解析几何考试试卷与答案_西南大学

合集下载

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解

大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。

选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。

2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。

对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。

二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。

答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。

将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。

2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。

答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。

这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。

三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。

解析几何习题及答案

解析几何习题及答案

解析几何习题一、选择题(本大题共12个小题在每小题给出的四个选项中,只有一项是符合题目要求的)1. 平面上有两个定点A 、B 及动点P ,命题甲:“|P A |-|PB |是定值”,命题乙“点P 的轨迹是以A 、B 为焦点的双曲线”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 如果双曲线经过点(6,3),且它的两条渐近线方程是y =±13x ,那么双曲线方程是( )A.x 236-y 29=1B.x 281-y 29=1C.x 29-y 2=1 D.x 218-y 23=1 3. 点(a ,b )关于直线x +y +1=0的对称点是( ) A .(-a -1,-b -1) B .(-b -1,-a -1) C .(-a ,-b ) D .(-b ,-a ) 4. 直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C .k >15或k <1D .k >12或k <-15. 椭圆x 29+y 24+k 1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或216. 已知△ABC 的顶点B ,C 在椭圆x23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .127. 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 ( ) A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y23=1 8. 设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ).A. 2B. 3C.3+12D.5+129. 若不论k 为何值,直线y =k (x -2)+b 与曲线x 2-y 2=1总有公共点,则b 的取值范围是( )A .(-3,3)B .[-3,3]C .(-2,2)D .[-2,2] 10. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.9211. 已知F (c,0)是椭圆x 2a 2+y2b2=1(a >b >0)的一个焦点,F 与椭圆上点的距离的最大值为m ,最小值为n ,则椭圆上与点F 的距离为m +n2的点是( )A .(c ,±b 2a )B .(c ,±ba) C .(0,±b ) D .不存在12. A (x 1,y 1),B ⎝⎛⎭⎫22,53,C (x 2,y 2)为椭圆x 29+y225=1上三点,若F (0,4)与三点A 、B 、C 的距离为等差数列,则y 1+y 2的值为( )A.43B.103C.163D.223 二、填空题(本大题共4小题,将正确的答案填在题中横线上)13. 设P 是双曲线x 2a 2-y29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|等于________.14. 平行线l 1:3x -2y -5=0与l 2:6x -4y +3=0之间的距离为________.15. 在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________.16. 点P 是双曲线x 24-y 2=1上的一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是________.三、解答题(本大题共5个小题,解答应写出文字说明、证明过程或演算步骤)17. 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.18. 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围. (2)求被椭圆截得的最长弦所在的直线方程.19. 已知直线y =-12x +2和椭圆x 2a 2+y 2b2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.20. 在面积为1的△PMN 中,tan ∠PMN =12,tan ∠MNP =-2,建立适当的坐标系,求以M ,N 为焦点且过点P 的双曲线方程.21. 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点. (1)设L 的斜率为1,求|AB |的大小;(2)求证:OA →·OB →是一个定值.解析几何习题答案一、选择题1. 解析 当|PA |-|PB |=|AB |时,点P 的轨迹是一条射线,故甲⇒/ 乙,而乙⇒甲,故选B.2. 解析 设双曲线方程为⎝⎛⎭⎫13x +y ⎝⎛⎭⎫13x -y =λ将点(6,3)代入求出λ即可.答案C.3. 解析 设对称点为(x ′,y ′),则⎩⎨⎧y ′-bx ′-a-1 =-1,x ′+a 2+y ′+b2+1=0,解得:x ′=-b -1,y ′=-a -1. 答案 B4. 解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k,令-3<1-2k<3,解不等式可得.也可以利用数形结合.答案 D5. 解析 若a 2=9,b 2=4+k ,则c = 5-k ,由c a =45即5-k 3=45,得k =-1925;若a 2=4+k ,b 2=9,则c = k -5,由c a =45,即k -54+k =45,解得k =21.答案 C6. 解析 由椭圆的定义知:|BA |+|BF |=|CA |+|CF |=2a ,∴周长为4a =43(F 是椭圆的另外一个焦点).答案 C7. 解析 圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx ±ay =0,根据已知得3b a 2+b 2=2,即3b 3=2,解得b =2,则a 2=5,故所求的双曲线方程是x 25-y 24=1.答案 A8. 解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),F (c,0),B (0,b ),则k BF =-bc,双曲线的渐近线方程为y =±b a x ,∴-b c ·b a =-1,即b 2=ac ,c 2-a 2=ac ,∴e 2-e -1=0,解得e =1±52.又e >1,∴e =5+12. 答案 D9. 解析 由直线过点(2,b ),因为x =2时,y 2=x 2-1=3,所以y =±3,所以b ∈[-3,3]. 答案B10. 解析 由抛物线的定义知,点P 到该抛物线的距离等于点P 到其焦点的距离,因此点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和即为点P 到点(0,2)的距离与点P 到焦点的距离之和,显然,当P 、F 、(0,2)三点共线时,距离之和取得最小值,最小值等于 ⎝⎛⎭⎫0-122+2-0 2=172. 答案 A 11. 解析 在椭圆中,m +n 2=(a +c )+(a -c )2=a ,而a 2=b 2+c 2,所以短轴端点(0,±b )与F的距离为a .12.解析 |AF |a 2c -y 1=c a ,即|AF |=5-45y 1,|CF |a 2c-y 2=c a ,即|CF |=5-45y 2,|BF |=8+499=113.由题意知2|BF |=|AF |+|CF |,所以5-45y 1+5-45y 2=223,所以y 1+y 2=103答案] B二、填空题13.解析 由渐近线方程y =32x ,且b =3,得a =2,由双曲线的定义,得|PF 2|-|PF 1|=4,又|PF 1|=3,∴|PF 2|=7. 答案 714.解析 直线l 2变为:3x -2y +32=0,由平行线间的距离公式得:d =⎪⎪⎪⎪-5-3232+22=132.15.解析设另一个焦点为F ,如图所示,∵|AB |=|AC |=1,△ABC 为直角三角形,∴1+1+2=4a ,则a =2+24,设|FA |=x ,∴⎩⎨⎧x +1=2a ,1-x +2=2a ,∴x =22,∴1+⎝⎛⎭⎫222=4c 2,∴c =64,e =c a =6- 3. 答案 6- 3.16. 解析 设P (x 0,y 0),M (x ,y ),由中点坐标公式可得x 0=2x ,y 0=2y ,代入双曲线方程得(2x )24-(2y )21=1,即x 2-4y 2=1.[答案 x 2-4y 2=1 三、解答题(本大题共6个小题,解答应写出文字说明、证明过程或演算步骤)17. 解 设A (a,0),B (0,b ),(a >0,b >0),则直线l 的方程为x a +yb=1,∵l 过点P (3,2),∴3a +2b=1.∴1=3a +2b ≥2 6ab,即ab ≥24.∴S △ABO =12ab ≥12.当且仅当3a =2b,即a =6,b =4.△ABO 的面积最小,最小值为12.此时直线l 的方程为:x 6+y4=1.即2x +3y -12=0.18. 解 (1)联立⎩⎪⎨⎪⎧4x 2+y 2=1y =x +m ,得5x 2+2mx +m 2-1=0.因为直线与椭圆有公共点.所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52.(2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2),由(1)知,5x 2+2mx +m 2-1=0,由韦达定理,得x 1+x 2=-2m 5,x 1x 2=15(m 2-1).所以|AB |=(x 1-x 2)2+(y 1-y 2)2=2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2]=2[4m 225-45(m 2-1)]=2510-8m 2, 所以当m =0时,|AB |最大,此时直线方程为y =x . 19. 解 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).则⎩⎨⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1, ②①-②得:y 2-y 1x 2-x 1=-b 2a 2x 1+x 2y 1+y 2.∴k AB =-b 2a 2×x 0y 0=-12.③又k OM =y 0x 0=12,④由③④得a 2=4b 2.由⎩⎨⎧y =-12x +2,x 24b 2+y 2b2=1得:x 2-4x +8-2b 2=0, ∴x 1+x 2=4,x 1·x 2=8-2b 2. ∴|AB |=1+k 2|x 1-x 2|=52x 1+x 22-4x 1x 2 =5216-32+8b 2 =528b 2-16 =2 5.解得:b 2=4.故所求椭圆方程为:x 216+y 24=1.20. 解析 以MN 所在直线为x 轴,MN 的中垂线为y 轴建立直角坐标系,设P (x 0,y 0),M (-c,0),N (c,0)(y 0>0,c >0),如图所示,则有⎩⎪⎨⎪⎧ y 0x 0+c =12,y 0x 0-c =2,12×2c ×y 0=1,解得⎩⎪⎨⎪⎧x 0=536,y 0=233,c =32,设双曲线的方程为x 2a 2-y 234-a 2=1,将P (536,233)代入,可得a 2=512,所以所求双曲线的方程为x 2512-y213=1.21. (1)解 ∵F (1,0),∴直线L 的方程为y =x -1,设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x -1,y 2=4x得x 2-6x +1=0,∴x 1+x 2=6,x 1x 2=1. ∴|AB |=x 2-x 12+y 2-y 12=2·x 1+x 22-4x 1x 2 =2·36-4=8.(2)证明 设直线L 的方程为x =ky +1, 由⎩⎪⎨⎪⎧x =ky +1,y 2=4x得y 2-4ky -4=0. ∴y 1+y 2=4k ,y 1y 2=-4, OA →=(x 1,y 1),OB →=(x 2,y 2). ∵OA →·OB →=x 1x 2+y 1y 2 =(ky 1+1)(ky 2+1)+y 1y 2 =k 2y 1y 2+k (y 1+y 2)+1+y 1y 2=-4k 2+4k 2+1-4=-3. ∴OA →·OB →是一个定值.。

解析几何试题及答案

解析几何试题及答案

《解析几何初步》检测试题命题人 周宗让一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12-C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21-C .2 D .2-4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4 D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是() A 相切B 直线过圆心C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是()A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( ) A.2 B .32C .12D.2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为() A .50x y --= B .50x y -+= C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值围是( )A.304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,, C.33⎡-⎢⎣⎦, D.203⎡⎤-⎢⎥⎣⎦,二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是。

大一下学期解析几何考试试卷及答案西南大学

大一下学期解析几何考试试卷及答案西南大学

一、填空题(共7题,2分/空,共20分)1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是______. 2.已知向量(1,1,1)a →=,)3,2,1(=→b ,(0,0,1)c →=,则→→→⨯⨯c b a )(=__(-2,-1,0)____.3.点)1,0,1(到直线⎩⎨⎧=-=03z x y x 的距离是4.点)2,0,1(到平面321x y z ++=的距离是5.曲线C:2201x y z z x ⎧+-=⎨=+⎩对xoy 坐标面的射影柱面是___2210x x y -+-=____,对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________.6.曲线C:220x yz ⎧=⎨=⎩绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________.7.椭球面12549222=++z y x 的体积是_____ ____________. 二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分) 1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里,,a b c 是3个非零实数.解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-,13(0,,)M M b c =-于是1M ,12M M ,13M M 所确定的平面方程是000x ay b z ac bc---=- 即 ()()0bc x a ac y b abz -+-+= .2.已知空间两条直线:1l 010x y z +=⎧⎨+=⎩,:2l 010x y z -=⎧⎨-=⎩.(1)证明1l 和2l 是异面直线;(2)求1l 和2l 间的距离;(3)求公垂线方程. 证明:(1) 1l 的标准方程是1110x y z +==-,1l 经过点1(0,0,1)M -,方向向量1{1,1,0}v =- 2l 的标准方程是2110x y z -==,2l 经过点2(0,0,2)M ,方向向量2{1,1,0}v =,于是 1212003(,,)1106110M M v v =-=0≠,所以1l 和2l 是异面直线。

解析几何历年高考真题试卷--带详细答案

解析几何历年高考真题试卷--带详细答案

解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。

大一期末解析几何考试题

大一期末解析几何考试题
3.已知空间四点A ,B ,C ,D ,求四面体ABCD的体积V和从顶点D所引出的高线长 。(10分)
4.已知矢量 的模为 且矢量 在矢量 与 的夹角平分线上。求矢量 的坐标。(10分)
2.试证明对于任意四个矢量 ,当 不共面时有
8.以下方程中,可以化为截距式的是()。
(A) (B)
(C) (D)
9.空间曲线L: 对 坐标面的射影柱面为()
(A) (B)
(C) (D)
10.柱面 的母线方向矢量为()。
(A) (B) (C) (D)
二、填空题(每小题1分,共10分)
1.方程组 所表示的图形是。
2.设 是两两垂直的右旋单位矢量组,则 。
4.已知 =1, =5, =3,则 为()。
(A)64(B)16(C)36(D)576
5.若三矢量 不共面,则与 相等的是()
(A) (B) (C) (D)
6.参数方程 ( 为参数)的普通方程是()
(A) (B)
(C) (D)
7.在空间直角坐标系下,方程 =0表示()。
(A) 轴与 轴(B)一定点(C) 轴(D)两个平面
一、单项选择题(每小题3分,共30分)
1.设 则()
(A) 共线(B) 共线
(C) 共线(D) 共线
2.对于二矢量 ,等式 成立的充要条件是()
(A) 与 垂直(B) 与 均为
(C) 与 中有一个为 (D) 与 共线
3.若点A(-2,1,3),B(-2,-1,-3),则点A与点B关于()对称。
(A) 面(B) 轴(C) 轴(D)原点
ቤተ መጻሕፍቲ ባይዱ3.设 不共线, 与 所成的角为 ,则< <。
4.已知点M 和N ,则 的单位矢量的坐标为。

解析几何单元测试题及答案

解析几何单元测试题及答案

解析几何单元测试题及答案一、选择题(每题3分,共15分)1. 椭圆的标准方程是哪一个?A. \((x-h)^2/a^2 + (y-k)^2/b^2 = 1\)B. \((x-h)^2/b^2 + (y-k)^2/a^2 = 1\)C. \((x-h)^2/a^2 + (y-k)^2/b^2 = 0\)D. \((x-h)^2/a^2 - (y-k)^2/b^2 = 1\)2. 点P(-1, 3)到直线3x - 4y + 5 = 0的距离是?A. 2B. 3C. 4D. 53. 抛物线 \(y^2 = 4x\) 的焦点坐标是?A. (1, 0)B. (0, 2)C. (1, 2)D. (2, 0)4. 直线 \(ax + by + c = 0\) 与 \(dx + ey + f = 0\) 平行的条件是?A. \(a/d = b/e\)B. \(a/d = b/e ≠ c/f\)C. \(a/d ≠ b/e\)D. \(a/d = b/e = c/f\)5. 圆心在原点,半径为5的圆的标准方程是?A. \(x^2 + y^2 = 25\)B. \((x-5)^2 + y^2 = 25\)C. \(x^2 + y^2 = 5\)D. \((x-5)^2 + y^2 = 5\)二、填空题(每题2分,共10分)6. 已知椭圆 \(\frac{x^2}{9} + \frac{y^2}{4} = 1\),其长轴的长度为________。

7. 点A(2, -1)关于直线 \(x-y-1=0\) 对称的点的坐标是________。

8. 直线 \(2x - 3y + 1 = 0\) 与 \(x + y - 2 = 0\) 的交点坐标是________。

9. 抛物线 \(x^2 = 6y\) 的准线方程是________。

10. 圆 \(x^2 + y^2 - 2x - 4y + 4 = 0\) 的圆心坐标是________。

解析几何单元测试题(解答)

解析几何单元测试题(解答)

解析几何单元测试题班级 学号 姓名 得分一.填空空题(14×'5=70分)1.已知θ∈R ,则直线013sin =+-y x θ的倾斜角的取值范围是)180,150[]30,0[︒︒⋃︒︒ 2.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为01=+-y x3.双曲线19422=-y x 的渐近线方程是x y 23±= 4.已知x 、y 满足⎪⎩⎪⎨⎧≥≥≤-+0,0033y x y x ,则z =12-+x y 的取值范围是z ≤-2或z ≥15.过直线x =2上一点M 向圆()()x y ++-=51122作切线,则M 到切点的最小距离为436.抛物线px y 22=与直线04=-+y ax 交于A 、B 两点,其中点A 的坐标为(1,2),设抛物线的焦点为F ,则|FA|+|FB|等于7 7.双曲线)0,(12222>=-b a b y a x 的左、右焦点分别为F 1、F 2,过焦点F 2且垂直于x 轴的弦为AB ,若︒=∠901B AF ,则双曲线的离心率为12+8.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线方程分别是x =0,y=x ,则直线BC 的方程是y =2x +59.若关于x320kx k -+=有且只有两个不同的实数根,则实数k 的取值范围是53,124⎛⎤ ⎥⎝⎦10.若椭圆)0(122>>=+b a by ax 和双曲线)0,(122>=-n m ny mx 有相同的焦点F 1、F 2,P 是两曲线的交点,则21PF PF ⋅的值是m a -11.直线143x y +=与椭圆221169x y +=相交于A 、B 两点,该椭圆上点P ,使得△APB 的面积等于3,这样的点P 共有 2个12.已知椭圆()+∈=-=+R q p n m qy p x n y m x ,,,112222与双曲线有共同的焦点F 1、F 2,P 是椭圆和双曲线的一个交点,则12PF PF ⋅= m-p13.在圆x 2+y 2=5x 内,过点(2325,)有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差d ∈]3161[,,那么n 的取值集合为{}7,6,5,414.已知c 是椭圆)(012222>>=+b a b y a x 的半焦距,则a c b +的取值范围是]2,1( 二.解答题(共60分)15.已知圆与两直线x+y+5=0,x+y -7=0都相切,且在直线3x -4y=0上截得弦长 为172,求圆的方程。

解析几何经典练习题(含答案)

解析几何经典练习题(含答案)

解析几何经典练习题(含答案)题目一:已知平面直角坐标系中两点A(-3,4)和B(5,-2),求直线AB的斜率和方程。

解答:直线AB的斜率可以使用斜率公式计算:斜率 = (y2 - y1) / (x2 - x1)其中,A的坐标为(x1, y1) = (-3, 4),B的坐标为(x2, y2) = (5, -2)。

斜率 = (-2 - 4) / (5 - (-3)) = -6 / 8 = -3/4直线AB的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。

将斜率和点A的坐标代入得到方程:y - 4 = (-3/4)(x + 3)化简得到直线AB的方程为:4y - 16 = -3x - 9整理得到标准形式方程:3x + 4y = 7答案:直线AB的斜率为 -3/4,方程为 3x + 4y = 7。

题目二:已知直线L的斜率为2,经过点A(3,-1),求直线L的方程。

解答:直线L的方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。

将斜率和点A的坐标代入得到方程:y - (-1) = 2(x - 3)化简得到直线L的方程为:y + 1 = 2x - 6整理得到标准形式方程:2x - y = 7答案:直线L的方程为 2x - y = 7。

题目三:已知直线L的方程为 3x + y = 5,求直线L的斜率和经过点A (2,-1)的方程。

解答:直线L的斜率可以从方程的标准形式中直接读取:3x + y = 5将方程转化成斜截式形式:y = -3x + 5可以看出直线L的斜率为-3。

经过点A(2,-1)的直线方程可以使用点斜式来表示:y - y1 = m(x - x1)其中,m为斜率,(x1, y1)为直线上的任意一点。

将斜率和点A的坐标代入得到方程:y - (-1) = -3(x - 2)化简得到通过点A的直线方程为:y + 1 = -3x + 6整理得到标准形式方程:3x + y = 5答案:直线L的斜率为-3,经过点A(2,-1)的方程为 3x + y = 5。

大学解析几何考试题及答案

大学解析几何考试题及答案

大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。

解析几何F答案

解析几何F答案

《解析几何》试题(F )答案一、填空题:(每空2分,共30分)1、{}36,45,48--;2、)3,3,3(321321321z z z y y y x x x ++++++; 3、4π或43π,{}2,1,1-或{}2,1,1--; 4、15-; 5、)1,1,2(-; 6、01844-=-=-z y x 或01241-=-=-z y x ; 7、3; 8、141arcsin ,)0,2,2(--; 9、2; 10、双叶双曲面;11、锥面; 12、椭圆抛物面; 13、旋转椭球面。

二、(本题16分)解:(1)矢量设A 在矢量B 方向上的射影为BB A A prj B ⋅=,……………………………………………………………………2 由于b a A 32+=,b a B -=,所以,22223),(cos 232))(32(b b a b a a b ab a b a b a B A -∠+=-+=-+=⋅,…..2 而),(cos 22))((22222b a b a b a ab b a b a b a B ∠-+=-+=--=,……….2 又由于1=a ,2=b ,3),(π=∠b a , 所以9-=⋅B A ,32=B ,.......................................................................2 解得33-=A prj B 。

. (2)(2)因为=⨯B A ),(sin 55)()32(b a b a a b b a b a ∠=⨯=-⨯+……………3 =353sin 10=π。

所以以A 和B 为邻边的平行四边形的面积为35。

(3)三、(本题8分)解:由于四面体的四个顶点为)0,0,0(A ,)6,0,6(B ,)0,3,4(C 及)3,1,2(-D ,则以点)0,0,0(A 为始点,分别以点)6,0,6(B ,)0,3,4(C 及)3,1,2(-D 为终点的矢量是.......1 {}6,0,6=AB . (1){}0,3,4=……………………………………………………………………..1 {}3,1,2-=…………………………………………………………………….1 则以点)0,0,0(A ,)6,0,6(B ,)0,3,4(C 及)3,1,2(-D 为顶点的四面体的体积是),,(61V =,…..………………………………………………………2 即131203460661=-=V 。

解析几何试卷及答案

解析几何试卷及答案

《解析几何》期末试卷及答案一、 填空(每题3分,共30分)11=, 2=⋅,则摄影= 2 。

2.已知不共线三点)5,2,3(),5,1,2(),3,2,1(--C B A 则三角形ABC 的 BC 边上的高为 8 。

3.,= 时+平分,夹角。

4.自坐标原点指向平面:035632=-++z y x 的单位法矢量为 ⎭⎬⎫⎩⎨⎧32,31,92 。

5.将双曲线⎪⎩⎪⎨⎧==-012222x c z b y 绕虚轴旋转的旋转曲面方程为 122222=-+c z b y x 。

6.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 与X 轴重合,则系数满足的条件为⎪⎪⎩⎪⎪⎨⎧====00,02211221121A C A C C B C B D D 。

7.空间曲线⎩⎨⎧=+=-00422z x z y 的参数方程为 ⎪⎩⎪⎨⎧==-=242t z t y t x 或⎪⎩⎪⎨⎧=-=-=242t z t y tx 。

8.直纹曲面0222=-+z y x 的直母线族方程为 ⎩⎨⎧-=-=+)()()(y w y x u uyz x w ,或⎩⎨⎧=--=+sy y x t y t z x s )()()( 。

9.线心型二次曲线0),(=y x F 的渐近线方程为 0131211=++a y a x a 。

10.二次曲线027522=+-++y x y xy x 在原点的切线为 021=+-y x 。

二、选择题(每题3分,共15分)1. 二次曲线0126622=-++++y x y xy x 的图象为( B )A 椭圆型B 双曲型C 无心型D 线心型 2. 点O 到平面0522:=++-z y x π的距离为( D )A 5B 95C 56D 353. 设,,a b c 满足关系0a b c ++=,则c a b b c a ⨯+⨯+⨯=( C )A 、0B 、0C 、3()a b ⨯D 、b c ⨯ 4. 若直线11112x y z λ-+-==,与11111x y z++==相交,则必有( B )。

大学解析几何试卷及答案(一)

大学解析几何试卷及答案(一)

《空间解析几何》期末考试试卷(A)考试形式:闭卷考试 考试时间:120分钟班号 学号 姓名 得分1 下列等式中正确的是 ( ) A a (b c )= (a b )c B (a ⨯b )c =a (b ⨯c ) C (a b )2 =a 2b 2 D a ⨯b =c ⨯b ,b ≠0,则a =c2 已知向量a 与b 的夹角为23π, 且||3a =, ||4b =, 则2()a b +为 ( )A 14B 13C 12D 11 3 点(1,2,3)M -和平面:5340x y z π-++=间的离差为 ( )A1δ=- B 1δ= C 0δ= D 12δ=-4 直线320:0x y z l x y z +--=⎧⎨-+=⎩与平面:230x y z π+--=的交点和夹角分别为 ( )A (1,0,1)--,3π B (1,0,1)--, 6π C (1,0,1), 3π D (1,0,1)-, 6π 5 方程2350x my z ++-=与6620lx y z --+=表示二平行平面,则,l m 为 ( ) A 4,3l m =-= B 3,3l m ==- C 4,3l m ==- D 3,4l m =-= 6 二次曲线223426250x xy y x y ++--+=属于 ( ) A 抛物型 B 椭圆型 C 双曲型 D 不能确定.二 填空题(每空3分,共18分)1 中心在点(3,1,1)-且通过点(2,3,5)-的球面方程为 .2 在直角坐标系下, 通过点(1,5,3)--且与平面63520x y z --+=垂直的直线方程为 .3 与平面2340x y z -+-=平行, 且在y 轴上截距等于3-的平面方程为 .4 曲线⎩⎨⎧=++=+222222:a z y x axy x L 在xOz 面上的投影曲线方程为 . 5 二次曲线222430x xy y x y -++--=上过点()2,1的切线方程是 .6 设一条二次曲线通过两条二次曲线222610x xy y x +-+-=与2220x y x y ---=的交点,并且还通过点(2,2)-,这条二次曲线的方程为 .三 试用两种方法求过点)2,0,0(0-M ,与平面1:32180x y z ∏-+-=平行,且与直线12341:1zy x l =--=-相交的直线l 的方程. (10分)四 在空间直角坐标系中,直线1l 和2l 的方程分别为1l :11142412x t y t z t=-+⎧⎪=-⎨⎪=--⎩和2l :222545355x t y t z t=-+⎧⎪=-⎨⎪=-⎩(1)求过1l 且平行于2l 的平面方程;(2)求1l 和2l 的距离;(3)求1l 和2l 的公垂线方程.(15分) 五 求直线01xy zβα-==绕z 轴旋转所得旋转曲面的方程,并就α与β可能的值讨论曲面类型.(15分)六 将二次曲线22230x xy y x y ++++=化成标准型,并作出它的图形.(14分)七 求与两直线161:321x y z l --==和284:322x y z l -+==-都相交,且与平面:2350x y ∏+-=平行的直线的轨迹. (10分)《空间解析几何》期末考试试卷答案(A)考试形式:闭卷考试 考试时间:120分钟班号 学号 姓名 得分1 下列等式中正确的是 ( B ) A a (b c )= (a b )c B (a ⨯b )c =a (b ⨯c ) C (a b )2 =a 2b 2 D a ⨯b =c ⨯b ,b ≠0,则a =c2 已知向量a 与b 的夹角为23π, 且||3a =, ||4b =, 则2()a b +为 ( B )A 14B 13C 12D 11 3 点(1,2,3)M -和平面:5340x y z π-++=间的离差为 ( C )A1δ=- B 1δ= C 0δ= D 12δ=-4 直线320:0x y z l x y z +--=⎧⎨-+=⎩与平面:230x y z π+--=的交点和夹角分别为 ( D )A (1,0,1)--,3π B (1,0,1)--, 6π C (1,0,1), 3π D (1,0,1)-, 6π 5 方程2350x my z ++-=与6620lx y z --+=表示二平行平面,则,l m 为 ( A ) A 4,3l m =-= B 3,3l m ==- C 4,3l m ==- D 3,4l m =-= 6 二次曲线223426250x xy y x y ++--+=属于 ( B ) A 抛物型 B 椭圆型 C 双曲型 D 不能确定.二 填空题(每空3分,共18分)1 中心在点(3,1,1)-且通过点(2,3,5)-的球面方程为222(3)(1)(1)21x y z -+++-=.2 通过点(1,5,3)--且与平面63520x y z --+=垂直的直线方程为153635x y z -++==--. 3 与平面2340x y z -+-=平行, 且在y 轴上截距等于3-的平面方程为2360x y z -+-=.4 曲线⎩⎨⎧=++=+222222:az y x ax y x L 在xOz 面上的投影曲线方程为220:0z ax a L y ⎧+-=⎨=⎩.5 二次曲线222430x xy y x y -++--=上过点()2,1的切线方程是5460x y --=.6 设一条二次曲线通过两条二次曲线222610x xy y x +-+-=与2220x y x y ---=的交点,并且还通过点(2,2)-,这条二次曲线的方程为2224527340x xy y x y -+--+=.三 试用两种方法求过点)2,0,0(0-M ,与平面1:32180x y z ∏-+-=平行,且与直线12341:1zy x l =--=-相交的直线l 的方程. (10分)解法一 先求l 的一个方向向量),,(Z Y X υ。

解析几何试卷及答案整理

解析几何试卷及答案整理

《解析几何》期末试卷及答案一、 填空 (每题3分,共30分) 1 .若 a =1, a 6 = 2 ,则摄影 a b= _______ 2 ___________________2 •已知不共线三点A(1,2,3),B(2,1,_5),C(3,2,_5)则三角形ABC 的 BC 边上的高为 __8 ______ 。

3. a , b 满足 ____ a = b ____________ , 时a+ b 平分 a , b 夹角。

4. 自坐标原点指向平面:2x • 3y • 6z — 35 =0的单位法矢量为以 x+z) =t(_y) 、t(x _ y) = sy5. 将双曲线 r 2 2 y z1丿尹一 C 2 * T 绕虚轴旋转的旋转曲面方程为 I x 0x 2y 2b 22z_1一 2 - * 1C6. 直线丿Ax+B q y+C q Z + D d =0 ;x+B :;+C :z + D 2=0与X 轴重合,则系数满足的条件为 D i 0G ¥C2C1 A19 A2=0 =0=D 2 = 0, 7.空间曲线「一的参数方程为 x + z =0X - -t 4y = 2t 或彳 y = -2t z 二 t 2x - -t 4oZ =t 28 .直纹曲面x 2 • y 2 -z 2=0的直母线族方程为"w(x + z) = uyU(x — y) = w(—y),或 ______2 12 9’三、计算题(6X 5=30分)1.已知 a J 3,2,11, 20,-12,'6,5,0;①试证a, b , c 共面 ②把c 分解为a , b 的线性组合3 2= (a,b,c) = O -1 6 5而a , b 不共线,所以c 可以分解为a , b 的线性组合c = 2a-b即(x -1) -2(y 2) (x -1)=0 , 整理得x -2y - 6 =02. 3. 4. 5. A 椭圆型B 双曲型 C 无心型D 线心型 点O 到平面二:2x — y 2z 0的距离为(D ) 5 A 5 B5C 9设a, b,c 满足关系a b c A 、b)若直线亍二次曲线 A 、 1 :1F(x, y)上相交,贝U 必有(1-2xy y 2 1:2-1 =0的渐近方向为(、1 : -1 、1 : -22.求与平面x y ■ z - 5 =0垂直且通过直线l :--1 y2 z-1 23的平面二的方程x -1 y 2 z -1解平面兀的方程为1 1 1=0 ,2 =24 +6 —30 =0,二 a , b , c 共面将点 p 6,2,8 代入得 w:u =1: 2 , s = 0 所以,过点p 6,2,8的两条直母线方程为——y + — —2=03 4 空亠z_1=0 k 3 2 2 求通过点p 4,0, -1且与x 轴平行的直线的参数式、对称式、一般式及摄影式方程所求直线的参数式方程为对称式方程为口y =0 z = -1=0 与 12 : x 2 2xy • y 2- x • y = 0 的公共直径对于 h : x 2 _xy _ y 2 _x _ y 二 0 , I 2 --13. 求过单叶双曲面-丫92 …2 2--1上点p 6,2,8的两条直母线方程 4 162 2单叶双曲面—乂9 4 2-1上的两族直母线方程为 16 x zy w( ) = u(1 )3 4u (△- Z) =w(1 --) x z y s(:+T=t(1—彳) 一 x z 、 ” y 、 t(— -—) = s(11 -- =02x -- =0.3 44.般式方程为*y = 0 Z - -5.1 1 °x——y__=0 1 342 2 解出中心坐标为(丄,-3)--x-y-—=0 5 5.2 2求两条二次曲线h : x2 - xy - y2 - x - y5-一丄0为中心型4x =3t 72.证明直线 x -1z -5 -3与直线 y =2t2共面并求它们所在的平面的方程而对于 12 : x 2 2xy y 2 - x y = 0, 12专,为无心型,它的 2渐近方向为X :丫二-a 12 : a 11因此公共直径方程为 -1=0 即 5x 5y 2 = 0四、证明题(2X 5=10分)1.设L 、M 、N 分别是△ ABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL BM CN 可以构成一个三角形•1 1 — 证明 因为 AL (AB AC), BM (BA BC),CN =2 2 1-(CA CB)2所以AL BM CN 1 ■ I1 ' ’ 1 _ ・(AB AC) (BA BC) (CA CB) 因此ALBMCN 可 以构成一个三角形.证明因为■:二x -1 y 2 -3z _5=0, 整理得 2x -18y -15Z-37 =0五、利用坐标变换化简二次曲线 x 2 - xy ■ y 2■ 2x -4y = 0 并作图(15 分)解因为I 237 所以曲线为中心二次曲线,解方程组41x y 2 1F (x, y) x y -2 = 0F 1(x, y)二1=0…2或者写成标准形式22=1得中心的坐标为x=0,y=2,取(0,2)为新的原点,作移轴 原方程变为 x'2 -x' y'- y'2 -4 = 0 再转轴消去x'y'项'设旋转角为「则就一需=01 -tan2 :2ta n _:s 从而可取「4,所以得转轴公式为1x "2 3宀"这是一个椭圆,它的图形如图所示9. ________________________________________ 线心型二次曲线F(x,y)=0的渐近线方程为 __________________ a 11x a 12y a 1^ 0110. ______________________________________________ 二次曲线5x 27xy y^x 2^0在原点的切线为 _______________________________________________________= 36 -24 • 48 -36 -48 • 24 =0,所以两直线共面而它们所在的平面方程为(x"-y")(x" y")经转轴后曲线的方程化简为最简形式‘X = x' y =--x ^0 _________________________________________________2二、选择题(每题3分,共15分)1. 二次曲线x2 6xy y2 6x 2y-^0的图象为(B )。

解析几何考试真题及答案

解析几何考试真题及答案

解析几何考试真题及答案解析几何作为高中数学必修课程的一部分,是一门综合性较强的学科,也是学生评价高考成绩的重要因素。

为帮助学生提高解析几何的应试能力,以下将解析几何考试真题进行详细解析。

第一题:已知直线L与椭圆C相交于两个不同点A和B,直线L的斜率为k,且过椭圆C的中心。

求证:∠OAB=90°。

解析:这是一道典型的几何证明题。

首先,由于直线L过椭圆C的中心,所以O点是直线L的一个交点,也即O在直线L上。

而直线L 的斜率为k,说明其与x轴和y轴分别成k和1/k的倾斜角。

椭圆C的中心与x轴和y轴的交点分别记为A'和B',则OA'与OB'互相垂直。

因此,要证明∠OAB=90°,只需证明斜率为k的直线与圆心O的连线与斜率为1/k的直线互相垂直即可。

而根据直线的斜率定义,斜率为k 的直线与圆心O的连线的斜率也为k,故这两条线互相垂直。

证毕。

第二题:已知平面上的正方形ABCD的边长为a,点E为BC的中点,F为CD上的一点,且垂直于CD。

证明:EF与AD垂直。

解析:这道题也是一道几何证明题,需要运用正方形的性质进行推理。

首先,连接EF和AD并延长至交点M处。

由正方形的定义可知,DE与BC互相平行且等长。

由于E为BC的中点,所以AE与ED互相垂直,并且AE的长度为BD的一半,即AE=a/2。

由于DF垂直于CD,所以角ADF为直角。

同理可得,角CFE也为直角。

因此,三角形ADF与三角形CFE都为直角三角形。

我们可以通过计算三角形ADF和三角形CFE的斜率来判断EF与AD是否垂直。

由于ADF为直角三角形,所以斜率AD=(-b/a)。

而CFE也为直角三角形,因此斜率EF=(a/(a/2))=-2。

由于AD与EF的斜率互为负倒数,即AD和EF互相垂直。

证毕。

第三题:已知曲线C的方程为y=x^2-2x+1。

求证:曲线C的对称轴为x=1。

解析:这是一道求解对称轴的几何题目。

大学考试解析几何试题答案

大学考试解析几何试题答案

大学考试解析几何试题答案一、选择题1. 若一条直线过点A(2,3),且与直线2x-y=0垂直,求该直线的方程。

解析:已知直线2x-y=0的斜率为2,与其垂直的直线斜率为-1/2(因为垂直直线的斜率互为负倒数)。

设所求直线方程为y=kx+b,代入点A(2,3)和斜率-1/2,得到方程为y=-1/2x+7/2。

2. 圆的一般方程为x^2+y^2+Dx+Ey+F=0,若该圆过点(1,2),且其圆心在直线2x-y=0上,求D、E、F的值。

解析:将点(1,2)代入圆的一般方程得1^2+2^2+D+2E+F=0。

又因为圆心(-D/2, -E/2)在直线2x-y=0上,代入得-D/2*2-E/2=0,解得D=E。

将D=E代入前面的方程,解得D=-6,E=-6,F=-7。

所以圆的方程为x^2+y^2-6x-6y-7=0。

二、填空题1. 已知三角形ABC的三个顶点坐标分别为A(1,2),B(4,5),C(7,3),求三角形ABC的面积。

解析:首先计算三条边的长度,|AB|=√[(4-1)^2+(5-2)^2]=√10,|BC|=√[(7-4)^2+(3-5)^2]=5,|AC|=√[(7-1)^2+(3-2)^2]=2√5。

然后利用海伦公式计算面积,p=(|AB|+|BC|+|AC|)/2=(√10+5+2√5)/2,面积S=√[p(p-|AB|)(p-|BC|)(p-|AC|)]=√[(9+2√10)(4+√10)(4+2√5)(4+√5)]。

2. 已知椭圆的长轴为2a,短轴为2b,且a>b,若椭圆的周长为P,求P的近似值。

解析:椭圆的周长没有精确公式,但可以用Ramanujan的近似公式计算:P≈π[3(a+b)-√{(3a-b)(a+3b)}]。

这个公式在大多数情况下都能给出较为精确的结果。

三、解答题1. 已知锥体的高为h,底面为正方形,边长为a,求锥体的侧面积。

解析:锥体的侧面积可以通过底面周长与斜高之积的一半来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南大学 数学与统计学院
2012级
一、填空题(共7题,2分/空,共20分)
1.四点(0,0,0)O ,(1,0,0)A ,(0,1,1)B ,(0,0,1)C 组成的四面体的体积是___1
6___. 2.已知向量(1,1,1)a →
=,)3,2,1(=→b ,(0,0,1)c →=,则→
→→⨯⨯c b a )(=__(-2,-1,0)____.
3.点)1,0,1(到直线⎩⎨⎧=-=03z x y
x 的距离是
4.点)2,0,1(到平面321x y z ++=的距离是
5.曲线C:220
1
x y z z x ⎧+-=⎨=+⎩对xoy 坐标面的射影柱面是___2210x x y -+-=____,
对yoz 坐标面的射影柱面是__22(1)0z y z -+-=_________,对xoz 坐标面的射影柱面是____10z x --=__________.
6.曲线C:220
x y
z ⎧=⎨=⎩绕x 轴旋转后产生的曲面方程是__4224()x y z =+_____,曲线
C 绕y 轴旋转后产生的曲面方程是___222x z y +=_______________.
7.椭球面125
492
22=++z y x 的体积是_____40π____________.
二、计算题(共4题,第1题10分,第2题15分,第3题20分, 第4题10分,共55分)
1. 过点(,,)P a b c 作3个坐标平面的射影点,求过这3个射影点的平面方程.这里
,,a b c 是3个非零实数.
解: 设点(,,)P a b c 在平面0z =上的射影点为1(,,0)M a b ,在平面0x =上的射影点为2(0,,)M a b ,在平面0y =上的射影点为3(,0,)M a c ,则12(,0,)M M a c =-,
13(0,,)M M b c =-
于是1M ,12M M ,13M M 所确定的平面方程是000x a
y b z a
c b
c
---=- 即 ()()0bc x a ac y b abz -+-+= .
2.已知空间两条直线:1l 010x y z +=⎧⎨+=⎩,:2
l 010x y z -=⎧⎨-=⎩
. (1)证明1l 和2l 是异面直线;(2)求1l 和2l 间的距离;(3)求公垂线方程. 证明:(1) 1l 的标准方程是
1
110
x y z +==
-,1l 经过点1(0,0,1)M -,方向向量1{1,1,0}v =-
2l 的标准方程是
2
110
x y z -==
,2l 经过点2(0,0,2)M ,方向向量2{1,1,0}v =,于是
1212003
(,,)1106110M M v v =-=0≠,所以1l 和2l 是异面直线。

(2) 由于12(0,0,2)v v ⨯=,122v v ⨯=
1l 和2l 间的距离121212
(,,)
6
32
M M v v d v v =
=
=⨯ (3)公垂线方程是1110000
221100002x y z x y z ⎧+⎪
-=⎪⎪⎪⎨-⎪⎪=⎪
⎪⎩,即
0x y x y +=⎧⎨
-=⎩。

3.求曲线221x y
z ⎧=⎨=⎩
绕x 轴旋转产生的曲面方面.
解:设1111(,,)M x y z 是母线221
x y
z ⎧=⎨=⎩上任意一点,则过1111(,,)M x y z 的纬圆方程是
222222
11110x y z x y z x x ⎧++=++⎨
-=⎩
,(1) 又211
121
x y z ⎧=⎨=⎩ ,(2) 由(1)(2)消去111,,x y z 得到2222220x y z --+=.
4.已知单叶双曲面
222
14925
x y z +-=,)0,0,2(P 为腰椭圆上的点, (1)求经过点P 两条直母线方程及其夹角;
(2)求这两条直母线所在的平面π的方程及平面π与腰椭圆所在平面的夹角.
解:(1)设单叶双曲面两直母线方程是()(1)253
()(1)253x z
y w u x z y u w ⎧+=+⎪⎪⎨⎪-=-⎪⎩与
()(1)253
()(1)25
3x z
y t v x z y v t ⎧+=-⎪⎪⎨
⎪-=+⎪⎩ 把点)0,0,2(P 分别代入上面两方程组,求得,w u t v ==代入直母线方程,
得到过点)0,0,2(P 的两条直母线12531253x z y x z y ⎧+=+⎪⎪⎨⎪-=-⎪⎩与1253
125
3x z
y x z y ⎧+=-⎪⎪⎨⎪-=+⎪⎩,即
15106300
15106300x y z x y z -+-=⎧⎨
+--=⎩
与 15106300
15106300
x y z x y z ++-=⎧⎨
---=⎩ 两直母线的方向向量可分别取1(0,3,5)v =和2(0,3,5)v =-,设两直母线的夹角是θ,则有12128cos 17v v v v θ⋅-=
=,8
arccos 17
θπ=-.
(2)两直母线所在平面π的方程是
2
03
50035
x y z
-=-,即2x = 显然平面π与腰椭圆所在的平面的夹角是0.
四、证明题(共2题,第一题10分,第二题15分,共25分)
1.求证:曲线23
222
()(
,,)111t t t r t t t t t t t →
=++++++在一个球面上,这里的(,)t ∈-∞∞.
证明:设()(,,)r t x y z =,则有222x y z y ++=,即22211
()24
x y z +-+=
所以曲线23222()(,,)111t t t r t t t t t t t →
=++++++在球心为1(0,,0)
2,半径为1
2
的球面上。

2.证明:(1)双曲抛物面的同族的所有直母线都平行于同一平面:
(2)双曲抛物面的同族的两条直母线异面.
证明: (1) 双曲抛物面的u 族直母线中任一条直母线都平行于平面0=+b
y
a x , v 族直母线中任一条直母线都平行于平面0=-b
y
a x ,
因而结论成立.---------5分
(2)不妨取u 族直母线来证明,任取u 族直母线中两条直母线
1l :⎪⎩⎪⎨⎧=-=+z b y a x u u b y a x )(211①和 2l :⎪⎩⎪⎨⎧=-=+z b y a x u u b y
a x )(222

其中21u u ≠.由于①的第一个方程表示的平面平行于②的第一个方程表示的平面,即1l 和2l 在两个平行平面上,因而1l 和2l 不会相交.
又由于直线1l 的方向向量为)2,1,1()1,,()0,1,1(1111ab u a b b u a u b a v --=--⨯=
直线2l 的方向向量为)2,1,1()1,,()0,1,1(2222ab
u
a b b u a u b a v --=--⨯=
由于21u u ,因此1l 和2l 不会平行,从而证明了双曲抛物面的同族的两条直母线异面.。

相关文档
最新文档