牛顿第二定律的应用专题分类训练训练(精品)

合集下载

牛顿第二定律(专题练习) 整理

牛顿第二定律(专题练习)                  整理

第 1 页 共 2 页1.一物体的质量为2kg ,当受到的合外力为8N 时,由牛顿第二定律可以求出物体的加速度( ) A .22/m s B .202/m s C .82/m s D .42/m s2.质量为2kg 的质点同时受到相互垂直的两个水平力1F 、2F 的作用,如图所示,其中13F N =,24F N =,求质点的加速度大小和方向.2.一个物体在10N 合外力的作用下,产生了52/m s 的加速度若使该物体产生82/m s 的加速度,所需合外力的大小是( )A .12NB .14NC .16ND .18N3.一个物体放在光滑水平面上,现用水平力拉动F 拉动物体,产生的加速度为a ,若将水平拉力改为2F ,则该物体的加速度为( )A .aB .2aC .3aD .4a4.物体甲受到10N 的作用力做初速度为6m/s ,加速度为0.52/m s 的匀减速直线运动,物体乙受到4N 的作用力做初速度为3m/s ,加速度为0.22/m s 的匀加速直线运动,关于这两个物体的惯性,下列哪个说法正确( ) A .物体甲的较大 B .物体乙的较大 C .一样大 D .取法确定5(多).质量为1kg 的物体受到3N 和4N 的两个共点力作用,物体的加速度可能是( ) A .52/m s B .72/m s C .82/m s D .92/m s举一反三:用力1F 单独作用于某一物体上可产生加速度为23/m s 的加速度,力2F 单独作用于这一物体可产生加速度为21/m s 的加速度,若1F 、2F 同时作用于该物体,可能产生的加速度为( ) A .12/m s B .22/m s C .32/m s D .42/m s7.一个小球从空中自由下落,当它刚与地面上一竖直固定的轻弹簧接触时,它将( ) A .立即被反弹上来 B .立即开始做减速运动 C .立即停止运动 D .继续做加速运动8.光滑水平地面上放有互相叠放的两个木块A 和B ,质量分别为1m 和2m ,如图所示,若两者相对静止一起做匀速直线运动。

第13讲牛顿第二定律的基本应用(练习)(原卷版)

第13讲牛顿第二定律的基本应用(练习)(原卷版)

第13讲牛顿第二定律的基本应用(模拟精练+真题演练)1.(2023·广东汕头·统考三模)如图是某跳水女运动员在三米板的训练中,最后踏板的过程:她从高处落到处于自然状态的跳板上(A位置),随跳板一同向下运动到最低点(B位置),对于运动员从开始与跳板接触到运动至最低点的这个过程中,不计空气阻力,下列说法中正确的是()A.跳板对运动员支持力先增大后减小B.运动员先是处于超重后处于失重状态C.跳板对运动员支持力做的功等于运动员机械能的变化量D.运动员的重力势能与跳板的弹性势能之和先增大后减小2.(2023·江苏南通·江苏省如东高级中学校联考模拟预测)在教室内将两端开口的洁净玻璃管竖直插入液<。

则()体中,管中液面如图所示。

当把该装置放在竖直加速的电梯中,且电梯的加速度a gA.若电梯向上加速,则玻璃管内外的液面高度差将变大B.若电梯向上加速,则玻璃管内外的液面高度差保持不变C.若电梯向下加速,则玻璃管内外的液面高度差将变大D.若电梯向下加速,则玻璃管内外的液面高度差保持不变3.(2023·广东·模拟预测)人站在力传感器上完成下蹲和站起动作,传感器记录的力随时间变化图像(F t-图)如图所示,则()A .下蹲过程中最大加速度为6m/s 2B .人在下蹲过程中,力的示数先变大,后变小C .人在站起过程中,先失重后超重D .人在8s 内完成了两次下蹲和两次站起动作4.(2023·吉林通化·梅河口市第五中学校考三模)如图所示,一质量为M 的光滑大圆环由一细轻杆固定在竖直平面内。

套在大圆环上质量均为m 的两个小圆环(与大圆环粗细相差不大),同时从大圆环的最高处由静止滑下。

重力加速度大小为g ,下列说法正确的是( )A .两个小圆环运动到大圆环圆心以下高度时会出现失重状态,大圆环则始终处于超重状态B .当轻杆受到的拉力大小为Mg 时,两个小圆环正位于大圆环圆心等高处C .小圆环下滑至大圆环圆心高度之前,一直受到大圆环的弹力作用D .轻杆受到的拉力可能小于Mg5.(2022·湖南长沙·模拟预测)如图所示,在一倾斜角为θ的坡上有一观景台A ,从观景台到坡底有一根钢缆索,已知观景到山坡的距离AO =L ,O 到坡底B 的距离也为L ,现工作人员将钢环扣在缆索上,将一包裹送至坡底,若环带着包裹从A 点由静止开始沿钢绳无摩擦地滑下,则包裹滑到坡底的时间为( )A BC D .6.(2023·浙江·模拟预测)如图,水平面上固定光滑圆弧面ABD ,水平宽度为L ,高为h 且满足L h >>。

(word完整版)牛顿第二定律专题训练

(word完整版)牛顿第二定律专题训练

牛顿第二定律专题训练(一)此专题用于动力学学完后的复阶段习1.质量为2kg的物体置于水平地面上,用l0 N水平拉力使它从静止开始运动,第3秒末的速度达到6 m/s,此时撤去拉力。

问:(1)物体在运动过程中受到的地面摩擦力有多大?(2)撤去拉力后物体还能继续运动多长时间?计算时取g=10 m/s2。

(3)物体运动的总位移是多大?2.质量m=2 kg的物体放在水平面上,物体与水平面间的动摩擦因数为μ=0。

5,现对物体施加拉力F=20 N 的力,方向与水平面成37O角斜向上,如图所示,g=10 m/s2(sin370=0。

6,cos370=0。

8)(1)求物体从静止开始运动加速度。

(2)要想让物体做匀速直线运动,且不改变拉力的方向,则拉力的大小应该为多大?(3)要想让物体对地面压力为0,且不改变拉力的方向,则拉力的大小至少应该为多少?此时物体的加速度为多少?3.如图,一个放置在水平面上的物块,质量为2 kg,受到一个斜向下的,与水平方向成30O角的推力F=10 N 的作用,从静止开始运动。

已知物块与水平面间的动摩擦因数为μ=0。

1,取g=10 m/s2。

求:(1)物体从静止开始运动时的加速度和经过一段时间撤去F后的加速度。

(只列出式子)(2)要想让物体做匀速直线运动,且不改变推力的方向,则推力的大小应该为多大?(只列出式子)4.如图,质量为m的物体在恒力作用下,沿水平的天花板匀速直线运动,物体与天花板的动摩擦因数为μ,(2)若物体沿天花板做匀加速直线运动,且加速度大小为a,求力F的大小。

(只列出式子)5.如图所示,用与水平方向成θ角向上的推力将重为G的物体压在竖直的墙上,(1)若物体保持静止的状态,受到墙对它的弹力和摩擦力。

(2)若物体沿着墙壁向上匀速运动,求物体与墙壁之间的摩擦因数。

(3)若物体沿着墙壁向下匀速运动,求物体与墙壁之间的摩擦因数。

(只列出式子)(4)若物体沿着墙壁向上匀加速运动,加速度为a,且推力大小为F,求物体与墙壁之间的摩擦因数。

牛顿第二定律以及专题训练

牛顿第二定律以及专题训练

牛顿第二定律1.牛顿第二定律的表述(内容)物体的加速度跟物体所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,公式为:F=ma(其中的F和m、a必须相对应)。

对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。

(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。

(6)F=ma中,F的单位是牛顿,m的单位是千克,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速2.应用牛顿第二定律解题的步骤①明确研究对象。

可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。

设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现的,其矢量和必为零,所以最后实际得到的是该质点组所受的所有外力之和,即合外力F。

②对研究对象进行受力分析。

(同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。

③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。

牛顿第二定律专项练习

牛顿第二定律专项练习

牛顿第二定律习题题型一对牛顿第二定律的简要理解1.关于牛顿第二定律,下列说法正确的是( ) A.公式F=ma中,各量的单位可以任意选取B.某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C.公式F=ma中,a实际上是作用于该物体上每一个力所产生的加速度的矢量和D.物体的运动方向一定与它所受合外力方向一致2.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( )A.牛顿的第二定律不适用于静止物体B.桌子的加速度很小,速度增量极小,不易觉察到C.推力小于静摩擦力,加速度是负的D.桌子所受的合力为零3.在牛顿第二定律公式F=kma中,比例常数k的数值:( )A.在任何情况下都等于1B.k值是由质量、加速度和力的大小决定的C.k值是由质量、加速度和力的单位决定的D.在国际单位制中,k的数值一定等于14. 如图所示,质量均为m的A和B两球用轻弹簧连接,A球用细线悬挂起来,两球均处于静止状态.如果将悬挂A球的细线剪断,此时A和B两球的瞬间加速度各是多少?5.在光滑水平面上有一质量为m=1kg的小球,小球与水平轻弹簧和与水平方向成 =30°角的轻绳的一端相连,如图所示。

此时小球处于静止状态,且水平面对小球的弹力恰好为零。

当剪断轻绳的瞬间,小球的加速度大小及方向如何?此时轻弹簧的弹力与水平面对球的弹力的比值为多少?(g=10m/s2)6. 质量m =2 kg 的物体放在光滑水平面上,受到相互垂直的两个水平力F 1、F 2的作用 ( F 1方向与F 成53°角),且F 1=6N ,F 2=8 N .试求物体的加速度大小.7. 质量为m 的人站在自动扶梯的水平踏板上, 人的鞋底与踏板的动摩擦因数为μ, 扶梯倾角为θ, 若人随扶梯一起以加速度a 向上运动,梯对人的支持力F N 和摩擦力f 分别为( )A. F N =masin θB. F N =m(g+asin θ)C. f=μD. f=macos θ题型四运动和力的关系8.关于运动和力,正确的说法是 ( ) A.物体速度为零时,合外力一定为零B.物体作曲线运动,合外力一定是变力C.物体作直线运动,合外力一定是恒力D.物体作匀速运动,合外力一定为零9.静止在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的水平外力作用时,木块将作 ( )A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动10.轻弹簧下端固定在水平面上.一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落.在小球下落的这一全过程中,下列说法中正确的是 ( )A .小球刚接触弹簧瞬间速度最大B .从小球接触弹簧起加速度变为竖直向上C .小球接触弹簧到到达最低点,速度先增后减D .从小球接触弹簧到到达最低点,小球的加速度先减小后增大11. 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( ) A .物体从A 到B 速度越来越大 B .物体从A 到B 速度先增后减 C .物体从A 到B 加速度越来越小 D .物体从A 到B 加速度先减小后增加12.如图所示,一个劈形物体A,各面均光滑,放在固定斜面上,上面成水平,水平面上放一光滑小球B,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是()A.沿斜面向下的直线Array B.竖直向下的直线C.无规则的曲线D.抛物线13.在光滑水平面上,放着一个质量为1kg的物体,今对它施1N向东的力,作用1s,突然改变力的方向向西,大小不变,再作用1s,又改变力的方向向东,如此反复,则力的作用时间为1min时,()A.物体回到了起点B.物体一直向西运动C.物体1s向东,1s向西D.物体一直向东运动13题能求出1min时的速度和位移吗?题型五 图像题14.质量为40kg 的雪撬在倾角θ=37°的斜面上向下滑动,所受的空气阻力与速度成正比.今测得雪撬运动的v-t 图象如图乙,且AB 是曲线的切线,B 点坐标为(4,15),CD 是曲线的渐近线.试求空气的阻力系数k 和雪撬与斜坡间的动摩擦因数. (g=10m/s 2)15.(04全国)放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图。

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。

根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。

2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。

2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。

1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。

将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。

2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。

将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。

3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。

掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。

牛顿第二定律的应用练习题(可编文档+参考答案)

牛顿第二定律的应用练习题(可编文档+参考答案)

高中物理:牛顿第二定律的应用练习题一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中. 1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。

)1.如图所示,m A=4.0kg,m B=2.0kg,A和B紧靠着放在光滑水平面上,从t=0 时刻起,对B施加向右的水平恒力F2=4.0N,同时对A施加向右的水平变力F1,F1 变化规律如图所示。

下列相关说法中正确的是:()A.当t=0 时,A、B 物体加速度分别为a A=5m/s ,a B=2m/sB.A 物体作加速度减小的加速运动,B 物体作匀加速运动C.t=12s时刻 A、B 将分离,分离时加速度均为a=2m/s2D.A、B分离前后,A 物体加速度变化规律相同2.不可伸长的轻绳跨过质量不计的滑轮,绳的一端系一质量M=15kg的重物,重物静止与地面上,有一质量m=10kg的猴子从绳的另一端沿绳上爬,如右图所示,不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为多少?(错误!未找到引用源。

):()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.运动员手持球拍托球沿水平方向匀加速跑,球的质量为m,球拍和水平面间的夹角为θ错误!未找到引用源。

,球与球拍相对静止,它们间摩擦力以及空气阻力不计,则:()A.运动员的加速度为错误!未找到引用源。

B.运动员的加速度为错误!未找到引用源。

C.球拍对球的作用力为错误!未找到引用源。

D.球拍对球的作用力为错误!未找到引用源。

4.物块A、B放在光滑水平面上并用轻质弹簧做成的弹簧秤相连,如图所示,今对物体A、B分别施以方向相反的水平力F l、F2,且F l大于F2,则弹簧秤的示数:()A.一定等于F1—F2 B.一定大于F2小于F1C.一定等于F1+F2 D.条件不足,无法确定5.如图甲所示为学校操场上一质量不计的竖直滑竿,滑竿上端固定,下端悬空。

(完整版)牛顿第二定律的综合应用专题

(完整版)牛顿第二定律的综合应用专题

图1牛顿第二定律的应用第一类:由物体的受力情况确定物体的运动情况1. 如图1所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为0.10.( g=10m/s 2) (1)画出物块的受力示意图 (2)求物块运动的加速度的大小 (3)物体在t =2.0s 时速度v 的大小. (4)求物块速度达到s m v /0.6=时移动的距离2.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2,求(1)画出物体的受力示意图 (2)物体运动的加速度(3)物体在拉力作用下5s 内通过的位移大小。

〖方法归纳:〗〖自主练习:〗1.一辆总质量是4.0×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是6.0×103N ,受到的阻力为车重的0.1倍。

求汽车运动的加速度和20秒末的速度各是多大? ( g=10m/s 2)2.如图所示,一位滑雪者在一段水平雪地上滑雪。

已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=0.05。

从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。

求:( g=10m/s 2)(1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。

3.如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=0.6,cos37°=0.8,取g=10m/s 2, 求(1)物体运动的加速度(2)物体在拉力作用下5s 内通过的位移大小。

牛顿第二定律专题练习(包括连接体和瞬时加速度及基础的牛二问题)

牛顿第二定律专题练习(包括连接体和瞬时加速度及基础的牛二问题)

牛顿第二定律专练一.应用牛顿第二定律解题的两类问题(1)已知物体的受力情况,求物体的运动情况;(2)已知物体的运动情况,求物体的受力情况。

二.应用牛顿第二定律的解题步骤:(1) 确定研究对象,将研究对象从系统中隔离出来;(2) 对研究对象进行受力分析,画出物体受力图;(3) 确定物体的运动情况(是做匀速运动还是匀变速运动)(4) 根据牛顿第二定律列方程(5) 解方程求出未知量。

三.写出匀变速直线运动的运动学公式1. 2. 3.4. 5.四.基础练习【例1 】1992年8月14日,我国“长二捆”火箭在西昌卫星发射中心起飞时,总质量为4.6×105kg,起飞推力6.0×106N,求(1)火箭起飞后的合力?(2)求火箭的加速度?(3)求火箭起飞后5s上升的高度?变式练习1.一辆质量为400 g的遥控玩具车,从静止出发,在水平导轨上行驶,已知发动机的牵引力为0.16 N,玩具车在运动时所受阻力为车重的0.02倍,问:(1)玩具车开出后加速度多大?(2)玩具车经过多长时间速度可达1 m/s?变式练习2.一个静止在水平地面上的物体,质量是2kg,在12.4N的水平拉力作用下沿水平地面向右做匀加速运动,物体与水平地面的滑动摩擦力是6.4N,求物体4s末的速度和4s内发生的位移。

变式练习3.一木箱质量为m,与水平地面间的动摩擦因数为μ,现用斜向右下方与水平方向成θ角的力F推木箱,求经过t秒时木箱的速度.【例2 】如右图,质量为2 kg 的物体在40 N 水平推力作用下,从静止开始1 s 内沿竖直墙壁下滑3 m .求:(取g =10 m/s2)(1)物体运动的加速度大小;(2)物体受到的摩擦力大小;(3)物体与墙间的动摩擦因数.变式练习1.质量为1000吨的列车由车站出发沿平直轨道做匀变速运动,在100秒内通过的路程为1000米。

已知运动阻力是车重的0.005倍,求列车的牵引力。

(g=10m/s 2变式练习2.一质量是 5kg 的物体静止在.水平地面上,在水平恒为F=20N 的作用下,从静止开始经过 2s 速度达到 2m/s ,则物体与水平面间的动摩擦因数是多少?五、斜面问题1.一斜面AB 长为10 m,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g取10 m/s2)(1) 若斜面与物体间光滑,求小物体下滑到斜面底端B 点时的速度及所用时间.(2)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.2、一个滑雪的人,从静止开始沿倾角为30°的山坡匀加速滑下,其间动摩擦因数为0.04, 求滑雪者在5s 内下滑的位移。

高中物理牛顿第二定律经典习题训练含答案

高中物理牛顿第二定律经典习题训练含答案

高中物理牛顿第二定律经典习题训练含答案牛顿第二定律典型题型及练习一、巧用牛顿第二定律解决连结体问题所谓的“连结体”问题,就是在一道题中出现两个或两个以上有关系的物体,研究它们的运动与力的关系。

1、连结体与隔绝体:两个或几个物体相连结构成的物系统统为连结体。

假如把此中某个物体隔绝出来,该物体即为隔绝体。

2、连结体问题的办理方法(1)整体法:连结体的各物体假如有共同的加快度,求加快度可把连结体作为一个整体,运用牛顿第二定律列方程求解。

(2)隔绝法:假如要求连结体间的互相作使劲,一定隔绝出此中一个物体,对该物体应用牛顿第二定律求解,此方法为隔绝法。

隔绝法目的是实现内力转外力的,解题要注意判明每一隔绝体的运动方向和加快度方向。

(3)整体法解题或隔绝法解题,一般都选用地面为参照系。

例题 1 越过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图 1 所示 . 已知人的质量为 70kg ,吊板的质量为 10kg ,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加快度 g =lOm/s 2.当人以 440 N的力拉绳时,人与吊板的加快度 a 和人对吊板的压力 F 分别为 ()A .a=1.0m/s ,F=260N B.a=1.0m/s ,F=330NC.a=3.0m/s,F=110N D .a=3.0m/s,F=50N二、巧用牛顿第二定律解决刹时性问题当一个物体(或系统)的受力状况出现变化时,由牛顿第二定律可知,其加快度也将出现变化,这样就将使物体的运动状态发生改变,进而致使该物体(或系统)对和它有联系的物体(或系统)的受力发生变化。

例题 2 如图 4 所示,木块 A 与 B 用一轻弹簧相连,竖直放在木块C 上。

三者静置于地面,它们的质量之比是 1 ∶2∶3 。

设全部接触面都圆滑,当沿水平方向快速抽出木块 C 的刹时, A 和 B 的加快度 a A、a B 分别是多少?题型一对牛顿第二定律的理解1、对于牛顿第二定律,以下说法正确的选项是( ) A.公式 F=ma 中,各量的单位能够随意选用B.某一瞬时的加快度只决定于这一瞬时物体所受合外力,而与这以前或以后的受力没关C.公式 F=ma 中,a 其实是作用于该物体上每一个力所产生的加快度的矢量和D.物体的运动方向必定与它所受合外力方向一致【变式】.从牛顿第二定律知道,不论如何小的力都能够使物体产生加快度,但是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为 ()A.牛顿的第二定律不合用于静止物体B.桌子的加快度很小,速度增量极小,眼睛不易察觉到C.推力小于静摩擦力,加快度是负的D.桌子所受的协力为零题型二牛顿第二定律的刹时性2、以下图,质量均为 m 的 A 和 B 两球用轻弹簧连结, A 球用细线悬挂起来,两球均处于静止状态.假如将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加快度各是多少?【变式】.(2010 ·全国卷Ⅰ )如图 4—3—3,轻弹簧上端与一质量为 m 的木块 1 相连,下端与另一质量为 M 的木块 2 相连,整个系统置于水平搁置的圆滑木板上,并处于静止状态.现将木板沿水平方向忽然抽出,设抽出后的瞬时,木块 1、2 的加快度大小分别为 a1、a2.重力加快度大小为g.则有 ()A.a1=0,a2=gC. a1=0, a2=(m+M)g/M B. a1=g, a2=gD. a1=g,a2=(m+M)g/M题型三牛顿第二定律的独立性3以下图,质量 m=2 kg 的物体放在圆滑水平面上,遇到水平且互相垂直的两个力F 1、F 2的作用,且 F 1=3 N,F2=4 N.试求物体的加快度大小.【变式】.以下图,电梯与水平面夹角为 30°,当电梯加快向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?题型四运动和力的关系4 以下图,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连结 ),而后开释,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则以下说法中正确的是 ()A.物体从 A 到 B 速度愈来愈大B.物体从 A 到 B 速度先增添后减小C.物体从 A 到 B 加快度愈来愈小D.物体从 A 到 B 加快度先减小后增添【变式】.(2010 ·福建理综高考 )质量为 2 kg 的物体静止在足够大的水平川面上,物体与地面间的动摩擦因数为 0.2,最大静摩擦力与滑动摩擦力大小看为相等.从 t=0 时辰开始,物体遇到方向不变、大小呈周期性变化的水平拉力 F 的作用, F 随时间 t 的变化规律以下图.重力加快度g 取 10 m/s2,则物体在 t=0 至 t=12 s 这段时间的位移大小为 ()A.18 m C.72 m B.54 m D.198 m题型五牛顿第二定律的应用5、质量为 2 kg 的物体与水平面的动摩擦因数为0.2,现对物体用一直右与水平方向成 37°、大小为 10 N 的斜向上拉力 F ,使之向右做匀加快直线运动,如图甲所示,求物体运动的加快度的大小. (g 取 10 m/s.)【变式】.一只装有工件的木箱,质量 m=40 kg.木箱与水平川面的动摩擦因数μ=0.3,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,以以下图所示.求木箱的加快度大小. (g 取 9.8 m/s2)加强练习一、选择题1.以下说法中正确的选项是()A.物体所受合外力为零,物体的速度必为零B.物体所受合外力越大,物体的加快度越大,速度也越大C.物体的速度方向必定与物体遇到的合外力的方向一致D.物体的加快度方向必定与物体所遇到的合外力方向一致2.对于力的单位“牛顿”,以下说法正确的选项是()A.使 2 kg 的物体产生 2 m/s2加快度的力,叫做1 NB.使质量是 0.5 kg 的物体产生 1.5 m/s2的加快度的力,叫做 1 NC.使质量是 1 kg 的物体产生 1 m/s2的加快度的力,叫做 1 ND.使质量是 2 kg 的物体产生 1 m/s2的加快度的力,叫做 1 N3.对于牛顿第二定律,以下说法中正确的选项是()A.加快度和力的关系是刹时对应关系,即a 与F是同时产生,同时变化,同时消逝B.物体只有遇到力作用时,才有加快度,但不必定有速度C.任何状况下,加快度的方向总与合外力方向同样,但与速度v 不必定同向D.当物体遇到几个力作用时,可把物体的加快度当作是各个力独自作用所产生的分加快度的合成4.质量为 m的物体从高处静止开释后竖直着落,1在某时辰遇到的空气阻力为F f,加快度 a=3g,则 F 的大小是 ()fA. F =12 C .F =3mg B.F =3mgf f f4mg D.F f=3mg5.如图 1 所示,底板圆滑的小车上用两个量程为 20 N、完整同样的弹簧测力计甲和乙系住一图个质量为 1 kg 的物块,在水平川面受骗小车做匀速直线运动时,两弹簧测力计的示数均为10 N,当小车做匀加快直线运动时,弹簧测力计甲的示数变成 8 N,这时小车运动的加快度大小是()A.2 m/s C.6 m/s 22B.4 m/sD.8 m/s226.搬运工人沿粗拙斜面把一物体拉上卡车,当力沿斜面向上,大小为 F 时,物体的加快度为a1;若保持力的方向不变,大小变成 2F 时,物体的加快度为 a2,则 ()A .a 1=a 2C .a 2=2a 1BD.a 1<a 2<2a 1.a 2>2a 1二、非选择题7. 如图 2 所示,三物体 A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把 A 、B 之间的细绳剪断的瞬时, 求三物体的加图速度大小为a A 、a B 、 a C .8.甲、乙、丙三物体质量之比为 5∶3∶2,所受合外力之比为 2∶3∶5,则甲、乙、丙三物体加快度大小之比为 ________.9.质量为 2 kg 的物体,运动的加快度为1 m/s 2,则所受合外力大小为多大?若物体所受合外力大小为 8N ,那么,物体的加快度大小为多大?3410.质量为 6×10 kg 的车,在水平力 F =3×10 N的牵引下,沿水平川眼行进, 假如阻力为车重的m/s 2)11.质量为 2 kg 物体静止在圆滑的水平面上,如有大小均为10 2 N 的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加快度.12.质量 m1=10 kg 的物体在竖直向上的恒定拉力F 作用下,以 a1= 2m/s2的加快度匀加快上涨,拉力 F 多大?若将拉力 F 作用在另一物体上,物体能以 a2=2 m/s2的加快度匀加快降落,该物体的质量 m2应为多大? (g 取 10m/s2,空气阻力不计)13.在无风的天气里,一质量为 0.2 g 的雨滴在空中竖直着落,因为遇到空气的阻力,最后以某一恒定的速度着落,这个恒定的速度往常叫扫尾速度.(1)雨滴达到扫尾速度时遇到的空气阻力是多大? (g =10m/s2)(2)若空气阻力与雨滴的速度成正比,试定性剖析雨滴着落过程中加快度和速度如何变化.参照答案1【答案】 BC答案: D2 答案:B 球瞬时加3速度 aB= 0. aA=2g,方向向下.答案c53 2.5 m/s2答案4、【答案】BD答案:B5、【答案】 2.6 m/s2加强练习1析:物体所受的合外力产生物体的加快度,二者是刹时对应关系,方向老是一致的.力的作用产生的成效与速度没有直接关系.答案: D2、答案: C3、分析:有力的作用,才产生加快度;力与加速度的方向总同样;力和加快度都是矢量,都可合成.答案: ABCDF合mg-F f1 4、分析:由牛顿第二定律a=m=m=3g2可得空气阻力大小F f=3mg,B 选项正确.答案: B5、分析:因弹簧的弹力与其形变量成正比,当弹簧测力计甲的示数由 10 N 变成 8 N 时,其形变量减少,则弹簧测力计乙的形变量必增大, 且甲、乙两弹簧测力计形变量变化的大小相等, 所以,弹簧测力计乙的示数应为12 N ,物体在水平方向遇到的合外力F =F乙 -F=12 N -8 NT T 甲= 4 N .依据牛顿第二定律,得物块的加快度为4 m/s 2. 答案: B6 、分析:依据牛顿第二定律F - mgsin θ-μ m gcos θ= ma 1①2F -mgsin θ-μ mgcos θ= ma 2②由 ① ② 两 式 可 解 得 : a 2 = 2a 1 + gsin θ +μ g cos θ,因此 a 2>2a 1. 答案: D7、分析:剪断 A 、B 间的细绳时,两弹簧的弹力刹时不变,故 C 所受的协力为零, a C =0.A 物体受重力和下方弹簧对它的拉力,大小都为mg ,2mg协力为 2mg ,故 a A = m =2g ,方向向下.对于 B物体来说,遇到向上的弹力,大小为3mg ,重为2mgmg ,协力为 2mg ,因此a B = m =2g ,方向向上.答案: 2g 2g 08、分析:由牛顿第二定律,得 a 甲 ∶a 乙 ∶a 丙 =2 3 55∶3∶2=4∶10∶25.答案:4∶10∶259、分析:直接运用牛顿第二定律来办理求解.答案: 2N 4 m/s 210、分析:直接运用牛顿第二定律来办理求解.答案: 4.5 m/s 211、分析:求协力,用牛顿第二定律直接求解.答案: a=10 m/s 2,方向东偏南 45°12、分析:由牛顿第二定律F-m1g=m1a1,代入数据得F=120N.若作用在另一物体上 mg-F=ma ,代入数222据得 m2=15 kg.答案: 120N15kg13、(1) 雨滴达到扫尾速度时遇到的空气阻力和重力是一对均衡力,因此 F f=mg=2×10-3N.(2)雨滴刚开始着落的瞬时,速度为零,因此阻力也为零,加快度为重力加快度 g;跟着速度的增大,阻力也渐渐增大,协力减小,加快度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受协力也为零,速度将不再增大,雨滴匀速着落.答案: (1)2 ×10-3N (2) 加快度由 g 渐渐减小直至为零,速度从零增大直至最后不变。

牛顿第二定律 专题训练

牛顿第二定律  专题训练

v/(m/s)10 5 010 20 30 40 50t/sαβAB 《牛顿第二定律应用——专题(一)图像》1.某人在地面上用弹簧测力计称得其体重为490 N,他将弹簧测力计移至电梯内称其体重,t 0至t 3时间段内,弹簧测力计的示数如图所示,电梯运行的v -t 图可能是(取电梯向上运动的方向为正)( )2.汽车在两站间行驶的v-t 图象如图所受阻力恒定,在BC 段,汽车关闭了发动机,汽车质量为4t,由图可知,汽车在BC 段的加速度大小为多大? 在AB 段的牵引力大小。

在OA 段汽车的牵引力大小。

3.图中的两条直线分别表示,一物体受到水平拉力F 的作用和不受拉力的作用的v —t 图象。

已知物体的质量m=0.8kg ,求拉力F 的大小。

4.一个物块放置在粗糙的水平地面上,受到的水平拉力F 随时间t 变化的关系如图(a )所示,速度v 随时间t 变化的关系如图(b )所示(g=10m/s 2).求: (1)1s 末物块所受摩擦力的大小f 1; (2)物块在前6s内的位移大小x (3)物块与水平地面间的动摩擦因数μ.5.一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500kg ,发动机推力恒定.发射升空后9s 末,发动机突然因发生故障而灭火.如图是从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.若不考虑探测器总质量的变化,求: (1)探测器在行星表面上升达到的最大高度H. (2)该行星表面附近的重力加速度g. (3)发动机正常工作时的推力F. (4)探测器落回地面时的速率v ′. (5)探测器发射后经多长时间落地?专题(二) 整体法与隔离法 一、平衡态下的整体与隔离6、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放着质量为m 1和m 2的两个木块b 和c,如图2所示,已知m 1>m 2,三木块均处于静止状态,则粗糙地面对三角形木块( ) A 、有摩擦力作用,摩擦力的方向水平向右 B 、有摩擦力作用,摩擦力的方向水平向左C 、有摩擦力作用,但摩擦力的方向不能确定D 、没有摩擦力作用 7、用轻质细线把两个质量未知的小球悬挂起来,如图12所示.今对小球a 持续施加一个向左偏下300角的恒力,并对小球b 持续施加一个向右偏上300角的大小相等的恒力,最后达到平衡状态.表示平衡状态的图可能是右图中的( )8.有一个直角支架AOB,AO 水平放置,表面粗糙;OB 竖直向下,表面光滑,AO 上套有小环P,OB 上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图7所示.现将P 环向左移一小段距离,两环再次达到平衡.那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A 、N 不变,T 变大 B 、N 不变,T 变小C 、N 变大,T 变大D 、N 变大,T 变小整体法与隔离法(非平衡态)9.在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。

牛顿第二定律经典习题训练含答案

牛顿第二定律经典习题训练含答案

题型一 对牛顿第二定律的理解1、关于牛顿第二定律,下列说法正确的是( )A .公式F =ma 中,各量的单位可以任意选取B .某一瞬间的加速度只决定于这一瞬间物体所受合外力,而与这之前或之后的受力无关C .公式F =ma 中,a 实际上是作用于该物体上每一个力所产生的加速度的矢量和D .物体的运动方向一定与它所受合外力方向一致【变式】.从牛顿第二定律知道,无论怎样小的力都可以使物体产生加速度,可是当我们用一个很小的力去推很重的桌子时,却推不动它,这是因为( )A .牛顿的第二定律不适用于静止物体、B .桌子的加速度很小,速度增量极小,眼睛不易觉察到C .推力小于静摩擦力,加速度是负的D .桌子所受的合力为零题型二 牛顿第二定律的瞬时性2、如图所示,质量均为m 的A 和B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,此时A 和B 两球的瞬间加速度各是多少·【变式】.(2010·全国卷Ⅰ)如图4—3—3,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别 为a 1、a 2.重力加速度大小为g .则有( )=0,a2=g B. a1=g, a2=gC. a1=0, a2=(m+M)g/MD. a1=g, a2=(m+M)g/M题型三 牛顿第二定律的独立性3 如图所示,质量m =2 kg 的物体放在光滑水平面上,受到水平且相互垂直的两个力F 1、F 2的作用,且F 1=3 N ,F 2=4 N .试求物体的加速度大小.。

【变式】.如图所示,电梯与水平面夹角为30°,当电梯加速向上运动时,梯面对人的支持力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍牛顿第二定律经典习题训练班级 姓名;题型四 运动和力的关系4 如图所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点.今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止.小物体m 与水平面间的动摩擦因数μ恒定,则下列说法中正确的是( )A .物体从A 到B 速度越来越大B .物体从A 到B 速度先增加后减小C .物体从A 到B 加速度越来越小D .物体从A 到B 加速度先减小后增加【变式】.(2010·福建理综高考)质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m题型五 牛顿第二定律的应用| 5、质量为2 kg 的物体与水平面的动摩擦因数为,现对物体用一向右与水平方向成37°、大小为10 N 的斜向上拉力F ,使之向右做匀加速直线运动,如图甲所示,求物体运动的加速度的大小.(g 取10 m/s.)【变式】.一只装有工件的木箱,质量m =40 kg.木箱与水平地面的动摩擦因数μ=,现用200N 的斜向右下方的力F 推木箱,推力的方向与水平面成θ=30°角,如下图所示.求木箱的加速度大小.(g 取 m/s 2)·强化练习一、选择题1.下列说法中正确的是( )A .物体所受合外力为零,物体的速度必为零B .物体所受合外力越大,物体的加速度越大,速度也越大C .物体的速度方向一定与物体受到的合外力的方向一致D .物体的加速度方向一定与物体所受到的合外力方向一致~2.关于力的单位“牛顿”,下列说法正确的是( )A .使2 kg 的物体产生2 m/s 2加速度的力,叫做1 NB .使质量是 kg 的物体产生 m/s 2的加速度的力,叫做1 NC .使质量是1 kg 的物体产生1 m/s 2的加速度的力,叫做1 ND .使质量是2 kg 的物体产生1 m/s 2的加速度的力,叫做1 N3.关于牛顿第二定律,下列说法中正确的是( )A .加速度和力的关系是瞬时对应关系,即a 与F 是同时产生,同时变化,同时消失B .物体只有受到力作用时,才有加速度,但不一定有速度C .任何情况下,加速度的方向总与合外力方向相同,但与速度v 不一定同向D .当物体受到几个力作用时,可把物体的加速度看成是各个力单独作用所产生的分加速度的合成<4.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度a =13g ,则F f 的大小是( )A .F f =13mgB .F f =23mgC .F f =mgD .F f =43mg5.如图1所示,底板光滑的小车上用两个量程为20 N 、完全相同的弹簧测力计甲和乙系住一个质量为1 kg 的物块,在水平地面上当小车做匀速直线运动时,两弹簧测力计的示数均为10 N ,当小车做匀加速直线运动时,弹簧测力计甲的示数变为8 N 度大小是( ) A .2 m/s 2 B .4 m/s 2C .6 m/s 2D .8 m/s 26.搬运工人沿粗糙斜面把一物体拉上卡车,当力沿斜面向上,大小为F 时,物体的加速度为a 1;若保持力的方向不变,大小变为2F 时,物体的加速度为a 2,则( )A .a 1=a 2B .a 1<a 2<2a 1C .a 2=2a 1D .a 2>2a 1二、非选择题》7.如图2所示,三物体A 、B 、C 的质量均相等,用轻弹簧和细绳相连后竖直悬挂,当把A 、B 之间的细绳剪断的瞬间,求三物体的加速度大小为a A 、a B 、a C .—图1图28.甲、乙、丙三物体质量之比为5∶3∶2,所受合外力之比为2∶3∶5,则甲、乙、丙三物体加速度大小之比为________.9.质量为2 kg的物体,运动的加速度为1 m/s2,则所受合外力大小为多大若物体所受合外力大小为8N,那么,物体的加速度大小为多大10.质量为6×103kg的车,在水平力F=3×104N的牵引下,沿水平地面前进,如果阻力为车重的倍,求车获得的加速度是多少(g取10 m/s2)!11.质量为2 kg物体静止在光滑的水平面上,若有大小均为10 2 N的两个外力同时作用于它,一个力水平向东,另一个力水平向南,求它的加速度.】12.质量m1=10 kg的物体在竖直向上的恒定拉力F作用下,以a1=2m/s2的加速度匀加速上升,拉力F多大若将拉力F作用在另一物体上,物体能以a2=2 m/s2的加速度匀加速下降,该物体的质量m2应为多大(g取10m/s2,空气阻力不计))13.在无风的天气里,一质量为g的雨滴在空中竖直下落,由于受到空气的阻力,最后以某一恒定的速度下落,这个恒定的速度通常叫收尾速度.(1)雨滴达到收尾速度时受到的空气阻力是多大(g=10m/s2)(2)若空气阻力与雨滴的速度成正比,试定性分析雨滴下落过程中加速度和速度如何变化.;参考答案1【答案】 BC 答案:D[2答案:B 球瞬间加速度aB =0. aA =2g ,方向向下.答案c3 m/s 2 答案4、【答案】 BD 答案:B5、【答案】 m/s 2强化练习1析:物体所受的合外力产生物体的加速度,两者是瞬时对应关系,方向总是一致的.力的作用产生的效果与速度没有直接关系.答案:D2、答案:C3、解析:有力的作用,才产生加速度;力与加速度的方向总相同;力和加速度都是矢量,都可合成.答案:ABCD:4、解析:由牛顿第二定律a =F 合m =mg -F f m =13g 可得空气阻力大小F f =23mg ,B 选项正确.答案:B5、解析:因弹簧的弹力与其形变量成正比,当弹簧测力计甲的示数由10 N 变为8 N 时,其形变量减少,则弹簧测力计乙的形变量必增大,且甲、乙两弹簧测力计形变量变化的大小相等,所以,弹簧测力计乙的示数应为12 N ,物体在水平方向受到的合外力F =F T 乙-F T 甲=12 N -8 N =4 N .根据牛顿第二定律,得物块的加速度为4 m/s 2. 答案:B6、解析:根据牛顿第二定律F -mgsinθ-μmgcosθ=ma 1①2F -mgsinθ-μmgcosθ=ma 2②由①②两式可解得:a 2=2a 1+gsinθ+μgcosθ,所以a 2>2a 1. 答案:D7、解析:剪断A 、B 间的细绳时,两弹簧的弹力瞬时不变,故C 所受的合力为零,a C =物体受重力和下方弹簧对它的拉力,大小都为mg ,合力为2mg ,故a A =2mg m =2g ,方向向下.对于B 物体来说,受到向上的弹力,大小为3mg ,重为mg ,合力为2mg ,所以a B =2mg m =2g ,方向向上. 答案:2g 2g 08、解析:由牛顿第二定律,得a 甲∶a 乙∶a 丙=25∶33∶52=4∶10∶25. 答案:4∶10∶259、解析:直接运用牛顿第二定律来处理求解.答案:2N 4 m/s 210、解析:直接运用牛顿第二定律来处理求解. 答案: m/s 211、解析:求合力,用牛顿第二定律直接求解. 答案:a =10 m/s 2,方向东偏南45°12、解析:由牛顿第二定律F -m 1g =m 1a 1,代入数据得F =120N.若作用在另一物体上m 2g -F =m 2a 2,代入数据得m 2=15 kg. 答案:120N 15kg13、解析:(1)雨滴达到收尾速度时受到的空气阻力和重力是一对平衡力,所以F f =mg =2×10-3N.(2)雨滴刚开始下落的瞬间,速度为零,因而阻力也为零,加速度为重力加速度g ;随着速度的增大,阻力也逐渐增大,合力减小,加速度也减小;当速度增大到某一值时,阻力的大小增大到等于重力,雨滴所受合力也为零,速度将不再增大,雨滴匀速下落.答案:(1)2×10-3N (2)加速度由g 逐渐减小直至为零,速度从零增大直至最后不变。

牛顿第二定律专题(含经典例题)

牛顿第二定律专题(含经典例题)

牛顿第二定律专题1.考纲解读2.考点整合考点一牛顿第二定律1.定律内容:物体的加速度跟物体成正比,跟物体的成反比,加速度的方向跟合外力的方向 .2.牛顿第二定律的矢量性、瞬时性、独立性.“矢量性”是指加速度的方向取决,“瞬时性”是指加速度和合外力存在着关系,合外力改变,加速度相应改变,“独立性”是指作用在物体上的每个力都独立的产生各自的加速度,合外力的加速度即是这些加速度的矢量和.3.牛顿第二定律的分量式:ΣFx=max,ΣFy=may[特别提醒]:F是指物体所受到的合外力,即物体所有受力的合力.加速度与合外力是瞬时对应关系,即有合外力就有加速度,没有合外力就没有加速度.【例1】如图所示,小车上固定着三角硬杆,杆的端点固定着一个质量为m的小球.当小车水平向右的加速度逐渐增大时,杆对小球的作用力的变化(用F1至F4变化表示)可能是下图中的(OO'沿杆方向)【解析】对小球进行受力分析,小球受重力和杆对小球的弹力,弹力在竖直方向的分量和重力平衡,小球在水平方向的分力提供加速度,故C正确.【答案】C【方法点评】本题考查牛顿第二定律,只要能明确研究对象,进行受力分析,根据牛顿第二定律列方程即可.考点二力、加速度和速度的关系在直线运动中当物体的合外力(加速度)与速度的方向时,物体做加速运动,若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动,当物体的合外力(加速度)方向与速度的方向时,物体做减速运动.若合外力(加速度)恒定,物体做运动,若合外力(加速度)变化,则物体做运动.[特别提醒]:要分析清楚物体的运动情况,必须从受力着手,因为力是改变运动状态的原因,求解物理问题,关键在于建立正确的运动情景,而这一切都必须从受力分析开始.[例2] 如图3-12-1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?最低点的加速度是否比g大?(实际平衡位置,等效成简谐运动)图3-12-1[解析]小球接触弹簧后受两个力,向下的重力mg和向上的弹力.(如图3-12-2(a)所示刚开始时,当<mg时,小球合力向下,,合力不断变小,因而加速度减小,由于a方向与v0同向,因此速度继续变大.当=mg时,如图3-12-2(b)所示,合力为零,加速度为零,速度达到最大值.之后小球由于惯性仍向下运动,继续压缩弹簧,但>mg,合力向上,由于加速度的方向和速度方向相反,小球做加速度增大的减速运动,因此速度减小到零弹簧被压缩到最短.如图3-12-2(c)所示[答案]小球压缩弹簧的过程,合外力的方向先向下后向上,大小是先变小至零后变大,加速度的方向也是先向下后向上,大小是先变小后变大,速度的方向始终向下,大小是先变大后变小. (还可以讨论小球在最低点的加速度和重力加速度的关系)[方法技巧]要分析物体的运动情况一定要从受力分析着手,再结合牛顿第二定律进行讨论、分析.对于弹簧类问题的求解,最好是画出弹簧的原长,现在的长度,这样弹簧的形变长度就一目了然,使得求解变得非常的简单明了.考点三瞬时问题瞬时问题主要是讨论细绳(或细线)、轻弹簧(或橡皮条)这两种模型.细绳模型的特点:细绳不可伸长,形变,故其张力可以,弹簧(或橡皮条)模型的特点:形变比较,形变的恢复需要时间,故弹力 .[特别提醒]求解瞬时问题,首先一定要分清类型,然后分析变化之前的受力,再分析变化瞬间的受力,这样就可以很快求解.[例3]如图5所示,质量为m的小球被水平绳AO和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO烧断,在绳AO烧断的瞬间,下列说法正确的是()A.弹簧的拉力B.弹簧的拉力C.小球的加速度为零D.小球的加速度[解析]烧断OA之前,小球受3个力,如图所示,烧断细绳的瞬间,绳子的张力没有了,但由于轻弹簧的形变的恢复需要时间,故弹簧的弹力不变,A正确。

牛顿第二定律的应用练习

牛顿第二定律的应用练习

一、匀变速直线运动(水平面上)1.一辆汽车从静止开始做匀加速直线运动2s末速度大小为4m/s,求:这辆汽车的加速度?2..在平直公路上,一辆汽车以10m/s的速度匀速行驶。

现开始做匀加速直线运动,汽车加速10s通过的位移大小为150m,则汽车的加速度为?3.在平直公路上,一辆汽车以10m/s的速度匀速行驶。

现开始做匀加速直线运动,当速度达到30m/s时通过的位移为100m,则汽车加速度为?二、水平面上已知力求运动1质量为10kg的木块置于光滑水平面上,在20N的水平拉力作用下由静止开始运动。

求:(1)木块加速度的大小:(2)3s末木块速度的大小。

2用F =10 N的水平拉力,使质量m=5.0 kg的物体由静止开始沿光滑水平面做匀加速直线运动.求: (1)物体加速度的大小a;(2)物体开始运动后t=3.0 s内通过的位移x?3.一个质量m=10kg 的物体静止在光滑水平地面上,在F=20N的水平恒力作用下开始运动,重力加速度g=10m/s2。

求:(1)物体加速度a的大小。

(2)2秒末的速度v的大小。

4.质量为5kg的物体放在水平面上,在20N的水平拉力作用下,由静止开始运动。

已知物体与水平面之间的摩擦力为5N,求物体2s末的速度。

5.质量为5kg的物体放在水平面上,在20N的水平拉力作用下,由静止开始运动。

已知物体与水平面之间的摩擦力为5N,求物体2s末的速度。

四、水平面上已知运动求力1、一架喷气式飞机,质量为5.0×103kg,起飞过程中的加速度为3.8m/s2,在此过程中飞机受到的平均阻力是飞机重力的0.02倍。

求飞机受到的牵引力。

2、质量为5.0kg的物体,放在光滑的水平面上,受水平恒定拉力F的作用,由静止开始作匀加速直线运动,位移为36m时,速度为24m/s.求:(1)物体运动的加速度的大小;(2)物体所受水平恒定拉力F的大小。

3、列车沿一段平直的铁道匀加速行驶,在50s的时间内速度由5m/s增加到15m/s。

2019年高考物理双基突破专题13牛顿第二定律及其两类应用精练

2019年高考物理双基突破专题13牛顿第二定律及其两类应用精练

专题十三牛顿第二定律及其两类应用(精练)1关于运动和力的关系,下列说法中正确的是A. 物体的速度为零时,它受到的合外力一定为零B. 物体运动的速度越大,它受到的合外力一定越大C. 物体受到的合外力越大,其速度变化一定越快D. 物体所受的合外力不为零时,其速度一定增大【答案】C【解析】物体的速度为零与合外力并沒有直接的关系,速度为零时,合外力也可以很犬,故A错误;物体运动的速度大』可lil是匀速直线运动,止出寸的合力是山故B错误寅根抿牛顿第二定律,一个物体受到的合外力越大,说明他的加速度大,根据加速度的定义・也就是它的速度变化一定越快,故C正确;物体所受的合外力不为零时,物体也可臥做减速运动‘速度不一定增大。

故D错误。

2. 一质量为m的物块在倾角为0的足够长斜面上匀减速下滑.现对物块施加一个竖直向下的恒力F, 如图所示.则物块减速为零的时间将A. 变大B.变小C.不变D.不能确定【答案】B【解析】物块在斜面上匀减速下滑,则m®in 0 —卩mg cos 0 = maD,现对物块施加一个竖直向下的恒力F,等效重力增大F,即(口叶F) sin 0 — ^ (mg^ F) cos 0 = md②,由①②得ma+ F (sin 0 —卩cos 0 )= ma',可得加速度大小| a|<| a' |,由v初=at知物块减速为零的时间将变小,B正确。

3. 质量1 kg的小物块,在t = 0时刻以5 m/s的初速度从斜面底端A点滑上倾角为53。

的斜面,0.7 s1 2时第二次经过斜面上的B点,若小物块与斜面间的动摩擦因数为3贝U AB间的距离为(已知g= 10 m/s2,3sin53 ° = 0.8 , cos53°= 0.6 )A. 1.05 mB. 1.13 mC. 2.03 m D . 1.25 m【答案】B2 【解析】物块沿斜面上滑和下滑时,加速度分别为:a1 = g (sin B +卩cos 0 )= 10 m/s , a2= g (sin 02 V 0 1 2—cos 0 )= 6 m/s,物块滑到最高点所用时间为11= = 0.5 s,位移为X1= a1t 1= 1.25 m,物块从最高a1 21 2点滑到B点所用时间为12= t —11 = 0.2 s,位移为X2= 2a2t 2= 0.12 m,所以AB间的距离为X1—X2 = 1.13 m ,选项B对。

牛顿第二定律的基本应用专题练习(含答案)

牛顿第二定律的基本应用专题练习(含答案)

专题二 牛顿第二定律的基本应用一、要点提示1、瞬时性问题轻绳(或轻杆杆):它们的特点是不发生明显形变就能产生弹力,若剪断(或脱离等)后,其中的弹力立即发生变化,不需要形变恢复时间,也就是说轻绳、轻杆上的弹力可以发生突变。

轻弹簧(或橡皮筋):它们的特点是形变明显,恢复形变需要时间,在瞬时性问题中,其弹力的大小看成不变,也就是说弹簧或橡皮筋的弹力不能发生突变。

2.动力学的两类基本问题两类问题以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体的逻辑关系如图:3.连接体问题对于连接体问题,求加速度是解题的切入点,灵活应用整体法和隔离法是解题的关键,一般解题思路是:(1)当整体的外力已知时,先整体求加速度,再隔离求内力.(2)当整体的外力未知时,先隔离求加速度,再整体分析求解.(3)当整体或隔离都不能直接求解时,应通过联立方程组求解.二、典型例题例题1.如图所示,A 、B 小球用轻弹簧相连,整体用轻绳竖直悬挂,保持静止状态.A 球质量是B 球质量的两倍,现剪断轻绳的瞬间,A 、B 两球加速度大小分别为A .a A =2gB .a A =1.5gC .a B =0D .a B =g变式训练.将例题1的题图放置在倾角为θ=30°的光滑斜面上,如图所示,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,则下列说法正确的是 ( )A .a A =0,aB =12g B .a A =3g/4,a B =0C .a A =g ,a B =gD .a A =0,a B =g例题2.如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的弹簧,则当木块接触弹簧后( )[来A .木块立即做减速运动B .木块在一段时间内速度仍可增大C .当F 等于弹簧弹力大小时,木块速度最大D .弹簧压缩量最大时,木块加速度为0例题3.已知无人机质量m =1 kg ,动力系统能提供的最大升力F =16 N ,无人机上升过程中最大速度v =6 m/s ,若无人机从地面以最大升力竖直起飞,达到最大速度所用时间为3 s ,假设无人机竖直飞行时所受阻力大小不变,求:(1)无人机以最大升力起飞的加速度大小;(2)无人机在竖直上升过程中所受阻力F f 的大小;(3)无人机从地面起飞竖直上升至离地高度h=30 m的高空所需的最短时间.例题4.如图所示,质量为M、中间为半球形的光滑凹槽放置于光滑水平地面上,光滑槽内有一质量为m的小铁球,现用一水平向右的推力F(未知)推动凹槽,小铁球与光滑凹槽相对静止时,凹槽球心和小铁球的连线与竖直方向成α角.则下列说法正确的是() A.小铁球所受合力为零B.小铁球受到的合外力方向水平向左C.F=(M+m)g tanαD.系统的加速度为a=g tanα变式训练.如图所示,在光滑的水平支持面上,物块C叠放于物体B上,B的上表面水平,用轻绳将物块B与物块A相连,A、B、C的质量分别为2m、m、m,B、C间动摩擦因数为μ,对A施加一大小为F的水平恒力,A、B、C相对静止一同做匀加速直线运动,B 对C的摩擦力的大小为()A.μmg B.F C.F/2 D.F/4三、课后练习1.如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有()A.两图中两球加速度均为g sinθB.两图中A球的加速度均为零C.图乙中轻杆的作用力一定不为零D.图甲中B球的加速度是图乙中B球加速度的2倍2.如图所示,一轻质弹簧一端固定在墙上的O点,自由伸长到B点.今用一小物体m 把弹簧压缩到A点(m与弹簧不连接),然后释放,小物体能经B点运动到C点而静止.小物体m与水平面间的动摩擦因数μ恒定,则下列说法中正确的是()A.物体从A到B速度越来越大B.物体从A到B速度先增加后减小C.物体从A到B加速度越来越小D.物体从A到B加速度先减小后增加3.如图所示,质量为4 kg的物体A静止在竖直的轻弹簧上面.质量为1 kg的物体B用细线悬挂起来,A、B紧挨在一起但A、B之间无压力.某时刻将细线剪断,则细线剪断瞬间,B对A的压力大小为(g取10 m/s2)() A.0 B.8 N C.10 N D.50 N4、如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前得到越来越广泛的应用.一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒为f=4 N.g取10 m/s2.(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5 s时离地面的高度h;(2)当无人机悬停在距离地面高度H=100 m处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落地面时的速度v.参考答案一、典型例题答案例题1:BC变式训练:B例题2:BC例题3:(1)2 m/s2(2)4 N(3)6.5 s例题4:CD变式训练:D二、课后作业答案1、D2、BD3、B4、(1)75m (2)40m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3牛顿第二定律的应用检测题(以下各题取2/10s m g )第一类:由物体的受力情况确定物体的运动情况1,如图1所示,用F = N 的水平拉力,使质量m = kg 的物体由静止开始沿光滑水平面做匀加速直线运动.求:(1)物体加速度a 的大小;(2)物体开始运动后t = s 内通过的位移x .{2,如图2所示,用F = N 的水平拉力,使质量m = kg 的物体由静止开始沿光滑水平面做匀加速直线运动。

(1)求物体的加速度a 的大小;(2)求物体开始运动后t = s 末速度的大小;【3.如图3所示,用F 1 = 16 N 的水平拉力,使质量m = kg 的物体由静止开始沿水平地面做匀加速直线运动。

已知物体所受的滑动摩擦力F 2 = N 。

求:(1)物体加速度a 的大小;(2)物体开始运动后t= s 内通过的位移x 。

@4.如图4所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m = kg ,物体与地面间的动摩擦因数μ=. 求: (1)物体加速度a 的大小; (2)物体在t =时速度v 的大小.[图1图2图45,一辆总质量是×103kg 的满载汽车,从静止出发,沿路面行驶,汽车的牵引力是×103N ,受到的阻力为车重的倍。

求汽车运动的加速度和20秒末的速度各是多大(6.如图6所示,一位滑雪者在一段水平雪地上滑雪。

已知滑雪者与其全部装备的总质量m = 80kg ,滑雪板与雪地之间的动摩擦因数μ=。

从某时刻起滑雪者收起雪杖自由滑行,此时滑雪者的速度v = 5m/s ,之后做匀减速直线运动。

求:(1)滑雪者做匀减速直线运动的加速度大小; (2)收起雪杖后继续滑行的最大距离。

7,如图7所示,一个质量为m=20kg 的物块,在F=60N 的水平拉力作用下,从静止开始沿水平地面向右做匀加速直线运动,物体与地面之间的动摩擦因数为,(1)画出物块的受力示意图(2)求物块运动的加速度的大小(3)求物块速度达到s m v /0.6 时移动的距离;第二类:由物体的运动情况确定物体的受力情况1、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由s 增加到s. (1)求列车的加速度大小.(2)若列车的质量是×106kg ,机车对列车的牵引力是×105N ,求列车在运动中所受的阻力大小.图6! F;2,静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动时,速度达到s ,求: (1)物体加速度的大小(2)物体和地面之间的动摩擦因数3、一辆质量为×103kg 的小汽车正在以10m /s 的速度行驶.现在让它在 m 的距离内匀减速地停下来,求所需的阻力.)4、以15m/s的速度行驶的汽车,在关闭发动机后,经10s停了下来,汽车的质量是Kg 3100.4 ,求汽车所受的阻力。

5、质量为40kg 的物体静止在水平面上, 当在400N 的水平拉力作用下由静止开始经过16m 时, 速度为16 m/s, 求物体受到的阻力是多少《F37F 》第三类正交分解法在牛顿第二定律中的应用3、地面上放一木箱,质量为10kg,用50N的力与水平方向成37°角拉木箱,使木箱从静止开始沿水平面做匀加速直线运动,假设水平面光滑,(取g=10m/s2,sin37°=,cos37°=)(1)画出物体的受力示意图(2)求物块运动的加速度的大小(3)求物块速度达到smv/0.4=时移动的位移<2.如图,质量m=2kg的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N、与水平方向夹角θ=37°角的斜向上的拉力.已知sin37°=,cos37°=,取g=10m/s2,求(1)物体运动的加速度(2)物体在拉力作用下5s内通过的位移大小。

3.如图,质量m=2kg的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N、与水平方向夹角θ=37°角的斜下上的推力.已知sin37°=,cos37°=,取g=10m/s2,求(1)物体运动的加速度:(2)物体在拉力作用下5s内通过的位移大小。

4.如图所示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。

、5、如图1所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上减速运动,a与水平方向的夹角为.求人受的支持力和摩擦力.>第四类牛顿第二定律的应用——斜面问题;1,质量为m的物体从倾角为θ的光滑斜面顶端由静止滑下,斜面长度为l,求(1)物体的加速度(2)下滑到斜面底端所以时间(3)下滑到斜面底端时物体的速度@2,质量为m的物体从倾角为θ的粗糙斜面顶端由静止滑下,物块与斜面之间的动摩擦因数为μ,求(1)物体所受摩擦力(2)μ为何值时物体匀速下滑(3)μ为何值时物体匀加速下滑(4)μ为何值时物体匀减速下滑]3,一个滑雪人从静止开始沿山坡滑下,山坡的倾角θ=30°,滑雪板与雪地的动摩擦因数是,求5 s内滑下来的路程和5 s末的速度大小.\4、一位滑雪者如果以v0=30m/s的初速度沿直线冲上一倾角为300的山坡,从冲坡开始计时,至4s末,雪橇速度变为零。

如果雪橇与人的质量为m=80kg,求滑雪人受到的阻力是多少。

(g 取10m/s2)@5,一个滑雪的人,质量m=75kg,以v0=2m/s的初速度沿山坡匀加速滑下,山坡的倾角θ=30°,在t=5s的时间内滑下的路程x=60m,求(1)人沿斜面下滑的加速度(2)滑雪人受到的阻力(包括摩擦和空气阻力)。

;6. 质量m=4kg的物块,在一个平行于斜面向上的拉力F=40N作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数µ=,力F 作用了5s,求物块在5s内的位移及它在5s末的速度。

(g=10m/s2,sin37°=,cos37°=)第五类牛顿第二定律的应用——两过程问题(水平面)1,质量为2kg的物体置于水平地面上,用水平力F使它从静止开始运动,第4s末的速度达到24m/s,此时撤去拉力F,物体还能继续滑行72m.求:(1)水平力F(2)水平面对物体的摩擦力…2,质量为2kg的物体静止在水平地面上,在水平恒力F的作用下开始运动,4s末速度达到4m/s,此时将力F撤去,又经过6s物体停止运动,求力F的大小3,质量为的物块,在水平恒力F 的作用下,从水平面上A 点从静止开始运动,运动一段距离后撤去该力,物块继续滑行t=,后停止在B 点,已知AB 之间x=,2.0=μ,求恒力F 的大小:4,如图,质量为2kg 的物体,受到20N 的方向与水平方向成37角的拉力作用,由静止开始沿水平面做直线运动,物体与水平面间的动摩擦因数为,当物体运动2s 后撤去外力F , 8、则:(1)求2s 末物体的速度大小(2)撤去外力后,物体还能运动多远(2/10s m g =)第六类牛顿第二定律的应用——两过程问题(平面+斜面) 1.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s 内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力f 为多大 。

(2)滑草装置与草皮之间的动摩擦因数μ为多大(3)设游客滑下50 m 后进入水平草坪,试求游客在水平面上滑动的最大距离.2,如图所示,ABC 是一雪道,AB 段位长m L 80=倾角︒=37θ的斜坡,BC 段水平,AB 与BC 平滑相连,一个质量kg m 75=的滑雪运动员,从斜坡顶端以s m v /0.20=的初速度匀加速下滑,经时间s t 5.0=到达斜面底端B 点,滑雪者与雪道间的动摩擦因数在AB 段和BC 段都相同, 求:(1)运动员在斜坡上滑行时加速度的大小 (2)滑雪板与雪道间的动摩擦因数 (3)>(4)运动员滑上水平雪道后,在s t 0.2'=内滑行的距离xF37"3,如图所示,水平地面AB与倾角为θ的斜面平滑相连,一个质量为m的物块静止在A点。

现用水平恒力F作用在物块上,使物块从静止开始做匀加速直线运动,经时间t到达B点,此时撤去力F,物块以在B点的速度大小冲上斜面。

已知物块与水平地面和斜面间的动摩擦因数均为μ。

求:(1)物块运动到B点的速度大小(2)物块在斜面上运动时加速度的大小(3)物块在斜面上运动的最远距离x<4.如图所示,在海滨游乐场里有一种滑沙运动。

某人坐在滑板上从斜坡的高处A点由静止开始滑下,滑到斜坡底端B点后,沿水平的滑道再滑行一段距离到C点停下来。

若人和滑板的总质量m=60kg,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=,斜坡的倾角θ,斜坡与水平滑道是平滑连接的,整个运动过程中空=︒=︒︒,6.037)8.0cos37(sin37=气阻力忽略不计,重力加速度g取10m/s2,求:(1)人从斜坡上滑下的加速度为多大(2)若AB的长度为25m,人滑到B处时速度为多大(3)若AB的长度为25m,求BC的长度为多少,第七类牛顿第二定律的应用——传送带问题1. 水平传送带A、B以v=1m/s的速度匀速运动,如图所示A、B相距L=,将质量为m=的物体(可视为质点)从A点由静止释放,物体与传送带间的动摩擦因数μ=,(g=10m/s2)求:(1)滑块加速时间(2)滑块加速阶段对地的位移和对传送带的位移(3)滑块从A到B所用的时间)2.水平传送带A、B以v=2m/s的速度匀速运动,如图所示,A、B相距11m,一物体(可视为质点)从A点由静止释放,物体与传送带间的动摩擦因数μ=,则物体从A 沿传送带运动到B所需的时间为多长(g=10m/s2)·第八类牛顿第二定律的应用——整体法与隔离法1,光滑的水平面上有质量分别为m1、m2的两物体静止靠在一起(如图) ,现对m1施加一个大小为 F 方向向右的推力作用。

求此时物体m2受到物体m1的作用力F1%2,粗糙的水平面上有质量分别为m1、m2的两物体静止靠在一起(如图) ,现对m1施加一个大小为F 方向向右的推力作用,两物体与水平地面间的动摩擦因数均为μ。

求此时物体m2受到物体m1的作用力F13.如图所示,两个质量相同的物体1和2,紧靠在一起放在光滑的水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力的大小为( )A .F 1B .F 2C .(F 1+F 2)/2D .(F 1-F 2)/2<4、如图所示,质量为m 的木块放在光滑水平桌面上,细绳栓在木块上,并跨过滑轮,试求木块的加速度:(1)用大小为F (F = Mg )的力向下拉绳子(2)把一质量为M 的重物挂在绳子上、第九类牛顿第二定律的应用——图像问题1,光滑水面上,一物体质量为1kg ,初速度为0,从0时刻开始受到一水平向右的接力F ,F 随时间变化图如下,要求作出速度时间图象。

相关文档
最新文档