线性代数超强的总结(不看你会后悔的)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数超强总结

()0A r A n A Ax A A οο⎧⎪<⎪⎪

=⇔=⎨⎪⎪⎪⎩

不可逆 有非零解

是的特征值

的列(行)向量线性相关 12()0,,T s i n

A r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪

≠⇔⎨⎪⎪

⎪⎪

=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵

总有唯一解

R ⎫

⎪−−−→⎬⎪⎭

具有

向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:

①称为n ¡的标准基,n ¡中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;

⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.

√ 行列式的计算:

① 若A B 与都是方阵(不必同阶),则

(1)mn A A A A B

B

B

B

A

A B B οο

οοο

*

=

=

=*

*=-

②上三角、下三角行列式等于主对角线上元素的乘积.

③关于副对角线:

(1)2

1121

21

1211

1

(1)

n n n

n

n n n n n n n a a a a a a a a a ο

οο

---*

=

=-K N

N

√ 逆矩阵的求法:

①1

A A A

*

-=

②1()()A E E A -−−−−→M

M 初等行变换

③11a b d b c d c a ad bc --⎡⎤⎡⎤

=⎢⎥⎢⎥--⎣⎦⎣⎦ T

T T T T A B A C C D B

D ⎡⎤

⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦

④1

2

11

11

2

1n a a n a a a a -⎡⎤⎡⎤

⎢⎥⎢⎥

⎥⎢⎥=⎢⎥⎢⎥

⎢⎥⎢⎥

⎢⎥⎣

⎦⎣

O

O

2

1

1

1

12

1

1n

a a n a a a a -⎡⎤⎡⎤

⎢⎥⎢⎥

⎥⎢⎥=⎢⎥⎢⎥

⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦

N

N

⑤1

1111

2

21n n A A A A A A ----⎡⎤⎡⎤

⎢⎥⎢⎥

⎥⎢⎥=⎢⎥⎢⎥

⎢⎥⎢⎥

⎢⎥⎣

⎦⎣

O

O

1

112

1

211

n n A A A A A A ----⎡

⎤⎢⎥⎢⎥

⎥⎢⎥=⎢⎥⎢⎥

⎢⎥⎢⎥

⎢⎥⎣⎦⎣⎦

N N √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =

√ 设1110()m m m m f x a x a x a x a --=++++L ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++++L 为A 的一个多项式. √

,,

m n n s A B ⨯⨯A 的列向量为

12,,,n

ααα⋅⋅⋅,B 的列向量为

12,,,s

βββ⋅⋅⋅,AB 的列向量为

12,,,s r r r L ,1212121122,1,2,,,(,,,)(,,,)

,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪

==++⎪⎬

⎪⎪⎭L L L L 则:即 用中简

若则 单的一个提

即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,

与分块对角阵相乘类似,即:11

11

22

22

,kk kk A B A B A B A B οοο

ο

⎡⎤

⎡⎤

⎥⎢⎥

⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦

O

O

11112222

kk kk A B A B AB A B ο

ο

⎡⎤⎢⎥⎢

⎥=⎢⎥⎢⎥⎣⎦

O

√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,

,

B A B E X −−−−→M M 初等行变换

(当为一列时(I)的解法:构造()()

即为克莱姆法则)

T T T T

A X

B X X =(II)的解法:将等式两边转置化为,

用(I)的方法求出,再转置得

√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:

① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.

√ 判断12,,,s ηηηL 是0Ax =的基础解系的条件: ① 12,,,s ηηηL 线性无关; ② 12,,,s ηηηL 是0Ax =的解;

③ ()s n r A =-=每个解向量中自由变量的个数.

相关文档
最新文档