岩石力学数值试验实验报告
岩石力学实验报告

岩石力学实验报告《岩石力学实验报告》摘要:本次实验旨在研究岩石的力学性质,通过实验数据的收集和分析,得出岩石的抗压强度和抗拉强度等重要参数。
实验结果表明,岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度等。
本实验为岩石力学性质的研究提供了重要的数据支持。
引言:岩石是地球表面的重要构成物质,其力学性质对于地质灾害的预测和岩土工程的设计具有重要意义。
岩石力学实验是研究岩石力学性质的重要手段之一,通过对岩石样品进行拉伸、压缩等实验,可以得出岩石的抗压强度、抗拉强度等重要参数。
本次实验旨在通过岩石力学实验,研究岩石的力学性质,为岩石工程领域提供重要的数据支持。
实验材料和方法:本次实验选取了多种不同类型的岩石样品,包括花岗岩、砂岩、页岩等。
实验方法主要包括拉伸实验和压缩实验。
拉伸实验通过拉伸试验机对岩石样品进行拉伸,得出岩石的抗拉强度。
压缩实验通过压缩试验机对岩石样品进行压缩,得出岩石的抗压强度。
实验过程中,需要注意对岩石样品的选择和制备,以及实验条件的控制。
实验结果和分析:通过实验数据的收集和分析,得出了不同类型岩石的抗压强度和抗拉强度等重要参数。
实验结果表明,不同类型的岩石具有不同的力学性质,受到岩石成分、结构、孔隙度等因素的影响。
花岗岩具有较高的抗压强度和抗拉强度,砂岩和页岩的力学性质相对较弱。
此外,实验结果还表明,岩石的力学性质受到温度、湿度等环境因素的影响,这为岩石工程的设计和施工提出了新的挑战。
结论:本次实验通过岩石力学实验,研究了岩石的力学性质,得出了岩石的抗压强度和抗拉强度等重要参数。
实验结果表明,岩石的力学性质受到多种因素的影响,包括岩石的成分、结构、孔隙度等。
这为岩石工程的设计和施工提供了重要的数据支持,也为岩石力学性质的研究提供了新的思路和方法。
希望本次实验的结果能够为岩石工程领域的发展和进步提供重要的参考。
岩体力学试验报告

岩体力学试验报告专业地质工程姓名学号实验时间周二7,8节目录一、岩体密度试验 (2)二、岩石单轴抗压试验 (4)三、抗拉强度试验(劈裂试验) (7)四、岩体变形试验 (10)五、直剪试验 (13)六、三轴压缩实验 (16)一、岩体密度试验1.1 工程概况(略)试验时间2014年10月22日1.2规范介绍根据《工程岩体试验方法标准》(GB/T50266-99),岩体密度的测定方法有颗粒密度试验和块体密度试验,本试验采用块体密度试验中的量积法。
根据《工程岩体试验方法标准》,试件描述应包括:1)岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等。
2)节理裂隙的发育程度及其分布。
3)试件的形态。
根据《工程岩体试验方法标准》,量积法试验应按下列步骤进行:1)量测试件两端和中间三个断面上相互垂直的两个直径或边长,按平均值计算截面积。
2)量测端面周边对称四点和中心点的五个高度,计算高度平均值。
3)将试件置于烘箱中,在105-110℃的恒温下烘24h,然后放入干燥器内冷却至室温,称试件质量。
4)长度量测精确至0.01m,称量精确至0.01g。
1.3 试验方法试验采用水泥砂浆棱柱体试件,试件处于自然含水状态。
使用的仪器有游标卡尺、电子天平。
实验步骤如下:1)量测试件两端和中间三个断面上相互垂直的两个直径或边长,按平均值计算截面积。
2)量测端面周边对称四点和中心点的五个高度,计算高度平均值。
3)量测试件重量。
1.4 试验结果岩体密度试验数据及数据处理见表1。
表1 岩体密度试验数据记录表项目编号:01试验者:、、校核者:、、试验日期:2014/10/221.5 总结从实验结果可以看出,用量积法测得的密度不仅简便,而且计算结果准确,应保证试件制备有足够的精度。
二、岩石单轴抗压试验2.1 工程概况(略)试验时间2014年10月22日2.2规范介绍根据《工程岩体试验方法标准》(GB:T50266-99),单轴抗压强度试验适用于能制成规则试件的各类岩石,且应符合下列要求。
研究岩石的实验报告(3篇)

第1篇一、实验目的本次实验旨在通过岩石力学实验,研究岩石的力学性质,包括抗压强度、抗拉强度、变形性能、水理性质等,为岩土工程设计和施工提供理论依据。
二、实验原理岩石力学实验主要包括以下几种:1. 岩石单轴抗压强度试验:在岩石试件上施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力,以此确定岩石的单轴抗压强度。
2. 岩石抗拉强度试验(劈裂试验):将岩石试件沿劈裂面进行拉伸,当试件破坏时,记录破坏时的最大拉伸力,以此确定岩石的抗拉强度。
3. 岩石变形试验:通过施加轴向压力,观察岩石的变形情况,分析岩石的变形规律。
4. 岩石水理性质试验:测定岩石的吸水性、软化性、抗冻性和透水性等水理性质。
三、实验仪器与材料1. 实验仪器:岩石力学试验机、万能试验机、岩样制备设备、量筒、天平等。
2. 实验材料:岩石试件、砂、水等。
四、实验步骤1. 岩石单轴抗压强度试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。
(3)启动试验机,以一定的加载速度对试件施加轴向压力,当试件破坏时,记录破坏时的最大轴向压力。
2. 岩石抗拉强度试验(劈裂试验):(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入万能试验机,调整试验机夹具,使试件劈裂面与试验机轴线一致。
(3)启动试验机,以一定的拉伸速度对试件施加拉伸力,当试件破坏时,记录破坏时的最大拉伸力。
3. 岩石变形试验:(1)将岩石试件加工成标准尺寸,并对试件表面进行打磨。
(2)将试件放入岩石力学试验机,调整试验机夹具,使试件轴向压力方向与试件轴线一致。
(3)启动试验机,以一定的加载速度对试件施加轴向压力,记录试件的变形情况。
4. 岩石水理性质试验:(1)测定岩石的吸水性:将岩石试件放入量筒中,加入一定量的水,记录试件吸水后的质量。
(2)测定岩石的软化性:将岩石试件浸入水中,记录试件饱和后的抗压强度。
岩石力学实验报告_3

试验一、岩石单向抗压强度的测定一、仪器设备材料试验机、游标卡尺。
二、标准试件规格:采用直接为50mm 的圆柱体,高径比为2 :1;也可采用50×50×100mm的长方体。
三、测定步骤:1、 测试件尺寸(试件直径应在其高度中部两个互相垂直的方向量测,取算术平均值)填入记录表内。
2、 选择压力机度盘:一般应满足0.2P <P max <0.8P 式中:P max ——预计最大破坏载荷,KN P ——压力机度盘最大值,KN3、 开动压力机,使其处于可用状态,将试件置于压力机承压板中心,调整球形坐,使试件上下受力均匀,0.5~1.0MPa 的速度加载直至破坏。
四、测定结果的计算: 试件的抗压强度:FP R式中:R ——试件抗压强度,MPaP ——试件破坏载荷,N F ——试件面积,mm 2试验二、岩石抗拉强度的测定(劈裂法)一、仪器设备:材料试验机、劈裂法实验夹具、游标卡尺。
二、试件规格标准试件采用圆盘形,直径50mm 、厚25mm ;也可采用50×50×50mm 得方形试件。
三、测定步骤:1、2同抗压强度相同。
3、通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线,把试件放入夹具内,夹具上下刀刃对准加载基线,放入试验机的上下承压板之间,使试件的中心线和试验机的中心线在一条直线上。
4、开动试验机,以每秒0.03~0.05MPa 的速度加载直至破坏。
四、测定结果计算:DLPR L 14.32式中:R L ——岩石单向抗拉强度,MPaP ——试件破坏载荷,N D ——试件直径,mm L ——试件厚度,mm抗拉强度测定记录表。
岩石试验检测报告

岩石试验检测报告一、引言本报告旨在对所测岩石的物理力学性质进行检测与分析。
为了确保数据的准确性和可靠性,我们进行了相关试验并计算了试验结果。
试验对象为一块来自地下矿区的岩石样本。
本报告将详细介绍试验过程、结果和结论。
二、试验方法1.压缩试验采用标准压缩试验机对岩石样本进行压缩试验。
首先,将岩石样本放置在试验台上,固定好后施加压力。
试验过程中将记录压力与变形的关系,以绘制应力-应变曲线。
2.弯曲试验采用标准弯曲试验机对岩石样本进行弯曲试验。
将岩石样本放置于试验台上,以一定的速度施加弯曲力。
试验过程中将记录应力与变形的关系,以绘制应力-应变曲线。
3.剪切试验采用标准剪切试验机对岩石样本进行剪切试验。
将岩石样本放置于试验台上,施加垂直方向的力,试验过程中将记录应力与变形的关系,以绘制应力-应变曲线。
三、试验结果1.压缩试验结果根据压缩试验结果绘制的应力-应变曲线显示,岩石样本在初期变形阶段应变增加速度较快,之后应变增加速度逐渐减慢,直至达到极限强度。
极限强度为XXXMPa。
此外,岩石样本在达到极限强度后发生破坏。
2.弯曲试验结果根据弯曲试验结果绘制的应力-应变曲线显示,岩石样本在应力较低的情况下出现线性弯曲变形,之后弯曲变形速度逐渐加快。
最大应力为XXXMPa。
当应力超过一定值后,岩石样本出现断裂破坏。
3.剪切试验结果根据剪切试验结果绘制的应力-应变曲线显示,岩石样本在剪切荷载作用下呈现出较明显的塑性变形。
剪切强度为XXXMPa。
剪切试验结束后,岩石样本出现剪切破坏。
四、试验分析与结论通过分析试验结果,我们可以得出以下结论:1.岩石样本的极限强度为XXXMPa,属于XXX等级。
2.岩石样本的最大应力为XXXMPa,属于XXX等级。
3.岩石样本的剪切强度为XXXMPa,属于XXX等级。
综上所述,本次岩石试验结果表明,所测岩石样本在压缩、弯曲和剪切试验中具有较好的强度和稳定性。
此外,这些数据对岩石结构设计和施工具有重要参考价值。
岩体力学实验报告

--WORD格式 -- 可编辑 --岩体力学试验报告专业:姓名:学号:组次:同济大学岩体工程研究室二〇一三年九月试验一块体密度试验一、试验目的二、试验记录:岩石块体密度量积法试验记录表项目编号:岩石含水试件 直径 /边长 (mm)高度 (mm)质量 密度备注(g )3名称状态 编号测定值 平均值 测定值 平均值 (g/cm )---------平均密度 (g/cm 3)试 件 描述:试验者:校核者:试验日期:三、回答问题1、岩石块体密度试验有哪几种方法?各适用于什么条件?2、量积法试件应符合什么要求?3、含水率对块体密度有何影响?四、试验中的问题及对本次试验的意见和建议:五、成绩评定:岩石单轴抗压试验一、试验目的二、试验记录:岩石单轴抗压强度试验记录表项目编号:直径 /边长 (mm)高度 (mm)岩石含水试件破坏荷载抗压强度备注名称状态编号(kN)(MPa)平均值测量值测量值平均值试验者:校核者:试验日期:三、试件破坏形态(画草图)四、回答问题1、压力机上为何要配球型调节座?2、影响试验结果的试验因素有哪些?五、试验中的问题及对本次试验的意见和建议:六、成绩评定:试验三岩石抗拉强度 (劈裂法 )一、试验目的二、试验记录:岩石单轴抗拉强度试验(劈裂法 )记录表项目编号:试件直径 (mm)试件厚度 (mm)岩石含水试件受力破坏荷载抗拉强度备名称状态编号方向平均值测定值(kN)(MPa)注测定值平均值试件描述:试验者:校核者:试验日期:三、试件破坏形态(画草图)四、回答问题1、为何劈裂法试验可测得岩石的单轴抗拉强度?2、影响试验结果的试验因素有哪些?五、试验中的问题及对本次试验的意见和建议:六、成绩评定:试验四岩石单轴压缩变形试验一、试验目的二、试验记录:岩石压缩变形记录表项目编号:试件编号:试件直径 (mm):试件高度 (mm) :加载纵向应变序号测量值载荷应力(kN)(MPa)2112345678910残余----应变试件描述:岩石名称:含水状态:Eav=av( ×10-6)横向应变(×10-6)测量值备注平均平均12试验者:校核者:试验日期:项目编号:试件直径 (mm):加载序号载荷(kN)12345678910残余--应变试件描述:试件编号:岩石名称:含水状态:试件高度 (mm) :Eav=av纵向应变 ( ×10-6)横向应变(×10-6)测量值测量值备注应力平均平均(MPa)2121--试验者:校核者:试验日期:项目编号:试件直径 (mm):加载序号载荷(kN)12345678910残余--应变试件描述:试件编号:岩石名称:含水状态:试件高度 (mm) :Eav=av纵向应变 ( ×10-6)横向应变(×10-6)测量值测量值备注应力平均平均(MPa)2121--试验者:校核者:试验日期:三、绘制应力-纵向应变、横向应变-纵向应变关系图四、回答问题1、本试验的关键步骤有哪些?2、本试验对应变片的大小和粘贴方式有何要求?五、试验中的问题及对本次试验的意见和建议:六、成绩评定:试验五直剪试验一、试验目的二、试验记录:直剪试验记录表项目编号:岩石含水剪切法向法向剪切剪切面积荷载应力荷载应力备注名称状态(cm2)(kN)(kPa)(kN)(kPa)试件描述:试验者:校核者:试验日期:三、绘制~关系曲线:四、试验成果分析:根据剪应力和法向应力绘制关系曲线,按库伦表达式确定相应的岩石抗剪强度参数。
岩石力学实验报告

湖南工业大学岩石力学实验报告
班级:
学号:
姓名:
日期:
成绩:
四、岩石单轴压缩及变形试验(综合)
一、试验目的: 二、设备名称:
三、试验步骤: 1.测定岩石试件的尺寸; 2.贴应变片…… 3.…… 4、…… 5、……
1、 四、成果整理和计算: 按下式计算岩石密度: V
M =
ρ 式中: (── 为试样的密度, g/cm3 ;
M ── 为试样的质量, g ; V ── 试件体积,cm 3
2、 计算过程:
按下式计算岩石抗压强度、弹性模量和泊松比:
⑴ 岩石抗压强度计算公式:
σ = P / A
式中: (── 单轴抗压强度, MPa ; P ──岩石试件最大破坏载荷, N ; A ──试件受压面积, mm2 ⑵ 岩石弹性模量、泊松比计算公式: E = σc(50) / εh(50) μ = |εd (50) / εh(50) | 式中: E ── 试件弹性模量, GPa ;
(c(50) ── 试件单轴抗压强度的50(, MPa ;
εh(50) 、εd(50) ── 分别为σc(50) 处对应的轴向压缩应变和径向拉伸应变;
μ── 泊松比。
3、 计算过程:
4、 计算结果见表4-1。
表4-1 岩石单轴压缩及变形试验记录表
根据岩石变形数据绘制应力与应变关系曲线: 下图
注:在坐标纸上画应力与应变关系曲线图要标清图号, 各个坐标的单位、名称等。
左图 应力与应变关系曲线图(该图在
坐标纸上绘制)
5、 岩石应力应
变数据记录见表4-2
表4-2 岩石应力应变数据记录表。
岩石试验报告

内摩擦角φ(°)
凝聚力c(MPa)
抗剪
强度
(直剪)
摩擦系数tanφ
凝聚力c(MPa)
三轴抗压强度
内摩擦角φ(°)
凝聚力c(MPa)
弹性模量E(MPa)
泊松比μ
声波
速度
纵波波速VP(m/s)
横波波速Vs(m/s)
膨胀性
轴向自由膨胀率膨胀率VHP(%)
烘干状态Rd(MPa)
饱和状态RW(MPa)
冻融后状态RQ(MPa)
软化系数Kp
抗冻系数KQ
冻融损失率L或Q(%)
检测评定依据:
试验结论:
试验复核批准单位(章)
岩石试验报告(二)
委托单位报告编号
工程名称委托编号
施工部位记录编号
岩石名称取样日期
岩石产地报告日期
试验项目
试件编号
试验结果
抗拉强度σt(MPa)
膨胀压力Ps(MPa)
耐崩解指数Id2(%)
检测评定依据:
试验结论:
试验复核批准单位(章)
岩石试验报告(一)
委托单位报告编号
工程名称委托编号
施工部位记录编号
岩石名称取样日期
岩石产地报告日期
试验项目
试件编号
平均值
含水率ω(%)
天然密度ρ(g/cm3)
干密度ρd(g/cm3)
颗粒密度ρs(g/cm3)
吸水率ωa(%)
饱和吸水率ωsa(%)
孔隙率n(%)
饱水系数KW
单轴抗压强度
天然状态R(MPa)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩石力学数值试验实验报告
姓名:郑周立学号: 1108010103 班级:采矿111班指导教师:左宇军
同组人:郑周立、周义现、胡斌、朱红伟、高言、
王坤
实验名称:圆孔对岩石力学性质影响的数值加载
试验
2014年5月16日
圆孔对岩石力学性质影响的数值加载试验
一、实验目的:
1.通过对RFPA2D学习,知道RFPA2D基本使用方法。
2.了解RFPA2D模拟试验的条件和RFPA2D的基本功能。
3.通过操作端部效应对岩石力学性质影响的数值实验,了解每一步操作以及岩石破裂过程,最终完成实验得到结果。
二、实验原理:
RFPA-2D是一种基于有限元应力分析和统计损伤理论的材料破裂过程分析数值计算方法,是一个能够模拟材料渐进破裂直至失稳全过程的数值试验工具。
三、
1、试样尺寸: 100mm*51mm
2、基元数: 100*51
3、应力分析模式: 平面应变
4、圆孔:半径10mm
5、加载方式:单轴压缩
6、加载条件:竖向位移加载
7、均质度m=2
8、加载量:每步0.002mm
9、实验内容:
(1)、应力-应变曲线;
(2)、强度;
(3)、破坏模式
四、实验内容:
(一)、操作步骤:
第一步启动RFPA,新建模型建立存放的根目录
第二步划分网格,单击在弹出的窗口中设置模型的大小,单击确定第三步选择施加荷载模式...
(二)实验结果
弹性模量图
第1步
第4步(开始破坏)
第7步(开始横向破坏)
第32步(彻底破坏)
第200步
最大剪应力图第1步
第4步(开始破坏)
第33步(彻底破坏)
第200步
最大主应力图
第1步
第3步(开始破坏)
第32步(彻底破坏)
第200步
最小主应力图第1 步
第4 步(开始破坏)
第31 步(完全破坏)
第200步
应力/力-加载步曲线
位移/应变-加载步曲线
在本试验中破坏的模式有脆性破坏和剪切破坏。
五、实验心得
这次试验是端部效应对岩石性质影响的数值实验,在实验中尤其注重对垫板的性质不同而产生的滑动条件下,不同垫板的弹性模量对岩石力学的影响,垫板刚度和试样刚度是很重要的,不能忘记输入,在加载方式里,设置好加载条件以,加载量,缺一不可。
每一步都需要认真对待才能很好的完成实验。
在这门课中以及实验中我收获很多,从书本学习到实际操作,从实际操作到获得结果。
这个过程是不容易的,由于这个软件不是太熟悉,所以我不断操作,不断实验和请教同学,最后才得以完成,所以这个实验是不容易的。
在岩石力学教学中,岩石的拉、压、剪基本实验及岩石的破裂与失稳过程是一个重要的基本教学内容。
由于岩石材料的非均匀性、非连续性,以及外载荷作用下微缺陷之间相互作用的复杂性,现有的解析方法尚缺少有效的手段对此过程进行研究,理论上很难对岩石的破裂与失稳过程做准确的描述。
因此,目前有关岩石破裂与失稳过程的研究,仍然主要依赖于现场观测和实验物理实验。
现场观测对工程而言是非常必要的,但由于这种方法受到现场条件、人力、物力和人力的限制,很难在教学中得到充分利用;物理实验虽直观,但有关岩石破裂过程现象的复杂性,以及实验室观测手段、经费等条件限制,通常的岩石力学教学很难通过大量的物理实验向学生直观演示各种岩石变形、破坏的复杂现象。
因此,数值试验方法可能补充常规的实验
教学,达到岩石力学辅导学习的目的。
我们的实验是端部效应对岩石力学性质影响的数值实验,本实验的难度在于多次输入垫板刚度/式样刚度的值不一样。
垫板泊松比/式样泊松比也不同,是个难点。
在加载步数中观察也是一个很重要的过程,每个人观察的结果和确定的过程也是不同所以造成实验结果大有不同。
而出现这些问题之后,我们小组成员互相商量,问题出现在哪里怎样解决问题。
另外,在试验中最后我觉得团队合作也是个很重要的事情,缺乏了团队合作,就缺乏工作效率和准确性。
所以团队合作在认识事情中都能彰显出重要意义和作用。
最后,我认为不管是此次实验还是做任何事,都应该一丝不苟,细心对待,以及坚持到底才能获得最终的回报。
另外,在工作中也要保持细心认真的态度,才能更好解决工作中的问题和实际问题,让自己体现出价值。