第八章第4讲_离散系统频率响应
离散时间系统的频率响应特性

值附近愈尖锐;
• 若
极
点
p
落
i
在
单
位
圆
上
,
B
=i 0,
则
频
率
响
应
的
峰
值
趋于无穷大。
• 零 点 的 作 用 与 极 点 相 反 。
X
8
第
小结
页
1. 系统的频响特性 HejHzzejωHejωejω Hej:幅~ω频特性,输出与输入序列的幅度之比
统的频率响应特性: :相频特性,输出对输入序列的相移
10 离散时间系统的
频率响应特性
二系.统频 对响不特同性频的率几的何输确入定,法产生不同的加j权,这就是系统的频率响应特性。
He Hz He e 通过本征函数透视系统的频响特性
jω
ze 离散系统(数字滤波器)的分类
jω jω
He ~ω :幅频特性 因为 是周期为 的周期函数,所以系统的频响
输出对输入序列的相移 体现了系统对信号的处理功能。
正弦稳态(正弦序列作用下系统的稳态响应) 由系统函数得到频响特性
•H e即 h (n )的 DTF T 离:散相系 频统特频性响,特输j性出ω 的对定输义入序列的相移
特性 为周期为 的周期函数。
为输入序列的加权,
二输.出• 频 与e 响输j特入ω 性序为 的列几的何幅确度定之法比 周期H 函 ejω为 数周 ,期 所函 以 2 π。 数
ω:~ω相频特性,输出对输入序列的相移
2.系统的频率响应就是系统函数在单位圆上的动态,
课件:离散时间系统的频率响应

则系统的幅频特性为
M
ej z j
H (e j )
k
j 1 N
ej pi
H (e j ) e j
i 1
ej pi Bieji 相频特性为
M
Aj
H (ej )
k
j1 N
Bi
i 1
M
N
() j i
j 1
i 1
信号与系统
§7.9 离散时间系统的频率响应
北京航空航天大学电子信息学院 2021/7/20
一、离散时间系统频响的定义
离散时间系统的频率响应: h(n) 的傅里叶变换 条件:稳定系统
H ej F h n H z zej
从系统激励与相应的零状态响应的傅里叶变换关系来看,
H
e j
Y
z
Y zej
e j
X z zej
X ej
H ej H ej ej
幅频特性: H ej ~
相频特性: ~
二、离散时间系统频响的物理意义
观察复指数序列 xn e u j0n n
X
z
z
z e j0
则系统响应的z变换为
Y
z
z z e j0
H z
由于系统为因果稳定系统, 极点均位于单位圆内,不会
与X(z) 的极点 ej0相重合。
Y
z
az z ej0
M
Am z
m1 z zm
其中常数 a H e j0 ,则稳态响应为
二、离散时间系统频响的物理意义
y n H ej0 ej0nu n
序列 e u j0n n经过一离散时间系统H(ejω) ,所得稳态响
应依然是 e u j0n n,但受到该系统频率响应 H e j0的加
第八章系统频率响应及其仿真

➢ 利用封闭的Nyquist轨迹可进行系统稳定性的分析,即Nyq uist稳定判据。
➢ Nyquist图不便于分析频率特性中某个环节对频率特性的 影响。
第八章 系统频率响应及其仿真
8.1 频率特性的一般概念 8.1.2 Nyquist图与Bode图
Bode图
把频率特性函数G (j)的角频率和幅频特性都取对数,则称
幅频特性: A( ) X o ( )
➢
相频特性:
X i ( )
() o () i ()
第八章 系统频率响应及其仿真
8.1 频率特性的一般概念
8.1.2 Nyquist图与Bode图
Nyquist图
频率特性G(j)是频率的复变函数,可以在复平面上用一个 矢量来表示。该矢量的幅值为 G( j) ,相角为G( j) 。当 从0变化时,G(j)的矢端轨迹被称之为频率特性的极坐
相位滞后校正设计步骤 a) 根据稳态误差计算Kc; b) 根据Kc下原系统开环幅、相频曲线,寻找满足要求相位裕度
c (50 ~ 10 0 ) 所对应的频率作为幅值穿越频率c; c) 根据c确定校正环节的转折频率:Gc ( jc )G( jc ) 1 KcG( jc )
即校正环节最大转折频率 为幅值穿越频率的1/10
sys2=zpk([ ],[0 -10 -2],600);
%建立模型2,K=30
figure(1),bode(sys1)
%绘Bode图1
title('System Bode Charts with K=5'),grid
figure(2),bode(sys2)
%绘Bode图2
title('System Bode Charts with K=30'),grid
第8章 频率响应分析

第八章频率响应分析8.1 概述1)计算震荡激励的响应2) 激励在频域中显式定义,在每频率点作用力已知3) 计算的响应通常包括节点位移、单元力和应力4) 计算的响应为复数、由大小、相位定义5) 频率响应分析分为直接法、模态法。
8.2 直接频率响应法1)动力学方程2)在MATi卡中PARAM,G和GE 不形成阻尼矩阵、而形成复刚度矩阵其中,与瞬态响应对应有8.3 模态频率响应法1)转化为模态坐标中,求解解耦的单自由度系统得2)求解该方程比直接法更快3)如无阻尼或仅有模态阻尼(TABDMP1定义),方程才能解耦;否则,如果出现非模态阻尼(VISC,DAMP定义),使用低效率得直接频响法(对小的模态坐标矩阵)。
8.4 激励的确定1)定义为频率的函数2)MSC/NASTRAN中的几种定义• RLOAD1: 用实部和虚部定义频变载荷• RLOAD2 :用大小和相位定义频变载荷• LSEQ :用静态载荷产生动态载荷3)用 DLOAD数据集卡组合频变力4)RLOADi卡由DLOAD 情况控制卡选择8.4.1 RLOAD1卡片1) 定义如下频变载荷2) 格式3) 由DLOAD=SID.选取8.4.2 RLOAD2卡片1) 定义如下频变载荷2)格式3) 由DLOAD=SID.选取8.4.3 FREQ卡片1) 选择频率步长大小2) FREQ卡片定义离散激励频率3) FREQ1 定义f START, 频率增量、增量数目4)FREQ2定义f START, f end对数间隔数5)FREQ3 定义F1, F2和在二者间线性或对数插值数目(基于朝两端点或中心)6)FREQ4 指定一个共振频率、一个等效的间隔频率数(在激励频率内)7)FREQ5 指定一个频率范围和频率范围内的固有频率的分数8)FREQ3, FREQ4, FREQ5 仅对模态法有效9)FREQi 数据卡由FREQUENCY =SID情况控制卡选取10)所有FREQi数据卡用相同的ID11)FREQ, FREQ1, FREQ2, FREQ3, FREQ4和FREQ5 卡可以在同一分析中使用8.4.3.1 FREQ卡1) 定义频率响应分析中的频率集2) 格式3) 由情况控制卡FREQUENCY = SID.选取1) 定义频率响应问题中频率集:通过开始频率、频率增量、增量数目2) 格式3) 由情况控制卡FREQUENCY = SID选取4) f i= F1 + DF * (i - 1)5) 单位:cycles per unit time.8.4.3.3 FREQ21) 定义频率响应问题中频率集,通过开始频率、结束频率、对数增量数目2) 格式3) 由情况控制卡FREQUENCY = SID选取4) 单位:cycles per unit time5)1) 定义频率响应问题中频率集,通过指定两模态频率间的激励频率数2) 格式3) 仅用于模态频率响应4) 由情况控制卡FREQUENCY = SID选取5) 对各种CLUSTER其中,6)) 例子(F1=10,F2=20,NEF=11,TYPE=LINEAR)8.3.3.5 FREQ4卡1) 定义频率响应问题中频率集,通过指定范围内每阶固有频率附近激励频率数2) 格式3) 仅用于模态频率响应4) 由情况控制卡FREQUENCY = SID选取8.3.3.6 FREQ5卡1) 定义频率响应问题中频率集,通过指定频率范围及该范围内的位置2) 格式3) 如f N1为F1和F2间的固有频率,则4) 仅用于模态频率响应5) 由情况控制卡FREQUENCY = SID选8.5 模态频率响应与直接频率响应比较注:“X”表可用8.6 SORT1和SORT2输出1) SORT1输出每一激励频率点2) SORT2输出给定节点、单元的结果8.7 频率响应求解控制8.7.1 执行控制8.7.2 情况控制8.7.3 数据模型集8.7.4 输出控制1)结点结果输出2)单元输出结果3)其它8.8 频变弹簧和阻尼器(1) 弹簧刚度和阻尼器阻尼系数为频变函数(2) CBUSH定义一般弹簧、阻尼连接(3) PBUSH定义名义上的弹簧、阻尼连接(4) PBUSHT定义变频弹簧、阻尼器的值8.8.1 CBUSH 卡片1)定义广义弹簧-阻尼器结构单元,可为非线性或频变2)格式8.8.2 PBUSH卡片1)定义广义弹簧-阻尼器结构单元性质2)格式8.8.3 PBUSHT卡片1)定义广义弹簧-阻尼器的频变或力变性质2)格式8.8.4 例子SAMPLE USING CBUSH ELEMENT$$ cbush1.dat$TIME 10SOL 108CENDTITLE = VERIFICATION PROBLEM, FREQ. DEP. IMPEDANCE BUSHVER SUBTITLE = SINGLE DOF, CRITICAL DAMPING, 3 EXCITATION FREQUENCIES ECHO = BOTHSPC = 1002DLOAD = 1DISP = ALLFREQ = 10ELFO = ALLBEGIN BULK$ CONVENTIONAL INPUT FOR MOUNTGRDSET,, , , , , ,23456 $ PS$ TIE DOWN EVERYTHING BUT THE 1 DOFGRID, 11, , 0., 0., 0.0 $ GROUND=, 12, =, =, =, , $ ISOLATED DOFSPC1, 1002 123456 11 $ GROUNDCONM2, 12, 12, , 1.0 $ THE ISOLATED MASS$$ EID PID GA GB GO/X1 X2 X3 CID$CBUSH 1000 2000 11 12 0$PBUSH 2000 K 1.0B 0.0$PBUSHT 2000 K 2001B 2002$TABLED1, 2001 $ STIFFNESS TABLE, 0.9 0.81, 1.0, 1.0, 1.1, 1.21 ENDTTABLED1 2002 $ DAMPING TABLE, 0.9 .2864789, 1.0,.318309, 1.1,.3501409 ENDT$CONVENTIONAL INPUT FOR FREQUENCY RESPONSEPARAM, WTMASS, .0253303 $ 1/(2*PI)**2. GIVES FN=1.0DAREA, 1, 12, 1, 2. $CAUSES UNIT DEFLECTIONFREQ, 10, 0.9, 1.0, 1.1 $ BRACKET THE NATURAL FREQUENCYRLOAD1, 1, 1, , , 3TABLED1,3 $ TABLE FOR FORCE VS. FREQUENCY, 0.9, 0.81, 1., 1., 1.1, 1.21,ENDT $ P = KENDDATA例2,直接频响法激励为作用在角点的单位载荷,频率范围在20~1000间,频率步为20HZ, 结构阻尼g=0.06.INPUT FILE FOR PROBLEM #5ID SEMINAR, PROB5SOL108TIME30CENDTITLE = FREQUENCY RESPONSE DUE TO UNIT FORCE AT TIPECHO = UNSORTEDSPC = 1SET 111 = 11, 33, 55DISPLACEMENT(SORT2, PHASE) = 111SUBCASE 1DLOAD = 500FREQUENCY = 100$OUTPUT (XYPLOT)$XTGRID= YESYTGRID= YESXBGRID= YESYBGRID= YESYTLOG= YESYBLOG= NOXTITLE= FREQUENCY (HZ)YTTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, MAGNITUDE YBTITLE= DISPLACEMENT RESPONSE AT LOADED CORNER, PHASE XYPLOT DISP RESPONSE / 11 (T3RM, T3IP)YTTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, MAGNITUDEYBTITLE= DISPLACEMENT RESPONSE AT TIP CENTER, PHASEXYPLOT DISP RESPONSE / 33 (T3RM, T3IP)YTTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, MAGNITUDE YBTITLE= DISPLACEMENT RESPONSE AT OPPOSITE CORNER, PHASEXYPLOT DISP RESPONSE / 55 (T3RM, T3IP)$BEGIN BULKparam,post,0PARAM, COUPMASS, 1PARAM, WTMASS, 0.00259$$ PLATE MODEL DESCRIBED IN NORMAL MODES EXAMPLE$INCLUDE ’plate.bdf’$$ SPECIFY STRUCTURAL DAMPING$PARAM, G, 0.06$$ APPLY UNIT FORCE AT TIP POINT$RLOAD2, 500, 600, , ,310$DAREA, 600, 11, 3, 1.0$TABLED1, 310,, 0., 1., 1000., 1., ENDT$$ SPECIFY FREQUENCY STEPS$FREQ1, 100, 20., 20., 49$ENDDATA例3,模态频响法激励为振幅为0.1 psi的分布载荷与作用在角点的1.0 lb集中力,相位为45度。
§ 离散时间系统的频率响应特性

通过几何方法可以大致估计
出频率响应的形状,如图(d)
所示。
o
此例给出的二阶离散
π
ωs 2 (d)
系统与RLC二阶模拟电路
有“相仿”的特性。
2π
ωs ω
返回
• H(ej)即h(n)的DTFT • ej为周期函数,所以H(ej)为周期函数, 其周期为2p 。
例8-10-1
通过本征函数透视系统的频响特性
设输入x(n)=ejn 为本征函数
xn hn yn
h(n)为稳定的因果系统
ynh nxn hmejω nm ej n
h m ejωm
m
m
Hz h(m)zm单位圆上 m
hnArnejnθrnejnθun
2jAnsrin n θunb1rn1sin n θun (c)
siθn
如图(c)所示,若r<1极点位于单位圆内, h(n)为衰减型,此系统是稳定的。
系统的频率响应为 Hejω 1a1eb1jω ejω a2e2jω
根据H(z)的零极点分布, H ejω
H ejωH zz ejω
H(ej) 则对输入序列的加权, 体现了系统对信号的处理功能。 H(ej) 是H(z) 在单位圆上的动态 变化,取决于系统的特性。
ynej n Hejω
离散系统(数字滤波器)的分类
H e j ω
低通
O ωc
ωs 2
ωs
ω
H e j ω
带通
O
ωs 2
ωs
ω
H e j ω
例8-10-2
例8-10-3
返回
例8-10-1 已知离散时间系统的框图如图所示,求系
统频率响应特性。
离散系统的频率响应及DFT

实验二 离散系统的频率响应及DFT实验目的:1. 运用MATLAB 计算离散时间系统的频率响应。
2. 运用MATLAB 计算有限长序列的离散傅立叶变换。
3. 运用MATLAB 熟悉离散傅立叶变换的圆周移位和对称性质。
实验内容:一、计算离散时间系统的DTFT已知一个离散时间系统∑∑==−=−Mk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MATLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MATLAB 中,freqz 计算出序列{M b b b ,,,10L }和{N a a a ,,,10L }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l e H l j ,,2,1),(L =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
实验程序2.1:运用MATLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1)程序:clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi’);ylabel(‘振幅’);运行程序2.1 ,并显示图形。
离散系统的频率响应和输出响应的matlab实现

上海电力学院信号与系统实验报告题目:离散系统的频率响应和输出响应班级:2011023专业:电气工程及其自动化学号:********2013年12月18日离散系统的频率响应和输出响应 一、实验目的1、学习利用Matlab 求解系统频率响应的方法。
2、学习利用Matlab 求解系统输出响应的方法。
3、加深学生对离散系统频率响应概念的理解。
二、实验原理定义系统的频率响应为∑∞-∞=-==n jnwjwn h n h DTFT ])([)]([H)(我们知道,一个单位脉冲响应为h(n)的系统对出入序列x(n)的输出为)(*)()(y n h n x n =,根据DTDT 的卷积性质,可以推得)(*)()](*)([)]([)(Y jw jw jw H X n h n x DTFT n y DTFT ===对于求解系统的输出响应,则可利用卷积计算实现,也可不通过卷积,即可先求出)(jw X 和)(jw H ,进而求出)(Y jw ,再通过求IDTFT 变换求出y (n ).三、实验程序(1)要求给定一个系统的单位脉冲响应为 )]20()()[4.0sin()(h --=n n n n εε求:1)利用matlab 求出该系统的频率响应特性。
2)若输入该系统的信号为)4.0sin(2)3/5.0cos()(x n n n πππ++=,确定该系统的稳态输出信号。
(2)程序实现为了方便在matlab 中进行调用,首先用m 语言编写两个函数来实现DTFT 和IDTFT 。
实现DTFT 的函数:function[xjw,w]=dtft(x,n,kl,kr,k) %realize dtft sequence x%[xjw,w]=dtft(x,n,kl,kr,k)%x,n:original sequence and its position vector%kl,kr,k:[kl,kr]is fuequency points%xjw,w:dtft of sequence x;w is correspond frequencyfstep=(kr-kl)/k; %计算频率间隔w=[kl:fstep:kr]; %计算频率点xjw=x*(exp(-j*pi).^(n'*w)); %计算x(n)的DTFT实现IDTFT的函数:fuction[x,n]=idtft(xjw,w,nl,nr)%realize idtft for xjw%[x,n]=idtft(xjw,w,nl,nr)%w:frequency with unit pi*/red/s%and w must be interval%nl,nr:[nl,nr]resultant sequence's sample time range%they must be interger%x,n:resultant sequencce and its position vectorn=[nl,nr]; %计算序列的位置向量l=max(w)-min(w); %频率范围dw=(w(2)-w(1))*pi; %相邻频率间隔也是积分步长x=(dw*xjw*(exp(j*pi).^(w'*n)))/(1*pi); %用求和代替积分,求出IDTFT 下面编写调用上面两个函数的M语言程序来计算h(n)的DTFTnh=[0:39];h=sin(0.4*nh)/(0.4*nh); %系统脉冲响应h(1)=1;[hjw,wh]=dtft(h,nh,-2,2,400); %计算系统频率响应subplot(3,1,1);plot(wh,abs(hjw));nx=[0:39];x=cos(0.5*pi*nx+pi/3)+2*sin(0.4*pi*nx); %输入序列x(n)[xjw,wx]=dtft(x,nx,-2,2,400); %x(n)的DTFTsubplot(3,1,2);plot(wx,abs(xjw));yjw=xjw.*hjw;wy=wx;subplot(3,1,3);plot(wy,abs(yjw)); %计算输出序列的DTFT 运行此程序即可得到系统的输出序列的频谱曲线进一步,通过调用idft函数来求输出序列;同时还可以利用卷积的概念求出输出序列。
离散系统的频率响应分析

离散系统的频率响应分析实验课程:数字信号处理实验内容:实验4离散系统的频率响应分析和零、极点分布院(系则):计算机学院专业:通信工程班级:111班2021年6月7日一、实验目的:增进对离散系统的频率响应分析和零、极点原产的概念认知。
二、实验原理:离散系统的时域方程为y(n-k)=∑pkx(n-k)其变换域分析方法如下:时频域变换y[n]=x[n]*h[n]=系统的频率响应为jωjωjωx[m]h[n-m]⇔y(e)=x(e)h(e)∑p(ejω)p0+p1e-jω+...+pme-jmωh(e)==jωd(e)d0+d1e-jω+...+dne-jnω时域z域变换y[n]=x[n]*h[n]=系统的转移函数为∑x[m]h[n-m]⇔y(z)=x(z)h(z)p(z)p0+p1z-1+...+pmz-mh(z)==d(z)d0+d1z-1+...+dnz-nh(z)=∑pkz∑dkz(1-ξz)∏i-1(1-λz)∏ii=1i=1nξλi上式中的和i称为零、极点。
在matlab中,可以用函数[z,p,k]=tf2zp(num,den)求出有理分式形式的系统迁移函数的零、极点,用函数zplane(z,p)绘制零、极点分布图;也可以用函数zplane (num,den)轻易绘制有理分式形式的系统迁移函数的零、极点分布图。
另外,在matlab中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的级联。
三、实验内容及步骤:实验内容:求系统0.0528+0.0797z-1+0.1295z-2+0.1295z-3+0.797z-4+0.0528z-5h(z)=1-1.8107z-1+2.4947z-2-1.8801z-3+0.9537z-4-0.2336z-5的零、极点和幅度频率响应。
程序代码:num=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];freqz(num,den);%0~π中抽样,抽样点缺省(512点)ζnum=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];w=[0pi/8pi/4pi*3/8pi/2pi*5/8pi*3/4];%自己定8个点θh=freqz(num,den,w);subplot(2,2,1);stem(w/pi,abs(h));title('幅度五音')xlabel('数字频率');ylabel('振幅');[h,w]=freqz(num,den,8);%系统在0~π之间均分8份,与“θ”处效果一样wsubplot(2,2,2);stem(w/pi,abs(h));title('幅度五音')xlabel('数字频率');ylabel('振幅');h=freqz(num,den);%系统在0~π之间均分512份,与“ζ”处效果一样subplot(2,2,3);z=10*log(abs(h))plot(z);%与“ζ”处幅度五音效果一样title('分贝幅度五音')xlabel('数字频率');ylabel('振幅');num=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];[z,p,k]=tf2zp(num,den);%谋零极点z%零点p%极点subplot(2,2,4);zplane(z,p);%zplane(num,den)也可以[sos,g]=zp2sos(z,p,k);%二阶系统分解sosg [r,p,k]=residuez(num,den);%部分分式进行rp四、实验总结与分析:本次实验晓得了函数zplane()、freqz()、angle()的用法,原来就是绘制零极点图形和排序数字滤波器h(z)的频率响应以及谋复数的相角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统 同济大学汽车学院 魏学哲 weixzh@
(4)序列的线性加权
若: DTFT[x(n)] X (e j )
则:
DTFT[nx(n)]
j[
d
d
X (e j )]
时域的线性加权对应频域微分
(5)序列的反褶 若: DTFT[x(n)] X (e j )
2. 序列的傅立叶变换与Z变换的关系
X (z) x(n)z n n X (e jT ) X (z) ze jT x(n)e jnT n
因此,单位圆上的序列的Z变换为序列的傅立叶变换。
信号与系统 同济大学汽车学院 魏学哲 weixzh@
(2)序列的位移: 若: DTFT[x(n)] X (e j )
则: DTFT[x(n n0 )] e jn0 X (e j )
时域位移对应频域相移
(3)频域的位移: 若: DTFT[x(n)] X (e j )
则: DTFT[e jn0 x(n)] X (e j( 0 ) )
(7)时域卷积定理 若: DTFT[x(n)] X (e j )
DTFT[h(n)] H (e j )
时域卷积对应频域相乘。
则: DTFT[x(n) * h(n)] X (e j )H (e j )
(8)频域卷积定理 若: X (e j ) DTFT[x(n)]
H (e j ) DTFT[h(n)]
§8.9 序列的傅立叶变换(DTFT)
(一) 序列的傅立叶变换
1. 定义
X
(e
jT
)
x(n)e jnT
n
x(n)
1
2
T
X (e jT )e jnT d
T
T
式中,T为抽样间隔,为数字角频率。
信号与系统 同济大学汽车学院 魏学哲 weixzh@
则: DTFT [ x ( n )] X ( e j )
时域的反褶对应频域反褶
信号与系统 同济大学汽车学院 魏学哲 weixzh@
(6)奇偶虚实性: Re[X(ej)]Re[X(ej)] ImX[ (ej)]ImX[ (ej)]
X (e j ) X (e j )
为了研究离散线性移不变系统对输入频谱的处理作用 ,有必要研究离散线性移不变系统对复指数或正弦序 列的稳态响应,
信号与系统 同济大学汽车学院 魏学哲 weixzh@
设输入序列是频率为的复指数序列,即
x(n)= ejTn 单位函数响应为h(n)
则离散系统的零状态响应为:
( ) ( )
X (e j ) X * (e j )
复函数 X (e j ) 的实部为偶函数,虚部为奇函数, 模为偶函数,幅角为奇函数。
X (e j ) 与 X (e j ) 共轭
信号与系统 同济大学汽车学院 魏学哲 weixzh@
因为h(n)是实序列,故H(ejT)满足共轭对称条件,即
H(ejT)= H*(e-jT)
也就是H(ejT)的幅度为偶对称,
H(ejT)= H(e-jT)
相角为奇对称
arg[H(ejT)] =-arg[H(e-jT)]
因为ejT 是周期函数,所以H(ejT)是周期函数,周 期为2/T。
yzs (n) h(n) * x(n) h(k )e jT (nk ) k
e jTn h(k )e jTk e jTn H (e jT ) k 信号与系统 同济大学汽车学院 魏学哲 weixzh@
其中, H (e j T )
(1)线性:
若: 则:
DTFT[x1 (n)] X1 (e j ) DTFT[x2 (n)] X 2 (e j )
DTFT[ax1 (n) bx2 (n)] aX1 (e j ) bX 2 (e j )
信号与系统 同济大学汽车学院 魏学哲 weixzh@
3.逆变换
x(n)
1
2j
X (z)z n1dz
z 1
1 2j
X (e j )e jn e j d (e j )
z 1
1 2
X (e j )e jn d
信号与系统 同济大学汽车学院 魏学哲 weixzh@
DTFT的基本性质
序列的傅里叶变换也称为离散时间傅里叶变换
DTFT(Discrete Time Fourier Transform)
n
DTFT[x(n)] X (e j ) x(n)e jn
n
IDTFT[ X (e
j
)]
x(n)
1
2
X (e
j
)e
jn d
DTFT的基本性质:
则:
1
2
[
X(e
j
)*H(e
j
)]
1
2
X(ej )H[ej()]d
DTFT[x(n)h(n)]
时域相乘对应频域卷积。
信号与系统 同济大学汽车学院 魏学哲 weixzh@
8.10离散系统的频率响应特性
1.单位圆上(z=ejT)的系统函数就是离散系统的频 率特性 2.离散系统的频率响应的意义
信号与系统 同济大学汽车学院 魏学哲 weixzh@
h ( n )e j Tn
n
H(ejT)是h(n)的傅立叶变换,被称为系统的频率响
应。它描述了复指数序列通过线性移不变系统后,
复振幅(包括幅度和相位)的变化。
H(ejT)的性质: h(n)绝对可和,则系统稳定,同时也意味着系统的 频率特性H(ejT)存在且连续。
信号与系统 同济大学汽车学院 魏学哲 weixzh@