信号与系统试卷

合集下载

信号与系统期末试卷-含答案全

信号与系统期末试卷-含答案全

一.填空题(本大题共10空,每空2分,共20分。

) 1.()*(2)k k εδ-= (2)k ε- 。

2.sin()()2td πτδττ-∞+=⎰()u t 。

3. 已知信号的拉普拉斯变换为1s a-,若实数a a >0 或 大于零 ,则信号的傅里叶变换不存在.4. ()()()t h t f t y *=,则()=t y 2 ()()t h t f 222* .5. 根据Parseval 能量守恒定律,计算⎰∞∞-=dt t t 2)sin (π 。

注解: 由于)(sin 2ωπg t t⇔,根据Parseval 能量守恒定律,可得πωππωωππ===⎪⎭⎫⎝⎛⎰⎰⎰-∞∞-∞∞-d d g dt t t 11222221)(21sin6. 若)(t f 最高角频率为m ω,则对)2()4()(tf t f t y =取样,其频谱不混迭的最大间隔是 m T ωπωπ34max max ==注解:信号)(t f 的最高角频率为m ω,根据傅立叶变换的展缩特性可得信号)4/(t f 的最高角 频率为4/m ω,信号)2/(t f 的最高角频率为2/m ω。

根据傅立叶变换的乘积特性,两信号时域相乘,其频谱为该两信号频谱的卷积,故)2/()4/(t f t f 的最高角频率为m mmωωωω4324max =+=根据时域抽样定理可知,对信号)2/()4/(t f t f 取样时,其频谱不混迭的最大抽样间隔m axT 为mT ωπωπ34max max ==7. 某因果线性非时变(LTI )系统,输入)()(t t f ε=时,输出为:)1()()(t t e t y t--+=-εε;则)2()1()(---=t t t f εε时,输出)(t y f =)1()2()()1()2()1(t t e t t e t t -----+-----εεεε。

8. 已知某因果连续LTI 系统)(s H 全部极点均位于s 左半平面,则∞→t t h )(的值为0 。

信号与系统试卷总

信号与系统试卷总

信号与系统题目汇总 选择题:1.试确定信号()3cos(6)4x t t π=+的周期为 B 。

A. 2πB.3π C. π D. 3π2. 试确定信号5()2cos()cos()466x k k k πππ=++的周期为 A 。

A. 48B. 12C. 8D. 363.下列表达式中正确的是 B 。

A. (2)()t t δδ= B. 1(2)()2t t δδ= C. (2)2()t t δδ= D. 12()(2)2t t δδ= 4.积分55(1)(24)t t dt δ---+=⎰C 。

A. -1B. 1C. 0.5D. -0.55.下列等式不成立的是 D 。

A. 102012()()()()f t t f t t f t f t -*+=* B. ()()()f t t f t δ*= C. ()()()f t t f t δ''*= D.[][][]1212()()()()d d df t f t f t f t dt dt dt*=* 6. (3)(2)x k k δ+*-的正确结果是 B 。

A. (5)(2)x k δ-B. (1)x k +C. (1)(2)x k δ-D. (5)x k +7.序列和()k k δ∞=-∞∑等于 D 。

A. (1)x k +B. ∞C. ()k εD. 18. 已知某系统的系统函数H(s),唯一决定该系统单位冲激响应h(t)函数形式的是( A ) A. H(s)的极点B. H(s)的零点C.系统的输入信号D.系统的输入信号与H(s)的极点9. 已知f(t)的傅立叶变换F(jw),则信号f(2t-5)的傅立叶变换是( D )A.51()22j j F e ωω-B.5()2j j F e ωω- C. 52()2j j F e ωω- D.521()22j j F e ωω- 10.已知信号f1(t)如下图所示,其表达式是( D )A. ε(t)+2ε(t -2)-ε(t -3)B. ε(t -1)+ε(t -2)-2ε(t -3)C. ε(t)+ε(t -2)-ε(t -3)D. ε(t -1)+ε(t -2)-ε(t -3)11. 若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( C ) A.()()f t h tB.()()f t t δC.()()f h t d τττ∞-∞-⎰D.()()tf h t d τττ-⎰12.某二阶系统的频率响应为22()32j j j ωωω+++,则该系统的微分方程形式为 B 。

信号与系统试卷及参考答案

信号与系统试卷及参考答案

试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间 120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。

(8分)(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。

(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h(t) (8分) (3).f(k)=1,k=0,1,2,3,h(k)=1,k=0,1,2,3,y(k)=f(k)*h(k) (8分)(4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分)(5)y ’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2,试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。

(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。

信号与系统期中考试试卷(答案)

信号与系统期中考试试卷(答案)

衢州学院 2015- 2016 学年 第 2 学期《信号与系统》期中试卷1.填空(每小题5分,共4题)(1)⎰+∞∞-=tdt t 0cos )(ωδ 1(2)⎰∞-=td ττωτδ0sin )( 0(3)已知系统函数)2)(1(1)(++=s s s H , 起始条件为:2)0(,1)0(='=--y y ,则系统的零输入响应y zi (t )= t t e e 2-34--(4)()()()t h t f t y *=,则()=t y 2 )2(*)2(2t h t f2. 绘出时间函数的波形图u (t )-2u (t -1)+ u (t -2)的波形图(10分)1t123f (t )-13.电容C 1与C 2串联,以阶跃电压源v (t ) =Eu (t )串联接入,试写出回路电流的表达式。

(10分)题号 一 二 三 四 五 六 七 八 九 十 总分 分数班级 姓名 学号dtt dv c c c c t i d i c c c c d i c d i c t v ttt )()()()(1)(1)(2121212121+=⇒+=+=⎰⎰⎰∞-∞-∞-ττττττ4.如下图所示,t<0时,开关位于“1”且已达到稳态,t=0时刻,开关由“1”转到“2”,写出t ≥0时间内描述系统的微分方程,求v (t )的完全响应。

(10分)解:设回路电流为)(t i ,则)()(t Ri t v =,由KVL 方程由:)()()()(1t V t Ri dtt di L dt t i C in t =++⎰∞- 整理后得到: dt t dV t v RC dt t dv dt t v d R L in )()(1)()(22=++ 代入参数得到: )t t v dtt dv dt t v d (10)(10)(10)(68522δ=++ 特征根: 423110*9.9,102-≈⨯-≈αα 初始值: 610)0()0(')0(',0)0(==⨯==++++L v LRi R v v 得到: t t e e t v 2131.10-31.10)(αα=5.信号f (t )如图1所示,求=)(ωj F F )]([t f ,并画出幅度谱)(ωj F 。

信号与系统 期末复习试卷1

信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________

大学考试试卷《信号与系统》及参考答案

大学考试试卷《信号与系统》及参考答案

信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。

2. 连续信号,该信号的拉普拉斯变换收敛域为()。

A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。

7. 下列论断正确的为()。

A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。

8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。

B. 若起始状态为零,则零状态响应为零。

C. 若系统的零状态响应为零,则强迫响应也为零。

D. 若激励信号为零,零输入响应就是自由响应。

2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。

2022年《信号与系统》试卷

2022年《信号与系统》试卷

《信号与系统》卷子〔A 卷〕一、填空题〔每空1分,共18分〕1.假设)()(s F t f ↔,则↔)3(t F 。

2.ℒ()n t t ε⎡⎤=⎣⎦,其收敛域为 。

3.()(21)f t t ε=-的拉氏变换)(s F = ,其收敛域为 。

4.利用拉氏变换的初、终值定理,可以不经反变换计算,直接由)(s F 决定出()+o f 及)(∞f 来。

今已知)3)(2(3)(+++=s s s s s F ,[]Re 0s > 则)0(+f ,)(∞f = 。

5.已知ℒ[]022()(1)f t s ωω=++,Re[]1s >-,则()F j ω=ℱ[()]f t = 。

6.已知ℒ0220[()](1)f t s ωω=-+,Re[]1s >,则()F j ω=ℱ[()]f t = 。

7.已知()[3(1)](1)t f t e Sin t t ε-=--,试写出其拉氏变换()F s 的解析式。

即()F s = 。

8.对连续时间信号进行均匀冲激取样后,就得到 时间信号。

9.在LTI 离散系统分析中, 变换的作用类似于连续系统分析中的拉普拉斯变换。

10.Z 变换能把描述离散系统的 方程变换为代数方程。

11.ℒ 0(3)k t k δ∞=⎡⎤-=⎢⎥⎣⎦∑ 。

12.已知()()f t F s ↔,Re[]s α>,则↔--)1()1(t t f e t ε ,其收敛域为 。

13.已知22()(1)sse F s s ω-=++,Re[]1s >-,则=)(t f 。

14.单位样值函数)(k δ的z 变换是 。

二、单项选择题〔在每题的备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

每题1分,共8分〕 1.转移函数为327()56sH s s s s=++的系统,有〔 〕极点。

A .0个 B .1个 C .2个 D .3个 2.假设11)(1+↔s t f ,Re[]1s >-;)2)(1(1)(2++↔s s t f ,Re[]1s >-,则[]12()()()y t f t f t =-的拉氏变换()Y s 的收敛区是〔 〕。

(完整版)《信号与系统》期末试卷与答案

(完整版)《信号与系统》期末试卷与答案

《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。

A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。

A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。

A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。

A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。

A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。

信号与系统期末考试试卷(有详细答案).doc

信号与系统期末考试试卷(有详细答案).doc

格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。

dt(是否线性、时不变、因果?)2 的值为 5。

2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。

4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。

5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。

6.系统阶跃响应的上升时间和系统的截止频率成反比。

.若信号的F(s)=3s j37。

,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。

1。

9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。

2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。

(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。

《信号与系统》试卷 (6)

《信号与系统》试卷 (6)

新疆天山职业技术学院2012-2014学年第二学期《信号与系统》期末试卷姓 名: 班 级: 年级编号:题 号 一 二 三 四 五 总 分 得 分一、单项选择题(本大题共10小题,每小题1分,共10分) 1、下列信号的分类方法不正确的是( )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号 2、将信号f (t )变换为( )称为对信号f (t )的平移或移位。

A 、f (k–k 0) B 、f (t –t 0) C 、f (at ) D 、f (-t ) 3、)1()1()2(2)(22+++=s s s s H ,属于其零点的是( ) A 、-1 B 、-2 C 、-j D 、j4、单边拉普拉斯变换F (s ) = 1+s 的原函数 f (t )= ( ) A 、e −tu (t ) B 、(1+e −t )u (t ) C 、(t +1)u (t ) D 、δ (t ) +δ’(t )5、将信号f (t )变换为( )称为对信号f (t )的尺度变换。

A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6、)2)(1()2(2)(-++=s s s s s H ,属于其极点的是( )A 、1B 、0C 、2D 、-27、已知 f (t) ,为求 f (3-2t) 则下列运算正确的是( ) A 、f (-2t) 左移3 B 、f (-2t) 右移 C 、f (2t) 左移3 D 、f (2t) 右移 8、 如函数f(t) 的图像如图所示,f(t)为( )A 、偶函数B 、奇函数C 、奇谐函数D 、都不是9、周期性非正弦连续时间信号的频谱,其特点为( )A 、频谱是连续的,收敛的B 、频谱是离散的,谐波的,周期的C 、频谱是离散的,谐波的,收敛的D 、频谱是连续的,周期的 10、序列和∑∞∞-)(n δ等于( )A 、0B 、∞C 、u (n )D 、1二、 填空题(本题共10小题,每题1分,共10分) 1、δ (−t ) = (用单位冲激函数表示)。

信号与系统试卷题库完整

信号与系统试卷题库完整

信号与系统题库一.填空题1. 的周期为: 10 。

4.==7. LTI系统在零状态条件下,由引起的响应称为单位冲激响应,简称冲激响应。

8. LTI系统在零状态条件下,由引起的响应称为单位阶跃响应,简称阶跃响应。

13. 当周期信足狄里赫利条件时,则可以用傅里叶级数表示:,由级数理论可知:= ,,。

14. 周期信号用复指数级数形式表示为:,则。

15. 对于周期信号的重复周期T当保持周期T,相邻谱线的间隔不变,频谱包络线过零点的频率,频率分量增多,频谱幅度的收敛速度相应变慢。

16. 对于周期信号的重复周期T当T增大时,则频谱的幅度随之,相邻谱线的间隔变小,谱线变密,但其频谱包络线过零点的坐标。

17.= 。

反变换18.19.的傅里叶变换为:的频谱是。

的频谱是。

22. 的频谱是。

23. 在时-的频谱是。

24.是。

25. 的频谱是。

26. 的频谱是。

27.。

28. z变换为。

29. z变换为。

二、作图题:12. 画出如下信号的波形。

a) f(-2t) b) f(t-2)3. (本题94. 求下列周期信号的频谱,并画出其频谱图。

5.6.7.三、计算题:1. 判断下列系统是否为线性系统。

(本题6)2.已知某连续时间LTI求:1.2. 3. 4.3. 给定系统微分方程初始条件s域分析法求其全响应。

4.5. 如图所示系统,已知输入信号()t f 的频谱为()ωF ,试画出信号()t y 的频谱。

6. 连续线性LTI 因果系统的微分方程描述为:)(3)('2)(10)('7)("t x t x t y t y t y +=++(1)系统函数H (s ),单位冲激响应h (t ),判断系统是否稳定。

(2)画出系统的直接型模拟框图。

7. 设有二阶系统方程 0)(4)('4)("=++t y t y t y ,在某起始状态下的初始值为:1)0(=+y , 2)0('=+y , 试求零输入响应。

信号与系统试题库

信号与系统试题库

1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。

B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。

C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。

D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。

3.下列说法不正确的是( D )。

A 、一般周期信号为功率信号。

B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。

A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。

A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。

A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题〔5个小题〕,占30分;计算题〔7个大题〕,占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试答复该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.有限频带信号)(t f 的最高频率为100Hz ,假设对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.)(t f 的波形图如下图,画出)2()2(t t f --ε的波形。

[答案: ]8.线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.假设LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试卷总

信号与系统试卷总

信号与系统题目汇总选择题:1。

试确定信号的周期为 B .A. B。

C. D.2. 试确定信号的周期为 A 。

A。

48 B。

12 C. 8 D。

363。

下列表达式中正确的是 B 。

A. B。

C. D.4.积分 C 。

A。

—1 B。

1 C. 0。

5 D。

-0.55。

下列等式不成立的是 D 。

A.B。

C。

D。

6. 的正确结果是 B 。

A. B. C。

D.7.序列和等于 D 。

A。

B。

C. D. 18。

已知某系统的系统函数H(s),唯一决定该系统单位冲激响应h(t)函数形式的是( A ) A. H(s)的极点B。

H(s)的零点 C.系统的输入信号D. 系统的输入信号与H(s)的极点9。

已知f(t)的傅立叶变换F(jw),则信号f(2t—5)的傅立叶变换是( D )A. B. C。

D。

10。

已知信号f1(t)如下图所示,其表达式是( D )A. ε(t)+2ε(t—2)—ε(t—3)B. ε(t-1)+ε(t—2)—2ε(t-3)C。

ε(t)+ε(t-2)—ε(t—3)D. ε(t—1)+ε(t—2)—ε(t-3)11。

若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( C )A。

B。

C. D.12.某二阶系统的频率响应为,则该系统的微分方程形式为 B 。

A. B. C. D。

13.连续时间信号的最高频率为,若对其取样,并从取样后的信号中恢复原信号,则奈奎斯特间隔和所需低通滤波器的截止频率分别为 B 。

A。

B。

C。

D。

14。

已知f(t)的傅立叶变换F(jw),则信号的傅立叶变换是( D )A. B. C。

D.15.信号的拉氏变换及收敛域为A 。

A. B.C。

D。

16。

的z变换为C .A。

B.C。

D.17.已知的z变换,,的收敛域为 C 时,为因果序列。

A. B.C. D。

18。

积分 D 。

A。

—1 B。

1 C。

2 D. 319.积分 D 。

A. —1B. 1C. 2 D。

信号与系统期末考试试卷

信号与系统期末考试试卷

贵州大学信号与系统期末考试试卷I 、命题院(部): II 、课程名称: IV 、测试对象: 学院 专业V 、问卷页数(A4): 4 页VI 、考试方式: 闭卷考试VII 、问卷内容:一. 单项选择题(本大题共10小题,每小题2分,共20分)1. 信号)26(t f -是( )A .)2(t f 右移6B .)2(t f 左移3C .)-2(t f 右移3D .)-2(t f 左移6 2.积分)(t f =⎰∞++03)1()4(dt t t δ的结果为( )A. 3B. 0C. 4D. 5)(t u3.若)1()()(--=t u t u t X ,则)22(t X -的波形为( ) 4.用线性常系数微分方程∑∑===M K k k k NK k k k dt t x d b dt t y d a 00)()(表征的LTI 系统,其单位冲激响应h(t)中不包括)(t δ及其导数项的条件为( ) A. N=0B. M>NC. M<ND. M=N5.已知)(t f = )()(nT t u t u --,n 为任意整数,则)(t f 的拉氏变换为( )A. )1(1sT e s-- B.)1(1nsT e s -- C. )1(1ns e s -- D. )1(1nT e s - 6.已知)(t f 的象函数为1s s +,则)(t f 为( ) A. t e --1B. t e -+1C. )()(t u e t t -+δD. )()(t u e t t --δ7.以线性常系数微分方程表示的连续时间系统的自由响应取决于( )A.系统函数极点B.系统函数零点C.激励极点D.激励零点8.两个有限长序列的非零序列值的宽度分别为N 和M ,则两个序列卷积和所得的序列为( )A.宽度为N+M+1的有限宽度序列B.宽度为N+M-1的有限宽度序列C.宽度为N+M 的有限宽度序列D.不一定是有限宽度序列9.某一LTI 离散系统,其输入)(n x 和输出)(n y 满足如下线性常系数差分方程,)1(31)()1(21)(-+=--n x n x n y n y ,则系统函数)(z H 是( ) A.11211311)(--+-=z z Z H B.z z Z H 211311)(-+= C.112131)(---+=z z Z H D.11211311)(---+=z z Z H 10.某一LTI 离散系统,它的系统函数111)(--=az z H ,如果该系统是稳定的,则( )A. |a |≥1B. |a |>1C. |a |≤1D. |a |<1二. 填空题(本大题共10小题,每小题2分,共20分)1.一线性时不变系统,初始状态为零,当激励为)(t u 时,响应为e -2t )(t u ,试求当激励为)(t δ时,响应为___________。

信号与系统试卷

信号与系统试卷

一、计算下列各题(每小题5分,合计25分)1.求图示信号的卷积积分:解:2.求图示离散信号的卷积和:解:(一)(二)3.求图示信号的傅立叶变换解:4.求函数的拉氏变换式解:5.求的原序列,收敛区为:(1)(2)(3)解:二、(10分)一线性时不变系统的输入x 1(t )与零状态响应)(1t y ZS 分别如图 (a)与(b)所示:1.求系统的冲激响应h (t ),并画出h (t )的波形;2.当输入为图 (c)所示的信号)(2t x 时,画出系统的零状态响应)(2t y ZS 的波形。

(a)(b)解:1. 1()()()(1)h t x t u t u t ==--2. 211()()(1)x t x t x t =--211()()(1)zs zs zs y t y t y t ∴=--三、(101. 画出你所设计的高通滤波器的电路,并求出系统函数H (s );2. 画出所设计电路的幅频特性与相频特性曲线;3. 为了使截止频率s rad c /1=ω ,求出R 与C 之间应满足的关系。

解:1. ()11R sH s R s sCRC==++ 2. ()1j H j j RCωωω=+3. 1/c rad s ω= ,即:四、(15分)已知系统如题图所示,其中输入信号sin ()t f t tππ=,∑∞-∞=-=n sT nT t t ),()(δδ Ts=0.5秒,RCRC4590Cx (t +()T t δy (t )f (t )1.求信号()A f t 的频谱函数()A F j ω,并画出()A F j ω的频谱图; 2.求输出信号()y t 的频谱函数()Y j ω,并画出()Y j ω的频谱图; 3.画出输出信号()y t 的波形图;4.能否从输出信号()y t 恢复信号()A f t ?若能恢复,请详细说明恢复过程;若不能恢复,则说明理由。

解:(1) ()Sa()()()()f t t G j u u πωωπωπ=↔=+-- 2 ()()()Sa ()A f t f t f t t π==又)]2()()[2(21)]()2()[2(21 )(*)(21)(πωωωππωπωπωπωωπω---+-++==∴u u u u j F j F j F A1(2)[(2)(2)]2u u πωωπωππ=-+--(2) 12()[()] 2[(4)]A A n n ssnY j F j F j n T T πωωωπ∞∞=-∞=-∞=-=-∑∑(4) 因为4s ωπ=,而2m ωπ=,满足取样定理:2s m ωω≥ ,所以可以从输出信号()y t 恢复信号()A f t ,只要将信号()y t 通过一低通滤波器[]()0.5(2)(2)L H j u u ωωπωπ=+-- 即可恢复原信号()A f t 。

《信号与系统》题集

《信号与系统》题集

第1套一、填空题(每空3分,共36分)1. 系统的线性是指____________________________;2.δ( t ) * f(t)= _________,⎰∞∞--t(δ= _________,δ( t ) f(t)= _________;t d)1t3.系统的零输入响应是指________________________;零状态响应是指_______________________;4.对带宽为∆f=20kHz的信号f (t)进行取样,其奈奎斯特频率f s =______μs;信号f (2t)的带宽为_______kHz,其奈奎斯特频率 f s = ______kHz。

5.复指数信号f( t )=es0tε(t)的拉普拉斯变换为_________;6.单位直流信号1的傅里叶变换为_________,δ( t )的傅里叶变换为_________;二、判断题(每小题3分,共18分)1.系统瞬态响应的幅度会随着时间的增长而维持不变();2.满足狄里赫利条件的信号可以分解为无数多个频率不同的正弦信号();3.若f(t)的傅里叶变换是F(ω),则f(t-2)的傅里叶变换是F(ω)e j2ω();4. 只要将信号f(t)的拉普拉斯变换F(s)的变量“s”换成“jω”就可以得到该信号的频谱F(ω)();5.拉普拉斯变换时傅里叶变换的推广();6. 描述线性时不变连续系统的数学模型可用常系数的微分方程()。

三、简答题(每小题8分,共32分)1.设有如下函数f( t ),试求f’( t );2.设有一阶系统方程)()()(3)(t f t f t y t y +'=+',试求其冲激响应h ( t )。

3.设信号f(t)如图所示,试求其频带宽度(带宽)∆f ;4. 已知某信号f(t)频谱F(ω)如图所示,0cos t ω为高频载波,则调幅信号x(t)可表示为:0()()cos x t f t t ω=,试求x(t)的频谱,并大致画出其图形。

《信号与系统》试卷A答案

《信号与系统》试卷A答案

第二学期《信号与系统》A 卷答案及评分标准一、选择题(每题4分,共20分)1.D 2.D 3.C 4.C 5.A二、填空题(每题4分,共24分)1.-12.u(t)+u(t-1)+u(t-2)3.稳定4.jdF(w)/dw-2F(w)5.线性,非线性6.0.5n u(n)三、计算题(共56分)1.f(t)=Ecos(πτt),22t ττ-≤≤ F(w)=22()jwt f t e dt ττ--⎰=22cos()jwt E t e dt ττπτ--⎰=202cos()cos E t tdt τπωτ⎰ =20[cos()cos()]E t t dt τππωωττ++-⎰ =2222cos 2E πτωτπτω- 共6分,写出表达式给2分,写对傅立叶变换公式给2分,积分过程及结果2分。

2.f(t)= f 1(t)*f 2(t)=sintu(t)*u(t-1)=sin ()(1)u u t d ττττ∞-∞--⎰ =10sin t d ττ-⎰=10cos |t τ--=1-cos(t-1),t>1 共8分,写对两个函数的表达式分别各给2分,带入卷积公式正确得2分,积分过程2分,结果表达正确2分。

3. 当输入为f(t)时, r(t)=(2e -t +cos2t)u(t)=r zs (t)+r zi (t)(2分)当输入为3f(t)时, r(t)=(e -t +cos2t)u(t)=3 r zs (t)+ r zi (t)(2分)联立上面两式得,r zs (t)= - 0.5e -t u(t)(1分) r zi (t)=(2.5 e -t +cos2t)u(t)(1分)当输入为5f(t)时,r(t)=5 r zs (t)+ r zi (t)(1分)=(-2.5 e -t +2.5 e -t +cos2t)=cos2t u(t)(1分)4.解:(1)冲激相应应满足方程h ’’(t)+4h ’(t)+3h(t)=δ’(t)+2δ(t)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(共20分,每空2分)
1.
()
________)2(=+⋅+⎰∞∞
--dt t t e
t
δ
2.已知有限频带信号f(t)最高频率为100Hz ,对下面信号进行时域取样时,求最小取样频率s f 。

(1)f (3t ) s f =____________ (2)f(t)*f(2t) s f =_____________ 3.已知信号f(t)的单边拉普拉斯变换为)
5)(2(6
)(+++=
s s s s F ,则=+)0(f __________
4.已知1
5.011
)(-+=
Z Z F ,|Z|〈 。

则时域序列f(k)=__________
5.已知函数)(1t f 和)(2t f ,则)(1t f 和)(2t f 卷积积分 f(t)= )(1t f *)(2t f =_______________
6.已知信号f(t)的傅立叶变换为)(ωj F ,则)23(3t f e
t
j -的傅立叶变换为___________
7.为信号传输无失真,系统的频率响应函数=)(ωj H 。

8.已知周期信号
)4sin()2cos()(t t t f +=,其基波频率为 ______rad/s ;周期为 s 。

二、 计算题(6分)
某线性时不边系统的频率响应为ω
ω
ωj j j H +-=22)(,
y(t).
三 、计算题(6分)
求序列{}
10()1,2,1
k f k ==和2()1cos ()2f k k k πε⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的卷积和。

四、计算题(6分) 已知某双边序列的Z 变换为21
()1092F z z z =
++五、计算题(6分) 求出下面框图所示离散时间系统的系统函数
六、 计算题(6分)
描述离散系统的差分方程为:七、计算题(10分)
已知某连续信号()f t 的傅里叶变换为
21
()23F j j ωωω=
-+,按照取样间隔1T =对其进行取样得到离散
时间序列()f k ,序列()f k 的Z 变换。

八、计算题(15分)
已知电路如下图所示,激励信号为)()(t t e ε=,在t=0和t=1时测得系统的输出为1)0(=y ,5
.0)1(-=e y 。

分别求系统的零输入响应、零状态响应、全响应、以及自然响应和受迫响应。

九、计算题(15)
某线性时不变系统函数2
33
)(20
+++=
s s s H s H ,其中0H
1,
问该系统在何种激励下的零状态响应为)()3
1
341(2t e e t
t ε
--+-。

十、计算题(10分)
下图是一个输入信号f(t),输出信号为y(t)F (ω),画出A 、B 、C 及y(t)的频谱Y(ω)。

信号与系统 课程 期末 B 试卷 考试形式 闭卷
一、填空题(共20分,每空2分) 1.
=-⎰∞

-dt t t )()5cos 2(δ________________-。

2.已知 f (t )的傅里叶变换为F (j ω), 则f (2t -3)的傅里叶变换为 。

3.为信号传输无失真,系统的频率响应函数=)(ωj H 。

4.,
已知:)
3(1
)(+=
s s s F 则=+)0(f ; =∞)(f 。

5.已知函数)(1t f 和)(2t f ,则)(1t f 和)(2t f 卷积积分 f(t)= )(1t f *)(2t f =_______________ 6.已知,)()(k k f ε=其Z 变换
=)(Z F ;收敛域为 。

7.已知连续系统函数1
342
3)(2
3+--+=
s s s s s H ,试判断系统的稳定性: 。

8.要传送频带为15kHz 的音乐信号,为了保证不丢失信息,其最低采样频率应为 。

二、计算题(6分)
已知⎩⎨
⎧=-=⎪⎪⎩⎪
⎪⎨
⎧====其它
其它
,03
,2,1,0,4)(,
02,21,30
,1)(21n n n f n n n n f ;)()(21n f n f *求。

三、计算题(6分)
某线性时不边系统的频率响应为ω
ω
ωj j j H +-=22)(,系统输入f(t)=cos2t ,求系统的零状态响应y(t).
四、计算题(6分) 已知)
2(2
35)
(2>+-=
z z z z z X ,试求其逆Z 变换
五、 计算题(6分)
求出下面框图所示离散时间系统的系统函数 六、计算题(9分)
已知系统的差分方程和初始条件为:
)()2(2)1(3)(k k y k y k y ε=-+-+,5.0)2(,
0)1(=-=-y y
求系统的全响应y (k)。

七、计算题(10分)
某线性时不变系统函数2
33
)(2
+++=
s s s H s H ,其中0H 1,问该系统在何种激励下的零状态响应为)()3
1341(2t e e t
t ε--+-。

八、 计算题(15分) 已知某离散系统的差分方程为
其初始状态为
6)2(,
2)1(-=--=-zi zi y y ,激励;
求:1) 零输入响应)(k y zi
、零状态响应)(k y zs 及全响应)(k y ;
2) 指出其中的自由响应分量和受迫响应分量; 3) 判断该系统的稳定性。

九 计算题(12)
题图所示为线性连续系统的S 域方框图表示。

H1(s)为
求当K=6时系统的单位阶跃响应。

十 计算题(10分)
请叙述并证明Z 变换的卷积定理。

信号与系统 课程 期末 C 试卷 考试形式 闭卷
一、填空题(共20分,每空2分) 1.卷积()()()t f t t δδ**=____________。

2.
2*()___________t
d e t dt ε-⎡⎤=⎣
⎦。

3.信号()t δ的拉普拉斯变换的收敛域为____________________。

4.已知函数)(1t f 和)(2t f ,则)(1t f 和)(2t f 卷积积分
f(t)=
)(1t f *)(2t f =_______________。

5.频谱函数F(j ω)=δ(ω-2)+δ(ω+2)的傅里叶逆变换f(t)=_______________。

6.已知序列()()3(1)2(2)f n n n n δδδ=+-+-,则(2)f n -的Z 变换为 _______________________。

7.已知周期信号
)4sin()2cos()(t t t f +=,其基波频率为 ______rad/s ;周期为_________s 。

8.已知连续系统函数1
342
3)(23+--+=
s s s s s H ,试判断系统的稳定性:。

9.已知离散系统函数1
.07.02
)(
2+-+=z z z z H ,试判断系统的稳定性: 。

二、计算题(6分) 求1f t
()
三、计算题(6分)
求序列{}
10()1,2,1
k f k ==和2()1cos 2f k k π⎡⎛⎫=+ ⎪⎢⎝⎭⎣的卷积和。

四 、 计算题(6分)
已知信号f t ()的单边拉普拉斯变换21()(3)
s
e F s s s --=+
五、 计算题(6分)
描述离散系统的差分方程为:六、计算题(6分)
某线性时不变系统的频率响应为ωω
ωj j j H +-=
22)(,系统输入f(t)=cos2t ,求系统的零状态响应y(t).
七、 计算题(10分)
已知某连续信号()f t 的傅里叶变换为
()F j ω
=
,按照取样间隔1T =对其进行取样得到离散
时间序列()f k ,序列()f k 的Z
变换。

八、 计算题(15分)
已知线性时不变连续系统的微分方程为 而()(),(0)1,'(0)2t
f t e
t y y ε---===。

求系统的零输入响应x ,零状态响应()f y t ,完全响应()y t 以
及系统函数()H s 和单位冲激响应()h t 。

九 、计算题(15)
求使如图所示反馈系统稳定的k 值范围
十 、计算题(10分) 有限频带信号
)10cos(2)5cos(31)(t t t f ππ++=,用f s )(t Ts 进行取样。

画出f (t )及取样信号)
(t f s 在频率区间(-10Hz ,10Hz )的频谱图;
能否由
)
(t f s 恢复原信号,说明理由。

相关文档
最新文档