岩石力学实验报告数据

合集下载

岩体力学试验报告

岩体力学试验报告

岩体力学试验报告专业地质工程姓名学号实验时间周二7,8节目录一、岩体密度试验 (2)二、岩石单轴抗压试验 (4)三、抗拉强度试验(劈裂试验) (7)四、岩体变形试验 (10)五、直剪试验 (13)六、三轴压缩实验 (16)一、岩体密度试验1.1 工程概况(略)试验时间2014年10月22日1.2规范介绍根据《工程岩体试验方法标准》(GB/T50266-99),岩体密度的测定方法有颗粒密度试验和块体密度试验,本试验采用块体密度试验中的量积法。

根据《工程岩体试验方法标准》,试件描述应包括:1)岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。

2)节理裂隙的发育程度及其分布。

3)试件的形态。

根据《工程岩体试验方法标准》,量积法试验应按下列步骤进行:1)量测试件两端和中间三个断面上相互垂直的两个直径或边长,按平均值计算截面积。

2)量测端面周边对称四点和中心点的五个高度,计算高度平均值。

3)将试件置于烘箱中,在105-110℃的恒温下烘24h,然后放入干燥器内冷却至室温,称试件质量。

4)长度量测精确至0.01m,称量精确至0.01g。

1.3 试验方法试验采用水泥砂浆棱柱体试件,试件处于自然含水状态。

使用的仪器有游标卡尺、电子天平。

实验步骤如下:1)量测试件两端和中间三个断面上相互垂直的两个直径或边长,按平均值计算截面积。

2)量测端面周边对称四点和中心点的五个高度,计算高度平均值。

3)量测试件重量。

1.4 试验结果岩体密度试验数据及数据处理见表1。

表1 岩体密度试验数据记录表项目编号:01试验者:、、校核者:、、试验日期:2014/10/221.5 总结从实验结果可以看出,用量积法测得的密度不仅简便,而且计算结果准确,应保证试件制备有足够的精度。

二、岩石单轴抗压试验2.1 工程概况(略)试验时间2014年10月22日2.2规范介绍根据《工程岩体试验方法标准》(GB:T50266-99),单轴抗压强度试验适用于能制成规则试件的各类岩石,且应符合下列要求。

岩石力学试验报告-2010

岩石力学试验报告-2010

长沙理工大学岩石力学试验报告年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字:实验一实验二实验三实验四实验五实验六实验七试验一、岩石单向抗压强度的测定一、试验的目的:测定岩石的单轴抗压强度Rc。

当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。

本次试验主要测定天然状态下试样的单轴抗压强度。

二、试样制备:1、试料可用钻孔岩心或坑槽探中采取的岩块。

在取料和试样制备过程中,不允许人为裂隙出现。

2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。

3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。

4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。

5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。

6、试样数量:每组须制备3个。

7、试样制备的精度。

(1)在试样整个高度上,直径误差不得超过0.3mm。

(2)两端面的不平行度,最大不超过0.05mm。

(3)端面应垂直于试样轴线,最大偏差不超过0.25。

三、试样描述:试验前的描述,应包括如下内容:1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。

2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。

3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。

试件压坏后,应描述其破坏方式。

若发现异常现象,应对其进行描述和解释。

四、主要仪器设备:1、钻石机、切石机、磨石机或其他制样设备。

2、测量平台、角尺、放大镜、游标卡尺。

3、压力机,应满足下列要求:(1)压力机应能连续加载且没有冲击,并具有足够的吨位,使能在总吨位的10%—90%之间进行试验。

(2)压力机的承压板,必须具有足够的刚度,其中之一须具有球形座,板面须平整光滑。

岩石力学实验报告_3

岩石力学实验报告_3

试验一、岩石单向抗压强度的测定一、仪器设备材料试验机、游标卡尺。

二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm的长方体。

三、测定步骤:1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值)填入记录表内。

2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。

四、测定结果的计算: 试件的抗压强度:FP R式中:R ——试件抗压强度,MPaP ——试件破坏载荷,N F ——试件面积,mm 2试验二、岩石抗拉强度的测定(劈裂法)一、仪器设备:材料试验机、劈裂法实验夹具、游标卡尺。

二、试件规格标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。

三、测定步骤:1、2同抗压强度相同。

3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。

4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。

四、测定结果计算:DLPR L 14.32式中:R L ——岩石单向抗拉强度,MPaP ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm抗拉强度测定记录表。

研究岩石的实验报告(3篇)

研究岩石的实验报告(3篇)

第1篇一、实验目的本次实验旨在通过岩石力学实验,研究岩石的力学性质,包括抗压强度、抗拉强度、变形性能、水理性质等,为岩土工程设计和施工提供理论依据。

二、实验原理岩石力学实验主要包括以下几种:1. 岩石单轴抗压强度试验:在岩石试件上施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力,以此确定岩石的单轴抗压强度。

2. 岩石抗拉强度试验(劈裂试验):将岩石试件沿劈裂面进行拉伸,当试件破坏时,记录破坏时的最大拉伸力,以此确定岩石的抗拉强度。

3. 岩石变形试验:通过施加轴向压力,观察岩石的变形情况,分析岩石的变形规律。

4. 岩石水理性质试验:测定岩石的吸水性、软化性、抗冻性和透水性等水理性质。

三、实验仪器与材料1. 实验仪器:岩石力学试验机、万能试验机、岩样制备设备、量筒、天平等。

2. 实验材料:岩石试件、砂、水等。

四、实验步骤1. 岩石单轴抗压强度试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。

(3)启动试验机,以一定的加载速度对试件施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力。

2. 岩石抗拉强度试验(劈裂试验):(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入万能试验机,调整试验机夹具,使试件劈裂面与试验机轴线一致。

(3)启动试验机,以一定的拉伸速度对试件施加拉伸力,当试件破坏时,记录破坏时的最大拉伸力。

3. 岩石变形试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。

(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。

(3)启动试验机,以一定的加载速度对试件施加轴向压力,记录试件的变形情况。

4. 岩石水理性质试验:(1)测定岩石的吸水性:将岩石试件放入量筒中,加入一定量的水,记录试件吸水后的质量。

(2)测定岩石的软化性:将岩石试件浸入水中,记录试件饱和后的抗压强度。

岩石试验检测报告

岩石试验检测报告

岩石试验检测报告一、引言本报告旨在对所测岩石的物理力学性质进行检测与分析。

为了确保数据的准确性和可靠性,我们进行了相关试验并计算了试验结果。

试验对象为一块来自地下矿区的岩石样本。

本报告将详细介绍试验过程、结果和结论。

二、试验方法1.压缩试验采用标准压缩试验机对岩石样本进行压缩试验。

首先,将岩石样本放置在试验台上,固定好后施加压力。

试验过程中将记录压力与变形的关系,以绘制应力-应变曲线。

2.弯曲试验采用标准弯曲试验机对岩石样本进行弯曲试验。

将岩石样本放置于试验台上,以一定的速度施加弯曲力。

试验过程中将记录应力与变形的关系,以绘制应力-应变曲线。

3.剪切试验采用标准剪切试验机对岩石样本进行剪切试验。

将岩石样本放置于试验台上,施加垂直方向的力,试验过程中将记录应力与变形的关系,以绘制应力-应变曲线。

三、试验结果1.压缩试验结果根据压缩试验结果绘制的应力-应变曲线显示,岩石样本在初期变形阶段应变增加速度较快,之后应变增加速度逐渐减慢,直至达到极限强度。

极限强度为XXXMPa。

此外,岩石样本在达到极限强度后发生破坏。

2.弯曲试验结果根据弯曲试验结果绘制的应力-应变曲线显示,岩石样本在应力较低的情况下出现线性弯曲变形,之后弯曲变形速度逐渐加快。

最大应力为XXXMPa。

当应力超过一定值后,岩石样本出现断裂破坏。

3.剪切试验结果根据剪切试验结果绘制的应力-应变曲线显示,岩石样本在剪切荷载作用下呈现出较明显的塑性变形。

剪切强度为XXXMPa。

剪切试验结束后,岩石样本出现剪切破坏。

四、试验分析与结论通过分析试验结果,我们可以得出以下结论:1.岩石样本的极限强度为XXXMPa,属于XXX等级。

2.岩石样本的最大应力为XXXMPa,属于XXX等级。

3.岩石样本的剪切强度为XXXMPa,属于XXX等级。

综上所述,本次岩石试验结果表明,所测岩石样本在压缩、弯曲和剪切试验中具有较好的强度和稳定性。

此外,这些数据对岩石结构设计和施工具有重要参考价值。

岩石力学数字实验报告

岩石力学数字实验报告

岩石力学数值试验实验报告姓名:莫道兴学号: 1008010062班级:采矿101班指导教师:左宇军老师同组人:许云飞辜巍实验名称:不同均质度对岩石力学性质影响的数据拉伸试验 2013年5月16号一、实验目的1、通过对RFPA2D学习,知道RFPA2D基本使用方法;2、了解RFPA2D模拟试验的条件和RFPA2D的基本功能。

二、实验原理RFPA2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。

三、实验步骤如下;RFPA数值模型本模型拟采用尺寸为100 X 50mm的岩石试件模型。

试件模型划分为100 X 50个单元。

采用平面应力模型。

逐渐个加载过程采用位移控制的直接拉伸加载方式,即通过在试件端部施加位移实现拉伸加载,每步加载位移量S=-0.0004mm。

操作步骤第一步,启动 RFPA,新建模型建立存放的根目录第二步,划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步,得到材料图形第四步,施加荷载第五步,单击求解控制信息,设置条件如下:第六步,单击开始计算,最后得到曲线不再上升为止。

四、数值试验结果(一)均质度m=1.5(1)应力—应变全曲线则应力—应变全曲线为:(2)强度应力最大值为3.40990e+001MPa,应变最大值为-0.07960m。

(3)破坏模式材料的完整性与材料的宏观性质及破坏模式的复杂性是其基元相互作用的结果,与构成材料基元其承载能力息息相关,不同完整性的基元抵抗外载的能力就存在不同差别,上述实验中,随着加载步数的增加,应力成线性正增加,应变成线性负增加,当加载到一定程度,应力应变不再增加,数值恒定不变。

(二)均质度m=2(1)应力—应变全曲线则应力—应变全曲线为:(2)强度应力最大值为3.66616e+001MPa,应变最大值为-0.07960m。

(3)破坏模式与上面结果一致。

(三)均质度m=3(1)应力—应变全曲线则应力—应变全曲线为:(2)强度应力最大值为1.93156e+003MPa,应变最大值为-0.07960m。

岩石力学实验报告

岩石力学实验报告

岩石力学实验报告
班级
姓名
学号
日期
湖南科技大学能源与安全工程学院
实验一岩石单轴压缩实验
一.实验目的
单轴抗压强度σC;
二.实验设备
压力机(型号),天平,直尺
三.试件描述
岩石种类、颜色、尺寸等
四.测试数据纪录
岩石单轴压缩实验数据纪录表
五.试件破坏情况描述
在什么载荷下破坏,破坏形状等。

六.实验数据整理
按实验目的要求整理。

实验二 岩石抗拉实验
一. 实验目的
通过岩石试件的劈裂实验,求岩石单轴抗拉强度σt 。

二. 实验设备
10吨试验机(型号)、劈裂压头等。

三. 试件描述
岩石种类、颜色、尺寸等 四. 测试数据纪录
五. 试件破坏情况描述
六. 实验数据整理
1. 计算公式:
σt = ah
p
π2
2. 计算抗拉强度
3. 确定抗拉强度值。

实验三 岩石抗剪实验
一.实验目的
通过岩石的压剪实验,求岩石的抗剪强度参数C 、υ;
二.实验设备
60t 压力机(型号), 变角剪切仪
三.试件描述
岩石种类、颜色、尺寸等 四. 测试数据纪录
七. 试件破坏情况描述
在甚么载荷下破坏,破坏形状等。

八. 实验数据整理
1. 按实验目的要求整理。

按如下公式整理出若干数据对(τi ,σi )
)
cos (sin )sin (cos i i i i i i
i f F
p
f F
p ααταασ-=+=
2. 将若干数据对点在σ、τ坐标中,过这些点作直线;
3. 在图中量出C和υ。

岩石力学数值实验报告

岩石力学数值实验报告

岩石力学数值实验报告引言岩石力学是地球科学的一个重要分支,研究岩石的力学性质和变形规律。

为了更好地理解岩石的力学行为,科学家们开展了一系列的实验研究。

本实验通过使用数值模拟方法,以岩石样本的应力-应变关系为研究对象,旨在探究岩石的力学特性和变形模式。

实验步骤步骤1:创建数值模型首先,通过计算机软件创建一个岩石样本的数值模型。

模型的构建需要考虑样本的形状和大小、物理属性等因素。

我们选择了一个典型的立方体状样本,并设置了合适的材料参数。

步骤2:施加边界条件为了模拟实际岩石样本的状态,需要施加一些边界条件。

比如,在顶部施加一个垂直向下的载荷,并在侧面施加一定的约束条件,以保持样本的稳定。

步骤3:加载应力在数值模型中,我们可以通过施加不同的载荷形式来模拟实验中的应力加载。

常用的应力加载方式包括均匀加载、递增加载和脉冲加载等。

根据实际需要,我们选择了递增加载方式。

步骤4:模拟应变应变是岩石变形的重要参数之一。

通过在数值模型中测量岩石样本的应变变化,可以了解其力学性质。

在实验中,我们记录了岩石样本在不同应力下的应变情况。

步骤5:分析结果根据实验数据,我们对岩石样本的力学性质进行分析。

包括估计材料的弹性模量、塑性参数等,并绘制出应力-应变曲线。

结果与讨论实验数据分析通过数值模拟实验,我们获得了岩石样本在不同载荷下的应变数据。

利用这些数据,我们可以计算出岩石的应力-应变曲线,并进一步分析岩石的力学性质。

结果展示我们绘制了岩石样本在不同载荷下的应变-应力曲线,并通过计算得到了岩石的弹性模量和塑性参数。

根据曲线的变化趋势,我们可以得出岩石在不同应力下的变形模式。

结果讨论根据实验结果和数据分析,我们可以得出以下结论:1. 岩石样本在低应力下表现出弹性行为,即应力消失时,岩石会完全恢复原状。

2. 随着载荷的增加,岩石样本的应变开始发生塑性变形,不再完全恢复原状。

这表明岩石的塑性变形能力较弱。

3. 在高应力下,岩石样本的变形模式更加明显,出现了破坏和失稳的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档