线性代数超强的总结(不看你会后悔的)

合集下载

线性代数知识点总结完整

线性代数知识点总结完整

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式()()111211222211221122010n t n n nn nn nna a a a a D a a a a a a a ==-=1212n nλλλλλλ=;()()1122121n n n nλλλλλλ-=-3.行列式的性质定义 记111212122212n n n n nna a a a a a D a a a =;112111222212n n T nnnna a a a a a D a a a =;行列式TD 称为行列式D 的转置行列式.. 性质1行列式与它的转置行列式相等..性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ;行列式变号.. 推论 如果行列式有两行列完全相同成比例;则此行列式为零..性质3 行列式某一行列中所有的元素都乘以同一数()⨯j k r k ;等于用数k 乘此行列式;推论1D 的某一行列中所有元素的公因子可以提到D 的外面;推论2 D 中某一行列所有元素为零;则=0D ..性质4若行列式的某一列行的元素都是两数之和;则1112111212222212()()()i i ni i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+1112111112112122222122221212i n i ni n i n n n ninnn nninna a a a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的某一列行的各元素乘以同一数然后加到另一列行对应的元素上去;行列式的值不变..算得行列式的值..4. 行列式按行列展开余子式 在n 阶行列式中;把元素ij a 所在的第i 行和第j 列划去后;留下来的1n -阶行列式叫做元素ij a 的余子式;记作ij M ..代数余子式 ()1i jij ij A M +=-记;叫做元素ij a 的代数余子式..引理一个n 阶行列式;如果其中第i 行所有元素除i;j (,)i j 元外ij a 都为零;那么这行列式等于ij a 与它的代数余子式的乘积;即ij ij D a A =..高阶行列式计算首先把行列上的元素尽可能多的化成0;保留一个非零元素;降阶定理n 阶行列式 111212122212=n n n n nna a a a a a D a a a 等于它的任意一行列的各元素与其对应的代数余子式的乘积之和;即1122i i i i in in D a A a A a A =+++;(1,2,,)i n =1122j j j j nj nj D a A a A a A =+++或;(1,2,,)j n =..第二章 矩阵1.矩阵111212122211n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭行列式是数值;矩阵是数表; 各个元素组成方阵 :行数与列数都等于n 的矩阵A .. 记作:A n.. 行列矩阵:只有一行列的矩阵..也称行列向量.. 同型矩阵:两矩阵的行数相等;列数也相等.. 相等矩阵:AB 同型;且对应元素相等..记作:A =B 零矩阵:元素都是零的矩阵不同型的零矩阵不同 对角阵:不在主对角线上的元素都是零..单位阵:主对角线上元素都是1;其它元素都是0;记作:E注意 矩阵与行列式有本质的区别;行列式是一个算式;一个数字行列式经过计算可求得其值;而矩阵仅仅是一个数表;它的行数和列数可以不同..2. 矩阵的运算矩阵的加法 111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫⎪+++⎪+= ⎪⎪+++⎝⎭说明 只有当两个矩阵是同型矩阵时;才能进行加法运算.. 矩阵加法的运算规律()1A B B A +=+;()()()2A B C A B C ++=++()()1112121222113,()n n ij ij m nm n m m mn a a a a a a A a A a a a a ⨯⨯---⎛⎫⎪--- ⎪=-=-= ⎪⎪---⎝⎭设矩阵记;A -称为矩阵A 的负矩阵()()()40,A A A B A B +-=-=+-..数与矩阵相乘111212122211,n n m m mn a a a a a a A A A A A a a a λλλλλλλλλλλλλλ⎛⎫ ⎪ ⎪== ⎪⎪⎝⎭数与矩阵的乘积记作或规定为数乘矩阵的运算规律设A B 、为m n ⨯矩阵;,λμ为数()()()1A A λμλμ=;()()2A A A λμλμ+=+;()()3A B A B λλλ+=+..矩阵相加与数乘矩阵统称为矩阵的线性运算..矩阵与矩阵相乘 设(b )ij B =是一个m s ⨯矩阵;(b )ij B =是一个s n ⨯矩阵;那么规定矩阵A 与矩阵B的乘积是一个m n⨯矩阵(c )ij C =;其中()12121122j j i i is i j i j is sj sj b b a a a a b a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪ ⎪⎝⎭1sik kj k a b ==∑;()1,2,;1,2,,i m j n ==;并把此乘积记作C AB = 注意1..A 与B2..矩阵的乘法不满足交换律;即在一般情况下;AB BA ≠;而且两个非零矩阵的乘积可能是零矩阵..3..对于n 阶方阵A 和B;若AB=BA;则称A 与B 是可交换的..矩阵乘法的运算规律()()()1AB C A BC =; ()()()()2AB A B A B λλλ==()()3A B C AB AC +=+;()B C A BA CA +=+ ()4m n n n m m m n m n A E E A A ⨯⨯⨯⨯⨯==()5若A 是n 阶方阵;则称 A k 为A 的k 次幂;即kk A A AA =个;并且mk m kA A A+=;()km mk AA =(),m k 为正整数..规定:A 0=E 只有方阵才有幂运算注意 矩阵不满足交换律;即AB BA ≠;()kk k AB A B ≠但也有例外转置矩阵把矩阵A 的行换成同序数的列得到的新矩阵;叫做A 的转置矩阵;记作A T ;()()1TT A A =;()()2T T T A B A B +=+;()()3T T A A λλ=;()()4TT T AB B A =..方阵的行列式由n 阶方阵A 的元素所构成的行列式;叫做方阵A 的行列式;记作A注意 矩阵与行列式是两个不同的概念;n 阶矩阵是n 2个数按一定方式排成的数表;而n 阶行列式则是这些数按一定的运算法则所确定的一个数..()1T A A =;()2n A A λλ=;(3)AB A B B A BA ===对称阵 设A 为n 阶方阵;如果满足A =A T ;那么A 称为对称阵.. 伴随矩阵行列式A 的各个元素的代数余子式ij A 所构成的如下矩阵112111222212n n nnnn A A A A A A A A A A *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为矩阵A 的伴随矩阵.. 性质 AA A A A E **==易忘知识点总结1只有当两个矩阵是同型矩阵时;才能进行加法运算..2只有当第一个矩阵的列数等于第二个矩阵的行数时;两个矩阵才能相乘;且矩阵相乘不满足交换律.. 3矩阵的数乘运算与行列式的数乘运算不同..逆矩阵:AB =BA =E;则说矩阵A 是可逆的;并把矩阵B 称为A 的逆矩阵..1A B -=即..说明1 A ;B 互为逆阵; A = B -12 只对方阵定义逆阵..只有方阵才有逆矩阵 3.若A 是可逆矩阵;则A 的逆矩阵是唯一的..定理1矩阵A 可逆的充分必要条件是0A ≠;并且当A 可逆时;有1*1AA A-=重要奇异矩阵与非奇异矩阵 当0A =时;A 称为奇异矩阵;当0A ≠时;A 称为非奇异矩阵..即0A A A ⇔⇔≠可逆为非奇异矩阵..求逆矩阵方法**1(1)||||021(3)||A A A A A A -≠=先求并判断当时逆阵存在;()求;求。

线性代数超强总结

线性代数超强总结

√ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示. √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E--=++++为A 的一个多项式.√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,AB 的列向量为12,,,sr r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一.⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅A 经过有限次初等变换化为B . 记作:A B =⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=5文档收集于互联网,如有不妥请联系删除.线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+123,,ααα线性无关,单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++,从而A的特征值为:11122n n A a b a b a b λ==+++tr , 230n λλλ====.√ 若A 的全部特征值12,,,n λλλ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ, A *的全部特征值为12,,,n A AAλ.√ 1122,.m m A k kA a b aA bEAA A A Aλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.1B P AP -= (P 为可逆阵) 记为:A B√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B -- 若,A B 均可逆② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:AΛ (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦.√ 若A B , CD ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. √ 若A B ,则()()f A f B ,()()f A f B =.12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x xx d y =∑标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵11110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.11文档收集于互联网,如有不妥请联系删除. ④ 作变换X CY =,新的二次型为2121(,,,)n n i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x 不全为零,12(,,,)0n f x x x >. 正定二次型对应的矩阵.√ 合同变换不改变二次型的正定性.√ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ;② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

(完整word版)线性代数超强的总结(不看你会后悔的)(word文档良心出品)

(完整word版)线性代数超强的总结(不看你会后悔的)(word文档良心出品)

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n ¡的标准基,n ¡中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.√ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-K NN√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→MM 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦NN⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦N N √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式. √设,,m n n s A B ⨯⨯A 的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 的列向量为12,,,s r r r L ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭L L L L 则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦O√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→M M 初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则) T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηηL 是0Ax =的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅%A 经过有限次初等变换化为B . 记作:A B =%⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L L M M M M M L 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L M1212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒L L M L 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩ML M M 当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=M ,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM 和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n ¡的一组标准正交基. √ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ=L 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L M 、21122()n n A a b a b a b A =+++L ,从而A的特征值为:11122n n A a b a b a b λ==+++L tr , 230n λλλ====L . √ 若A 的全部特征值12,,,n λλλL ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλL ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλL , A *的全部特征值为12,,,n A A AL .√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:A B :√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B --: 若,A B 均可逆② T T A B :③ k k A B : (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ: (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦L L L L O1442443144424443. √ 若A B :, C D :,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦:. √ 若A B :,则()()f A f B :,()()f A f B =.12(,,,)T n f x x x X AX =L A 为对称矩阵 12(,,,)T n X x x x =LT B C AC =. 记作:A B ; (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B : √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =L 经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x x dy =∑L 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由{()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O OO合同.√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑L ,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x L 不全为零,12(,,,)0n f x x x >L . 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦O (i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

线性代数知识点超强总结

线性代数知识点超强总结

一、向量组的线性相关性主要知识网络图
运算
概念

n 线性表示

|A| = 0 , A不可逆 .

AB = E , A与B互逆.
反证法.
二、重要定理
1、设A、B是n阶矩阵,则|AB|=|A||B|。
2、若A是可逆矩阵,则A的逆矩阵惟一。
3、n阶矩阵A可逆⇔ |A| ≠ 0 ⇔ R(A)=n ⇔ A为满秩矩阵。
4、若AB = E( 或BA =E ), 则B = A-1 。 5、若A为对称矩阵,则AT =A 。 6、若A为反对称矩阵,则AT=-A 。
a11 a12
0 D=
a22
a1n a11 0 a2n a21 a22
00
ann
= a11a22 ann .
an1 an2
0 0 D=
0 a1n a11 a12 a2n1 a2n a21 a22
an1
ann1 ann an1 0
n ( n 1)
= (1) 2 a1na2n1 an1.
0 0
ann
3、用公式
可逆矩阵与初等变换
矩阵的初等变换是矩阵的一种十分重要的运算,他在 解线性方程组、求逆矩阵及矩阵理论的探讨中都起到了十 分重要的作用。
熟练掌握矩阵的初等变换,了解初等矩阵的性质和 等价矩阵的概念,理解矩阵秩的概念,熟练掌握用初等变 换求矩阵的秩和逆矩阵的方法。理解齐次线性方程组有非 零解充分必要条件及非齐次线性方程组有解的充分必要条 件。深刻理解线性方程组通解的概念,掌握用初等变换求 解线性方程组的方法。
一、主要知识网络图


矩阵的初等变换


等 变初等方阵换与线矩 阵的 秩性

完整版线性代数知识点总结

完整版线性代数知识点总结

完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。

它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。

以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。

向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。

2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。

矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。

3.矩阵的运算:包括矩阵的加法、减法和乘法运算。

矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。

4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。

特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。

5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。

正交向量是指内积为零的向量,可以用来表示正交补空间等概念。

6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。

正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。

7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。

线性映射是向量空间之间的函数,具有保持线性运算的性质。

8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。

9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。

对称矩阵是一个方阵,其转置等于自身。

10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。

SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。

11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。

线性代数超强地地总结(不看你会后悔地)

线性代数超强地地总结(不看你会后悔地)

精彩文档线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n ¡的标准基,n ¡中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;精彩文档⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示. √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-K NN√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→MM 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦精彩文档④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO21111211na a na a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦NN ⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦N N √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式. √设,,m n n s A B ⨯⨯A 的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 的列向量为12,,,s r r r L ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭L L L L 则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,精彩文档与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦O√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→M M 初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则)T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηηL 是0Ax =的基础解系的条件:精彩文档① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一.精彩文档⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示.记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅% A 经过有限次初等变换化为B . 记作:A B =%⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.精彩文档⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LL M M M M M L 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L M精彩文档1212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒L L M L 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩ML M M 当为方阵时 克莱姆法则 不可由线性表示无解精彩文档实用标准文案线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=M ,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM 和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)c cc αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ=333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n ¡的一组标准正交基. √ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵;⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ=L1niA λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L M 、21122()n n A a b a b a b A =+++L ,从而A的特征值为:11122n n A a b a b a b λ==+++L tr , 230n λλλ====L . √ 若A 的全部特征值12,,,n λλλL ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλL ;② 当A 可逆时,1A -的全部特征值为12111,,,nλλλL , A *的全部特征值为12,,,n AAAL .√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x AA A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.1B P AP -= (P 为可逆阵) 记为:A B :√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B --: 若,A B 均可逆② T T A B :③ k k A B : (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ: (称Λ是A√ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦L L L L O1442443144424443. √ 若A B :, C D :,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦:. √ 若A B :,则()()f A f B :,()()f A f B =.12(,,,)T n f x x x X AX =L A 为对称矩阵 12(,,,)T n X x x x =LT B C AC =. 记作:A B ; (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B : √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =L 经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x x d y =∑L 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由{()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O OO合同. √ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量;② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑L ,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x L 不全为零,12(,,,)0n f x x x >L . 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦O (i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

(完整word版)线性代数超强的总结(不看你会后悔的)(2),推荐文档

(完整word版)线性代数超强的总结(不看你会后悔的)(2),推荐文档

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n ¡的标准基,n ¡中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.√ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-K NN√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→MM 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦NN⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦N N √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式. √设,,m n n s A B ⨯⨯A 的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 的列向量为12,,,s r r r L ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭L L L L 则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦O√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→M M 初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则) T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηηL 是0Ax =的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅%A 经过有限次初等变换化为B . 记作:A B =%⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L L M M M M M L 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L M1212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒L L M L 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩ML M M 当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=M ,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM 和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n ¡的一组标准正交基. √ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ=L 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L M 、21122()n n A a b a b a b A =+++L ,从而A的特征值为:11122n n A a b a b a b λ==+++L tr , 230n λλλ====L . √ 若A 的全部特征值12,,,n λλλL ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλL ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλL , A *的全部特征值为12,,,n A A AL .√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:A B :√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B --: 若,A B 均可逆② T T A B :③ k k A B : (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ: (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦L L L L O1442443144424443. √ 若A B :, C D :,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦:. √ 若A B :,则()()f A f B :,()()f A f B =.12(,,,)T n f x x x X AX =L A 为对称矩阵 12(,,,)T n X x x x =LT B C AC =. 记作:A B ; (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B : √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =L 经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x x dy =∑L 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由{()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O OO合同.√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑L ,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x L 不全为零,12(,,,)0n f x x x >L . 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦O (i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

考研线性代数终极总结

考研线性代数终极总结

考研线性代数终极总结线性代数是研究向量空间及其线性变换的数学分支。

它是数学基础科学和高级工程科学的重要学科,在理论和应用上都有着广泛的应用。

准备考研的同学们需要牢固掌握线性代数的基本概念和重要定理,下面是线性代数的终极总结。

一、向量空间1.向量空间的基本定义和性质2.子空间及其判定3.维数、基、坐标和表示定理4.线性方程组的解空间二、线性变换1.线性变换的定义和性质2.矩阵的线性变换3.线性变换的矩阵表示和基变换4.线性变换的像空间与核空间5.线性变换的特征值和特征向量6.对角化和相似变换三、线性方程组1.线性方程组的表示和解的存在唯一性2.线性方程组解的结构和基础解系3.矩阵的秩与线性方程组解的个数4.线性方程组的常见解法四、矩阵1.矩阵的运算和性质2.矩阵的特征值和特征向量3.矩阵的标准形式4.矩阵的相似性质和相抵性质五、二次型1.二次型的定义和性质2.二次型的标准形式3.正定、负定和不定二次型4.合同变换与矩阵的合同性质六、特征值问题1.特征值问题的引入和相关概念2.特征值问题的求解方法3.特征值问题的应用七、奇异值分解1.奇异值分解的定义和性质2.奇异值分解的计算和应用八、线性变换的标准形式1.线性变换的标准形式的引入和相关性质2.线性变换的标准形式的计算和应用九、行列式1.行列式的定义和性质2.行列式的性质及计算方法3.克莱姆法则及其推广以上是线性代数的终极总结,考研学习线性代数需要掌握这些重要概念和定理,通过大量的练习和习题,加深对知识点的理解和记忆。

在考试中,要善于分析题目,熟练运用线性代数的知识,灵活解决问题。

希望同学们能够在考研线性代数的复习中取得好的成绩!。

线性代数超强的总结(不看你会后悔的)

线性代数超强的总结(不看你会后悔的)

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值 的列(行)向量线性相关12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R ⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同√ 关于:12,,,n e e e ⋅⋅⋅①称为的标准基,中的自然基,单位坐标向量;n :n :②线性无关;12,,,n e e e ⋅⋅⋅③;12,,,1n e e e ⋅⋅⋅=④;tr()=E n ⑤任意一个维向量都可以用线性表示.n 12,,,n e e e ⋅⋅⋅an √ 行列式的计算:① 若都是方阵(不必同阶),则A B 与(1)mn A A A A B B B B AA B B οοοοο*===**=- ②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→ 初等行变换③ 11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④ 12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤ 11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质: m n m n A A A +=()()m n mnA A =√ 设,对阶矩阵规定:为的一个多项式.1110()m m m m f x a x a x a x a --=++++ n A 1110()m m m m f A a A a A a A a E --=++++ A √设的列向量为,的列向量为,的列向量为,,,m n n s A B ⨯⨯A 12,,,n ααα⋅⋅⋅B 12,,,s βββ⋅⋅⋅AB 12,,,s r r r 1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n ni i i ir A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭ 则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度的第个行向量是的行向量的线性组合组合系数就是的各分量√ 用对角矩阵左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的行向量;ΛΛ用对角矩阵右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的列向量.ΛΛ√ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I ) 或 (I I ) 当时,0A ≠ ,B A B E X −−−−→ 初等行变换(当为一列时(I )的解法:构造()()即为克莱姆法则)T T T T A X B X X =(I I )的解法:将等式两边转置化为, 用(I )的方法求出,再转置得√ 和同解(列向量个数相同),则:Ax ο=Bx ο=,A B ① 它们的极大无关组相对应,从而秩相等;② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断是的基础解系的条件:12,,,s ηηη 0Ax = ① 线性无关;12,,,s ηηη ② 是的解;12,,,s ηηη 0Ax =③ .()s n r A =-=每个解向量中自由变量的个数①零向量是任何向量的线性组合,零向量与任何同维实向量正交.②单个零向量线性相关;单个非零向量线性无关.③部分相关,整体必相关;整体无关,部分必无关.④原向量组无关,接长向量组无关;接长向量组相关,原向量组相关.⑤两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关.⇔⑥向量组中任一向量≤≤都是此向量组的线性组合.12,,,n ααα⋅⋅⋅i α(1i )n ⑦向量组线性相关向量组中至少有一个向量可由其余个向量线性表示.12,,,n ααα⋅⋅⋅⇔1n -向量组线性无关向量组中每一个向量都不能由其余个向量线性表示.12,,,n ααα⋅⋅⋅⇔i α1n -⑧维列向量组线性相关;m 12,,,n ααα⋅⋅⋅()r A n ⇔< 维列向量组线性无关.m 12,,,n ααα⋅⋅⋅()r A n ⇔=⑨.()0r A A ο=⇔=⑩若线性无关,而线性相关,则可由线性表示,且表示法惟一.12,,,n ααα⋅⋅⋅12,,,,n αααβ⋅⋅⋅β12,,,n ααα⋅⋅⋅⑪矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.⑪矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.向量组等价 和可以相互线性表示. 记作:12,,,n ααα⋅⋅⋅12,,,n βββ⋅⋅⋅{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ 矩阵等价 经过有限次初等变换化为. 记作:A B A B= ⑪矩阵与等价作为向量组等价,即:秩相等的向量组不一定等价.A B ⇔()(),r A r B A B =≠>矩阵与作为向量组等价A B ⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒矩阵与等价.A B ⑪向量组可由向量组线性表示≤.12,,,s βββ⋅⋅⋅12,,,n ααα⋅⋅⋅⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα⋅⋅⋅⑪向量组可由向量组线性表示,且,则线性相关.12,,,s βββ⋅⋅⋅12,,,n ααα⋅⋅⋅s n >12,,,s βββ⋅⋅⋅向量组线性无关,且可由线性表示,则≤.12,,,s βββ⋅⋅⋅12,,,n ααα⋅⋅⋅s n ⑪向量组可由向量组线性表示,且,则两向量组等价;12,,,s βββ⋅⋅⋅12,,,n ααα⋅⋅⋅12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⑪任一向量组和它的极大无关组等价.⑪向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等.⑪若两个线性无关的向量组等价,则它们包含的向量个数相等.⑪若是矩阵,则,若,的行向量线性无关;A m n ⨯{}()min ,r A m n ≤()r A m =A 若,的列向量线性无关,即:()r A n =A 线性无关.12,,,n ααα⋅⋅⋅线性方程组的矩阵式 向量式 Ax β=1122n n x x x αααβ+++= 1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦at a t i me an dA l lt h i ng si no d1212120,,,0,,,()(),,,An A nn Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒ 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解矩阵转置的性质:()T T A A =()T T T AB B A =()T TkA kA =T A A=()T T TA B A B +=+矩阵可逆的性质:11()A A --=111()AB B A ---=111()kA k A ---=11A A--=11()()T T A A --=11()()k k kA A A ---==伴随矩阵的性质:2()n A AA-**=()AB B A ***=1()n kA k A *-*=1n A A-*=11()()()()AAT TA A A A -**-**===()()k k A A **=AA A A A E**==() () 1 ()10 () 1 n r A n r A r A n r A n *=⎧⎪==-⎨⎪<-⎩若若若AB A B =n kA k A =kk A A=n g线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设为矩阵,若,则,从而一定有解.A m n ⨯()r A m =()()r A r A β= Ax β= 当时,一定不是唯一解.,则该向量组线性相关.m n <⇒<方程个数未知数的个数向量维数向量个数是的上限.m ()()r A r A β 和√ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ≤()r A B ±()()r A r B + ③ ≤()r AB {}min (),()r A r B ④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若 ⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥≥0,()A r A ≠若则1⑦ ≤,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则n⑧ ,()()()P Q r PA r AQ r A ==若可逆,则⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则 ⑩ 且在矩阵乘法中有左消去律:(),()(),r A n r AB r B ==若则Atsnt he0AB B AB AC B Cο=⇒==⇒= 标准正交基 个维线性无关的向量,两两正交,每个向量长度为1.n n .αβ与正交(,)0αβ=是单位向量 .α1α==√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)c c c αβαβαβ==施密特 线性无关,123,,ααα 112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化 单位化: 111βηβ=222βηβ=333βηβ=正交矩阵 .T AA E =√ 是正交矩阵的充要条件:的个行(列)向量构成的一组标准正交基.A A n n :√ 正交矩阵的性质:① ;1T A A -=② ;T T AA A A E ==③ 是正交阵,则(或)也是正交阵;A T A 1A -④ 两个正交阵之积仍是正交阵;⑤ 正交阵的行列式等于1或-1.的特征矩阵 .A E A λ-t i mi r的特征多项式 .A ()E A f λλ-=的特征方程 . A 0E A λ-=Ax x Ax x λ=→ 与线性相关√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素.n √ 若,则为的特征值,且的基础解系即为属于的线性无关的特征向量.0A =0λ=A 0Ax =0λ=√ 12n A λλλ= 1ni Aλ=∑t r √若,则一定可分解为=、,从而()1r A =A A []1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦21122()n n A a b a b a b A =+++ 的特征值为:, .A 11122n n A a b a b a b λ==+++ t r 230n λλλ==== √ 若的全部特征值,是多项式,则:A 12,,,n λλλ ()f x ① 的全部特征值为;()f A 12(),(),,()n f f f λλλ ② 当可逆时,的全部特征值为,A 1A -12111,,,n λλλ 的全部特征值为.A *12,,,n AAAλλλ √ 1122,.mm Ak kA a baA bEAA A A A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值√ 1122,mm Ak kA a baA bEAx A x A A A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.与相似 (为可逆阵) 记为:A B 1B P AP -=P A B:√ 相似于对角阵的充要条件:恰有个线性无关的特征向量. 这时,为的特征向量拼成A A n P Ame 的矩阵,为对角阵,主对角线上的元素为的特征值.1P AP -A √ 可对角化的充要条件: 为的重数.A ()i i n r E A k λ--=i k i λ√ 若阶矩阵有个互异的特征值,则与对角阵相似.n A n A 与正交相似 (为正交矩阵)A B 1B P AP -=P √ 相似矩阵的性质:① 若均可逆11A B --:,A B ② T TA B :③ (为整数)k k A B :k ④ ,从而有相同的特征值,但特征向量不一定相同.即:E A E B λλ-=-,A B 是关于的特征向量,是关于的特征向量.x A 0λ1P x -B 0λ⑤ 从而同时可逆或不可逆A B =,A B ⑥ ()()r A r B =⑦ ()()A B =t r t r √ 数量矩阵只与自己相似.√ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ 重特征值必定有个线性无关的特征向量;k k ⑤ 必可用正交矩阵相似对角化(一定有个线性无关的特征向量,可能有重n A 的特征值,重数=).()n r E A λ--可以相似对角化 与对角阵相似. 记为: (称是的相似标准型)A A ΛA Λ:ΛA √ 若为可对角化矩阵,则其非零特征值的个数(重数重复计算).A ()r A =√ 设为对应于的线性无关的特征向量,则有:i αi λ.[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦√ 若, ,则:.A B :C D :A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦:√ 若,则,.A B :()()f A f B :()()f A f B =二次型 为对称矩阵 12(,,,)T n f x x x X AX = A 12(,,,)Tn X x x x = 与合同 . 记作: ()A B T B C AC =A B :,,A B C 为对称阵为可逆阵√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数.√ 两个矩阵合同的充分条件是:A B :√ 两个矩阵合同的必要条件是:()()r A r B =√ 经过化为标准型.12(,,,)Tn f x x x X AX = 正交变换合同变换可逆线性变换X CY =2121(,,,)nn i i f x x x d y =∑ √ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数为1,-1或0时,则为规范形 .i d √ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵与惟一对角阵合同.A 111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦√ 用正交变换法化二次型为标准形:①求出的特征值、特征向量;A ②对个特征向量单位化、正交化;n ③构造(正交矩阵),;C 1C AC -=Λ④作变换,新的二次型为,的主对角上的元素即为的X CY =2121(,,,)nn i i f x x x d y =∑ Λi d A 特征值.正定二次型 不全为零,.12,,,n x x x 12(,,,)0n f x x x > 正定矩阵 正定二次型对应的矩阵.√ 合同变换不改变二次型的正定性.√ 成为正定矩阵的充要条件(之一成立):①正惯性指数为;n ②的特征值全大于;A 0③的所有顺序主子式全大于;A 0④合同于,即存在可逆矩阵使;A E Q T Q AQ E =⑤存在可逆矩阵,使 (从而);P T A P P =0A >⑥存在正交矩阵,使 (大于).121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ i λ0√ 成为正定矩阵的必要条件: ; .0ii a >0A >。

线性代数超强的总结(不看你会后悔的)

线性代数超强的总结(不看你会后悔的)

线性代数超强的总结(不看你会后悔的).doc线性代数超强总结(不看你会后悔的)引言线性代数是数学中的一个重要分支,广泛应用于科学、工程、经济学和社会科学等领域。

本文档旨在提供一个全面而深入的线性代数总结,帮助读者掌握这一重要学科的核心概念和应用。

矩阵理论矩阵运算加法:两个同型矩阵对应元素相加。

乘法:矩阵乘积涉及到行与列的点积。

转置:矩阵的转置是将行列互换。

逆矩阵:方阵的逆矩阵满足 ( AA^{-1} = A^{-1}A = I )。

特殊矩阵单位矩阵:对角线上全是1,其他位置为0的方阵。

对角矩阵:除了对角线上的元素,其他位置元素都是0。

上三角矩阵和下三角矩阵:上三角矩阵的对角线以下元素为0,下三角矩阵的对角线以上元素为0。

向量空间向量空间的定义向量空间是满足加法和标量乘法封闭性的集合。

基和维数基:向量空间的一组基是线性无关的向量集合,任何向量都可以唯一地表示为基向量的线性组合。

维数:向量空间的维数是其基中向量的数量。

子空间子空间是向量空间的一个子集,它自身也是一个向量空间。

线性变换线性变换的定义线性变换是满足加法和标量乘法保持性的函数。

线性变换的矩阵表示任何线性变换都可以用一个矩阵来表示。

特征值和特征向量特征值:使得 ( Av = \lambda v ) 成立的标量 ( \lambda )。

特征向量:对应的非零向量 ( v )。

线性方程组线性方程组的表示线性方程组可以表示为矩阵形式 ( Ax = b )。

高斯消元法高斯消元法是一种通过行操作求解线性方程组的方法。

克拉默法则当系数矩阵是可逆的,克拉默法则提供了一种解线性方程组的公式。

特征值和特征向量特征多项式特征多项式是 ( \det(A - \lambda I) ),其根即为矩阵 ( A ) 的特征值。

对角化如果矩阵 ( A ) 有足够多的线性无关的特征向量,则 ( A ) 可以对角化。

内积空间内积的定义内积是一个二元运算,满足正定性、线性和对称性。

线性代数超强总结(不看你会后悔的)

线性代数超强总结(不看你会后悔的)

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.√ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++为A 的一个多项式.√设,,m n n s A B ⨯⨯A 的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 的列向量为12,,,s r r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则) T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηη是0Ax =的基础解系的条件:① 12,,,s ηηη线性无关; ② 12,,,s ηηη是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅A 经过有限次初等变换化为B . 记作:A B =⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦1212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩ 若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n的一组标准正交基.√ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++,从而A的特征值为:11122n n A a b a b a b λ==+++tr , 230n λλλ====.√ 若A 的全部特征值12,,,n λλλ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ;② 当A 可逆时,1A -的全部特征值为12111,,,n λλλ, A *的全部特征值为12,,,n A AAλ.√ 1122,.m m Ak kA a b aA bEAA A A A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m A k kAa b aA bEAx A x A A Aλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:A B√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B -- 若,A B 均可逆 ② T T A B③ kk A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦. √ 若A B , CD ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. √ 若A B ,则()()f A f B ,()()f A f B =.12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x xx d y =∑标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵11110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同.√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ; ④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x 不全为零,12(,,,)0n f x x x >.正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦(i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

线性代数知识点简单总结

线性代数知识点简单总结

线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。

- 零向量:所有向量加法的单位元,加任何向量结果不变。

- 单位向量:长度为1的向量。

- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。

- 子空间:向量空间的子集,自身也是一个向量空间。

- 维数:向量空间的基的大小,表示为n维空间。

2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。

- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。

- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。

- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。

- 转置:将矩阵的行变成列,列变成行的操作。

3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。

- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。

- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。

- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。

4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。

- 特征向量:与特征值对应的非零向量x。

- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。

- 对角化:将矩阵表示为特征向量和特征值的组合。

5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。

- 正交:两个向量的内积为零,表示它们在空间中垂直。

- 正交基:一组向量,任意两个向量都正交。

- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。

6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)—行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则★ 8对角线的元素为a ,其余元素为b 的行列式的值:(三)按行(列)展开 9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等 于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素 的代数余子式乘积之和等于 0 (四)行列式公式 10、行列式七大公式: (1) |kA|=kn|A|1 1…ik £…益■y (v)」IT=n厲-号)klXn7、n 阶(n 》2)范德蒙德行列式数学归纳法证明(2) |AB|=|A| • |B|(3) |AT|=|A|(4) |A-1|=|A|-1(5) |A*|=|A|n-1(6) 若A的特征值入1、入2、……入n,贝y P(7) 若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1 )非齐次线性方程组的系数行列式不为0,那么方程为唯解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3 )若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0b2矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O2、转置的性质( 5 条)( 1)( A+B) T=AT+BT( 2)( kA) T=kAT( 3)( AB) T=BTAT( 4) |A|T=|A|( 5)( AT) T=A(二)矩阵的逆3、逆的定义:B=A-1 AB=E或 BA=E成立,称A可逆,B是A的逆矩阵,记为注:A可逆的充要条件是|A|工04、逆的性质:( 5 条)(1)( kA) - 1=1/k ・A-1 (k 工0)(2)(AB)-仁B- 1 ・A-1(3)|A-1|=|A|-1( 4)( AT) -1= ( A-1 ) T( 5)( A-1 ) -1=A5、逆的求法:( 1 ) A 为抽象矩阵:由定义或性质求解(2) A为数字矩阵:(A|E初等行变换E|A-1 )(三)矩阵的初等变换6、初等行(列)变换定义:(1)两行(列)互换;(2)一行(列)乘非零常数c(3)一行(列)乘k 加到另一行(列)7、初等矩阵:单位矩阵E 经过一次初等变换得到的矩阵。

线性代数知识点全面总结

线性代数知识点全面总结

线性代数知识点全面总结线性代数是一门重要的数学学科,它研究的是向量空间、线性映射和线性方程组等基本概念及其相互关系。

线性代数在数学、物理、计算机科学、经济学等各个领域都有广泛的应用。

下面是线性代数的一些重要知识点的全面总结:1. 向量空间(Vector Space)向量空间由一组满足一些性质的向量组成。

向量空间的定义要求满足加法和数量乘法封闭性、零向量存在性、加法逆元存在性等性质。

在向量空间中,还可以定义线性组合、线性相关性、线性无关性等概念。

2. 矩阵(Matrix)矩阵是由一组数按照一个确定的规律排列成的矩形阵列。

矩阵的加法、数量乘法等运算满足线性运算的性质。

矩阵可以表示线性方程组、线性映射等。

3. 线性映射(Linear Mapping)线性映射是指将一个向量空间的元素映射到另一个向量空间的元素,并保持向量空间的加法和数量乘法运算。

线性映射可以用矩阵表示,并且具有一些重要的性质,比如保持零向量、保持加法和数量乘法等。

4. 线性方程组(Linear System)线性方程组是一组线性方程的集合。

线性方程组可以用矩阵和向量表示,形式为Ax=b,其中A是系数矩阵,x是未知向量,b是常数向量。

线性方程组的求解可以使用消元法、矩阵求逆等方法。

5. 特征值和特征向量(Eigenvalues and Eigenvectors)特征值和特征向量是线性映射中的重要概念。

对于一个线性映射,如果存在一个非零向量x,使得线性映射作用于x的结果等于x乘以一个常数λ(即f(x)=λx),那么λ就是这个线性映射的特征值,x就是对应的特征向量。

6. 内积空间(Inner Product Space)内积空间是向量空间中引入内积运算的概念。

内积可以用来度量向量的夹角和长度,并且可以定义向量的正交性、正交投影等概念。

内积空间可以是实数域或复数域上的。

7. 正交性和正交基(Orthogonality and Orthogonal Basis)正交性是指向量之间的夹角为直角。

线性代数必须熟记的结论总结

线性代数必须熟记的结论总结

线性代数必须熟记的结论总结1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2. 代数余子式的性质: ①、ijA 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i ji jijij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n DD-=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n DD-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D=;将D 主副角线翻转后,所得行列式为4D ,则4DD=;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( =◥◣):主对角元素的乘积;④、◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BC B OB==、(1)m nCA O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnkn kk k E AS λλλ-=-=+-∑,其中kS 为k 阶主子式; 7. 证明0A =的方法:①、A A=-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A是n 阶可逆矩阵: ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔nb R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E== 无条件恒成立;3.1**111**()()()()()()TTTT A A A A A A ----===***111()()()TTTAB B A AB B A AB B A---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12sA A A A = ;Ⅱ、111121s A A A A ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;②、111AO A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O CB BC AB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫=⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1AB-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr Ar A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:111111()nnnn m n mmn n n nmm n mn n n n n nm a b C a C a b C abC a bC b Ca b-----=+=++++++=∑ ;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- mnnn n n n n m n CC C mm n mⅢ、组合的性质:11112---+-===+==∑nm n m m m m r nr r nnn nnnn n r CC CCCCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAA X X A A A A X X λλλ- == ⇒ =;③、*1AA A-=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则: ①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b a a a x bA x b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x aa a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭);④、1122n n a xa x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性 1.m个n 维列向量所组成的向量组A:12,,,mααα 构成n m ⨯矩阵12(,,,)m A = ααα;m个n 维行向量所组成的向量组B :12,,,T T Tmβββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示A X B⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理: 若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,sααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示A X B⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P P P = ;①、矩阵行等价:~rA B PA B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B⇔=(右乘,Q 可逆);③、矩阵等价:~A B P A Q B⇔=(P 、Q 可逆);9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n rrBb b b ⨯ 可由向量组12:,,,n ssAa a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K= (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E = ()r A n ⇔=、P 的行向量线性无关;14.12,,,sααα 线性相关⇔存在一组不全为0的数12,,,sk kk ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b=的一个解,12,,,n rξξξ- 为Ax =的一个基础解系,则*12,,,,n rηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型 1. 正交矩阵TA A E⇔=或1TAA-=(定义),性质:①、A的列向量都是单位向量,且两两正交,即1(,1,2,)Ti j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TAA-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)ra a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=P A Q B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型; ②、A 与B 合同 ⇔=TC A C B,其中可逆;⇔Tx A x与TxB x有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P A P B;- 11 - 5. 相似一定合同、合同未必相似; 若C 为正交矩阵,则T CA CB =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x A x 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C A C E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

线性代数复习总结(重点精心整理)

线性代数复习总结(重点精心整理)

线性代数复习总结大全第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr 矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nija k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数超强总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值的列(行)向量线性相关 12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R ⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n ¡的标准基,n ¡中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.√ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A BBBBAA B B οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-K NN√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→MM 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦NN⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦N N √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式. √设,,m n n s A B ⨯⨯A 的列向量为12,,,nααα⋅⋅⋅,B 的列向量为12,,,sβββ⋅⋅⋅,AB 的列向量为12,,,s r r r L ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭L L L L 则:即 用中简若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦OO11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦O√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→M M 初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则)T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηηL 是0Ax =的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一. ⑪ 矩阵的行向量组的秩等于列向量组的秩. 阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅%A 经过有限次初等变换化为B . 记作:A B =%⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关. 向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=L1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦L L M M M M M L 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L M1212120,,,0,,,()(),,,A n A n n Ax Ax A n Ax Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒L L M L 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩ML M M 当为方阵时 克莱姆法则 不可由线性表示无解.线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-=L L 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩L 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β=M ,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A βM 和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则AB BAB AC B Cο=⇒==⇒= n个n维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√内积的性质:① 正定性:(,)0,(,)0αααααο≥=⇔=且② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+1212(,)(,)(,)ααβαβαβ+=+(,)(,)(,)c c cαβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ=333βηβ=TAA E=.√A是正交矩阵的充要条件:A的n个行(列)向量构成n¡的一组标准正交基.√正交矩阵的性质:① 1TA A-=;② T TAA A A E==;③ A是正交阵,则T A(或1A-)也是正交阵;④ 两个正交阵之积仍是正交阵;⑤ 正交阵的行列式等于1或-1.E Aλ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关 √ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ=L 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦L M 、21122()n n A a b a b a b A =+++L ,从而A的特征值为:11122n n A a b a b a b λ==+++L tr , 230n λλλ====L . √ 若A 的全部特征值12,,,n λλλL ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλL ;② 当A 可逆时,1A -的全部特征值为12111,,,nλλλL , A *的全部特征值为12,,,n A A AL .√ 1122,.m m Ak kA a b aA bEAA A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x AA A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:A B :√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵) √ 相似矩阵的性质:① 11A B --: 若,A B 均可逆② T T A B :③ k k A B : (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ: (称Λ是A √ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦L L L L O1442443144424443. √ 若A B :, C D :,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦:. √ 若A B :,则()()f A f B :,()()f A f B =.12(,,,)T n f x x x X AX =L A 为对称矩阵 12(,,,)T n X x x x =LT B C AC =. 记作:A B ; (,,A B C 为对称阵为可逆阵) √ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B : √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX =L 经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x xd y =∑L 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由{()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦O OO合同.√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑L ,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x L 不全为零,12(,,,)0n f x x x >L . 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦O (i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。

相关文档
最新文档