岩石力学试验报告-2010
岩石力学实验报告

岩石力学实验报告《岩石力学实验报告》摘要:本次实验旨在研究岩石的力学性质,通过实验数据的收集和分析,得出岩石的抗压强度和抗拉强度等重要参数。
实验结果表明,岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度等。
本实验为岩石力学性质的研究提供了重要的数据支持。
引言:岩石是地球表面的重要构成物质,其力学性质对于地质灾害的预测和岩土工程的设计具有重要意义。
岩石力学实验是研究岩石力学性质的重要手段之一,通过对岩石样品进行拉伸、压缩等实验,可以得出岩石的抗压强度、抗拉强度等重要参数。
本次实验旨在通过岩石力学实验,研究岩石的力学性质,为岩石工程领域提供重要的数据支持。
实验材料和方法:本次实验选取了多种不同类型的岩石样品,包括花岗岩、砂岩、页岩等。
实验方法主要包括拉伸实验和压缩实验。
拉伸实验通过拉伸试验机对岩石样品进行拉伸,得出岩石的抗拉强度。
压缩实验通过压缩试验机对岩石样品进行压缩,得出岩石的抗压强度。
实验过程中,需要注意对岩石样品的选择和制备,以及实验条件的控制。
实验结果和分析:通过实验数据的收集和分析,得出了不同类型岩石的抗压强度和抗拉强度等重要参数。
实验结果表明,不同类型的岩石具有不同的力学性质,受到岩石成分、结构、孔隙度等因素的影响。
花岗岩具有较高的抗压强度和抗拉强度,砂岩和页岩的力学性质相对较弱。
此外,实验结果还表明,岩石的力学性质受到温度、湿度等环境因素的影响,这为岩石工程的设计和施工提出了新的挑战。
结论:本次实验通过岩石力学实验,研究了岩石的力学性质,得出了岩石的抗压强度和抗拉强度等重要参数。
实验结果表明,岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度等。
这为岩石工程的设计和施工提供了重要的数据支持,也为岩石力学性质的研究提供了新的思路和方法。
希望本次实验的结果能够为岩石工程领域的发展和进步提供重要的参考。
岩石力学实验报告

岩石力学实验报告岩石力学实验报告引言岩石力学实验是研究岩石的物理力学性质和力学行为的重要手段。
通过实验可以探索岩石的力学特性,为工程建设和地质灾害防治提供依据。
本文将介绍一次岩石力学实验的过程和结果,以及对实验结果的分析和讨论。
实验目的本次实验的目的是研究不同岩石样本在不同加载条件下的力学特性,包括强度、变形和破裂行为。
通过实验结果,可以了解岩石在实际工程中的承载能力和稳定性,为工程设计和施工提供参考。
实验方法1. 样本准备:从现场采集不同类型的岩石样本,经过加工和处理后制备成标准试样,确保试样的尺寸和质量符合实验要求。
2. 强度试验:将试样放置在强度试验机上,施加逐渐增加的加载,记录试样的应力-应变曲线。
通过分析曲线,可以确定试样的弹性模量、屈服强度和抗拉强度等力学参数。
3. 变形试验:在加载过程中,观察试样的变形情况,包括弹性变形和塑性变形。
通过测量试样的应变和变形量,可以计算出试样的变形模量和变形能力等指标。
4. 破裂试验:在试样达到极限承载能力时,观察试样的破裂形态和破裂面的特征。
通过分析破裂面的形貌和结构,可以了解试样的破裂机制和破裂韧性。
实验结果与分析1. 强度试验结果:不同类型的岩石样本在强度试验中表现出不同的力学特性。
例如,花岗岩样本的强度较高,具有较高的抗压和抗拉强度;而砂岩样本的强度较低,容易发生破裂。
通过对不同样本的应力-应变曲线进行比较分析,可以得出不同岩石类型的强度参数,为岩石工程设计提供依据。
2. 变形试验结果:在加载过程中,不同岩石样本表现出不同的变形特性。
弹性模量较高的岩石样本具有较小的弹性变形,而塑性变形较大的岩石样本具有较低的弹性模量。
通过测量试样的应变和变形量,可以计算出岩石的变形模量和变形能力,为岩石的变形预测和变形控制提供参考。
3. 破裂试验结果:不同岩石样本的破裂形态和破裂面特征各异。
有些岩石样本呈现出韧性破裂,破裂面较为平滑;而有些岩石样本呈现出脆性破裂,破裂面较为粗糙。
研究岩石的实验报告(3篇)

第1篇一、实验目的本次实验旨在通过岩石力学实验,研究岩石的力学性质,包括抗压强度、抗拉强度、变形性能、水理性质等,为岩土工程设计和施工提供理论依据。
二、实验原理岩石力学实验主要包括以下几种:1. 岩石单轴抗压强度试验:在岩石试件上施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力,以此确定岩石的单轴抗压强度。
2. 岩石抗拉强度试验(劈裂试验):将岩石试件沿劈裂面进行拉伸,当试件破坏时,记录破坏时的最大拉伸力,以此确定岩石的抗拉强度。
3. 岩石变形试验:通过施加轴向压力,观察岩石的变形情况,分析岩石的变形规律。
4. 岩石水理性质试验:测定岩石的吸水性、软化性、抗冻性和透水性等水理性质。
三、实验仪器与材料1. 实验仪器:岩石力学试验机、万能试验机、岩样制备设备、量筒、天平等。
2. 实验材料:岩石试件、砂、水等。
四、实验步骤1. 岩石单轴抗压强度试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。
(3)启动试验机,以一定的加载速度对试件施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力。
2. 岩石抗拉强度试验(劈裂试验):(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入万能试验机,调整试验机夹具,使试件劈裂面与试验机轴线一致。
(3)启动试验机,以一定的拉伸速度对试件施加拉伸力,当试件破坏时,记录破坏时的最大拉伸力。
3. 岩石变形试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。
(3)启动试验机,以一定的加载速度对试件施加轴向压力,记录试件的变形情况。
4. 岩石水理性质试验:(1)测定岩石的吸水性:将岩石试件放入量筒中,加入一定量的水,记录试件吸水后的质量。
(2)测定岩石的软化性:将岩石试件浸入水中,记录试件饱和后的抗压强度。
岩石物理力学指标及试件尺寸效应试验指导书及试验报告(2010年修订)

岩石物理力学指标及单轴抗压强度试件尺寸效应系数试验指导书及试验报告课程名称:土木工程地质实验课时:4课时班级:组数:学号:姓名:一、基本原理岩石的物理指标与力学指标有着密切的联系,岩石的含水量和密度直接影响其抗压强度。
在荷载作用下岩石发生变形,随着荷载的增加变形加剧,岩石开始局部破坏出现微裂隙,外荷继续增加,达到或超过某一数值时,微裂隙扩展并逐渐互相连接发展成破裂面,于是岩石变形就转化为岩石破坏。
岩石的强度是指岩石抵抗外力破坏的能力。
实验证明,岩石的抗压强度大小与试件的尺寸大小有关,一般来说,试件的尺寸越大,其抗压强度越小。
规范规定,抗压标准试件尺寸为Φ50mm×100mm,而实际工程试验中,因为岩块的厚度过小或结构面的存在,使制得的试件尺寸往往与标准尺寸不同,有时偏小,有时偏大,使测出的强度与标准件强度有差异,这种差异可通过尺寸效应系数修正,本试验将通过不同尺寸的试件强度对比得到此修正系数。
本次试验主要测定岩石的密度、含水率、不同高度柱体试件的抗压强度及尺寸效应修正系数。
二、实验要求1.要求学生了解岩石试样加工制备的全过程,会正确操作使用各种仪器设备。
2.正确计算出岩石的密度、含水量、单轴抗压强度及尺寸效应修正系数,并结合有关规范,对其允许承载力作出评价。
三、仪器设备1.试样加工设备:岩石钻芯机、切割机、磨片机、烘箱、天平、游标卡尺等2.试验设备:压力机等。
四、操作步骤1.按要求加工圆柱试件2个,其中一个尺寸为Φ50mm×100mm,另外一个尺寸为Φ50mm ×50mm,并切平磨光两端,并在试件两端面编号。
2.在加工试件过程中取两块40克以上的岩块(以供测含水率),分别编号,并用天平称出两岩块的质量,记录在下表中,然后将两岩块置于恒温105~110的烘箱中,8小时后取出称出干岩块的质量,产记录在下表中。
3.将2个试件分别称出质量,记录在相应的表格里;用游标卡尺量出各试件的高和直径,记录在相应的表格里。
岩石力学实习报告

岩石力学实习报告试验一岩石点荷载强度试验一.试验目的岩体的点荷载试验是将岩石块体置于一对点接触的加荷装置上,岩石破坏主要是呈劈裂破坏的性质,破坏的机理是张破坏。
用来测定岩石的抗拉强度,又根据岩石的抗拉强度与抗压强度之间的内在联系,由点荷载试验结果换算出岩石的抗压强度。
二.试验原理试件在一对点荷载作用下发生破坏iao,主要是由于加荷轴线上的拉应力引起的,其破坏机制为张破裂。
试验表明,不同形状的试件在点荷载作用下,其加荷轴附近的应力状态基本相同,这为采用不同形状的试件在点荷载作用下,其加荷轴附近的应力状态基本相同,这为采用不同形状及不规则试件进行点荷载试验提供了理论依据。
点荷载试验得出的基本力学指标是点荷载强度指数,其计算公式为:Is?p2De式中:P——作用于试件破坏时的荷载值(KN);De——等效岩芯直径(mm),对于采取的钻孔岩芯径向试验,De2==D2(D——岩芯直径),对于岩芯的轴向试验,方块体以及不规则岩块试验De?24A?(A=DW,D——试件上、下两加荷点间距离,W——试件破裂面垂直于加荷轴的平均宽度)。
试验表明,同一种岩石当试件尺寸不同时,对点荷载强度会产生影响,因此试验方法标准中规定以D=50mm时的点荷载强度为基准,当D值不等于500mm时,需对点荷载强度进行修正,其修正公式为: Is(50)式中:F——尺寸修正系数;M——修正指数,由同类岩石的经验值确定,1985年国际岩石力学协会(ISRM)建议m=0.45,近似取m=0.5。
?De?F??FIs??50??M 由点载荷强度指数可进一步计算出岩石的单轴抗压强度(?c)及抗拉强度(?t)计算公式如下:.75?c?22.8210s(50)?t?K1Is(50)三.试验步骤(一)试件制备1.试样应取自于工程岩体,具有代表性。
可利用钻孔岩芯,或在基岩露头、勘探抗槽探硐、巷道中采取岩块。
试件应完整,在取样及制备过程中避免产生裂缝。
2.试件尺寸应符合以下规定:(1)应采用岩芯试件作径向试验时,试件的长度与直径之比不应小于1.0;作轴向试验时,加荷两点距离与试件直径之比为0.3~1.0;(2)当采用方块体或不规则块体试件时,加荷两点距离宜为30~50mm;加荷两点间距离与垂直于加荷轴向平均宽度之比为0.3~1.0,试件长度应小于加荷两点间距离。
岩石力学实验报告

岩石力学实验报告
本实验主要通过对不同类型的岩石样本进行压缩、拉伸等力学实验,探究其物理力学性质。
实验结果表明,不同类型岩石的力学性质存在显著差异,同时还发现了一些有趣的现象。
实验步骤:
1. 选取不同类型的岩石样本,包括花岗岩、砂岩、页岩等。
2. 对每种岩石样本进行压缩实验,记录其抗压强度和弹性模量等指标。
3. 对每种岩石样本进行拉伸实验,记录其抗拉强度和断裂伸长率等指标。
4. 分析实验数据,比较不同类型岩石的力学性质差异。
实验结果:
1. 花岗岩为一种坚硬的岩石,其抗压强度和抗拉强度都很高,但弹性模量较低。
2. 砂岩为一种较为脆弱的岩石,其抗压强度和抗拉强度均较低,但断裂伸长率较高。
3. 页岩为一种易裂的岩石,其抗压强度和抗拉强度均相对较低,但弹性模量较高。
4. 在实验过程中,还观察到了一些有趣的现象,如砂岩在进行压缩实验时,会产生粉尘状物质,同时还可以听到岩石内部的微小断裂声。
结论:
本实验通过对不同类型岩石的力学实验,发现其物理力学性质存在显著差异。
因此,在实际工程中,需要根据不同的岩石类型选择合适的处理方法,以确保工程的稳定性和安全性。
岩石力学-实验报告 (1)

岩石力学-实验报告《岩石力学》综合复习资料一、填空题1、岩石的抗拉强度是指。
可采用方法来测定岩石的抗拉强度,若试件破坏时的拉力为p,试件的抗拉强度为σ,可用式子表示。
2、在加压过程中,井眼的切向或垂向的有效应力可能变成拉应力,当此拉应力达到地层的时,井眼发生破裂。
此时的压力称为。
当裂缝扩展到倍的井眼直径后停泵,并关闭液压系统,形成,当井壁形成裂缝后,围岩被进一步连续地劈开的压力称为。
如果围岩渗透性很好,停泵后裂缝内的压力将逐渐衰减到。
3、在钻井中,岩石磨损与其相摩擦的物体的能力称作岩石的,表征岩石破碎的难易程度的称作岩石的。
4、垂直于岩石层面加压时,其抗压强度,弹性模量;顺层面加压时的抗压强度,弹性模量。
5、在单向压缩荷载作用下,岩石计试件发生圆锥形破坏的主要原因是。
6、岩石蠕变应变率随着湿度的增加而。
7、一般可将蠕变变形分成三个阶段。
第一蠕变阶段或称;第二蠕变阶段或称;第三蠕变阶段或称。
但蠕变并一定都出现这三个阶段。
8、如果将岩石作为弹性体看待,表征其变形性质的基本指标是和。
9、随着围压的增加,岩石的破坏强度、屈服应力及延性都。
10、为了精确描述岩石的复杂蠕变规律,许多学者定义了一些基本变形单元,它们是、、。
将这些变形单元进行不同的组合,用以表示不同的变形规律,这些变形模型由、、。
11、在岩体中存在大量的结构面(劈理、节理或断层),由于地质作用,在这些结构面上往往存在着软弱夹层;其强度。
这使得岩体有可能沿软弱面产生。
12、岩石的力学性质取决于组成晶体、颗粒和之间的相互作用以及诸如的存在。
13、在三轴不等压情况下,随着最小主应力σ3的增加,岩石的破坏强度及延性,屈服应力。
二、选择题1、劈裂试验得出的岩石强度表示岩石的a抗压强度b抗拉强度c单轴抗拉强度d剪切强度2、岩石的吸水率指a岩石试件吸入水的重量和岩石天然重量之比b岩石试件吸入水的重量和岩石干重量之比c岩石试件吸入水的重量和岩石饱和重量之比d岩石试件岩石天然重量和岩石饱和重量之比3、已知某岩石的饱水状态与干燥状态的抗压强度之比为0.72,则该岩石a软化性强,工程地质性质不良b软化性强,工程地质性质较好c软化性弱,工程地质性质较好d软化性弱,工程地质性质不良4、当岩石处于三向应力状态且比较大的时候,一般将岩石考虑为a弹性体b塑性体c弹塑性体d完全弹性体5、在岩石抗压试验中,若加荷速率增大,则岩石的抗拉强度a增大b减小c不变d无法判断6、在岩石的含水率试验中,试件烘干时应将温度控制在a95-105℃b100-105℃c100-110℃d105-110℃7、在缺乏试验资料时,一般取岩石抗拉强度为抗压强度的a1/2-1/5b1/10-1/50c2-5倍d10-50倍8、某岩石试件的相对密度ds=2.60,孔隙比e=0.05,则该岩石的干密度ρd为a2.45b2.46c2.47d2.489、下列研究岩石弹性、塑性和粘性等力学性质的理想力学模型中,哪一种被称为凯尔文模型a弹簧模型b缓冲模型c弹簧与缓冲器并联d弹簧与缓冲器串联10、岩石的割线模量和切线模量计算时的应力水平为aσb/2bσc/2cσddσ50三、判断改错题1、根据库伦——纳维尔破坏准则破裂面外法线方向与最大主应力之间的夹角为452、岩石抗压强度实验要求岩心轴径比小于2。
岩石力学实验报告

湖南工业大学岩石力学实验报告
班级:
学号:
姓名:
日期:
成绩:
四、岩石单轴压缩及变形试验(综合)
一、试验目的: 二、设备名称: 三、试验步骤:
1、测定岩石试件的尺寸;
2、贴应变片……
3、……
4、……
5、……
四、成果整理和计算:
1、 按下式计算岩石密度: V
M =
ρ 式中: ρ── 为试样的密度, g/cm 3 ; M── 为试样的质量, g ;
V ── 试件体积,cm 3
2、 计算过程:
3、 按下式计算岩石抗压强度、弹性模量和泊松比: ⑴ 岩石抗压强度计算公式:
σ = P / A
式中:σ── 单轴抗压强度,MPa ; P ──岩石试件最大破坏载荷,N ; A ──试件受压面积,mm 2 ⑵ 岩石弹性模量、泊松比计算公式: E = σc(50) / εh(50) μ = |εd (50) / εh(50) | 式中: E ── 试件弹性模量,GPa ;
σc(50) ── 试件单轴抗压强度的50%,MPa ;
εh(50) 、εd(50) ── 分别为σc(50) 处对应的轴向压缩应变和径向拉伸应变;
μ── 泊松比。
4、 计算过程:
5、 计算结果见表4-1。
表4-1 岩石单轴压缩及变形试验记录表
6、 根据岩石变形数据绘制应力与应变关系曲线:下图
注:在坐标纸上画应力与应变关系曲线图要标清图号,各个坐标的单位、名
称等。
左图 应力与应变关系曲线图(该图在
坐标纸上绘制)
7、岩石应力应变数据记录见表4-2
表4-2 岩石应力应变数据记录表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙理工大学岩石力学试验报告年级班号姓名同组姓名实验日期月日理论课教师:指导教师签字:批阅教师签字:实验一实验二实验三实验四实验五实验六实验七试验一、岩石单向抗压强度的测定一、试验的目的:测定岩石的单轴抗压强度Rc。
当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。
本次试验主要测定天然状态下试样的单轴抗压强度。
二、试样制备:1、试料可用钻孔岩心或坑槽探中采取的岩块。
在取料和试样制备过程中,不允许人为裂隙出现。
2、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,高度为10cm,允许变化范围为9.5~10.5cm。
3、对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。
4、制备试样时采用的冷却液,必须是洁净水,不许使用油液。
5、对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样。
6、试样数量:每组须制备3个。
7、试样制备的精度。
(1)在试样整个高度上,直径误差不得超过0.3mm。
(2)两端面的不平行度,最大不超过0.05mm。
(3)端面应垂直于试样轴线,最大偏差不超过0.25。
三、试样描述:试验前的描述,应包括如下内容:1、岩石名称、颜色、结构、矿物成分、颗粒大小,风化程度,胶结物性质等特征。
2、节理裂隙的发育程度及其分布,并记述受载方向与层理、片理及节理裂隙之间的关系。
3、量测试样尺寸,检查试样加工精度,并记录试样加工过程中的缺陷。
试件压坏后,应描述其破坏方式。
若发现异常现象,应对其进行描述和解释。
四、主要仪器设备:1、钻石机、切石机、磨石机或其他制样设备。
2、测量平台、角尺、放大镜、游标卡尺。
3、压力机,应满足下列要求:(1)压力机应能连续加载且没有冲击,并具有足够的吨位,使能在总吨位的10%—90%之间进行试验。
(2)压力机的承压板,必须具有足够的刚度,其中之一须具有球形座,板面须平整光滑。
(3)承压板的直径应不小于试样直径,且也不宜大于试样直径的两倍。
如压力机承压板尺寸大于试样尺寸两部以上时,需在试样上下两端加辅助承压板。
辅助承压板的刚度和平整度应满足压力机承压板的要求。
(4)压力机的校正与检验,应符合国家计量标准的规定。
五、试验程序:1、根据所要求的试样状态准备试样。
2、将试样置于压力机承压板中心,调整有球形座的承压板,使试样均匀受载。
3、以每秒0.5~1.0MPa/s 的加载速度加荷,直到试样破坏为止,并记录最大破坏载荷及加荷过程中出现的现象。
4、描述试样的破坏形态,并记下有关情况。
六、成果整理和计算:试件的抗压强度:FP R式中:R ——试件抗压强度,MPaP ——试件破坏载荷,NF ——试件面积,mm2岩石单向抗压强度测定记录表格七、回答问题1、压力机上为何要配球型调节座?2、影响试验结果的试验因素有哪些?(详细叙述)试验二、岩石抗拉强度的测定(劈裂法)一、试验的目的:测定岩石的单轴抗拉强度。
试样在纵向力作用下出现拉伸破坏时,单位面积上所承受的载荷称为岩石的单轴抗拉强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。
劈裂法试验是测定岩石的单轴抗拉强度的方法之一。
该法是在圆柱体试样的直径方向上,施加相对的线形荷载,使之沿试样直径方向破坏的试验。
本试验法可测得各种含水状态下试样的抗拉强度。
本次试验主要测天然状态下试样的抗拉强度。
二、试样制备:1、本次试验采用圆柱体作为标准试样,直径为5cm,允许变化范围为4.8~5.4cm,试样的厚度宜为直径的0.5~1.0倍,并应大于岩石最大颗粒的10倍。
2、其他应与试验一的试样制备一致。
三、试样描述:同试验一。
四、主要仪器设备:同试验一。
五、试验程序:1、根据所要求的试样状态准备试样。
2、通过试件直径的两端,沿轴线方向划两条相互平行的加载基线。
将两根垫条沿加载基线固定在试件两端。
3、将试样置于压力机承压板中心,调整有球形座的承压板,使试样均匀受载,并使垫条与试件在同一加荷轴线上。
4、以每秒0.5~1.0MPa/s的加载速度加荷,直到试样破坏为止,并记录最大破坏载荷及加荷过程中出现的现象。
5、描述试样的破坏形状,并记下有关情况。
六、成果整理和计算:试验记录填于下表:抗拉强度测定记录表按下式计算岩石的单轴抗拉强度(计算值取3位有效数据):R t=(2P max)/(πDL)式中:R t——岩石单轴抗拉强度,MPa;P——最大破坏载荷,kN;h——试件高度,mm;D——试件厚度mm。
七、回答问题1、为何劈裂法试验可测得岩石的单轴抗拉强度?试验三、岩石的抗剪试验一、试验的目的:岩石的抗剪强度是岩石对剪切破坏的极限抵抗能力。
本试验采用快速直剪试验测定岩石的抗剪强度。
此试验一般可测定:a、混凝土与岩石胶结面的抗剪强度;b、岩石软弱结构面(包括夹泥和不夹泥的层面,节理裂缝面和断层带等)的抗剪强度;c、岩石本身的抗剪强度。
试验时岩石的含水状态可根据需要采用天然含水状态、饱和状态或其它含水状态,本次试验测定天然含水状态下岩石的抗剪强度。
二、试样制备:1、岩石直接试验试件的直径或边长应大于或等于5cm,试件高度应与直径或边长相等。
2、岩石结构面直剪试验试件的直径或边长不得小于5cm,试件高度与直径或边长相等。
结构面应位于试件中部。
3、混凝土与岩石胶结面直剪试验试件应为方块体,其边长不宜小于15cm。
胶结面应位于试件中部,岩石起伏差应为边长的1%~2%。
混凝土骨粒的最大粒径不得大于边长的1/6。
4、每组试验试件的数量不应少于5个。
三、试样描述:试件描述应包括下列内容:1、岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。
2、层理、片理、节理裂隙的发育程度及其与剪切方向的关系。
3、结构面的充填物性质、充填程度以及试件在采取和制备过程中受扰动的情况。
4、混凝土与岩石胶结面的试件,应测定岩石表面的起伏差,并绘制其沿剪切方向的高度变化曲线。
混凝土的配合比,胶结质量及实测标号。
四、主要仪器设备:1、试件制备设备。
2、试件测量设备如:游标卡尺及位移测表。
3、直剪试验仪。
五、试验程序:1、试件安装:(1)将度件置于金属剪切盒内,试件与剪切盒内壁之间的间隙以填料填实,使试件与剪切盒成为一个整体。
预定剪切面应位于剪切缝中部。
(2)安装试件中,法向荷载和剪切荷载(或两者的合力)应通过预定剪切面的几何中心。
若测剪切位移,法向位移测表和水平位移测表应对称布置,各测表数量不宜少于2只。
2、法向荷载的施加:(1)在每个试件,首先应分别施加不同的法向应力,所施加的最大法向应力,不宜小于预定的法向应力。
(预定的应力或预定的压力,一般是指工程设计应力或工程设计压力。
在确定试验应力或试验压力时,还应考虑岩石或岩体的强度,岩体的应力状态以及设备精度和出力。
)(2)对于岩石结构面中具有充填物的试件,最大法向应力应以不挤出充填物为宜。
(3)不需要固结的试件,法向荷载一次施加完毕,即测读法向位移,5min后再测读一次,即可施加剪切荷载。
(4)需固结的试件,在法向荷载施加完毕后的第一小时内,每隔15min读数1次,然后每半小时读数1次,当每小时法向位移不超过0.05mm时,即认为固结稳定,可施加剪切荷载。
(5)在剪切过程中,应使法向荷载始终保持为常数。
3、剪切荷载的施加方法应符合下列规定:每个试验首先应分别施加不同的法向应力,待其稳定后再施加剪切荷载。
施加剪切荷载应根据直剪仪的结构选择采用平推式或斜推式。
两者均要求法向荷载和剪切荷载(或两者的合力)通过预定剪切面的几何中心。
加荷速度应控制在0.5~0.8MPa/s。
4、试验结束后,应对试件剪切面进行描述:(1)准确量测剪切面面积;(2)详细描述剪切面的破坏情况,擦痕的分布、方向和长度;(3)测定剪切面的起伏差,绘制沿剪切方向断面高度的变化曲线;(4)当结构面内有充填物时,应准确判断剪切面的位置,并记述其组成成分、性质、厚度、构造。
根据需要测定充填物的物理性质。
六、成果整理和计算:1、试验记录填于下表:2、测定结果的计算:单个试件剪切破坏面上的正应力、剪应力按下式计算:Pασcos=⨯FPατsin⨯=F式中:P——试件剪断破坏载荷,NF——剪切面面积,mm2α——试件与水平面夹角。
七、回答问题1、直剪试验可测得那些剪切强度?2、直剪试验对试件的描述与前面几个试验有何不同?3、直剪试验对试件的尺寸有何要求?。