立体几何基础知识汇总
(完整版)立体几何知识点总结完整版
立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、 空间两条直线的三种位置关系,并会判定。
3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。
4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。
5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。
【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。
立体几何知识点归纳
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,球的结构特征 1.棱柱1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1.4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222coscos cos 2αβγ++=,222sin sin sin 1αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h为棱柱的高) 2.圆柱2.1圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形. 2.3侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形. 2.4面积、体积公式:S 圆柱侧=2rh π;S 圆柱全=222rh r ππ+,V 圆柱=S 底h=2r h π(其中r 为底面半径,h 为圆柱高) 3.棱锥3.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
立体几何知识点总结(全)
立体几何知识点总结(全)重合直线:完全重合,有无数个公共点。
三.点与平面的位置关系点与平面的位置关系有以下三种情况:点在平面上;点在平面外;点在平面内。
四.直线与平面的位置关系直线与平面的位置关系有以下三种情况:直线与平面相交,相交点为一点;直线在平面内;直线与平面平行,没有交点。
五.平面与平面的位置关系平面与平面的位置关系有以下三种情况:平面相交,相交线为一条直线;平面平行,没有交点;平面重合,完全重合。
1)定义:两个平面相交于一条直线,且这条直线与两个平面的法线垂直,则这两个平面垂直;2)判定定理:如果一个平面内的一条直线与另一个平面的法线垂直,则这两个平面垂直。
符号:a,b简记为:线面垂直,则面面垂直.符号:aba b4.平面与平面垂直的性质定理:如果两个平面垂直,则它们的交线垂直于这两个平面。
符号:a b。
a简记为:面面垂直,则线线垂直.符号:abb定义:当两个平面所成的二面角为直角时,这两个平面互相垂直。
判定定理:如果一个平面通过另一个平面的垂线,则这两个平面垂直。
可以简记为:线面面垂直,则面面垂直。
符号表示为l,推论是如果一个平面与另一个平面的垂线平行,则这两个平面垂直。
平面与平面垂直的性质定理:如果两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。
可以简记为面面垂直,则线面垂直。
证明线线平行的方法包括三角形中位线、平行四边形、线面平行的性质、平行线的传递性和面面平行的性质。
证明线线垂直的方法包括定义中的两条直线所成的角为90°,线面垂直的性质,利用勾股定理证明两相交直线垂直,以及利用等腰三角形三线合一证明两相交直线垂直。
立体几何的基本知识点总结
立体几何的基本知识点总结立体几何是几何学的一个重要分支,研究物体的形状、大小、位置等特征。
在学习立体几何时,我们需要了解一些基本的知识点。
本文将对立体几何的基本概念、性质、公式等进行总结,以帮助读者更好地理解和应用这些知识。
1. 点、线、面和体立体几何研究的对象主要有点、线、面和体。
点是没有大小和形状的,用来表示位置;线是由无限多个点连起来形成的,用来表示长度和方向;面是由无限多条线组成的,具有长度和宽度,用来表示平面;体则是由无限多个面组成的,具有长度、宽度和高度,用来表示立体物体。
2. 四面体、正方体和圆柱体四面体是由四个面组成的立体体,每个面都是一个三角形;正方体是由六个面组成的立体体,每个面都是一个正方形;圆柱体是由一个底面和一个平行于底面的曲面组成的立体体,底面为圆形。
3. 长方体、棱柱和棱锥长方体是由六个矩形面组成的立体体,每个面都有四个直角;棱柱是由两个平行且相等的多边形组成的立体体,这两个多边形分别称为底面和顶面;棱锥是由一个多边形底面和一个顶点连直线并延伸至底面外部的部分组成的立体体。
4. 体积和表面积体积是用来衡量立体体所占空间的大小,常用单位有立方厘米、立方米等;表面积是用来衡量立体体外部所包围的面积,常用单位有平方厘米、平方米等。
不同形状的立体体计算体积和表面积的方法也不同,例如长方形的体积为长乘宽乘高,表面积为底面积的两倍加上侧面积。
5. 平行四边形的性质平行四边形是指有两对边分别平行的四边形,其性质包括:对边相等、对角线互相平分、对角线长度平方等于两条对边长度平方和、对角线互相垂直等。
6. 圆锥的性质圆锥是由一个底面和一个顶点连直线并延伸至底面外部的部分组成的立体体,其性质包括:底面与侧面接触于一条直线上、侧面都是直角三角形、顶点到底面的垂线与底面的切点连线垂直等。
7. 球的性质球是由无数个平行的点组成的立体体,其性质包括:球心到球面上任意一点的距离都相等、球面上任意两点之间的最短距离是球心到这两点连线的长度、球表面积等于4πr²(其中r为半径)、球体积等于4/3πr³等。
高中立体几何基础知识点全集(图文并茂)
立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
高中数学—立体几何知识点总结(精华版)
立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
行。
8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
立体几何初步知识点全总结
立体几何初步知识点全总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
正棱柱:底面是正多边形的直棱柱。
- 性质:- 侧棱都相等,侧面是平行四边形。
- 两个底面与平行于底面的截面是全等的多边形。
- 过不相邻的两条侧棱的截面(对角面)是平行四边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面正多边形的中心的棱锥。
- 性质:- 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。
- 棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
- 性质:- 圆柱的轴截面是矩形。
- 平行于底面的截面是与底面全等的圆。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体叫做圆锥。
- 性质:- 圆锥的轴截面是等腰三角形。
- 平行于底面的截面是圆,截面半径与底面半径之比等于顶点到截面距离与圆锥高之比。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
立体几何知识点总结
立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。
②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。
(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。
3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底(3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。
(完整版)立体几何初步知识点(很详细的)
立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =++台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π 4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
立体几何基础知识要点
立体几何基础知识要点一、平面.1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
2 .证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样,可根据公理2证明这些点都在这两个平面的公共直线上。
3 .证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
4 .证共面问题一般用落入法或重合法。
5. 经过不在同一条直线上的三点确定一个面.二、空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a,是夹在两平行平面间的线段,若ba=,则b a,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).12方向相同12方向不相同(二面角的取值范围[)180,0∈θ) (直线与直线所成角(]90,0∈θ) (斜线与平面成角()90,0∈θ) (直线与平面所成角[]90,0∈θ) (向量与向量所成角])180,0[∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直. 21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内.(1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.PO Aa●若PA⊥α,a⊥AO,得a⊥PO(三垂线定理),得不出α⊥PO. 因为a⊥PO,但PO不垂直OA.●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上一、平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l , 因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤ ⎝⎛∈2,0πθ) 7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) ⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1图1θθ1θ2图2P αβθM A B O条或者没有.五、棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:ChS=(C为底面周长,h是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l CS1=(1C是斜棱柱直截面周长,l是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}.{直四棱柱}⋂{平行六面体}={直平行六面体}.正四棱柱侧面与底面边长相等⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩....形..②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分.[注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S=(侧面与底l ab c面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.简证:AB⊥CD,AC⊥BD⇒BC⊥AD. 令bACcADaAB===,,得-=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅cabbca=-⇒c bc a则0=⋅ADBC. B CDiii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'F G H BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=.⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高)FEH GB CDAO'Or②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V底底侧ACDB ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式. 六、空间向量.1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若与共线,与共线,则与共线.(×) [当=时,不成立]②向量c b a ,,共面即它们所在直线共面.(×) [可能异面] ③若a ∥b ,则存在小任一实数λ,使b a λ=.(×)[与0=b 不成立] ④若a 为非零向量,则00=⋅a .(√)[这里用到)0(≠b b λ之积仍为向量](2)共线向量定理:对空间任意两个向量)0(≠a , ∥的OR充要条件是存在实数λ(具有唯一性),使λ=.(3)共面向量:若向量使之平行于平面α或在α内,则与α的关系是平行,记作a∥α.(4)①共面向量定理:如果两个向量b a,不共线,则向量P与向量,共面的充要条件是存在实数对x、y使b ya xP+=.②空间任一点...O.和不共线三点......A.、.B.、.C.,则)1(=++++=zyxOCzOByOAxOP是PABC四点共面的充要条件.(简证:→+==++--=zyzyzy)1(P、A、B、C四点共面)注:①②是证明四点共面的常用方法.2. 空间向量基本定理:如果三个向量....c b a,,不共面...,那么对空间任一向量,存在一个唯一的有序实数组x、y、z,使c zb ya xp++=.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使OC zOByOAxOP++=(这里隐含x+y+z≠1).DOABCD注:设四面体ABCD 的三条棱,,,,===其 中Q 是△BCD 的重心,则向量)(31c b a AQ ++=用+=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z O C =++,则四点P 、A 、B 、C 是共面⇔1x y z ++=3. (1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b bb b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a∥)(,,332211R b a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔332211=++⇔⊥b a b a b a b a222321a a a ++==(用到常用的向量模与向量之间的转化:a a =⇒⋅=)空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a ba b a ++⋅++++=⋅⋅>=<(a =123(,,)a a a ,b =123(,,)b b b ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.(2)法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥那么向量叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n ②.异面直线间的距离||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). ③.点B 到平面α的距离||||AB n d n ⋅=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). ④直线AB 与平面所成角sin||||AB marc AB m β⋅=(m 为平面α的法向量). ⑤利用法向量求二面角的平面角定理:设21,n n分别是二面角βα--l 中平面βα,的法向量,则21,n 所成的角就是所求二面角的平面角或其补角大小(21,n 方向相同,则为补角,21,n 反方,则为其夹角).二面角l αβ--的平面角cos ||||m narc m n θ⋅=或cos ||||m n arc m n π⋅-(m ,n 为平面α,β的法向量).(4)证直线和平面平行定理:已知直线≠⊄a 平面α,α∈⋅∈⋅D C a B A ,,且CDE 三点不共线,则a ∥α的充要条件是存在有序实数对μλ⋅使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB与平面相交).A B七.思想方法:1.计算问题:(1)空间角的计算步骤:一作、二证、三算异面直线所成的角范围:0°<θ≤90°方法:①平移法;②补形法.直线与平面所成的角范围:0°≤θ≤90°方法:关键是作垂线,找射影.二面角方法:①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;;②三垂线定理及其逆定理;③垂面法. ④射影面积法:S′=S cosθ来计算,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法。
立体几何知识点
立体几何知识点立体几何是数学中的一个重要分支,它研究的是空间中物体的形状、大小、位置关系等。
对于很多同学来说,立体几何可能会有些抽象和难以理解,但只要掌握了关键的知识点,就能逐渐建立起清晰的空间概念,解决相关的问题。
一、空间几何体1、棱柱棱柱是由两个平行且全等的多边形底面和若干个平行四边形侧面围成的多面体。
棱柱根据侧棱与底面是否垂直,分为直棱柱和斜棱柱。
直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。
2、棱锥棱锥是由一个多边形底面和若干个三角形侧面围成的多面体。
顶点在底面的射影是底面多边形的中心的棱锥称为正棱锥。
正棱锥的性质有:侧棱长相等、侧面是全等的等腰三角形、顶点到底面中心的连线垂直于底面等。
3、圆柱圆柱是以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆柱的轴截面是矩形,母线垂直于底面。
4、圆锥圆锥是以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆锥的轴截面是等腰三角形,母线与底面圆的半径和高构成直角三角形。
5、球球是以半圆的直径所在直线为轴,将半圆旋转一周所形成的曲面所围成的几何体。
球的表面积公式为\(S = 4\pi R^2\),体积公式为\(V =\frac{4}{3}\pi R^3\),其中\(R\)为球的半径。
二、空间几何体的表面积和体积1、棱柱和棱锥的表面积棱柱的表面积等于侧面积与两个底面积之和。
棱锥的表面积等于侧面积与底面积之和。
2、圆柱和圆锥的表面积圆柱的表面积等于侧面积与两个底面积之和,侧面积展开是一个矩形。
圆锥的表面积等于侧面积与底面积之和,侧面积展开是一个扇形。
3、体积公式棱柱的体积公式为\(V = Sh\)(\(S\)为底面积,\(h\)为高);棱锥的体积公式为\(V =\frac{1}{3}Sh\);圆柱的体积公式为\(V =\pi r^2h\)(\(r\)为底面半径,\(h\)为高);圆锥的体积公式为\(V =\frac{1}{3}\pi r^2h\);球的体积公式为\(V =\frac{4}{3}\pi R^3\)。
立体几何知识点汇总
13.1.1棱柱、棱锥、棱台知识点一.棱柱定义一般地,由一个平面多边形沿着某一方向平移形成的空间几何体叫做柱体,平移起止位置的两个面叫做柱体的底面,多变形的边平移所形成的的面叫做柱体的侧面图示及表示记作棱柱ABCDEF-A1B1C1D1E1F1(1)底面:有两个互相平行的面叫做棱柱的底面,它们是全等的多边形,(2)侧面:其余各面叫做棱柱的侧面,它们都是平行四边形;(3)侧棱:相邻侧面的公共边叫做棱柱的侧棱;(4)顶点:侧面与底面的公共顶点叫做棱柱的顶点.(5)高:过棱柱一个底面上的任意一个顶点,作另一个底面的垂线所得到的线段(或它的长度).(6)侧面积:棱柱所有侧面的面积之和.分类按底面多边形的边数分:底面为三角形、四边形、五边形……的棱柱,分别称为三棱柱、四棱柱、五棱柱……按侧棱与底面的位置关系,可以分为直棱柱和斜棱柱.①直棱柱:侧棱垂直于底面的棱柱.②斜棱柱:侧棱不垂直于底面的棱柱.③正棱柱:底面是正多边形的直棱柱.④平行六面体:底面是平行四边形的四棱柱.特点两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形注意:(1)平移指的是将一个图形上所有的点按某一确定的方向移动相同的距离,平移前后的两个面互相平行. (2)棱柱也可说成是这样的空间图形:有两个面互相平行,其余各面都是四边形,并且除了互相平行的面之外,其余每相邻两个四边形的公共边都互相平行.知识点二.棱锥定义一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.图示及表示棱锥S-ABCD或者S-AC (1)底面:这个多边形面叫做棱锥的底面;(2)侧面:有公共顶点的各个三角形面叫做棱锥的侧面;(3)侧棱:相邻侧面的公共边叫做棱锥的侧棱;(4)顶点:各侧面的公共顶点叫做棱锥的顶点.(5)棱锥的高:过棱锥的顶点作棱锥底面的垂线,所得到的线段(或它的长度).(6)棱锥的侧面积:棱锥所有侧面的面积之和.分类按照棱锥底面多边形的边数,可以把棱锥分成三棱锥,四棱锥,五棱锥………棱台A’B’C’D’-ABCD由三棱锥、四棱锥、五棱锥…截得的棱台分别叫做三棱台、四棱台、五棱台……一般地,由若干个平面多边形围成的几何体叫做多面体13.1.2圆柱、圆锥、圆台、球以矩形的一边所在直线为旋转轴,其余三边旋转一周所围成的旋转体叫做圆柱轴:旋转轴叫做圆柱的轴;柱体:圆柱和棱柱统称为柱体两个底面互相平行,做圆锥轴:旋转轴叫做圆锥的轴;底面是圆面,用平行于圆锥底面的平面去截圆锥,底面与截面之间部分叫做圆台轴:圆锥的轴;台体:棱台和圆台统称为台体上、下底面是平行且大小不同的圆面,母线的延长线交于一点,以半圆的直径所在直线为旋转轴,旋转一周形成的旋转体叫做球体,简称球(1)球面注意:1.球面与球的区别(1)球的表面叫作球面,是旋转形成的曲面.球心到球面上各点的距离相等,球面可看作是空间中到一定点(球心)的距离等于定长(半径)的点的集合.(2)球是由球面及其围成的空间组成的空间图形,从集合观点来看,球可以看作是空间中到定点(球心)的距离小于或等于定长(半径)的点的集合.2.用一个平面截球,所得的截面是一个圆面;用一个平面截球面,所得的截线是圆.知识点五.旋转体定义:一条平面曲线(包括直线)绕它所在的平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体。
立体几何初步基础知识
立体几何初步基础知识§1.1.1 棱柱、棱锥、棱台的结构特征1.由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面,如面ABCD ;相邻两个面的公共边叫多面体的棱,棱与棱的公共点叫多面体的顶点,2.由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫旋转体,这条定直线叫旋转体的轴.探究3:棱柱的结构特征问题:你能归纳下列图形共同的几何特征吗?3:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱(prism ).棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(两底面之间的距离叫棱柱的高) 4:①按底面多边形的边数来分,底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四棱柱、五棱柱…②按照侧棱是否和底面垂直,棱柱可分为斜棱柱(不垂直)和直棱柱(垂直). 5:我们用表示底面各顶点的字母表示棱柱,如图(1)中这个棱柱表示为棱柱ABCD —A B C D ''''(1)顶棱 A B 'C 'D 'A 'CB6.有一个面是多边形,其余各个面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.顶点到底面的距离叫做棱锥的高;棱锥也可以按照底面的边数分为三棱锥(四面体)、四棱锥…等等,棱锥可以用顶点和底面各顶点的字母表示,如下图中的棱锥 .S ABCDE7:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分形成的几何体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面.其余各面是棱台的侧面,相邻侧面的公共边叫侧棱,侧面与两底面的公共点叫顶点.两底面间的距离叫棱台的高.棱台可以用上、下底面的字母表示,分类类似于棱锥.试试3:请在下图中标出棱台的底面、侧面、侧棱、顶点,并指出其类型和用字母表示出来.※典型例题例由棱柱的定义你能得到棱柱下列的几何性质吗?①侧棱都相等,侧面都是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形.仿照棱柱,棱锥、棱台有哪些几何性质呢?简单组合体的结构特征二、新课导学※探索新知探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?新知1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做圆柱(circular cylinder),旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .圆柱和棱柱统称为柱体.探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台. 圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.※典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________.※动手试试练.如图,长方体被截去一部分,其中EH‖A D'',剩下的几何体是什么?截去的几何体是什么?三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.※当堂检测(时量:5分钟满分:10分)计分:1. Rt ABC∆三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A.52255524. 已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5. 圆锥母线长为R 3,则高等于__________.课后作业1.如图,是由等腰梯形、矩形、半圆、倒它绕轴旋转0180说法不正确的是___________A.和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点2. 用一个平面截半径为25cm的球,截面面积是249cm,则球心到截面的距离为多少?。
高中数学立体几何知识点总结(超详细)
立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。
立体几何的知识点总结
立体几何的知识点总结1. 三维几何常用的图形在立体几何中,我们经常接触到的几何图形包括:点、直线、平面、三角形、四边形、圆柱、圆锥、圆台、球体等。
下面分别介绍这些几何图形的特点及相关知识点。
1.1 点、直线、平面- 点:点是空间中没有长度、宽度和高度的几何图形,可以用来表示位置。
- 直线:直线是由一系列相邻点组成的几何图形,具有方向和长度。
- 平面:平面是由无数个点组成的, 恰好可以确定一次中画, 无终止点, 无法测量, 无体积的二维图形, 平面分为有界无界两类, 有界平面是指由一定个点所组成的平面, 无界平面是指由无数个点组成的平面。
1.2 三角形、四边形- 三角形:三角形是一个有三条边的多边形,具有三个顶点和三条边。
- 四边形:四边形是一个有四条边的多边形,具有四个顶点和四条边。
1.3 圆柱、圆锥、圆台、球体- 圆柱:圆柱是由两个平行圆面包围的几何图形,具有一个侧面和两个底面。
- 圆锥:圆锥是由一个圆锥面和一个顶点组成的几何图形。
- 圆台:圆台是由一个圆台面和一个底面组成的几何图形。
- 球体:球体是由无数个点组成的三维图形,所有点到球心的距离相等。
2. 立体的表面积和体积在立体几何中,我们经常需要计算物体的表面积和体积。
下面分别介绍立体的表面积和体积的计算公式及相关知识点。
2.1 立体的表面积- 点、直线、平面:这些几何图形没有表面积。
- 三角形:三角形的表面积可以通过计算三条边的长度和三个内角的大小来求得。
- 四边形:四边形的表面积可以通过计算四条边的长度和四个内角的大小来求得。
- 圆柱:圆柱的表面积等于两个底面的面积和侧面的面积之和,即S=2πr^2+2πrh。
- 圆锥:圆锥的表面积等于底面的面积加上一个生成圆的面积,即S=πr^2+πrl,其中l为斜高。
- 圆台:圆台的表面积等于底面的面积加上一个上面的面积和侧面的面积之和,即S=πr1^2+πr2^2+πr1l,其中r1和r2为上下底面的半径,l为斜高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.直线与平面的位置关系有平行、相交、在平面内三种情况.
4.平面与平面的位置关系有平行、相交两种情况.
5.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
1.三个推论
推论 1:经过一条直线和这条直线外一点有且只有一个平面;
推论 2:经过两条相交直线有且只有一个平面;
推论 3:经过两条平行直线有且只有一个平面.
17. 如图,在五面体 ABCDEF 中,四边形 CDEF 为矩形, AD CD.证明: AB 平面 ADF .
18. 如图,四棱锥 S ABCD 中,SD 底面 ABCD ,AB / /CD ,AD DC ,AB AD 1 ,DC 2 , SD 2 , E 为棱 SB 的中点.求证: SC 平面 ADE .
13. 己知三棱 柱ABC A1B1C1, 点A1 在底面 ABC 上的射影恰为 AC 的中点 D , BCA 90 , AC BC 2, 又知 BA1 AC1. 求证: AC1 平面A1BC .
14. 如图,在四棱锥 P ABCD 中,底面 ABCD 为矩形,PD 平面 ABCD ,E 为棱 PB 的中点,PB 2 ,PD 1,BPC 45 .证 明: PC 平面 ADE .
9. 如图,在三棱锥 P ABC 中,G 是棱 PA 的中点,PC AC , 且 PB AB AC BC 2 , PC 1.求证:直线 BG 平面 PAC .
10. 如图,在三棱锥 P ABC 中, PA 面 AABBCC,,AACC AABB,,PPAA AADD22DDCC22,,AAEE AABB 33.求证:
立体几何系统提升精讲
1.多面体的表(侧)面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面
面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式
S 圆柱侧=2πrl
3.柱、锥、台和球的表面积和体积
S 圆锥侧=πrl
S 圆台侧=π(r1+r2)l
16.
★如图,在多面体 ABCDEF 中,四边形 ABCD 是菱形,ABC
3
四边形 ABEF 是直角梯形,FAB 2
, AF
BE , AF
Hale Waihona Puke AB 2BE2 .证明:CE
平
面 ADF .
17. 在三棱锥 P ABC 中, H 为 PA 的中点, M , N 分别为棱 PA, PB 上的点,且 PN 3NB , MN 平面 HBC ,求 PM : PA 的值.
11. ★如图所示,在四棱锥 C ABED 中,四边形 ABED 是正方形,点 G, F 分别是线段 EC, BD 的中点. 求证: GF / /平面ABC
12. ★如图,在直三棱柱 ABC- A1B1C1 中,E 是棱 CC1 的中点,F 是 AB 的中点.求证:CF∥平面 AB1E .
13. ★如图,在三棱柱 ABC A1B1C1 中,△ABC 是边长 为 4 的正三角形,侧面 BB1C1C 是矩形,D, E 分别是 线段 BB1, AC1 的中点. 求证: DE 平面 ABC .
2.异面直线判定的一个定理
过平面外一点和平面内一点的直线,与平面内不过该点的直线互为异面直线.
1.直线与平面平行的判定与性质 判定
定义
定理
性质
图形
条件
a∩α=∅
a⊂α,b⊄α,a∥b
a∥α
a∥α,a⊂β,α∩β =b
2
结论
a∥α
2.面面平行的判定与性质
定义
b∥α
判定
定理
a∩α=∅
a∥b
性质
图形
条件
8
14. ★如图,在四棱锥 P ABCD 中,四边形 ABCD 为矩形, E, F 分别为 PC, BD 的中点.证明: EF / / 平面 PAD .
15. ★如图,在直三棱柱 ABC A1B1C1 中, AB AC , P 为 AA1 的中 点, Q 为 BC 的中点. 求证: PQ / / 平面 A1BC1 .
12
7. 如图,四面体 P ABC 中,PA 平面 ABC ,PA AB 1,BC 3 ,AC 2 .证明:BC 平面 PAB .
8. 如图,四面体 ABCD 中,O、E 分别是 BD、BC 的中点, AB AD 2 , CA CB CD BD 2 .求证: AO 平面 BCD.
14
15. 如图,已知△ABC 是正三角形,EA,CD 都垂直于平面 ABC,且 EA AB 2 , DC 1,F 是 BE 的中点, AF 平面 EDB.
16. 如图,在直三棱柱 ABC A1B1C1 中, AC BC , AB 2 2 , BC 2 , AA1 2 .证明: A1C 平面 AB1C1 .
4. 如图,在三棱柱 ABC–A1B1C1 中,D 为 AC 的中点,O 为四 边形 B1C1CB 的对角线的交点.求证:OD∥平面 A1ABB1.
6
5. 如图,在长方体 ABCD- A1B1C1D1 中,面 BMD1N 与棱 CC1 ,AA1 分别交于点 M,N,且 M,N 均为中点.求证:AC∥平面 BMD1N
为点 E,F,G,H,M(如图),则四棱锥 M EFGH 的体积为
;
3 在正四面体中,其侧面积与底面积之差为 8 3 ,则该正四面体外接球的
体积为
。
4 如果一个球的内接圆锥的母线长是这个球的半径的 3 倍,则圆锥的侧面积与球的表面积之比为
5 已知圆柱的体积为 1,则圆柱的表面积最小时,底面半径为
5
a∥b
2.平面与平面垂直
(1)平面与平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(2)判定定理与性质定理
文字语言
图形语言
符号语言
判定定 理
如果一个平面经过另一个平面的一 条垂线,那么这两个平面互相垂直
l⊂β ⇒α⊥β
l⊥α
3
性质定 理
如果两个平面互相垂直,那么在一个 平面内垂直于它们交线的直线垂直
名称
表面积
体积
几何体
柱体(棱柱和圆柱) 锥体(棱锥和圆锥)
S 表面积=S 侧+2S 底 S 表面积=S 侧+S 底
台体(棱台和圆台)
S 表面积=S 侧+S 上+S 下
球
S=4πR2
V=Sh
V=1Sh 3
V=1(S 3
上+S
下+
S 上 S 下)h V=4πR3
3
【知识拓展】 1.与体积有关的几个结论 (1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为 a,球的半径为 R, ①若球为正方体的外接球,则 2R= 3a; ②若球为正方体的内切球,则 2R=a; ③若球与正方体的各棱相切,则 2R= 2a. (2)若长方体的同一顶点的三条棱长分别为 a,b,c,外接球的半径为 R,则 2R= a2+b2+c2.
11
4. 如图,正方形 ABCD 所在平面与三角形 CDE 所在平面相交于 CD , AE ⊥ 平面 CDE .求 证: AB 平面 ADE .
5. 如图所示,已知 P ABC 为正三棱锥,设 D 为 PB 的中点,且 AD PC .求证:PC 平 面 PAB .
6. 如图所示,已知四棱锥 P ABCD 中,底面 ABCD 为菱形, PA 平面 ABCD , ABC 60 E 是 BC 的中点.证明: AE ⊥ 平面 PAD .
2.直线与直线的位置关系
(1)位置关系的分类
平行直线 共面直线
相交直线
异面直线:不同在任何一个平面内,没有公共点
(2)异面直线所成的角
①定义:设 a,b 是两条异面直线,经过空间任一点 O 作直线 a′∥a,b′∥b,把 a′与 b′所成的锐角(或
直角)叫做异面直0,线π a 与 b 所成的角(或夹角). ②范围: 2 .
1
(3)正四面体的外接球与内切球的半径之比为 3∶1.
1.四个公理
公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理 2:过不在一条直线上的三点,有且只有一个平面.
公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理 4:平行于同一条直线的两条直线平行.
9
18. 如图,正方形 ABCD 的边长是 13,平面 ABCD 外一点 P 到正方形各顶点的距离都是 13, M , N 分别是 PA, BD 上的点,且 PM : MA BN : ND .求证:直线 MN 平面 PBC .
19. 如图,正方体 ABCD A1B1C1D1 中,点 N 在 BD 上,点 M 在 B1C 上,且 CM DN .求证: MN 面 AA1BB1
证明类:
线面平行
1. 如图,在四棱锥 P ABCD 中, A B / / C D .求证:CD∥ 平面 ABE.
2. 如图,在四棱锥 P ABCD 中,底面是棱长为1的菱形, M 是 PB 的中点.求证: PD //平面 ACM .
3. 如图, 在正三棱柱 ABC A1B1C1 中,点 D 是 AB 的中点.求 证: BC1 / / 平面 A1CD .
15
面面平行
1. 如图所示,在三棱柱 ABC A1B1C1 中,D 是 BC 上一点,且 A1B 平 面 AC1D , D1 是 B1C1 的中点.求证:平面 A1BD1∥平面 AC1D .
2. 如图,在正方体 ABCD A1B1C1D1 中, M 、 N 、 P 分别是 C1C 、 B1C1 、 C1D1 的中点.求证:平面 MNP∥平面 A1BD .