校到家需要的时间为,即可所求.试题难度:三颗星知识点:变量之间的关系11.某村新修建一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个结论:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的结论是( )A.①③B.②③C.③D.①②③答案:C解题思路:根据图1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.试题难度:三颗星知识点:变量之间的关系12.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示.给出下列说法:(1)甲的平均速度为km/h;(2)乙的平均速度为8km/h;(3)甲、乙两人同时到达目的地;(4)从开始到相遇这一段时间内,甲的平均速度=乙的平均速度.根据图象信息,以上说法正确的有( )A.1个B.2个C.3个D.4个答案:B解题思路:首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.6小时到达离出发地20千米的目的地;甲比乙早到0.6小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.试题难度:三颗星知识点:变量之间的关系二、填空题(共2道,每道8分)13.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的关系.则根据图象信息,快车的速度为____km/h.答案:160解题思路:由图象看出两地距离,两车相遇时y=0,C点表示快车到站,慢车继续行驶,D 点慢车到站,可以求出慢车速度,两车相遇路程之和等于甲乙两地距离,列出关系式,算出快车速度.试题难度:知识点:变量之间的关系14.小聪和小明沿同一条路同时从学校出发到市图书馆查阅资料,学校与市图书馆之间的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达市图书馆,图中折线O-A-B-C和线段OD分别表示两人离学校的距离s(千米)与所经过的时间t(分钟)之间的关系,根据图象信息,则当小聪与小明迎面相遇时,他们离学校的路程是____千米.答案:3解题思路:由BC段可求出小聪回学校的速度,OD可求出小明的速度,要求他们相遇时距学校的速度,可利用逆向思维,转化为相遇问题,利用速度和总路程可求出时间,最终算出距离.试题难度:知识点:变量之间的关系。

变量之间的关系练习题附答案

变量之间的关系练习题附答案

变量之间的关系练习(1)附答案一、选择题(每题3分,共24分)1.李老师骑车外出办事,离校不久便接到学校到他返校的紧急电话,李老师急忙赶回学校.下面四个图象中,描述李老师与学校距离的图象是()2.秋天到了,葡萄熟了,一阵微风吹过,一颗葡萄从架上落下来,葡萄下落过程中速度与3.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()4.某人骑车外出,所走的路程$(千米)与时间t(小时)的关系如图1所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进.其中说法正确的是()A.②③B.①③C①④ D.②④5.某校办工厂今年前5个月生产某种产品总量(件)与时间(月)的关系如图2所示,则对于该厂生产这种产品的说法正确的是()A.1月至3月生产总量逐月增加,4, 5两月生产总量逐月减少B.1月至3月生产总量逐月增加,4, 5两月生产总量与3月持平C1月至3月生产总量逐月增加,4, 5两月均停止生产D.1月至3月生产总量不变,4, 5两月均停止生产6.如图3是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系7.如图4,射线/甲,/乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系,则图中显示的他们行进的速度关系是()A.甲比乙快B.乙比甲快 C甲、乙同速 D.不一定8. 2004年6月3日中央新闻报道.为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水%立方米,水费为y元,则%与y的关系用图象表示正确的是()二、填空题(每题3分,共24分)1.某种储蓄的月利率是0.2%,存入100元本金后,则本息和y(元)与所存月数%之间的关系式为(不考虑利息税).2.如果一个三角形的底边固定,高发生变化时,面积也随之发生改变.现已知底边长为10,则高从3变化到10时,三角形的面积变化范围是.3.汽车开始行驶时,油箱中有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间》(小时)的关系式为,该汽车最多可行驶小时.4.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_____ 是自变量,是因变量。

变量之间的关系,附练习题含答案

变量之间的关系,附练习题含答案

变量之间的关系学案知识梳理:1.在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量;变量分为自变量和因变量.2.表示变量之间的关系通常有三种方法,它们是列表法、图像法、表达式法.1.看图的方法:一看轴;二看点;三看线练习题1. 在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体.下面是测得的弹簧长度y 与所挂物体质量x 的一组对应值. 所挂物体质量x /kg 0 1 2 3 4 5 弹簧长度y /cm 182022242628(1)表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体质量为3 kg 时,弹簧多长?不挂重物时,弹 簧多长?(3)若所挂物体质量为7 kg (在允许范围内),你能说出此时 的弹簧长度吗?2. 如图,若输入x 的值为-5,则输出的结果是_______;若输入x 的值为5,则输出的结果是_______.3. 如图是某地一天的气温随时间变化的图象,根据图象回答:(1)在这一天中,什么时间气温最高?什么时间气温最低? 最高气温和最低气温各是多少? (2)20 h 的气温是多少? (3)什么时间气温为6 ℃? (4)哪段时间内气温保持不变?4. 一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶,过了一段时间后,汽车减速到达下一个车站,乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面哪一个图可以近似地刻画出汽车在这段时间内的速度变化情况?( )A .B .C .D .时间O速度时间速度O时间速度O时间速度O是 否 y =x +1输入xx 大于0吗? y =x 1输出yt /hT /°C-4-22468100242220161814121086425.某蓄水池的横断面示意图如图所示,分深水区和浅水区.如果这个注满水的蓄水池以固定的流量把水全部放出,下列图象中能大致表示水的深度和放水时间之间的关系的是()A.B.C.D.6.如图所示,向放在水槽底部的烧杯注水,注满烧杯后,继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的关系大致是图中的()A.B.C.D.7.星期天晚饭后,小红从家里出发去散步,图中反映了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家里出发到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发到了一个公共阅报栏,看了一会儿报,继续向前走了一段,然后回家了C.从家里出发一直散步(没有停留),然后回家了D.从家里出发散一会儿步,就找同学去了,18分钟后才开始返回8.小李讲了一个龟兔赛跑的故事,并用图象描绘了比赛过程中路程随时间的变化情况,请先回答下列问题,再讲述这个故事.(1)兔子和乌龟是否在同一地点同时出发?(2)兔子和乌龟在比赛途中相遇过几次?(3)哪一个先到达终点?9.男、女运动员在100米跑道的两端同时起跑,往返练习跑步,测得男运动员每跑一百米用12秒,女运动员每跑一百米用15秒,图中实线和虚线分别为这两名运动员距女运动员起跑点的距离s(米)与时间t(秒)之间的关系图象,请根据图象回答问题:(1)图中实线是_____运动员跑步的图象,虚线是_____运动员跑步的图象(填“男”或“女”);(2)在百米跑道上两运动员第一次在同一端点相遇时,两人均跑了________秒,其中男运动员跑了________米,女运动htt员跑了________米;(3)两运动员从开始起跑到第一次在同一端点相遇止,共相 遇了__________次.10. 甲、乙两人在一次赛跑中,路程s (米)与时间t (秒)的关系如图所示,则下列结论错误的是( ) A .这是一次100米赛跑B .甲比乙先到达终点C .乙跑完全程需12.5秒D .甲的速度为8米/秒第10题图第11题图11. 明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s (千米)与时间t (分)之间的关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回来时,走这段路所用的时间为( ) A .12分B .13分C .14分D .15分12. 一个装有进水管和出水管的容器,从某一时刻起只打开进水管进水,经过一段时间,再打开出水管放水,至12分钟时,关闭进水管.在打开进水管到关闭进水管这段时间内,容器内的水量y (升)与时间x (分钟)之间的关系如图所示,则关闭进水管后,经过______分钟,容器中的水恰好放完.13. 如图,小明从家骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买一本练习册,于是又折回到刚经过的一家书店,买到书后继续赶去学校,他离家的距离s (米)与时间t (分)之间的关系如图所示,根据图中提供的信息回答下列问题: (1)小明家到学校的距离是多少米?书店到学校的距离是多少米? (2)小明在书店停留了多少分钟?本次上学途中,小明一共行驶了多少米? (3)在整个上学的途中,哪个时间段小明骑车速度最快?最快速度是多少?(4)如果小明不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?x /分钟14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离.......为y(km),图中的折线表示y与x之间的关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为________km;(2)请解释图中点B的实际意义;(3)求慢车和快车的速度.15.如图是某空蓄水池的横断面示意图,分为深水区和浅水区.若以固定的流量往这个空蓄水池中注水,则下列图象中,能大致表示水的深度h与时间t之间的关系的是()A.B.C.D.16.小明某天上午9时骑车离家,15时回家,如图描绘了他离家的距离与时间的具体变化情况,请结合图象回答以下问题:(1)小明经过多长时间到达离家最远的地方?此时他离家多远?(2)11时到12时,他行驶了多少千米?(3)他由离家最远的地方返回的平均速度是多少?【思路分析】读图,从图象中提取信息.①看轴:明确横轴、纵轴表示的意义.横轴表示____________,纵轴表示___________________.②看点:看起点、终点、状态转折点,与实际情景对应.起点表示上午9时从家出发,终点表示15时回家,与实际情景相符.状态转折点:10时离家__________,10.5时离家___________,11时离家________,12时离家________,13时离家_________.③看线,观察线段的变化趋势.线的变化较为复杂,9时—10时,距离增加了_________,此段的速度为________;10时—10.5时,速度为________;10.5时—11时,距离未发生变化;11时—12时,距离增加了________,此段的速度为________;12时—13时,距离未发生变化;13时—15时,距离减少了________,此段的速度为________.【过程书写】解:时浅水区深水区17.在利用太阳能热水器加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器18.如图,当输入数值x为-2时,输出的结果是()A.-2B.3C.-3D.2t y t y t O yt【参考答案】1.(1)表中反应了弹簧长度与所挂物体质量之间的关系;所挂物体质量是自变量;弹簧长度是因变量(2)当所挂物体质量为3kg时,弹簧长24cm;不挂重物时,弹簧长18cm(3)32cm2.-6;63.(1)16h气温最高;4h气温最低;最高气温是10℃;最低气温是-4℃;(2)20h的气温是8℃;(3)10h和22h的气温是6℃;(4)12h到14h的气温持续不变4. B5. A6. B7. B8.(1)否;(2)两次;(3)乌龟9.(1)男;女;(2)60;500;400;(3)510. D11. C12.813.(1)1500米;900米;(2)4分钟;2700米;(3)12-14分钟小明骑车速度最快;450米/分钟;(4)如果不买书需要7.5分钟;本次比往常多用了6.5分钟14.(1)900;(2)点B的实际意义是甲、乙两车在出发4h时相遇;(3)慢车的速度是75km/h;快车的速度是150km/h15. C16.(1)3小时,30千米(2)13千米(3)15千米/小时思路分析:①时间,离家的距离②10千米,17千米,17千米,30千米,30千米③10千米,10千米/小时14千米/小时13千米,13千米/小时30千米,15千米/小时17.B18.B19.(1)时间,气温(2)16,2,10,-2(3)5(4)9和2220.B21.D22.C23.D24.(1)甲教师的平均速度是0.25千米/分钟,乙教师的平均速度是1千米/分钟(2)乙出发后追上甲所用的时间是6分钟25.(1)a=20,b=1 100,c=50(2)60分钟。

变量之间关系专项练习(含答案)

变量之间关系专项练习(含答案)

变量之间的关系专项练习一.选择题(共25小题)1.下列各图能表示y是x的函数是()A.B.C.D.2.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20C︒时,声音5s可以传播1740mD.当温度每升高10C︒,声速增加6/m s3.早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.4.在下列各图象中,y不是x函数的是()A .B .C .D .5.在圆的周长2C R π=中,常量与变量分别是( ) A .2是常量,C 、π、R 是变量 B .2π是常量,C 、R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量6.弹簧挂上物体后会伸长,测得一弹簧的长度()y cm 与所挂的物体的质量()x kg 间有下面的关系:下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .所挂物体质量为4kg 时,弹簧长度为12cmC .弹簧不挂重物时的长度为0cmD .物体质量每增加1kg ,弹簧长度y 增加0.5cm7.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )A .B .C .D .8.以固定的速度0v (米/秒)向上抛一个小球,小球的高度h (米)与小球的运动的时间t (秒)之间的关系式是20 4.9h v t t =-,在这个关系式中,常量、变量分别为( ) A .4.9是常量,t 、h 是变量 B .0v 是常量,t 、h 是变量 C .0v 、 4.9-是常量,t 、h 是变量D .4.9是常量,0v 、t 、h 是变量9.李师傅到单位附近的加油站加油,如图是所用的加油机上的数据显示牌,则其中的常量是()A.金额B.数量C.单价D.金额和数量10.小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.11.均匀地向如图所示的容器中注满水,下列图象中,能反映在注水过程中水面高度h随时间t变化的函数关系的图象大致是()A.B.C.D.D次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),12.如图,3081火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A.B.C.D.13.某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中,下列说法正确的是( ) A .数100和η,t 都是变量 B .数100和η都是常量 C .η和t 是变量D .数100和t 都是常量14.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v (个/秒)与时间t (秒)之间的函数图象大致为( )A .B .C .D .15.一个蓄水池有315m 的水,以每分钟30.5m 的速度向池中注水,蓄水池中的水量3()Q m 与注水时间t (分)间的函数表达式为( ) A .0.5Q t =B .15Q t =C .150.5Q t =+D .150.5Q t =-16.某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图中描述判断:下列说法中错误的是( )A .当件数不超过30件时,每件价格为60元B .当件数在30到60之间时,每件价格随件数增加而减少C .当件数为50件时,每件价格为55元D .当件数不少于60件时,每件价格都是45元17.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个18.如图,是某蓄水池的横断面示意图,蓄水池分为深水区和浅水区,如果向这个蓄水池以固定的速度注水,下面能表示水的深度h与时间t的关系的图象大致是()A.B.C.D.19.匀速地向一个容器内注水,在注满水的过程中,水面的高度h与时间t之间的函数关系如图所示,则该容器可能是()A.B.C.D.20.弹簧挂重物会伸长,测得弹簧长度()x kg间有下面y cm最长为20cm,与所挂物体重量()的关系.下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm21.某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()A.汽车在途中加油用了10分钟B.若//OA BC,则加满油以后的速度为80千米/小时C.若汽车加油后的速度是90千米/小时,则25a=D.该同学8:55到达宁波大学22.下列曲线反映了变量y随变量x之间的关系,其中y是x的函数的是() A.B.C.D.23.已知函数6(2)2(2)x xyx x-+⎧=⎨>⎩,则当函数值8y=时,自变量x的值是()A.2-或4B.4C.2-D.2±或4±24.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为() A.216y x=+B.2(4)y x=+C.28y x x=+D.2164y x=-25.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.||y x=D.||y x=二.填空题(共3小题)26.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程()S km 随时间t (分)变化的函数图象.以下说法: ①乙比甲提前12分钟到达; ②甲的平均速度为15千米/小时; ③乙走了8km 后遇到甲; ④乙出发6分钟后追上甲. 其中正确的有 (填所有正确的序号)27.圆周长C 与圆的半径r 之间的关系为2C r π=,其中变量是 ,常量是 . 28.某市出租车的收费标准是:3千米以内(包括3千米)收费5元,超过3千米,每增加1千米加收1.2元,则路程(3)x x 时,车费y (元)与路程x (千米)之间的关系式为: . 三.解答题(共10小题)29.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是 米. (2)小明在书店停留了 分钟.(3)本次上学途中,小明一共行驶了 米.一共用了 分钟.(4)在整个上学的途中 (哪个时间段)小明骑车速度最快,最快的速度是 米/分.30.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图. 根据图中提供的信息回答下列问题: (1)小明家到学校的路程是多少米?(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分? (3)小明在书店停留了多少分钟?(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?31.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中的路程与时间的关系,线段OD表示赛跑过程中的路程与时间的关系.赛跑的全程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?32.李大爷按每千克2.1元批发了一批黄瓜到镇上出售,为了方便,他带了一些零钱备用.他先按市场售出一些后,又降低出售.售出黄瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)李大爷自带的零钱是多少?(2)降价前他每千克黄瓜出售的价格是多少?(3)卖了几天,黄瓜卖相不好了,随后他按每千克下降1.6元将剩余的黄瓜售完,这时他手中的钱(含备用的钱)是530元,问他一共批发了多少千克的黄瓜?(4)请问李大爷亏了还是赚了?若亏(赚)了,亏(赚)多少钱?33.中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费. 下表是超出部分国内拨打的收费标准(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x 表示超出时间,y 表示超出部分的电话费,那么y 与x 的表达式是什么? (3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?34.已知动点P 以每秒2cm 的速度沿如图甲所示的边框按从B C D E F A -----的路径移动,相应的ABP ∆的面积S 与关于时间t 的图象如图乙所示,若6AB cm =,求: (1)BC 长为多少cm ? (2)图乙中a 为多少2cm ? (3)图甲的面积为多少2cm ? (4)图乙中b 为多少s ?35.国家规定个人发表文章、 出版图书所得稿费的纳税计算方法是:①稿费不高于 800 元的不纳税;②稿费高于 800 元, 而低于 4000 元的应缴纳超过 800 元的那部分稿费的14%的税; ③稿费为 4000 元或高于 4000 元的应缴纳全部稿费的11%的税 . 试根据上述纳税的计算方法作答:(1) 若王老师获得的稿费为 2400 元, 则应纳税 元, 若王老师获得的稿费为 4000 元, 则应纳税 元;(2) 若王老师获稿费后纳税 420 元, 求这笔稿费是多少元?36.一列快车、一列慢车同时从相距300km 的两地出发,相向而行.如图,分别表示两车到目的地的距离()s km 与行驶时间()t h 的关系.(1)快车的速度为 /km h ,慢车的速度为 /km h ; (2)经过多久两车第一次相遇?(3)当快车到达目的地时,慢车距离目的地多远?37.如图,正方形ABCD 的边长为6cm ,动点P 从A 点出发,在正方形的边上由A B C D →→→运动,设运动的时间为()t s ,APD ∆的面积为2()S cm ,S 与t 的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,APD的面积为210cm.38.为响应教育局组织的三热爱教育活动,某学校要给每位学生印制一份宣传资料,甲印刷厂提出:每份收0.1元印刷费,另收100元制版费;乙印刷厂提出:每份收0.2元印刷费,不收制版费.(1)分别写出两厂的收费y甲(元)、y乙(元)与印制数量x(本)之间的关系式;(2)当印制多少份资料时,两个印刷厂费用一样多?(3)如果该校有800人,那么应选哪家印刷厂划算?变量之间的关系专项练习一.选择题(共25小题)1.【解答】解:A 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故A 选项错误;B 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故B 选项错误;C 、对于x 的每一个取值,y 有时有两个确定的值与之对应,所以y 不是x 的函数,故C 选项错误;D 、对于x 的每一个取值,y 都有唯一确定的值与之对应关系,所以y 是x 的函数,故D 选项正确.故选:D .2.【解答】解:在这个变化中,自变量是温度,因变量是声速,∴选项A 正确;根据数据表,可得温度越高,声速越快,∴选项B 正确;34251710()m ⨯=,∴当空气温度为20C ︒时,声音5s 可以传播1710m ,∴选项C 错误;3243186(/)m s -=,3303246(/)m s -=,3363306(/)m s -=,3423366(/)m s -=,3483426(/)m s -=,∴当温度每升高10C ︒,声速增加6/m s ,∴选项D 正确.故选:C .3.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y 随x 的增大而增大, 小明的妈妈开始给你小明送作业到追上小明这段时间,y 随x 的增大而减小, 小明妈妈追上小明到各自继续行走这段时间,y 随x 的增大不变,小明和妈妈分别去学校、回家的这段时间,y 随x 的增大而增大,故选:B .4.【解答】解:函数的一个变量不能对应两个函数值,故选:C .5.【解答】解:在圆的周长公式2C r π=中,C 与r 是改变的,π是不变的; ∴变量是C ,r ,常量是2π.故选:B .6.【解答】解:A .x 与y 都是变量,且x 是自变量,y 是因变量,故A 正确; B .所挂物体质量为4kg 时,弹簧长度为12cm ,故B 正确;C .弹簧不挂重物时的长度为10cm ,故C 错误;D .物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故D 正确.故选:C .7.【解答】解:根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以只有选项C 不满足条件.故选:C .8.【解答】解:20 4.9h v t t =-中的0v (米/秒)是固定的速度, 4.9-是定值,故0v 和 4.9-是常量,t 、h 是变量,故选:C .9.【解答】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:C .10.【解答】解:小李距家3千米,∴离家的距离随着时间的增大而增大,途中在文具店买了一些学习用品,∴中间有一段离家的距离不再增加,综合以上C 符合,故选:C .11.【解答】解:最下面的容器较细,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器最大,那么用时最长.故选:A .12.【解答】解:根据题意可知火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y 逐渐变大,火车完全进入后一段时间内y 不变,当火车开始出来时y 逐渐变小,故反映到图象上应选A .故选:A .13.【解答】解:某人要在规定的时间内加工100个零件,则工作效率η与时间t 之间的关系中:η和t 是变量,零件的个数100是常量.故选:C .14.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y 随时间x 的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y 随时间x 的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y 随时间x 的增加而增加,故选:C .15.【解答】解:一个蓄水池有315m 的水,以每分钟30.5m 的速度向池中注水, ∴蓄水池中的水量3()Q m 与注水时间t (分)间的函数表达式是:150.5Q t =+,故选:C .16.【解答】解:由图象可得,当件数不超过30件时,每件价格为60元,故选项A 正确,当件数在30到60之间时,每件价格随件数增加而减少,故选项B 正确,当件数为50件时,每件价格为:604560(5030)506030--⨯-=-(元),故选项C 错误, 当件数不少于60件时,每件价格都是45元,故选项D 正确,故选:C .17.【解答】解:读图可得,在40x =时,速度为0,故(1)(4)正确;AB 段,y 的值相等,故速度不变,故(2)正确;30x =时,80y =,即在第30分钟时,汽车的速度是80千米/时;故(3)错误; 故选:C .18.【解答】解:根据题意和图形的形状,可知水的最大深度h 与时间t 之间的关系分为两段,先快后慢.故选:C .19.【解答】解:相比较而言,前一个阶段,用时较少,高度增加较快,那么下面的物体应较细.由图可得上面立方体的体积应大于下面立方体的体积.故选:D .20.【解答】解:A 、正确.x 与y 都是变量,x 是自变量,y 是因变量;B 、正确.所挂物体为6kg ,弹簧长度为11cm ;C 、正确.物体每增加1kg ,弹簧长度就增加0.5cm ;D 、错误,弹簧长度最长为20cm ;故选:D .21.【解答】解:A 、图中加油时间为25至35分钟,共10分钟,故本选项正确;B 、因为//OA BC ,所以602520a a -=,解得1003a =,所以加满油以后的速度1003802560==千米/小时,故本选项正确.C 、由题意:60902060a -=,解得30a =,本选项错误. D 、该同学8:55到达宁波大学,正确.故选:C .22.【解答】解:对于x 的每一个取值,y 都有唯一确定的值,A 、对于x 的每一个取值,y 都有两个值,故A 错误;B 、对于x 的每一个取值,y 都有两个值,故B 错误;C 、对于x 的每一个取值,y 都有两个值,故C 错误;D 、对于x 的每一个取值,y 都有唯一确定的值,故D 正确;故选:D .23.【解答】解:把8y =代入函数6(2)2(2)x x y x x -+⎧=⎨>⎩, 先代入上边的方程得2x =-,2x ,故2x =-;再代入下边的方程4x =,2x >,故4x =,综上,x 的值为4或2-.故选:A .24.【解答】解:新正方形边长是4x +,原正方形边长是4,∴新正方形面积是2(4)x +,原正方形面积是16,∴增加的面积2(4)16y x =+-即28y x x =+故选:C .25.【解答】解:A 、对于x 的每一个取值,y 都有唯一确定的值,故A 正确; B 、对于x 的每一个取值,y 都有唯一确定的值,故B 正确;C 、对于x 的每一个取值,y 都有唯一确定的值,故C 正确;D 、对于x 的每一个取值,y 没有唯一确定的值,故D 错误;故选:D .二.填空题(共3小题)26.【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度40101560=÷=千米/时;故②正确; ④设乙出发x 分钟后追上甲,则有:1010(18)281840x x ⨯=⨯+-,解得6x =,故④正确; ③由④知:乙第一次遇到甲时,所走的距离为:10662818km ⨯=-,故③错误; 所以正确的结论有三个:①②④,故答案为:①②④.27.【解答】解:在圆的周长公式2C r π=中,C 与r 是改变的,π是不变的; ∴变量是C ,r ,常量是2π.故答案为:C ,r ;2π.28.【解答】解:根据题意得出:当03x <时,5y =当3x >时,5(3) 1.2y x =+-⨯5 1.2 3.6x =+-1.2 1.4x =+,故答案为: 1.2 1.4y x =+.三.解答题(共10小题)29.【解答】解:(1)y 轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)150060022700+⨯=(米)即:本次上学途中,小明一共行驶了 2700米.一共用了 14分钟.(4)折回之前的速度12006200=÷=(米/分)折回书店时的速度(1200600)2300=-÷=(米/分),从书店到学校的速度(1500600)2450=-÷=(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中 从12分钟到14分钟小明骑车速度最快,最快的速度是 450 米/分30.【解答】解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0, 故小明家到学校的路程是1500米;(2)根据图象,1214x 时,直线最陡,故小明在1214-分钟最快,速度为15006004501412-=-米/分. (3)根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.(4)读图可得:小明共行驶了12006009002700++=米,共用了14分钟.31.【解答】解:(1)乌龟是一直跑的而兔子中间有休息的时刻;∴折线OABC 表示赛跑过程中兔子的路程与时间的关系;线段OD 表示赛跑过程中乌龟的路程与时间的关系;由图象可知:赛跑的路程为1500米;故答案为:兔子、乌龟、1500;(2)结合图象得出:兔子在起初每分钟跑700米.15003050÷=(米)乌龟每分钟爬50米.(3)7005014÷=(分钟)乌龟用了14分钟追上了正在睡觉的兔子.(4)48千米48000=米4800060800∴÷=(米/分)(1500700)8001-÷=(分钟)300.51228.5+-⨯=(分钟)兔子中间停下睡觉用了28.5分钟.32.【解答】解:(1)由图可得农民自带的零钱为50元.(2)(41050)100-÷360100=÷3.6=(元).答:降价前他每千克黄瓜出售的价格是3.6元;(3)(530410)(3.6 1.6)-÷-1202=÷60=(千克), 10060160+=(千克). 答:他一共批发了160千克的黄瓜;(4)530160 2.150144-⨯-=(元).答:李大爷一共赚了144元钱.33.【解答】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)由题意可得:0.36y x =;(3)当25x =时,0.36259y =⨯=(元),即如果打电话超出25分钟,需付1869195+=(元)的电话费;(4)当54y =时,541500.36x ==(分钟). 答:小明的爸爸打电话超出150分钟.34.【解答】解:(1)由图象可得,点P 从点B 到点C 运动的时间是4s ,运动的速度是每秒2cm ,故BC 的长度是:428cm ⨯=,即BC 长是8cm ;(2)8BC cm =,6AB cm =,2862422BC AB S cm ⨯∴===, 即图乙中a 的值为224cm ;(3)由图可知, 428BC cm =⨯=,(64)24CD cm =-⨯=,(96)26DE cm =-⨯=,6AB cm =, 14AF BC DE cm ∴=+=,∴图甲的面积是:261446842460AB AF CD DE cm ⋅-⋅=⨯-⨯=-=;(4)由题意可得,846(64)(68)1722BC CD DE EF FA b s +++++++-++===, 即b 的值是17s . 35.【解答】解: (1) 若王老师获得的稿费为 2400 元, 则应纳税 224 元, 若王老师获得的稿费为 4000 元, 则应纳税 440 元;(2) 因为王老师纳税 420 元, 所以由 (1) 可知王老师的这笔稿费高于 800 元, 而低于 4000 元,设王老师的这笔稿费为x 元, 根据题意得:14%(800)420x -=3800x =元 .答: 王老师的这笔稿费为 3800 元 .36.【解答】解:(1)快车的速度为2030045/3km h ÷=,慢车的速度为3001030/km h ÷=, 故答案为:45,30;(2)30044530h =+ 答:经过4h 两车第一次相遇; (3)20(10)301003km -⨯=, 答:当快车到达目的地时,慢车距离目的地多100km .37.【解答】解:(1)根据图象得:点P 在BC 上运动的时间范围为612t ;(2)点P 在AB 上时,APD ∆的面积1632S t t =⨯⨯=; 点P 在BC 时,APD ∆的面积166182=⨯⨯=; 点P 在CD 上时,62(12)302PD t t =--=-,APD ∆的面积116(302)90622S AD PD t t =⋅=⨯⨯-=-; ∴当06t 时,3S t =,APD ∆的面积为210cm ,即10S =时,310t =,103t =, 当1215t 时,90610t -=,403t =, ∴当t 为103s 或403s 时,APD ∆的面积为210cm . 38.【解答】解:(1)0.1100y x =+甲,0.2y x =乙;(2)由题意得:y y =乙甲,0.11000.2x x ∴+=解之得:1000x =答:当印刷1000份时,两个印刷厂费用一样多.(3)当800x =时,0.1800100180y =⨯+=甲;0.2800160y =⨯=乙; 180160>∴选择乙印刷厂划算.。

变量之间的关系典型练习题

变量之间的关系典型练习题

变量之间的关系典型练习题题型一、用关系式表示变量之间的关系1、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为__________(不考虑利息税).2、某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0。

6元(本题的通话均指市内通话),若一个月通话x 分钟,两种方式的费用分别为1y 元和2y 元. (1)写出1y 、2y 与x 之间的关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同?(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?题型二、用图象表示变量之间的关系3、小明在暑期社会实距活动中,以每千克0。

8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0。

4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下问题: (1)求降价前销售金额y (元)与售出西瓜x (千克)之间的关系式; (2)小明从批发市场共购进多少千克西瓜? (3)小明这次卖瓜赚子多少钱?4 小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如右图所示). (1)图象表示了哪两个变量的关系?哪个是自变量? 哪个是因变量? (2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远? (4)11时到12时他行驶了多少千米? (5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?图75 小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是多少6、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q 1吨,加油飞机的加油油箱余油量为Q 2吨,加油时间为t 分钟,Q 1、Q 2与t 之间的函数图像如图所示,结合图像回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?(2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由。

变量之间的关系典型习题

变量之间的关系典型习题

变量之间的关系2知识点1 自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。

而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。

区别:因变量随自变量的变化而变化。

【典型例题】(2)12时,水位是多高?(3)哪一段水位上升最快?【练习】(2) 第5排、第6排各有多少个座位?(3)第n 排有多少个 座位?请说明你的理由。

2、父亲告诉小明:“距离地面越远,温度越低”,小明并且出示了下面的表格:根据上表,父亲还给小明出了下面几个问题,你和小明一起回答:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t如何变化?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能预测出距离地面6千米的高空温度是多少吗?3、某地有A,B,两种出租车,其行驶路程与费用关系如下表(1)本题中如果用x表示路程,y表示费用,哪个是自变量,哪个是因变量?x ≥5千米后,随着x的增大,y的变化趋势是什么?(2)B种出租车从3千米以后起,路程每增加1千米,费用怎么样变化?(3)预测路程为10千米时,两种车费各是多少?(4)当行驶为4千米时,你选择坐那种车?行驶路程为8千米时,你选择坐那种车?4.一个弹簧不挂物体时,长12厘米,挂上1千克物体后,弹簧总长(12+0.5)厘米,•挂上2千克物体后,弹簧总长(12+0.5×2)厘米,挂上3千克物体后,弹簧总长(12+0.5×3)厘米……(1)上述哪些量在发生变化?自变量是什么?因变量又是什么?(2)请把挂上物体后,弹簧的长度变化情况填入下表:(3)根据表格中的数据,总结弹簧的长度是怎样随物重的变化而变化的?(4)估计一下挂上10千克物体后,弹簧的长度是多少?你是如何估计的?5(变式)、在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:⑴弹簧不挂物体时的长度是多少?⑵如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?6.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y随温度x的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点__________米。

变量之间的关系精品习题[1]

变量之间的关系精品习题[1]

第六章 变量之间的关系一、选择题1.根据如图1所示的程序计算y 值,若输入的x 值为32,则输出的结果为( )A .72B .94 C .12D .922.如图2,某窗形状是一个矩形上面带一个半圆,半圆的半径是x ,窗户的周长是P ,窗户的面积是y ,如果P 是定值,则y 与x 的关系式为( )A .222y x P x π=+-B .242y Px x π⎛⎫=-+ ⎪⎝⎭C .()22y Px x π=-+D . 22y Px x π=-3.如图3,某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h 与时间t 之间的关系的图象的是( )4.“龟兔赛跑“讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……,用1s ,2s 分别表示乌龟和兔子所行的路程,t 为时间,则下列图像中与故事情节相吻合的是( )5.如图4所示,OA 、BA 分别表示甲、乙两名学生运动路程和时间的关系,下列说法错误的是( ) A .甲比乙先出发 B .甲乙两人同时出发C .甲出发8小时两人行驶的路程相同D .甲、乙出发时两人相距12米6.一游泳池长90米,甲、乙二人分别在游泳池相对两边同时朝另一边游泳,甲的速度是3米/秒,乙的速度是2米/秒,图5中的实线和虚线分别为甲、乙游泳的距离随游泳时间的变化而变化的图象,若不计转向时间,则从开始起3分钟内他们相遇的次数为( ) A .2次 B .3次 C .4次 D .5次 7.如图6所示,是某市某天的温度随时间变化的图象,通过观察,下列说法错误的是( ) A .这天15点时温度最高 B .这天3点时温度最低C .这天最高温度与最低温度的差是13CD .这天21点时温度是32C8A .861B .863C .865D .867二、填空题1.等腰三角形ABC,当底边固定时,其面积随着高的增长而增大。

变量间的关系练习题

变量间的关系练习题

变量间的关系练习题1.〔2021•天水〕如图,扇形OAB动点P从点A出发,沿线段B0、0A匀速运动到点A,那么0P的长度y与运动时间t之间的函数图象大致是〔〕A. B. C. D.2.〔2021•重庆〕夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗,该工人先只翻开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时翻开两个出水管将池内的水放完,随后将两个出水管关闭,并同时翻开两个进水管将水蓄满.每个进水管的进水速度与每个出水管的出水速度相同,从工人最先翻开一个进水管开始,所用时间为x,游泳池内的蓄水量为y,那么以下各图中能够反映y与x的函数关系的大致图象是〔〕A. B. C. D.3.〔2021•重庆〕2021年5月10日上午,小华同学接到通知,她的作文通过了?我的中国梦?征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是〔〕A. B. C. D.4.〔2021•德州〕图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的选项是〔〕A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时5.〔2021•南宁〕“黄金1号〞玉米种子的价格为5元/千克,如果一次购置2千克以上的种子,超过2千克局部的种子价格打6折,设购置种子数量为x千克,付款金额为y 元,那么y与x的函数关系的图象大致是〔〕A. B. C. D.6.〔2021•抚州〕一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如下图.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,那么以下能反映容器最高水位h与注水时间t之间关系的大致图象是〔〕A. B. C. D.7.〔2021•常州〕甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S〔km〕随时间t〔分〕变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有〔〕A.4个B.3个C.2个D.1个8.在△ABC中,它的底边是a,底边上的高是h,那么三角形面积S=ah,当a为定长时,在此式中〔〕A.S,h是变量,,a是常量B.S,h,a是变量,是常量C.S,h是变量,,S是常量D.S是变量,,a,h是常量9.设半径为r的圆的面积为S,那么S=πr2,以下说法错误的选项是〔〕A.变量是S和r,B.常量是π和2C.用S表示r为r=D.常量是π10.重百大楼的销售量随商品价格的上下而变化,在这个变化过程中,自变量是〔〕A.销售量 B.顾客 C.商品 D.商品的价格11.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是〔〕A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积12.对于圆的周长公式C=2πR,以下说法正确的选项是〔〕A.π、R是变量,2是常量B.R是变量,π是常量C.C是变量,π、R是常量D.C、R是变量,2、π是常量13.圆的周长公式C=2πR中,以下说法正确的选项是〔〕A.π、R是自变量,2是常量B.C是因变量,R是自变量,2π为常量C.R为自变量,2π、C为常量D.C是自变量,R为因变量,2π为常量14.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量.上述判断正确的有〔〕A.1个B.2个C.3个D.4个15.人的身高h随时间t的变化而变化,那么以下说法正确的选项是〔〕A.h,t都是不变量B.t是自变量,h是因变量C.h,t都是自变量D.h是自变量,t是因变量16.小明给在北京的姑姑打,费随时间的变化而变化,在这个问题中,因变量是〔〕A.时间B. 费C.D.距离17.设路程s,速度v,时间t,在关系式s=vt中,说法正确的选项是〔〕A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量18.某人要在规定的时间内加工100个零件,那么工作效率η与时间t之间的关系中,以下说法正确的选项是〔〕A.数100和η,t都是变量B.数100和η都是常量C.η和t是变量D.数100和t都是常量19.〔2007•眉山〕在某次实验中,测得两个变量m和v之间的4组对应数据如下表:那么m与v之间的关系最接近于以下各关系式中的〔〕m1234v0.01 2.98.0315.1A.v=2m﹣2B.v=m2﹣1C.v=3m﹣3D.v=m+120.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量;上述判断正确的有〔〕A.1个B.2个C.3个D.4个21.〔2021•婺城区模拟〕下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是〔〕d5080100150b25405075A.b=d2B.b=2dC.b=D.b=d+2522.弹簧挂上物体后会伸长,现测得一弹簧的长度y〔厘米〕与所挂物体的质量x〔千克〕之间有如下关系:物体质量x/千克0 1 2 3 4 5 …弹簧长度y/厘米10 10.5 11 11.5 12 12.5 …以下说法不正确的选项是〔〕A.x与y都是变量,其中x是自变量,y是因变量B.弹簧不挂重物时的长度为0厘米C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米23.弹簧挂上物体后伸长,一弹簧的长度〔cm〕与所挂物体的质量〔kg〕之间的关系如下表:以下说法错误的选项是〔〕物体的质量〔kg〕 0 1 2 3 4 5弹簧的长度〔cm〕 10 12.5 15 17.5 20 22.5A.在没挂物体时,弹簧的长度为10cmB.弹簧的长度随物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.如果物体的质量为mkg,那么弹簧的长度ycm可以表示为y=2.5m+10D.在弹簧能承受的范围内,当物体的质量为4kg时,弹簧的长度为20cm 24.〔2021•锡山区一模〕以下函数中,自变量的取值范围是x>3的是〔〕A.y=x﹣3B.C.D.25.〔2021•吴中区二模〕函数y=+中自变量x的取值范围是〔〕A.x≤2且x≠3B.x≤2C.x<2且x≠3D.x=326.〔2021•工业园区二模〕函数y=中自变量x的取值范围是〔〕A.x≥﹣3B.x≠1C.x≥﹣3且x≠1D.x≠﹣3且x≠127.〔2021•东海县二模〕以下函数中,自变量x可以取1和2的函数是〔〕A.y=B.y=C.y=D.y=28.〔2021•日照三模〕函数中自变量x的取值范围是〔〕A.x≤3B.x=4C.x<3且x≠4D.x≤3且x≠429.〔2021•北塘区二模〕函数y=中自变量x的取值范围是〔〕A.x≥﹣1B.x≤﹣1C.x>﹣1D.x<﹣130.〔2021•成都〕函数y=中,自变量x的取值范围是〔〕A.x≥﹣5B.x≤﹣5C.x≥5D.x≤531.〔2021•牡丹江〕在函数y=中,自变量x的取值范围是〔〕A.x≥0B.x>0C.x≤0D.x<032.〔2021•内江〕在函数y=中,自变量x的取值范围是〔〕A.x≥﹣2且x≠1B.x≤2且x≠1C.x≠1D.x≤﹣233.〔2021•眉山〕函数的自变量x的取值范围是〔〕A.x>3B.x≥3C.x<3D.x≤334.〔2021•黄冈〕函数y=中,自变量x的取值范围是〔〕A.x≠0B.x≥2C.x>2且x≠0D.x≥2且x≠035.〔2021•遂宁〕在函数y=中,自变量x的取值范围是〔〕A.x>1B.x<1C.x≠1D.x=136.〔2021•兰州〕函数y=中,自变量x的取值范围是〔〕A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣237.〔2021•来宾〕函数中,自变量x的取值范围是〔〕A.x≠3B.x≥3C.x>3D.x≤338.〔2021•南平〕一名老师带着x名学生到动物园参观,成人票每张30元,学生票每张10元.设门票的总费用为y元,那么y与x的函数关系为〔〕A.y=10x+30B.y=40xC.y=10+30xD.y=20x39.〔2021•黄石〕如图,AB是半圆O的直径,点P从点A出发,沿半圆弧AB顺时针方向匀速移动至点B,运动时间为t,△ABP的面积为S,那么以下图象能大致刻画S与t 之间的关系的是〔〕A. B.C. D.40.〔2021•贵阳〕如图,三棱柱的体积为10,其侧棱AB上有一个点P从点A开始运动到点B停止,过P点作与底面平行的平面将这个三棱柱截成两个局部,它们的体积分别为x、y,那么以下能表示y与x之间函数关系的大致图象是〔〕A. B. C. D.41.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为____参考答案1.D【解析】试题分析:分点P在弧AB上,在线段BO上,线段OA上三种情况讨论得到OP的长度的变化情况,即可得解.解:点P在弧AB上时,OP的长度y等于半径的长度,不变;点P在BO上时,OP的长度y从半径的长度逐渐减小至0;点P在OA上时,OP的长度从0逐渐增大至半径的长度.纵观各选项,只有D选项图象符合.应选:D.点评:此题考查了动点问题的函数图象,根据点P的位置分点P在弧上与两条半径上三段讨论是解题的关键.2.C【解析】试题分析:根据题目中表达的过程,开始翻开一个进水管,游泳池内的蓄水量逐渐增多;一段时间后,再同时翻开两个出水管将池内的水放完,游泳池内的蓄水量逐渐减少直到水量为0,并且时间比开始用的少;随后将两个出水管关闭,并同时翻开两个进水管将水蓄满,游泳池内的蓄水量增多.解:开始翻开一个进水管,游泳池内的蓄水量逐渐增多;一段时间后,再同时翻开两个出水管将池内的水放完,游泳池内的蓄水量逐渐减少直到水量为0,并且时间比开始用的少;随后将两个出水管关闭,并同时翻开两个进水管将水蓄满,游泳池内的蓄水量增多,应选:C.点评:此题考查了函数图象.关键是能够根据表达来分析变化过程.3.C【解析】试题分析:根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;应选:C.点评:此题考查了函数图象,字数先增加再不变最后增加的快是解题关键.4.C【解析】试题分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15〔分钟〕,故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1〔千米〕,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30〔分钟〕,距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3〔千米/时〕,故D选项正确.应选:C.点评:此题主要考查了函数图象与实际问题,根据图象得出正确信息是解题关键.5.B【解析】试题分析:根据玉米种子的价格为5元/千克,如果一次购置2千克以上种子,超过2千克的局部的种子的价格打6折,可知2千克以下付款金额为y元随购置种子数量为x千克增大而增大,超过2千克的局部打6折,y仍随x的增大而增大,不过增加的幅度低一点,即可得到答案.解:可知2千克以下付款金额为y元随购置种子数量为x千克增大而增大,超过2千克的局部打6折,y仍随x的增大而增大,不过增加的幅度低一点,应选:B.点评:此题主要考查了函数的图象,关键是分析出分两段,每段y都随x的增大而增大,只不过快慢不同.6.C【解析】试题分析:根据将一盛有局部水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h〔cm〕与注水时间t〔min〕的函数图象.解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.应选:C.点评:此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.B【解析】试题分析:观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲,那么有:×x=×〔18+x〕,解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6km,故③错误;所以正确的结论有三个:①②④,应选:B.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题表达的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.A【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法那么有一个确定的值y与之对应;来解答即可.解:∵三角形面积S=ah,∴当a为定长时,在此式中S、h是变量,,a是常量;故此题选A.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,假设对于D中的每个值x,变量y按照一定的法那么有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f〔x〕;变量是指在程序的运行过程中随时可以发生变化的量.9.B【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法那么有一个确定的值y与之对应;来解答即可.解:∵圆的面积S=πr2,∴变量是S和r,常量是π,用S表示r为r=,故说法错误的选项是B.应选B.点评:此题考查了常量与变量的知识,注意掌握函数的定义:设x和y是两个变量,D是实数集的某个子集,假设对于D中的每个值x,变量y按照一定的法那么有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f〔x〕;变量是指在程序的运行过程中随时可以发生变化的量.10.D【解析】试题分析:根据题意,销售量随商品价格的上下而变化,结合函数的定义,分析可得答案.解:根据题意,销售量随商品价格的上下而变化,那么在这个变化过程中,自变量是商品的价格,应选D.点评:此题考查函数的概念,在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,那么y是x的函数,x叫自变量.11.B【解析】试题分析:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个〔或另几个〕会变动的数的变动而变动,就称为因变量.解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.应选B.点评:此题主要考查的是对函数的定义以及对自变量和因变量的认识和理解.12.D【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:R是变量,2、π是常量.应选D.点评:此题主要考查了常量,变量的定义,是需要识记的内容.13.B【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR中,C是因变量,R是自变量,2π为常量,应选:B.点评:此题主要考查了常量,变量的定义,是需要识记的内容.14.B【解析】试题分析:根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.解:由题意得:y=3a,此问题中a、y都是变量,3是常量,或a,y都是常量,那么③④,应选:B.点评:此题主要考查了常量和变量,关键是掌握变量和常量的定义.15.B【解析】试题分析:因为函数的定义中,因变量y随自变量x的变化而变化,利用这一关系即可作出判断.解:因为人的身高h随时间t的变化而变化,所以t是自变量,h是因变量;故此题选B.点评:此题的解决需灵活掌握函数的定义.16.B【解析】试题分析:函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,那么x是自变量,y是x的函数,也叫因变量.解:根据函数的定义,费随时间的变化而变化,那么费是因变量.应选B.点评:此题考查了函数的定义.17.C【解析】试题分析:利用变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.解:A、当s一定时,s是常量,v、t是变量,故原题说法错误;B、当v一定时,v是常量,t、s是变量,故原题说法错误;C、当t一定时,t是常量,s,v是变量,说法正确;D、当t一定时,t是常量,v、s是变量,故原题说法错误;应选:C.点评:此题主要考查了常量和变量,关键是掌握变量和常量的定义.18.C【解析】试题分析:常量是在某个过程中不变的量,变量就是在某个过程中可以取到不同的数值,变化的量.根据定义即可判断.解:某人要在规定的时间内加工100个零件,那么工作效率η与时间t之间的关系中:η和t是变量,零件的个数100是常量.应选C.点评:此题考查了常量与变量的概念,是一个根底题.19.B【解析】试题分析:一般情况下是把最大的一对数据代入函数关系式后通过比拟得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.应选B.点评:主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y都有唯一确定的值与之对应,那么y是x的函数,x叫自变量;解题关键是分别把数据代入以下函数,通过比拟找到最符合的函数关系式.20.A【解析】试题分析:根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.解:由题意得:y=3a,此问题中a、y都是变量,3是常量,那么③正确,应选:A.点评:此题主要考查了常量和变量,关键是掌握变量和常量的定义.21.C【解析】试题分析:这是一个用图表表示的函数,可以看出d是b的2倍,即可得关系式.解:由统计数据可知:d是b的2倍,所以,b=.故此题选C.点评:此题主要考查了函数的表示方法,利用表格数据得出b,d关系是解题关键.22.B【解析】试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;B、弹簧不挂重物时的长度为10cm,错误,符合题意;C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.应选:B.点评:此题考查了函数关系确实认,常量与变量确实定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是根底题,难度不大.23.B【解析】试题分析:因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由表格得到弹簧的长度是y=10+2.5m,质量为mkg,y弹簧长度;弹簧的长度有一定范围,不能超过.解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=12+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;应选:B.点评:此题考查了函数关系式,主要考查了函数的定义和结合几何图形列函数关系式.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,那么y是x的函数,x叫自变量.24.D【解析】试题分析:根据被开方数大于等于0,分母不等于0对各选项分析判断利用排除法求解.解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是x≠3,故本选项错误;C、自变量的取值范围是x≥3,故本选项错误;D、自变量的取值范围是x>3,故本选项正确.应选D.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.25.B【解析】试题分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:,解得:x≤2.应选B.点评:此题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.26.C【解析】试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+3≥0且x﹣1≠0,解得x≥﹣3且x≠1.应选C.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.27.D【解析】试题分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:A、当x=2时,x﹣2=0,式子无意义,应选项错误;B、当x=1时,x﹣1=0,式子无意义,应选项错误;C、当x=1时,x﹣2<0,式子无意义,应选项错误;D、正确.应选D.点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.28.A【解析】试题分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式有意义,分式有意义得:3﹣x≥0且x﹣4≠0,解得:x≤3.应选A.点评:此题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.29.A【解析】试题分析:此题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.解:根据题意得:x+1≥0,解得x≥﹣1.故自变量x的取值范围是x≥﹣1.应选A.点评:此题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数.30.C【解析】试题分析:根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣5≥0,解得x≥5.应选:C.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.31.B【解析】试题分析:分式的分母不为0,偶次根式被开方数大于或等于0.当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共局部.解:根据题意得到:x>0,应选:B.点评:此题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,对于分母上有字母的,应考虑字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.32.A【解析】试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.应选:A.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.33.D【解析】试题分析:函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.解:根据题意得:3﹣x≥0,解得x≤3.应选:D.点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数.34.B【解析】试题分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x﹣2≥0且x≠0,∴x≥2.应选:B.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.35.C【解析】。

人教版苏科版初中数学—变量之间的关系(经典例题 )

人教版苏科版初中数学—变量之间的关系(经典例题 )

班级小组姓名成绩满分(120)一、用表格表示的变量间关系(一)变量、自变量和因变量的定义(共4小题,每题3分,题组共计12分)例1.小明的妈妈自小明出生时起每隔一段时间就给小明称一下体重,得到下面的数据:从表中可以得到:小明体重的变化是随小明的的变化而变化的,这两个变量中,是自变量,是因变量,虽然随着年龄的增大,小明的体重,但体重增加的速度越来越.例1.变式1.据国家统计局统计,新中国成立以来至2000年我国各项税收收入合计如下表:从表中可以得出:新中国成立以来我国的税收收入总体趋势是,其中,年与5年前相比,增长百分数最大,年与5年前相比增长百分数最小,算一算,2000年与1950年相比,税收收入增长了倍.(保留一位小数)例1.变式2.某电动车厂2014年各月份生产电动车的数量情况如下表:(1)为什么称电动车的月产量y为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?例1.变式3.某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.(1)找出题目中的自变量和因变量.(2)印制一本纪念册的制版费为多少元?(3)若印制2千册,则共需多少费用?(二)用表格表示的变量间关系(共4小题,每题3分,题组共计12分)cm的长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量例2.要画一个面积为202分别为()A.常量为20,变量为,x yB.常量为20,y,变量为xC.常量为20,x变量为yD.常量为x,y,变量为20例2.变式1.赵先生手中有一张记录他从出生到24岁期间的身高情况表:下列说法错误的是()A.赵先生的身高增长速度总体上先快后慢B.赵先生的身高在21岁以后基本不长了C.赵先生的身高从0岁到24岁平均每年增高7.1cmD.赵先生的身高从0岁到24岁平均每年增高5.1cm例2.变式2.2002年1~12月某地大米的平均价格如下表表示:(1)表中反映了哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地哪一段时间大米的平均价格在上涨?哪一段时间大米的平均价格在下落?(4)从表中可以得到该地大米的平均价格变化方面的哪些信息?平均价格比年初降低了,还是上涨了?例2.变式3.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y (cm)与所挂物体的质量x (kg)的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为3kg 时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg 时(在弹簧的允许范围内)你能说出此时弹簧的长度吗?二、用关系式表示的变量间关系(一)用关系式表示两个变量之间的关系(共4小题,每题3分,题组共计12分)例3.我国政府为解决老百姓看病难的问题,决定大幅度下调药品价格.某种药品在2009年涨价30%,2013年降价70%至a ,那么这种药品在2009年涨价前的价格为.例3.变式1.如图,ABC ∆的底边BC 的长是10cm ,当顶点A 在BC 的垂线PD 上由点D 向上移动时,三角形的面积随之发生了变化.(1)在这个变化的过程中,自变量是,因变量是.(2)如果AD 长为x (cm ),面积为y (2cm ),则y =.(3)当AD BC =时,ABC ∆的面积为.例3.变式2.如图,圆柱的底面半径为2cm ,当圆柱的高由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量是,因变量是.(2)如果圆柱的高为x (cm ),圆柱的体积V (3cm )与x 的关系式为.(3)当圆柱的高由2cm 变化到4cm 时,圆柱的体积由3cm 变化到3cm .(4)当圆柱的高每增加1cm 时,它的体积增加3cm .例3.变式3.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温升高8℃,烧了x 分钟后的水温为y ℃,当水烧开时就不再烧了.(1)y 与x 的关系式为,其中自变量是,它应在范围内变化.(2)1x =时,y =;5x =时,y =.(3)x =时,48y =;x =时,80y =.(二)列关系式并求值(共4小题,每题3分,题组共计12分)例4.学校为优胜班级买篮球作为奖品,若一个篮球30元,总价y 元随篮球个数x 的变化而变化,写出y 与x 的关系式:,其中自变量是,因变量是.当篮球个数为10时,总价为.例4.变式1.齿轮每分钟转120转,如果n (转)表示转数,t (分)表示转动时间,那么n 与t 之间的关系式是,其中为变量,为常量.当10t =时,n=.例4.变式2.一个梯形,它的下底比上底长2cm ,它的高为3cm ,设它的上底长为x cm ,它的面积为y 2cm .(1)写出y 与x 之间的关系式,并指出哪个变量是自变量,哪个变量是因变量.(2)当x 由5变到7时,y 如何变化?(3)用表格表示当x 从3变到10时(每次增加1),y 的相应值.(4)当x 每增加1时,y 如何变化?说明你的理由.(5)这个梯形的面积能等于92cm 吗?能等于22cm 吗?为什么?例4.变式3.ABC ∆的底边BC 为8cm ,当BC 边上的高从小到大变化时,ABC ∆的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)ABC ∆的面积y 2cm 与高x cm 之间的关系式是什么?(3)当x 增加1cm 时,y 如何变化?(三)关系式的综合应用(共4小题,每题3分,题组共计12分)例5.根据如图所示的程序计算y 值,若输入的x 值为1-,则输出的结果为()A.72B.94C.1D.92例5.变式1.在关系式35y x =+中,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是自变量,它的值与x 的值无关;④y 与x 的关系不能用表格表示;⑤y 与x 的关系可以用表格表示。

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)

(典型题)初中数学七年级数学下册第三单元《变量之间的关系》测试题(答案解析)

一、选择题1.下面说法中正确的是( )A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的数量关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是()A.一杯热水放在桌子上,它的水温与时间的关系B.一辆汽车从起动到匀速行驶,速度与时间的关系C.一架飞机从起飞到降落的速度与时晨的关系D.踢出的足球的速度与时间的关系3.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量4.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是()A.B.C.D.5.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.676.某品牌电饭锅成本价为 70 元,销售商对其销售与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150销量(个) 80 100 110 100 80 60在这个问题中,下列说法正确的是 ( )A.定价是自变量,销量是因变量B.销量是自变量,定价是因变量C.定价为 110 元时,销量为 110 个D.定价越高,销量越大7.已知两个变量x和y,它们之间的3组对应值如下表,则y与x之间的函数关系式可能是()A.y=3x B.y=x-4 C.y=x2-4 D.y=3 x8.在三角形面积公式S=ah,a=2cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量9.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.A.B.C.D.10.一根蜡烛长20厘米,点燃后每小时燃烧4厘米,能大致表示燃烧时剩下的高度h(里面吗)与燃烧时间t(时)之间的变化情况的图象是()A.B.C.D.11.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为()A.B.C.D.12.在△ABC中,若底边长是a,底边上的高为h,则△ABC的面积12S ah,当高h为定值时,下列说法正确的是( )A.S,a是变量;12,h是常量B.S,a,h是变量;12是常量C.a,h是变量;S是常量D.S是变量;12,a,h是常量二、填空题13.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑_______米,直线__________表示小明的路程与时间的关系,大约_______秒时,小明追上了小强,小强在这次赛跑中的速度是________ .14.梯形的上底长是2,下底长是8,则梯形的面积y关于高x之间的关系式是______,自变量是____,因变量是______.15.在公式s=v0t+2t2(v0为已知数)中,常量是________ ,变量是________ .16.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=__________________,当学生有45人时,需要的总费用为________元.17.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为_______________千米/小时.18.如图,圆柱的高是3cm ,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化中,自变量是______,因变量是______;(2)当底面半径由1cm 变化到10cm 时,圆柱的体积增加了______cm 3.19.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示,当乙到达终点A 时,甲还需________分钟到达终点B .20.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度xkm 的几组对应值如表: 向上攀登的高度x/km 0.5 1.0 1.5 2.0 气温y/℃2.0﹣1.0﹣4.0﹣7.0若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km 时,登山队所在位置的气温约为_____℃.三、解答题21.在一次实验中,小明把一根弹簧的端固定,在其下端悬挂物体,下面是测得的弹簧的长度()y cm 与所挂物体的质量()x kg 的一组对应值:x kg012345所挂物体的质量()y cm182022242628弹簧长度()(1)在这个变化的过程中,自变量是;因变量是;(2)写出y与x之间的关系式,并求出当所挂重物为6kg时,弹簧的长度为多少?22.已知某函数图象如图所示,请回答下列问题:(1)自变量x的取值范围是(2)函数值y的取值范围是;(3)当x=0时,y的对应值是;(4)当x为时,函数值最大;(5)当y随x增大而增大时,x的取值范围是;(6)当y随x的增大而减少时,x的取值范围是.23.李明为了了解自家用电量的多少,在六月初连续几天同一时刻记录了电表显示的读数,记录如下:日期12345678电表读数/千瓦时117120124129135138142145请估计李明家六月份的总用电量是多少.24.近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元) 38 37 36 35 (20)每天销量(千克) 50 52 54 56 (86)设当单价从38元/千克下调了x元时,销售量为y千克.(1)写出y与x之间的关系式;(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?25.星期天,小宇的爸爸9点钟从家里到附近的一个银行办理业务,他走了一段路后,突然发现忘记带身份证,于是他跑步回家,拿了身份证,跑到银行办理业务,办完业务他步行回到家.他离家的路程s(米)与时间t(分)之间的关系如图7所示.(1)小宇的爸爸几点钟到达银行?他办理业务共用多长时间?(2)几点钟,小宇的爸爸发现忘记带身份证,此时,他离家多远?(3)小宇的爸爸在去银行办理业务的过程中走过的路程为多少米?(4)求小宇爸爸从银行回到家的速度.26.在数轴上,若点A,B表示的数分别为3和x,则A,B之间的距离y与x之间的关系式为3=-.y x(1)当x的值为-5时,求y的值;(2)根据关系式,完成下表:x-10123456y【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】表示函数的方法有三种:解析法、列表法和图象法.解:A、两个变量间的关系只能用关系式表示,还能用列表法和图象法表示,故错误;B、图象能直观的表示两个变量间的数量关系,故错误;C、借助表格可以表示出因变量随自变量的变化情况,正确;D、以上说法都不对,错误;故选C.2.B解析:B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.3.B解析:B【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.4.C解析:C【解析】【分析】开始生产时产品积压a件,即t=0时,y=a,后来由于销售产品的速度大于生产产品的速度,则产品积压量y随今年开工时间t的增大而减小,且y是t的一次函数,据此进行判断.【详解】∵开始生产时产品积压a件,即t=0时,y=a,∴B错误;∵今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,∴销售产品的速度大于生产产品的速度,∴产品积压量y随开工时间t的增大而减小,∴A错误;∵产品积压量每月减少b件,即减小量是均匀的,∴y是t的一次函数,∴D错误.故选C.【点睛】本题考查的是实际生活中函数的图形变化,属于基础题.解决本题的主要方法是先根据题意判断函数图形的大致走势,再下结论,本题无需计算,通过观察看图,做法比较新颖.5.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.6.A解析:A【解析】(1)观察、分析题中数据可知,在这个问题中,电饭锅的销售量是随着销售定价的变化而变化的,所以“定价是自变量,销售量是因变量”,所以A中说法正确,B中说法错误;(2)观察所给数据可知:“当定价为110元时,销售量为100个”,所以C中说法错误;(3)观察、分析所给数据可知:“销售量开始时随着定价的升高而变大,但随后随着定价的继续升高而变小”,所以D中说法错误.故选A.7.C解析:C【解析】选项A,y=3x,根据表格对应数据代入得出y≠3x,选项A错误;选项B,y=x-4,根据表格对应数据代入得出y≠x-4,选项B错误;选项C,y=x2-4,根据表格对应数据代入得出y=x2-4,选项C正确;选项D,y= 3x,根据表格对应数据代入得出y≠3x,选项D错误.故选C.8.C解析:C【解析】试题分析:根据函数的定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应;来解答即可.解:在三角形面积公式S=,a=2cm中,a是常数,h和S是变量.故选C.点评:函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x);变量是指在程序的运行过程中随时可以发生变化的量.9.A解析:A【解析】根据物理上的自由落体运动的规律,速度越来越大,故选A.10.C解析:C【解析】燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20−4t(0⩽t⩽5),图象是以(0,20),(5,0)为端点的线段。

变量之间的关系(题型新颖+题型全面)

变量之间的关系(题型新颖+题型全面)

一、知识框架二、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y 随另一个变量x 的变化而变化,则把x 叫做自变量,y 叫做因变量。

3、自变量与因变量的确定:①自变量是先发生变化的量;因变量是后发生变化的量。

②自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

③利用具体情境来体会两者的依存关系。

三、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

①首先要明确表格中所列的是哪两个量;②分清哪一个量为自变量,哪一个量为因变量;③结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系①列表时首先要确定各行、各列的栏目;②一般有两行,第一行表示自变量,第二行表示因变量; ③写出栏目名称,有时还根据问题内容写上单位;④在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

知识点睛变量之间的关系⑤一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

四、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:①将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并写成关系式的形式。

②根据表格中所列的数据写出变量之间的关系式;③根据实际问题中的基本数量关系写出变量之间的关系式;④根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:①利用关系式能根据任何一个自变量的值求出相应的因变量的值;②同样也可以根据任何一个因变量的值求出相应的自变量的值;③根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

五、图象1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。

七年级数学专项习题——变量之间的关系(附参考答案)

七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。

期末复习(变量之间的关系经典必刷题)

期末复习(变量之间的关系经典必刷题)

第三章 变量之间的关系1、下列各情境分别可以用哪幅图来近似地刻画?正确的顺序是( )①紧急刹车的汽车(速度与时间的关系);②人的身高变化(身高与年龄的关系);③跳跃横杆的跳高运动员(高度与时间的关系);④一面冉冉上升的红旗(高度与时间的关系).A .abcdB .dabcC .dbcaD .cabd2、向一个容器内均匀地注入水,液面的高度y 与注水时间x 满足如图所示的图象,则符合图象条件的容器为( )3、一空水池深4.8m ,现以均匀的速度往进注水,注水时间与水池内水的深度之间的关系如表,由表可知,注满水池所需要的时间为 h .注水时间t (h )0.5 1 1.5 2 2.5 … 水的深度h (m ) 0.8 1.6 2.4 3.2 4 …4、如图1,在直角△ABC 中,∠C =90°,点D 是BC 的中点,动点P 从点C 沿出发沿CA −AB 运动到点B ,设点P 的运动路程为x ,△PCD 的面积为y ,y 与x 的图象如图2所示,则△ABC 的面积为( )A .9B .12C .16D .325、某图书馆对外出租书的收费方式是:每本书出租后的前两天,每天收0.6元,以后每天收0.3元,那么一本书在出租后x (x >2)天后,所收租金y 与天数x 的表达式为 .6.一蜡烛高18厘米,点燃后平均每小时燃掉3厘米,则蜡烛点燃后剩余的高度h (厘米)与燃烧时间t (时)之间的关系式是ℎ= (0≤t ≤6).7.某商店为减少某种商品的积压,采取降价销售的策略.商品原价为520元/件,随着不同幅度的降价,日销量发生相应的变化,如下表所示:降价/元10 20 30 40 50 60 ⋯日销量/件 155 160 165 170 175 180 ⋯根据以上日销售量随降价幅度的变化情况,当售价为440元时,日销量为件.8、已知动点P以每秒2cm的速度沿图1的边框按B→C→D→E→F→A的路径移动,△ABP的面积S(cm2)与时间t(秒)之间的关系如图2所示.其中AB=6cm,a=,当t=时,△ABP的面积是18cm2.9、某市出租车收费标准如下:3千米以内(含3千米)收费8元;超过3千米的部分每千米收费1.6元,当出租车行驶路程为x千米时,应收费为y元.(1)请写出当x≥3时,y与x之间的关系式;(2)小亮乘出租车行驶5千米,应付多少元?(3)小亮付车费19.2元,出租车行驶了多少千米?10、已知小明家距学校1200m,一天,小明从家出发匀速步行前往学校,4min后,小明的爸爸发现他忘了带数学书.于是,爸爸立即出发沿同一路线匀速追赶小明,在中途追上了小明后,爸爸以原速原路返回家中.小明与爸爸之间的距离y(m)与小明出发的时间x(min)之间的关系如图所示,请解答下列问题:(1)小明步行的速度是_______m/min,爸爸的速度是m/min.a的值为;(2)当小明与爸爸相距120m时,求小明出发后的时间.11、某车间的甲、乙两名工人分别同时生产同种零件,在开始生产的前2个小时为生产磨合期,2个小时后有一人停工一段时间对设备进行改良升级,以提升生产效率,另一人进入正常的生产模式.他们每人生产的零件总数y(个)与生产时间t(小时)的关系如图所示.根据图象回答:(1)在生产过程中,哪位工人对设备进行改良升级,停止生产多少小时?(2)当t为多少时,甲、乙所生产的零件个数第一次相等?甲、乙中,谁先完成一天的生产任务?(3)设备改良后每小时生产零件的个数是多少?与另一工人的正常生产速度相比每小时多生产几个?12、如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的关系的是()。

变量之间的关系典型练习题

变量之间的关系典型练习题

变量之间的关系典型练习题题型一、用关系式表示变量之间的关系1、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与所存月数x 之间的关系式为__________(不考虑利息税). 2、某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费元;“动感地带”:不缴月租费,每通话1分钟,付话费元(本题的通话均指市内通话),若一个月通话x 分钟,两种方式的费用分别为1y 元和2y 元. (1)写出1y 、2y 与x 之间的关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些题型二、用图象表示变量之间的关系3、小明在暑期社会实距活动中,以每千克元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价元,全部售完.销售金额与售出西瓜的千克数之间的关系如图7所示.请你根据图象提供的信息完成以下问题: (1)求降价前销售金额y (元)与售出西瓜x (千克)之间的关系式; (2)小明从批发市场共购进多少千克西瓜 (3)小明这次卖瓜赚子多少钱4 小明某天上午9时骑自行车离开家,15时回家,他有 意描绘了离家的距离与时间的变化情况(如右图所示). (1)图象表示了哪两个变量的关系哪个是自变量 哪个是因变量 (2)10时和13时,他分别离家多远(3)他到达离家最远的地方是什么时间离家多远 (4)11时到12时他行驶了多少千米(5)他可能在哪段时间内休息,并吃午餐(6)他由离家最远的地方返回时的平均速度是多少图75 小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是多少6、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q 1吨,加油飞机的加油油箱余油量为Q 2吨,加油时间为t 分钟,Q 1、Q 2与t 之间的函数图像如图所示,结合图像回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油将这些油全部加给运输飞机需多少分钟 (2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用说明理由。

第三章 变量之间的关系(答案版)

第三章  变量之间的关系(答案版)

第三章 变量之间的关系一、选择题(本大题共10小题,每小题3分,共30分) 1.在圆的面积公式S =πr 2中,常量为( B ) A .S B.πC.rD.S 和r2.用总长50 m 的篱笆围成长方形场地,长方形的面积S (m 2)与一边长l (m)之间的关系式为S =l (25-l ),那么下列说法正确的是( C ) A .l 是常量,S 是变量 B.25是常量,S 与l 是变量,l 是因变量 C .25是常量,S 与l 是变量,S 是因变量 D.以上说法都不对3.如果圆珠笔有12支,总售价为18元,用y(元)表示圆珠笔的总售价,x 表示圆珠笔的支数,那么y 与x 之间的关系应该是( D ) A .y =12xB.y =18xC.y =23xD.y =32x4.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是( C )A .37.8 ℃ B.38 ℃ C.38.7 ℃D.39.1 ℃5.变量x 与y 之间的关系式是y = 12 x 2-3,当自变量x =4时,因变量y 的值是( C ) A.-1B.-5C.5D.16.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b 与下降高度d 的关系,下面能表示这种关系的式子是( C )A .b =d 2B.b =2dC.b =d2D.b =d +257.如图,各图象所反映的是两个变量之间的关系,表示匀速运动的是( B )A.①②B.②C.①③D.无法确定8.某梯形上底长、下底长分别是x,y,高是6,面积是24,则y 与x 之间的关系式是( A ) A.y =-x +8B.y =-x +4C.y =x -8D.y =x -49.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:下列说法不正确的是( C )A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4 kg时,弹簧长度为12 cmC.弹簧不挂重物时的长度为0 cmD.物体质量每增加1 kg,弹簧长度y增加0.5 cm10.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是( C )二、填空题(本大题共7小题,每小题4分,共28分)11.大家知道,冰层越厚,所承受的压力越大,其中自变量是___冰层的厚度____,因变量是_冰层所承受的压力______.12.某机器工作时,油箱中的余油量Q(升)与工作时间t(时)的关系式为Q=40-6t.当t=3时,Q=_22______ .13.如图是桂林冬季某一天的气温随时间变化的图象,则这一天的温差是__12____℃.14.1~6个月的婴儿生长发育得非常快,出生体重为4 000克的婴儿,他们的体重y(克)和月龄x(月)之间的关系如下表:则6个月大的婴儿的体重约为_8200__克__ .15.如图所示的图象反映的过程是:小明从家去书店看书,又去学校取封信后马上回家,其中x表示时间,y表示小明离开家的距离,则小明从学校回家的平均速度为__6_____千米/时.16.如图,在△ABC中,边BC长为10,BC边上的高AD'为6,点D在BC上运动,设BD 长为x(0<x<10),则△ACD的面积y与x之间的关系式为__y=30-3x ____.17.(创新题)新冠疫情下,某医药研究院实验一种新药缓解病情,根据其药效发现,成人如果按规定剂量服用,每毫升血液中含药量y(微克)随时间x(时)的变化情况如图所示.如果每毫升血液中含药量达到3微克以上(含3微克)时治疗疾病为有效,那么有效时长是__4___小时.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.如图是某港口在某天从0时到12时的水位情况变化曲线.(1)在这一问题中,自变量是什么?(2)大约在什么时间水位最深,最深是多少?(3)大约在什么时间段水位是随着时间推移不断上涨的?解:(1)由图象可得,在这一问题中,自变量是时间.(2)大约在3时水位最深,最深是8米.(3)由图象可得,在0到3时和9到12时,水位是随着时间推移不断上涨的.19.如图,在一个半径为18 cm的圆面上,从中心挖去一个小圆面,当挖去小圆的半径由小变大时,剩下的一个圆环面积也随之发生变化.(1)在这个变化过程中,自变量、因变量各是什么?2)如挖去的圆半径为x(cm),圆环的面积y(cm2)与x的关系式是y=324π-πx2;(3)当挖去圆的半径由1 cm变化到9 cm时,圆环面的面积由323πcm2变化到243πcm2.解:(1)自变量是小圆的半径,因变量是圆环的面积.20.日常生活中,我们经常要煮开水,下表为煮开水的时间与水的温度的描述.(1)根据上表的数据,我们得到什么信息?(2)在第9分钟时,水可以喝吗?为什么?在11分钟时呢?3)根据表格的数据判断:在第15分钟时,水的温度为多少呢?(4)随着加热时间的增长,水的温度是否会一直上升?说明你判断的依据.解:(1)随着时间的加长,水的温度在逐渐升高,11分钟时达到开水温度.(2)在第9分钟时,水不可以喝,因为水还没有烧开;在11分钟时,水烧开,可以喝.(3)第15分钟时,水的温度为100 ℃.(4)随着加热时间的增长,水的温度不会一直上升,因为水温升高到100 ℃时,水温不再升高.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:(1)蜡烛未点燃前的长度是多少厘米?(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式;(3)求这根蜡烛能燃烧多长时间.解:(1)30厘米(2)h=30-0.5t(3)这根蜡烛能燃烧60分22.某水库初始的水位高度为5米,水位在10小时内持续匀速上涨,测量可知,经过4小时,水位上涨了1米.(1)写出水库的水位高度y(米)与时间x(小时)(0≤x≤10)之间的关系式;2)经过____6____小时,水库的水位上涨到6.5米;(3)当时间由1小时变化到10小时时,水库的水位高度由___5.25______米变化到_7.5____米.解:y=0.25x+5(0≤x≤10)23.小明从家骑自行车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后,继续去学校.如图是他本次上学所用的时间t(分钟)与离开家的距离y(米)的图象.根据图象提供的信息回答下列问题:(1)小明家到学校的距离是__1500______米;(2)小明在书店停留了__4___分钟;(3)本次上学途中,小明一共骑行了多少米?(4)整个上学的途中,哪个时间段小明骑车速度最快?解:(3)1 200+(1 200-600)+(1 500-600)=2 700(米),答:本次上学途中,小明一共骑行了2 700米.(4)设小明离家时间为t分钟,当0≤t≤6时,小明骑车的速度为1 200÷6=200(米/分);当6<t≤8时,小明骑车的速度为(1 200-600)÷(8-6)=300(米/分);当12≤t≤14时,小明骑车的速度为(1 500-600)÷(14-12)=450(米/分).因为200<300<450,所以在12≤t≤14段,小明骑车速度最快.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):(1)上表中反映了哪两个变量之间的关系?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强;(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?解:(1)表格反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系.(2)当x=10时,y=59,所以时间是10分钟时,学生的接受能力是59.(3)当x=13时,y的值最大是59.9,所以提出概念13分钟时,学生的接受能力最强.(4)当x在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内时,学生的接受能力逐步降低.25.如图,棱长为a的小正方体,按照如图所示的方法继续摆放,自上而下分别叫第一层、第二层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?解:(2)S=n(n+1)2.当n=10时,S=10×(10+1)2=55.。

变量之间的关系单元测试题(一)汇编

变量之间的关系单元测试题(一)汇编

学习-----好资料变量之间的关系单元测试题(一)一.填空题:(每空2分,共40分)1•长方形的宽为6cm,则它的周长L与长a之间的关系为________________ .2•某种储蓄的年利率为 1.5%,存入1000元本金后,则本息和y(元)与所存年数x之间的关系式为_______ ,3年后的本息和为________ 元(此利息要交纳所得税的20%).3. ___________ —辆汽车以45km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t 的关系式为____ ,自变量是________ ,因变量是___________ .4.时间(小时)12345678910完成的百分数52535505065708095100(1)5(2) ___________ 小华在时间里工作量最大(3) _______________________________________ 如果小华在早晨8时开始工作,则他在时间没有工作.35.声音在空气中传播的速度y(m⑸与气温x(oC)之间在如下关系:y x 331。

5(1) ________________________________________ 当气温x=15 oC时,声音的速度y= m/s。

(2)当气温x=22 oC时,某人看到烟花燃放5s后才听到声音响,则此人与燃放的烟花所在地相距_____________ m。

6•某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中_______ 是自变量,________ 是因变量。

7.地面温度为15 oC,如果高度每升高1km,气温下降6 oC,则高度h(km)与气温t(oC) 之间的关系式为_____________________ 。

&汽车以60km/h速度匀速行驶,随着时间t (时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为______________ 。

变量之间的关系最新典型习题

变量之间的关系最新典型习题

变量之间的关系 2 知识点1 自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。

而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。

区别:因变量随自变量的变化而变化。

【典型例题】(2)12时,水位是多高?(3)哪一段水位上升最快?【练习】(2) 第5排、第6排各有多少个座位?(3)第n 排有多少个 座位?请说明你的理由。

2、父亲告诉小明:“距离地面越远,温度越低”,小明并且出示了下面的表格:根据上表,父亲还给小明出了下面几个问题,你和小明一起回答:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t如何变化?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能预测出距离地面6千米的高空温度是多少吗?3、某地有A,B,两种出租车,其行驶路程与费用关系如下表(1)本题中如果用x表示路程,y表示费用,哪个是自变量,哪个是因变量?x ≥5千米后,随着x的增大,y的变化趋势是什么?(2)B种出租车从3千米以后起,路程每增加1千米,费用怎么样变化?(3)预测路程为10千米时,两种车费各是多少?(4)当行驶为4千米时,你选择坐那种车?行驶路程为8千米时,你选择坐那种车?4.一个弹簧不挂物体时,长12厘米,挂上1千克物体后,弹簧总长(12+)厘米,•挂上2千克物体后,弹簧总长(12+×2)厘米,挂上3千克物体后,弹簧总长(12+×3)厘米……(1)上述哪些量在发生变化?自变量是什么?因变量又是什么?(2)请把挂上物体后,弹簧的长度变化情况填入下表:(3)根据表格中的数据,总结弹簧的长度是怎样随物重的变化而变化的?(4)估计一下挂上10千克物体后,弹簧的长度是多少?你是如何估计的?5(变式)、在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:⑴弹簧不挂物体时的长度是多少?⑵如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?6.声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)之间的关系如下:从表中可知音速y随温度x的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟秒后,听到了枪声,则由此可知,这个人距发令地点__________米。

变量之间的关系 重难点题型-

变量之间的关系 重难点题型-

专题02 变量之间的关系 重难点题型题型1、常量、变量(自变量、因变量)基本概念认识【解题技巧】常量:一个变化过程中数值始终保持不变的量叫做常量.变量:在某一过程中发生变化的量,其中包括自变量与因变量。

自变量是最初变动的量,它在研究对象反应形式、特征、目的上是独立的;因变量是由于自变量变动而引起变动的量,它“依赖于”自变量的改变。

1.(2021•成华区期末)汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( )A .汽车B .路程C .速度D .时间【分析】根据自变量的定义判断.【解析】匀速行驶,速度不变,速度是常量,时间是自变量,路程是因变量,故选:D .2.(2021•高州市月考)正方形的面积S 随边长a 的变化而变化,其中 是因变量, 是自变量.【分析】根据在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,可得答案.【解析】由题意,得面积是2S a =,其中自变量是x ,因变量是S ,S 是x 的函数,故答案为:S ,x .3.(2022·安徽宣城·八年级期末)寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( )A .每小时用电量B .室内温度C .设置温度D .用电时间【答案】C【分析】根据题意分析,自变量是设置温度,因变量是空调的每小时用电量,据此分析即可.【详解】解:空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是设置温度,故选:C .【点睛】本题考查了自变量与函数关系,理解题意是解题的关键.4.(2021·湖南长沙·八年级期中)把15本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x 本,第二个抽屉放入y 本,则下列判断错误的是( )A .15是常量B .15是变量C .x 是变量D .y 是变量【答案】B【分析】一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,据此判断即可.【详解】解:把15本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y 本.则x和y分别是变量,15是常量.故选:B.【点睛】本题考查函数的基础:常量与变量,熟练掌握常量与变量的定义是解题关键.5.(2021·天津津南·八年级期中)在圆的周长计算公式C=2πR中,对于变量和常量的说法正确的是( )A.2是常量,C,π,R是变量B.2,π是常量,C,R是变量C.2,C,π是常量,R是变量D.2,π,R是常量,C是变量【答案】B【分析】常量就是在某个过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:在圆的周长计算公式C=2πR中,C和R是变量,2、π是常量,故选:B.【点睛】本题考查了变量与常量的知识,属于基础题,正确理解变量与常量的概念是解题的关键.6.(2021·山东·七年级专题练习)(多选题)笔记本每本a元,买3本笔记本共支出y元,下列选项判断正确的有()A.a是常量时,y是变量B.a是变量时,y是常量C.a是变量时,y也是变量D.a、y可以都是常量或都是变量【答案】CD【分析】根据题意列出函数解析式,再根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得答案.【详解】解:由题意得:y=3a,A、a是常量时,y也是常量,该选项错误;B、a是变量时,y也是变量,该选项错误;C、a是变量时,y也是变量,该选项正确;D、a、y可以都是常量或都是变量,该选项正确;故选:CD.【点睛】本题主要考查了常量和变量,关键是掌握变量和常量的定义.7.(2021·浙江杭州·八年级阶段练习)如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么在S,p,a中是变量的是______.【答案】S和a【分析】由题意根据篱笆的总长确定,即可得到周长、一边长及面积中的变量.【详解】解:Q篱笆的总长为60米,\周长p是定值,而面积S和一边长a是变量,故答案为:S和a.【点睛】本题考查常量与变量的知识,解题的关键是能够根据篱笆总长不变确定定值,然后确定变量.题型2、列表法表示变量之间的关系【解题技巧】采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量之间的关系2知识点1 自变量与因变量的区别与联系联系:两者都是某一变化过程中的变量,两者因研究的侧重点或先后顺序不同可以互相转化,比如当路程一定时,路程随时间的变化而变化,这时速度为自变量,时间为因变量。

而当速度一定时,路程随时间的变化而变化,这时时间是自变量,路程是因变量。

区别:因变量随自变量的变化而变化。

【典型例题】(1)上表反映了哪两个变量的关系?自变量和因变量各是什么?(2)12时,水位是多高?(3)哪一段水位上升最快?【练习】(1)上述哪些量在变化?自变量和因变量分别是什么?(2)第5排、第6排各有多少个座位?(3)第n排有多少个座位?请说明你的理由。

2、父亲告诉小明:“距离地面越远,温度越低”,小明并且出示了下面的表格:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t如何变化?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能预测出距离地面6千米的高空温度是多少吗?(1)本题中如果用x表示路程,y表示费用,哪个是自变量,哪个是因变量?x≥5千米后,随着x的增大,y的变化趋势是什么?(2)B种出租车从3千米以后起,路程每增加1千米,费用怎么样变化?(3)预测路程为10千米时,两种车费各是多少?(4)当行驶为4千米时,你选择坐那种车?行驶路程为8千米时,你选择坐那种车?4.一个弹簧不挂物体时,长12厘米,挂上1千克物体后,弹簧总长(12+0.5)厘米,•挂上2千克物体后,弹簧总长(12+0.5×2)厘米,挂上3千克物体后,弹簧总长(12+0.5×3)厘米……(1)上述哪些量在发生变化?自变量是什么?因变量又是什么?(2(3(4)估计一下挂上10千克物体后,弹簧的长度是多少?你是如何估计的?⑵如果用x表示弹性限度内物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?从表中可知音速随温度的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点__________米。

7、△ABC 的底边BC =8 cm,当BC 边上的高线从小到大变化时,△ABC 的面积也随之变化. (1)在这个变化过程中,自变量和因变量各是什么?(2)△ABC 的面积y (cm 2)与高线x (cm)的关系式是什么?(3)用表格表示当x 由5 cm 变到10 cm 时(每次增加1cm),y 的相应值.(4)当x 每增加1 cm 时,y 如何变化?知识点2:用图像表示变量之间的关系:注意:1.水平方向数轴上的点表示自变量,竖直方向数轴上的点表示因变量;2.理解图像特殊点、特殊线段的实际意义一:速度随时间的变化1、汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。

( ) (2)在某段时间里,汽车速度始终保持不变。

( ) (3)在某段时间里,汽车速度越来越快。

() (4)在某段时间里,汽车速度越来越慢。

( )2、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s (米)与散步所用的时间t (分)之间的关系,依据图象,下面描述符合小红散步情景的是( ) A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了. B.从家出发,到了一个公共阅报栏,看了一 会儿报,继续向前走了一段后,然后回家了. C.从家里出发,一直散步(没有停留),然后回家了 D.从家里出发,散了一会儿步,就找同学去了, 18分钟后才开始返回.时间速度 Ao速度D速度时间C速度 时间Boo609030213t(h)3.如图,是甲、乙两人从A 地往B 地的路程与时间的关系图(1)A 、B 两地相距 km (2)甲的平均速度为 km/h 乙的平均速度为 km/h (3)甲比乙早出发 小时(4)谁早到B 地,早到多少时间?(5)根据以上条件,请列出方程....,求出乙出发多少时间追上甲?4、如图6-11,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题. (1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)指出在什么时间段内两车均行驶在途中;在这段时间内,①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面? 5.(2013•成都模拟)如图,l A ,l B 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系.(1)B 出发时与A 相距 千米.(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时. (3)B出发后 小时与A 相遇.(4)若B 的自行车不发生故障,保持出发时的速度前进, 小时与A 相遇.6.(2007•绵阳)如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为千米∕小时.7、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为 y(km),图中的折线表示y与x之间的函数关系,根据图像进行以下探究,(1)、甲、乙两地之间的距离为 km(2)、请解释图中B点的意义:(3)、求慢车和快车的速度,(4)、求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(5)、若第二列快车也冲甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?8.(2013•武汉模拟)如图,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间函数的图象,则甲车返回的速度是每小时 千米.9.一辆汽车油箱内有油48升,从某地出发,每行1 km ,耗油0.6升,如果设剩油量为y (升),行驶路程为x (千米)(1)上述的哪些量发生变化?自变量是?因变量是? (2)写出y 与x 的关系式;(3)用表格表示汽车从出发地行驶10km 、20km 、30km 、40km 、50km 时的剩油量;(4)根据表格中的数据说明剩油量是怎样随着路程的改变而变化的;(5)这辆汽车行驶35km 时,剩油多少升?汽车剩油12升时, 行驶了多少千米?(6)请你估计这车辆在中途不加油的情况下最远能运行多少千米?10(变式).某机动车辆出发前油箱中有油42升,行驶若干小时后,在途中加油站加油若干.油箱中余油量Q(升)与行驶时间t(时) 之间的关系如图,请根据图像填空: ⑴机动车辆行驶了 小时后加油.⑻中途加油 升.⑵加油后油箱中的油最多可行驶 小时.⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地?答: 。

二、高度(深度)与时间的变化1、如图是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h 和时间t 之间的关系?( )A B C D2、如图:向放在水槽底部的烧杯注水(流量一定)注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度与注水时间之间的关系大致是下列图象中的()第10题图中考真题1、(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多2、(2013•潍坊)用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()ABC DA. B. C. D.3、(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.4、(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()5、(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.6、(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.37、(2013•新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.8.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)。

相关文档
最新文档