活性污泥法1

合集下载

活性污泥法

活性污泥法

2 活性污泥法有效运行的基本条件
① 废水中含有足够的可溶性易降解有机物; ② 混合液含有足够的溶解氧; ③活性污泥连续回流,使混合液保持一定浓度的活 性污泥,及时排除剩余污泥; ④ 活性污泥在池内呈悬浮状态; ⑤ 无有毒有害的物质流入。
3 活性污泥的基本性质
物理性能:“菌胶团”、“生物絮凝体”; 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1(1.0021.006); 粒径:0.020.2 mm; 比表面积:20100cm2/ml; 含水率:99.299.8%。
活性污泥微生物增长曲线
内源呼吸期

污泥浓度 氧利用率
BOD浓度
对数增长期 减速增长期
时间
四个生长阶段特点
(1)迟缓期:表示细菌适应新环境需要的时间, (2)对数增长期:由于营养物浓度超过细菌的需 要量,生长不受限制,生物量以对数速度增加, (3)减速增长期:由于营养物浓度随细菌的消 耗逐渐下降,细菌繁殖世代时间增长,毒性代 谢产物逐渐增高,当营养物浓度达到生长限度 时,细菌即进入减速生长期。 (4)内源呼吸期:串长阶段到内源呼吸期时, 营养物耗尽,迫使细菌代谢自身的原生质,生 物量逐渐减少。
活性污泥净化反应过程
活性污泥去除水中有机物,主要经历三 个阶段: 吸附阶段 氧化阶段 絮凝体形成与凝聚沉淀阶段
吸附阶段:
污水与活性污泥接触后的很短时间内水中有 机物(BOD)迅速降低,这主要是吸附作用引 起的。 由于絮状的活性污泥表面积很大(约200010000m2/m3混合液),表面具有多糖类粘液 层,污水中悬浮的和胶体的物质被絮凝和吸 附迅速去除。活性污泥的初期吸附性能取决 于污泥的活性。
4 活性污泥中的微生物

第二章第一节 活性污泥法

第二章第一节 活性污泥法
①活性微生物, 25~50% ②微生物内源呼吸残余物, 0~17% ③吸附在活性污泥上的惰性的不可降解的有机物
④虽可降解但尚未降解的有机物
⑤惰性无机物 20~30%
5~65%
第二章 废水好氧生物处理工程-第一节
活性污泥的生物组成
活性污泥中生物群落的组成丰富多样,主要有病毒、细菌、真 菌和原生动物,也有少量的藻类和后生动物。菌胶团中的微生 物之间相互作用、相互影响,构成一个复杂的微生态系。 活性污泥中细菌能分泌多糖类的糖被,使各种微生物聚集在一 起,构成菌胶团,从而呈絮状。 微生物的种类和数量随废水种类和数量的不同而发生变化,在 正常运行的活性污泥系统中,它们相对比较稳定。微生物在菌 胶团中的空间位臵也有所不同,丝状的细菌通常组成菌胶团的 骨架,其他单细胞的微生物靠糖被附着在丝状菌上,固着型的 原生动物在菌胶团的最外面。微生物的微生态位的不同使它们 在废水处理中发挥不同的作用,通过这种生态系统的功能而不 是某种微生物类群的功能才能比较有效的降解水中的有机物。
第二章 废水好氧生物处理工程-第一节
推流式活性污泥法的优缺点
• 优点:出水水质好(85~90%),剩余污泥量较少。 • 缺点: ①耐冲击负荷差: 根据推流原理,进水与回流污泥混合形成混合液,从池子 起端流向末端。如果进水水质发生变化,对活性污泥影响 较大。如果流入的废水含有有害物损害了回流污泥,引起 的问题就更大。 ②供氧与需氧间存在不可克服的矛盾 沿曝气池池长需氧速度变化很大,但是沿曝气池池长的供 氧速度是基本相同的——供需矛盾:前段供氧不足而后端 供氧过剩。如果想要在曝气池前端维持足够的溶解氧,则 后段的氧量会太大,氧的利用滤低,增加了处理费用。
第二章 废水好氧生物处理工程-第一节
• 氧化合成阶段

污废水处理试题--活性污泥法

污废水处理试题--活性污泥法

污水处理工试题分析活性污泥法一、判断题1、厌氧—好氧生物除磷法比普通活性污泥法对磷的去除率高。

(√)2、硝化菌比增殖速度比去除有机物的异养菌快得多,且受水温影响较小,因此硝化反应只有较小的SRT时才能继续。

(×)3、考虑到进入反应池水量和水质的变化,为安全起见,反应池出水溶解氧的浓度最好维持在0.5-1mg/L的范围。

(×)4、原生动物中大量存在的纤毛虫可以分为三类,通过它们在活性污泥中的构成比例和数量,可以判断活性污泥的净化能力以及污水的净化程度。

其中活性污泥性纤毛虫类是在活性污泥成熟后才出现的。

(√)5、SVI异常上升大多都是由于丝状菌膨引起,发生丝状菌膨胀时SVI值可达到500以上。

(√)6、一般二级处理出水的BOD在15mg/L左右,BOD异常升高的原因有:活性污泥处理机能下降;测定BOD时有硝化反应进行;活性污泥流出等。

(√)7、二次沉淀池的沉淀时间应按照设计最大日污水量确定。

(√)8、BOS—SS负荷、SRT、MLDO、SVI、MLSS都属于曝气池水质管理控制指标。

(√)9、垂直轴表曝机通常保持一定转速连续运转,不得采用变速或间歇运转。

(×)10、完全混合曝气沉淀池运转开始时,逐渐增大进水量直到达到设计水量的过程中,应不进行污泥的排除,以使活性污泥迅速增殖,达到合适的MLSS浓度。

(√)11、二次沉淀池中不再消耗DO,因此,二沉池出水DO与曝气池出水一致。

(×)12、二次沉淀池中水质异常可能是由于二次沉淀池的污泥堆积、排泥不当、池构造上有缺陷、存在短路、异重流等与二次沉淀池有关的原因,还有可能是因为曝气池或其进水异常造成。

(√)13、二次沉淀池去除的SS,以微生物絮体为主体,与初次沉淀池的SS相比,其沉淀速度较低,故表面负荷为20-30m3/m2d,在能够预计污泥沉降性很差的处理厂,最好采用更低的数值(15-20m3/m2d)(√)14、用生物处理技术处理污水的方法称为生物处理法。

废水好氧生物处理工艺(1)——活性污泥法

废水好氧生物处理工艺(1)——活性污泥法

废水好氧生物处理工艺——活性污泥法第一节活性污泥法的基本原理一、活性污泥法的基本工艺流程1、活性污泥法的基本组成①曝气池:反应主体②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。

③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。

④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。

⑤供氧系统:提供足够的溶解氧2、活性污泥系统有效运行的基本条件是:①废水中含有足够的可容性易降解有机物;②混合液含有足够的溶解氧;③活性污泥在池内呈悬浮状态;④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥;⑤无有毒有害的物质流入。

二、活性污泥的性质与性能指标1、活性污泥的基本性质①物理性能:“菌胶团”、“生物絮凝体”:颜色:褐色、(土)黄色、铁红色;气味:泥土味;比重:略大于1,(1.002~1.006);粒径:0.02~0.2 mm;比表面积:20~100cm2/ml。

②生化性能:1) 活性污泥的含水率:99.2~99.8%;固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。

2、活性污泥中的微生物:①细菌:是活性污泥净化功能最活跃的成分,主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等;基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌;2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟;4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。

② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标:① 混合液悬浮固体浓度(MLSS ):我们平常说的悬浮物。

MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3② 混合液挥发性悬浮固体浓度(MLVSS ):MLVSS = M a + M e + M i ;(有机部分)在条件一定时,MLVSS/MLSS 是较稳定的, 0.75~0.85③ 污泥沉降比(SV 30):是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。

第四章 第一节-活性污泥法

第四章 第一节-活性污泥法

活性污泥降解污水中有机物的过程
污水与污泥混合曝气后BOD的变化曲线
对活性污泥法曝气过程中污水中有机物的变化分析得到结论:
废 水 中 的 有 机 物
残留在废 水中的有 机物
微生物不能利用的有机物
微生物能利用的有机物
微生物能利用而尚未 利用的有机物 (吸附量) 从废水中 去除的有 机物 微生物不能利用的 有机物 微生物已利用的有机 物(氧化和合成) 增殖的微生物体
二是废水中的有机物,它是处理对象,也是 微生物的营养食料;
三是溶解氧,没有充足的溶解氧,好氧微生物 既不能生存,也不能发挥氧化分解作用。
城市污水处理工艺基本流程: 污水→格栅→沉砂池→初沉池
→活性污泥曝气池→二沉池→消毒
高碑店污水处理厂的工艺流程图
活性污泥系统
高碑店污水处理厂的工艺流程与平面布置
第一节 活性污泥法
一、基本概念与流程 二、活性污泥形态与微生物 三、活性污泥净化反应过程 四、活性污泥法主要影响因素与控制指标
第二节 生物膜法
一、生物膜法概述 二、生物膜的形成及净化过程 三、生物膜法载体 四、生物膜法特征 五、生物膜反应器
Your site here
二沉池 曝气池 初沉池
初沉池
二期 曝气池 二沉池
活 性 污 泥 法 的 基 本 流 程
活性污泥处理系统的组成
1.曝气池: 2.二沉池:
微生物降解有机物的反应场所 泥水分离
3.污泥回流系统: 确保曝气池内生物量稳定 4.曝气系统: 为微生物提供溶解氧,同时起到 搅拌混合的作用。
活性污泥法处理系统有效运行的基本条件
净化污水的主要的第一的承担者细菌净化污水的第二承担者原生动物指示性生物原生动物通过显微镜镜检是对活性污泥质量评价的重要手段之一原生动物在活性污泥中大约为103个ml01mm原生动物钟虫小口钟虫草履虫盖纤虫肾形虫变形虫后生动物线虫轮虫微生物的生长规律复习适应期对数期平衡期衰老期培养时间微生物生长速率微生物生长速率微生物量的对数微生物量的对数培养时间总菌数活细菌数微生物生长曲线线死细菌数4

活性污泥法

活性污泥法

(1)、生物固体停留时间(solid retention time,SRT ) 活性污泥在曝气池、二沉池和污泥回流系统内的停留时间称为生物固体停留时间。

可用下式表示: SRT=)//(/d kg kg 污泥量每天从系统排出的活性系统内活性污泥量 (2)有机物负荷 有机物(BOD 5)负荷分为污泥负荷(Ls)和容积负荷(Lv),用公式表示如下: Ls=XVQ O S Lv=V QS 0×103 式中:Ls ——BOD-SS 负荷,kgBOD/(kgMLSS.d);Lv ——BOD 容积负荷,kgBOD/(m 3.d);S 0——反应器进水BOD 浓度,mg/L ;X ——污泥浓度,mg/L 。

(3)水力停留时间 水力停留时间(HRT )表示污水在反应池内的反应时间,用下式表示: t=QV 式中:t ——曝气池水力停留时间,h ;V ——曝气池有效容积,m 3;Q ——进水流量,m 3/hBOD-SS 负荷和生物固体停留时间都是活性污泥法设计和污水处理厂运行管理的重要参数。

(4)污泥浓度 污泥浓度是指曝气池中1L 混合液内所含的悬浮固体(常表示为MLSS ,mixed liquor suspended solids )或挥发性悬浮固体(MLVSS )的浓度,单位是g/L 或mg/L 。

污泥浓度的大小可间接地反映曝气池中所含微生物的浓度。

对于普通活性污泥法而言,曝气池中污泥浓度一般在1.5~3g/L 之间。

(5)污泥沉降比和污泥容积指数 污泥沉降比(settling velocity,SV)指曝气池混合液在量筒中静置30min 后,所得的沉淀污泥体积与混合液总体积的比(用百分数表示),即: 污泥沉降比=混合液经30min 静置沉淀后的污泥体积/混合液体积污泥容积指数(sludge volume index ,SVI)指曝气池的污泥浓度与污泥沉降比的比值。

即1g 干污泥所相当的沉淀污泥体积数,单位为mL/g ,但一般不标注。

活性污泥法有多种处理系1

活性污泥法有多种处理系1

活性污泥法有多种处理系统,如传统活性污泥法、渐减曝气活性污泥法、分段进水活性污泥法、吸附—再生活性污泥法、完全混合活性污泥法、延时曝气活性污泥法、高负荷活性污泥法、纯氧曝气活性污泥法、选择器活性污泥法。

(举出五种即可)
活性污泥法对营养物质的需求如下,BOD5:N:P=100:5:1。

对硝化反应的环境影响因素主要有温度、溶解氧、碱度和pH、C/N比和有毒物质。

活性污泥微生物增殖分为以下四个阶段(期):适应期、对数增殖期、渐衰增殖期、内源呼吸期。

活性污泥系统中,原生动物和后生动物的出现,其数量和种类在一定程度上还能预示和指示出水水质,因此也常称其为“指示性微生物”。

活性污泥法处理系统运行中的异常情况:污泥膨胀、污泥解体、污泥上浮、污泥腐化、泡沫问题、异常生物相。

(写出三种即可)。

对生物脱氮反应的反硝化过程的环境影响因素主要有以下6个温度、溶解氧、碱度和pH、碳源有机物、C/N比、有毒物质。

活性污泥由四部分物质组成:1、具有代谢功能活性的微生物群体(M a);2、微生物自身氧化的残留物(M e);3、由污水挟入的并被微生物所吸附的有机物质(含难为细菌降解的惰性有机物)(M i);4、由污水挟入的无机物质(M ii)。

活性污泥法基本原

活性污泥法基本原

► 5.
活性污泥法基本流程
污水经物化预处理后与二沉池回流污 泥同时进入曝气池,通过曝气搅拌作用, 使污泥呈悬浮态并和污水完全混合,污水 中的有机物被活性污泥吸附并降解或同化, 最终转化为二氧化碳和剩余污泥,污水因 而得到净化。净化后的污水和活性污泥在 二沉池中进行固液分离,上清液溢流排放, 沉淀浓缩的污泥一部分作为接种污泥回流 到曝气池,另一部分则作为剩余污泥排放。

微生物对有机物的分解代谢及合成代谢及其产物的模式图
污水与污泥混合曝气后BOD的变化曲线
► 3.絮凝与沉淀 3.絮凝与沉淀
絮凝体是活性污泥的基本结构,它能够防止 微型动物对游离细菌的吞噬,并承受曝气等不利 因素的影响,更有利于与处理水分离。 沉淀是混合液中固相颗粒同废水分离的过程, 好坏直接影响出水水质。
3. 活性污泥的组成
► ►
活性污泥含水率一般都在99%以上,固体物质仅占1%以 活性污泥含水率一般都在99%以上,固体物质仅占1%以 下。而这1%固体物质由有机和无机两部分组成。 下。而这1%固体物质由有机和无机两部分组成。 有机部分包括: Ma——具有代谢功能活性的微生物群体; ——具有代谢功能活性的微生物群体; Me——微生物内源代谢、自身氧化残留的微生物有 ——微生物内源代谢、自身氧化残留的微生物有 机体; Mi ——由原污水挟入的不可生化的有机物质 ; ——由原污水挟入的不可生化的有机物质 无机部分包括: Mii——由原污水挟入的无机物质 。 ——由原污水挟入的无机物质
各种内酶 → 进行代谢反应 胞外酶(水解酶) 透膜酶催化作用 大分子 → 小分子 → 透过细胞壁进入细胞体 内 小分子 透膜酶催化作用 → 透过细胞壁进入细胞体 内
1〉氧化分解 2〉合成代谢(合成新细胞) 3〉内源代谢

4.1活性污泥法(1)3版

4.1活性污泥法(1)3版

三.活性污泥降解污水中有机物的过程
活性污泥在曝气过程中,对有机物的降解(去除) 过程可分为两个阶段:
吸附阶段 由于活性污泥具有巨大 的表面积,而表面上含有多 糖类的黏性物质,导致污水 中的有机物转移到活性污泥 上去。
稳定阶段
转移到活性污泥上的 有机物为微生物所利用。
活性污泥降解污水中有机物的过程
9.纯氧曝气
纯氧代替空气, 可以提高生物处 理的速度。纯氧 曝气池的构造见 右图。 在密闭的容器中,溶解氧的饱和度可提高,氧溶解的推 动力及氧传递速率也随之被提高,处理效果改善,污泥的 沉淀性也较好。 纯氧曝气并没有改变活性污泥或微生物的性质,但使微 生物充分发挥了作用。 纯氧曝气的缺点是纯氧发生器容易出现故障,装臵复杂, 运转管理较麻烦。
一组活性似矾花絮绒颗粒——生物絮凝体 (菌胶团) • 颜色:茶褐色、(土)黄色、铁红色 • 气味:泥土味(城市污水) • 比重:略大于1 (1.0021.006) • 粒径:2001000 μm • 比表面积:20100cm2/ml • 含水率:99.299.8%
MLVSS = Ma + Me + Mi
在条件一定时, f =MLVSS/MLSS是较稳定的,对城市 污水,一般是0.7~0.8。。
3. 污泥沉降比(SV——Settled Volume)
• ——是指将曝气池中的混合液在1000或100 毫升量筒中静臵30分钟,其沉淀污泥与原混 合液的体积的比值,一般以%表示. • ——能相对地反映污泥数量以及 污泥的凝聚、沉降性能,可用以 控制排泥量和及时发现早期的 污泥膨胀. • ——正常数值 2030%
二 活 性 污 泥 法 的 基 本 流 程
活性污泥法的主要构成
曝气池:反应、供氧、搅拌混合。 二沉池: ①进行泥水分离,保证出水水质; ②浓缩回流污泥。 回流系统: ①保证曝气池内维持足够的污泥浓 度; ②通过改变回流比,改变曝气池的 运行工况 剩余污泥: ①是去除有机物的途径之一; ②维持系统的稳定运行。 供氧系统:提供足够的溶解氧。

第一章第二节 活性污泥法生物处理概论

第一章第二节 活性污泥法生物处理概论

(3)微型后生动物
5、管理中的指示生物
原生动物和后生动物出现的顺序:细菌-植物型 鞭毛虫-肉足类-动物型鞭毛虫-游泳性纤毛虫、 吸管虫-固着性纤毛虫-轮虫
原生动物和微型后生动物的演替判断水质和污水 处理程度,还可以判断污泥培养成熟程度;
根据原生动物的种类判断活性污泥和处理水质的 好坏;
根据原生动物遇恶劣环境改变个体形态及其变化 过程判断进水水质变化和运行中出现的问题。
BOD负荷很低时出现的微生物
游仆虫属 鳞科虫属等 标志:硝化过程正在
进行 解决:提高BOD负荷
或采用两套系统
游仆虫属
个体详细图
游仆虫属捕食
鳞可虫属1
鳞可虫属2
有毒物质流入时微生物的变化
现象: 原生动物和轮虫等后
生动物减少 楯纤属急剧减少 解决措施:增加曝气
池微生物浓度,去除 有毒物质
BOD5/COD>0.3才适宜采用生化处理 未处理城市污水的BOD5/COD在0.3-0.8之间。 投资少、成本低、工艺设备较简单、运行条件平和,不
产生二次污染 成为污水处理工艺的主流技术,已广泛用于生活污水和
工业废水的处理。 世界各国污水处理厂90%以上采用生物处理技术。美国
共有废水处理厂18000多座,其中84%为二级生物处理厂, 英国有废水处理厂3000多座,几乎全部是二级生物处理 厂。
(5) 如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、 寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率 在90%以上。 (6) 根足虫的大量出现,往往是污泥中毒的表现。 (7) 如在生活污水处理中,累枝虫的大量出现,则是污泥膨 胀、解絮的征兆。 (8) 而在印染废水中,累枝虫则作为污泥正常或改善的指示 生物。 (9) 在石油废水处理中钟虫出现是理想的效果。 (10) 过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的 大小用数量来判断处理效果。

污水的生物处理(一)活性污泥法

污水的生物处理(一)活性污泥法

第四章污水的生物处理(一)——活性污泥法教学要求1)掌握活性污泥法的基本原理及其反应机理;2)理解活性污泥法的重要概念与指标参数:如活性污泥、剩余污泥、MLSS、MLVSS、SV、SVI、θc、容积负荷、污泥产率等;3)理解活性污泥反应动力学基础及其应用;4)掌握活性污泥的工艺技术或运行方式;5)掌握曝气理论;6)熟练掌握活性污泥系统的计算与设计。

第一节活性污泥法的基本原理一、活性污泥处理法的基本概念与流程活性污泥:是由多种好氧微生物、某些兼性或厌氧微生物以及废水中的固体物质、胶体等交织在一起的呈黄褐色絮体。

活性污泥法:是以活性污泥为主体的污水生物处理技术。

实质:人工强化下微生物的新陈代谢(包括分解和合成),活性污泥法的工艺流程:1)预处理设施:包括初次池、调节池和水解酸化池,主要作用是去除SS、调节水质,使有机氮和有机磷变成NH+4或正磷酸盐、大分子变成小分子,同时去除部分有机物。

2)曝气池:工艺主体,其通过充氧、搅拌、混合、传质实现有机物的降解和硝化反应、反硝化反应。

3)二次沉淀池:泥水分离,澄清净化、初步浓缩活性污泥。

生物处理系统:微生物或活性污泥降解有机物,使污水净化,但同时增殖。

为控制反应器微生物总量与活性,需要回流部分活性污泥,排出部分剩余污泥;回流污泥是为了接种,排放剩余污泥是为了维持活性污泥系统的稳定或MLSS 恒定。

二、活性污泥的形态和活性污泥微生物1 活性污泥形态(1)特征1)形态:在显微镜下呈不规则椭圆状,在水中呈“絮状”。

2)颜色:正常呈黄褐色,但会随进水颜色、曝气程度而变(如发黑为曝气不足,发黄为曝气过度)。

3)理化性质:ρ=1.002~1.006,含水率99%,直径大小0.02~0.2mm,表面积20~100cm2/mL,pH值约6.7,有较强的缓冲能力。

其固相组分主要为有机物,约占75~85%。

4)生物特性:具有一定的沉降性能和生物活性。

(理解:自我繁殖、生物吸附与生物氧化)。

活性污泥法工作原理

活性污泥法工作原理

活性污泥法工作原理
活性污泥法是一种生物处理技术,主要用于处理废水中的有机物和氮的污染物。

其工作原理如下:
1. 污泥负载:将含有高浓度有机物的废水与活性污泥混合,使污泥中的微生物负载污染物。

活性污泥是由多种细菌和其他微生物组成的混合物,具有高度耐性和能力来降解有机物。

2. 暴露于空气中:将污泥置于暴露在空气中的容器中,以确保供氧和气体交换。

空气中的氧气提供给微生物进行呼吸作用,并促进细菌降解有机污染物的过程。

同时,活性污泥中的微生物通过呼吸作用释放出二氧化碳。

3. 分离固液:在活性污泥容器中,废水中的有机物被降解为二氧化碳和废水中的可溶性化合物。

此外,微生物合成新的细胞物质,因此为维持微生物群体的生长,需要一部分有机物。

4. 沉淀:处理后的废水进入沉淀器,通过重力作用使随废水进入的活性污泥颗粒沉降到底部,形成污泥混合物。

此时,可以将一部分活性污泥用于下一批废水的处理,使系统稳定。

5. 排放水体:处理后的废水经过后处理,满足排放标准后,可以安全地排放到水体中。

通过这一系列过程,活性污泥法能够高效地将有机物和氮的污染物降解为较低的水平,达到净化废水的目的。

废水好氧生物处理工艺-——活性污泥法

废水好氧生物处理工艺-——活性污泥法
Si——进水BOD浓度(kgBOD/m3); Se ——出水浓度(kgBOD/m3)。
式中: x——每日的污泥增长量(kgVSS/d);= Qw·Xr Q ——每日处理废水量(m3/d);
a、b经验值的获得:
(1) 对于生活污水或相近的工业废水: a = 0.5~0.65,b = 0.05~0.1; (2) 对于工业废水,则:
合成纤维废水
0.38
0.10
含酚废水
0.55
0.13
制浆与造纸废水
0.76
0.016
制药废水
0.77
酿造废水
0.93
工业废水
a
b
亚硫酸浆粕废水
0.55
0.13
a、b经验值的获得:
(3)通过小试获得:
可改写为:
a
b
QSr/VXv(kgBOD/kgVSS.d)
x/VXv(1/d)
一、活性污泥法的工艺流程
回流污泥
二次 沉淀池
废水
曝气池
初次 沉淀池
出水
空气
剩余活性污泥
活性污泥系统的主要组成
曝气池:反应的主体,有机物被降解,微生物得以增殖; 二沉池:1)泥水分离,保证出水水质; 2)浓缩污泥,保证污泥回流,维持曝气池内的污泥浓度。 回流系统:1)维持曝气池内的污泥浓度; 2)回流比的改变,可调整曝气池的运行工况。 剩余污泥: 1)去除有机物的途径之一; 2)维持系统的稳定运行 供氧系统:为微生物提供溶解氧
在条件一定时, 较稳定; 对于处理城市污水的活性污泥系统,一般为0.75~0.85
4、活性污泥的性能指标:
(3)污泥沉降比(SV) (Sludge Volume) 定义:将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 功能:能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常范围: 2030%

污水的生物处理--活性污泥法

污水的生物处理--活性污泥法

物降解与活性污泥增长
微生物的增殖是通过微生物合成与内源代谢两项生理活动完成的。 微生物增殖的基本方程式: dX dX dX 上式 变形为:△XV=Y(Sa-Se)Qd/Vt - gKd.Xvdt s dt e 剩余污泥量计算: △Xv= Y(Sa-Se)Q- Kd.Xv BOD-污泥去除负荷:Nrs=Q.Sr/V.Xv 1/θc=Y.Nrs-Kd Y、Kd的取值:经验数据,城市污水:Y取0.4-0.6;Kd取0.05-0.1
(S0-Se)/x.t=k2.Se可按Y=aX形式作图 VmaxKs的确定 K2的取值:0.0168—0.0281
对完全混合曝气池的应用
计算BOD—污泥去除负荷率Nrs Nrs=Q(S0-Se)/X.V=(S0-Se)/x.t=k2Se
计算容积去除负荷率: Nrv=Q(S0-Se)/V=(S0-Se)/t=k2XSe
曝气与空气扩散系统
进水 来自初沉池
V、X
曝气池
出水
Q-Qw 、Xe
二沉池
回流污泥 Xr
Qw、 剩X余r污泥
污泥龄定义:曝气池内活性污泥总量(VX)与每日排放的污泥量(△X )之比。
c
XV X
X QW X R
泥负荷与BOD容积负荷
在具体工程应用上, BOD—污泥负荷以F/M表示。 F/M=Ns=Q.Sa/X.V(kg/kgMLSS.d)
弧状菌
葡萄球菌
变形虫
丝状菌
草履虫 吸管虫属
小口钟虫 累枝虫
圆筒盖虫
轮虫
3、活性污泥微生物的增殖与活性污泥的增长
增殖规律用增殖曲线表示。根据微生物的生长速度,整个曲线
对数增殖期(增殖旺盛期):增殖速度达最大,且为常数,所以又称 减速增殖期(稳定期或平衡期):增殖速度变慢,直至为0,细菌总数 内源呼吸期(内源代谢期或衰亡期):细菌进行内源代谢,细菌总数 4、活性污泥絮凝体的形成:有多种学说。

活性污泥法与生物膜法

活性污泥法与生物膜法

污水处理剂净化水源,呵护地球.................................................................................................................................................................................................................................聚丙烯酰胺常见问题汇总活性污泥法与生物膜法有机废水的生物技术有两种方法:一是活性污泥法二是生物膜法一、活性污泥法属于悬浮生物处理系统,其优点是曝气池内微生物、各环境要素分布均匀,传质效率较高,而且投资省。

但是,该工艺的主要问题是:首先,排泥量大,泥龄较短,不能满足高效硝化的要求,进而不能实现高效脱氮;其次,容积负荷低,造成处理效率低和占地面积大;第三,容易诱发丝状菌膨胀等。

二、生物膜法属于生物附着污水处理系统,其利用生物填料来固定微生物。

与活性污泥技术相比,生物膜法的主要优点有:较长的污泥龄,适于世代周期较长的硝化菌的生长;溶解氧在生物膜上的梯度分布,为不同的微生物生态结构和代谢提供了条件;污水处理效率高、占地面积相对较小、抗冲击性强等,因此,适合处理工业废水。

但是,生物膜法的主要缺点是微生物与各类底物之间的传质效率较低,表现为:(1)生物填料容易在曝气池内形成拥堵、结团或沟流,传质不均匀,直接降低生物膜法的效率;(2)反应器内气液接触时间短,氧的利用率低。

.................................................................................................................................................................................................................................. 我们不能造水,却可以让水循环使用。

活性污泥法的常用工艺

活性污泥法的常用工艺

活性污泥法的常用工艺
活性污泥法是一种生物处理技术,常用工艺有以下几种:
1. A/O(Anoxic/Oxic)反硝化-好氧法: 在反硝化区域,除去氧化还原态氮,使其释放出氮气;而在好氧区域,则利用活性污泥群落对机械、生物、化学污染物进行氧化作用,转化为能被微生物吞噬的生物质;
2. SBR(Sequencing Batch Reactor)序批反应器法:是用于分类处理废水的一种工艺,它将处理系统分离成一系列间隔的单元,使废水在不同的处理阶段接受不同的处理操作,例如曝气、沉淀、排出、消化、沉淀等;
3. MBR(Membrane Bio-Reactor)膜生物反应器法:是活性污泥法和膜技术的结合,将废水在活性污泥反应和膜过滤两个过程中同时完成,从而提高出水质量,使水变得更加清澈透明,同时达到更好的污水处理效果,减少一定的反应时间;
4. MBF(Membrane Bio-Filtration)膜生物过滤法:纤维素滤料为载体,同时通过位于滤料中的微生物附着于滤媒表面,接触废水分子,使污染物和微生物进行氧化还原反应,从而达到净化废水的目的。

第四章 污水的好氧生物处理--活性污泥法1

第四章 污水的好氧生物处理--活性污泥法1

曝气池的类型
曝气池的分类:
根据曝气池内的运行方式,可分为连续运行与 间歇运行两种; 根据曝气池内的流态,可分为推流式、完全混 合式和封闭环流式三种; 根据曝气方式,可分为鼓风曝气池、机械曝气 池以及二者联合使用的机械-鼓风曝气池; 根据曝气池的形状,可分为长方廊道形、圆 形、方形以及环状跑道形等四种; 根据曝气池与二沉池之间的关系,可分为合建 式(即曝气沉淀池)和分建式两种。
4.1 基本概念
• 活性污泥的发现
1912年开始,污水曝气产生悬浮状态褐色絮状 污泥 活性污泥组成:细菌、真菌、原生动物和后生 动物 1916年第一个活性污泥法污水处理厂 城市污水处理最广泛应用的方法
• 活性污泥法的实质:天然水体自净作用的 人工化和强化
活性污泥中的微生物
A.细菌:是活性污泥净化功能最活跃的成分
活性污泥的增殖曲线
• ③ 稳定期: • F/M值下降到一定水平后,有机底物的浓度成为微生 物增殖的控制因素; • 微生物的增殖速率与残存的有机底物呈正比,为一级 反应; • 有机底物的降解速率也开始下降; • 微生物的增殖速率在逐渐下降,直至在本期的最后阶 段下降为零,但微生物的量还在增长; • 活性污泥的能量水平已下降,絮凝体开始形成,活性 污泥的凝聚、吸附以及沉淀性能均较好; • 由于残存的有机物浓度较低,出水水质有较大改善, 并且整个系统运行稳定; • 一般来说,大多数活性污泥处理厂是将曝气池的运行 工况控制在这一范围内的。
其中固体物质的组成:
1)活细胞(Ma): 2)微生物内源代谢的残留物(Me): 3)吸附的原废水中难于生物降解的有机物(Mi) 4)无机物质(Mii):
有机物 75~85%
活性污泥的性能指标:污泥浓度
3. 混合液悬浮固体浓度(MLSS): (Mixed Liquor Suspended Solids) MLSS = Ma + Me + Mi + Mii 单位: mg/L 或 g/m3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019/11/26
29
而, Qw X r (Q Qw ) X e
式中,Qw—— 作为剩余污泥排放的污泥流量; Xr—— 剩余污泥浓度; Xe—— 排放处理水中的悬浮固体浓度。

VX
VX
Qw X r (Q Qw ) X e Qw X r

Qw
X
r
(每





有助于说明污泥微生物的组成:世代期长的微生 物在系统中将被逐渐淘汰。
2019/11/26
31
四、BOD负荷
1、BOD—污泥负荷NS
定义:在活性污泥法中,一般将有机底物与
活性污泥的重量比值(F/M),即曝气池内单
位重量活性污泥,在单位时间内所承受的有机
污染物量,称为污泥负荷,以Ns表示,单位为 kg (BOD5 ) / kg(MLSS)·d。
MLVSS与MLSS的比值以f表示,即
f = MLVSS / MLSS
在一般情况下,f值比较固定,对生活污水,f值常 在0.75左右。对于工业废水,其比值视水质不同而异。
2019/11/26
24
二、活性污泥的沉降性能指标
1、污泥沉降比(settling velocity, SV)
• 定义:SV是指混合液在量筒内静置沉淀30min后,所
25
2、污泥体(容)积指数
(sludge volume index, SVI )
• 定义:指曝气池出口处的混合液在静沉30min后,
1克干污泥所占有沉淀污泥容积的毫升数,单位 为ml/g,但一般不标注。
• 计算式: SVI SV的 百 分 数10
MLSS (g / L)
•例如,某曝气池污泥沉降比SV=30%,混合液悬 浮固体浓度为MLSS=3g/L,则污泥容积指数:
(4)污泥回流系统
把二次沉淀池中的一部分沉淀污泥再回流到曝气池,以供应曝气 池赖以进行生化反应的微生物。
(5)剩余污泥排放系统 曝气池内污泥不断增殖,增殖的污泥作为剩余污泥从剩余污泥排
放系统中排出。 是否曝气池中活性污泥越多越好呢? 为何要存在剩余污泥呢?
2019/11/26
18
三、活性污泥降解废水中 有机物的过程及机理
2019/11/26
3010
SVI
100
3
26
SVI值能较好地反映出活性污泥的松散程度 (活性)和凝聚、沉降性能。
• SVl值过低,说明污泥颗粒细小紧密,无机物多, 缺乏活性和吸附力;
• SVI值过高,说明污泥难于沉降分离,并使回流污 泥 的 浓 度 降 低 , 甚 至 出 现 污 泥 膨 胀 (sludge bulking),导致污泥流失等后果。
的最主要部分。 • 污水中有机物的性质决定哪些种属的细菌占优势。
4、活性污泥微生物及其在活性污泥工艺中的作用
(1)细菌
占活性污泥中微生物总重量的90%~95%,在某些工业废 水中甚至可达100%。在有机物的净化中起着最重要的作 用。活性污泥中的细菌主要有菌胶团细菌和丝状细菌, 它们构成了活性污泥的骨架。
作用
通过体表吸收溶解性有机物,然后使之分解。 可吞噬废水中细小的有机物颗粒和游离细菌。 在处理过程中起着指标(指示性生物)的作用。 15
(4)后生动物
后生动物(主要指轮虫)在活性污泥系统中是不经常出现的, 仅在处理水质优异的完全氧化型的活性污泥系统,如延时 曝气活性污泥系统中出现,因此,轮虫出现是水质非常稳 定的标志。
2019/11/26
20
2.2 活性污泥处理系统的控制指标 与设计、运行参数
表示及控制活性污泥微生物量的指标 活性污泥的沉降性能指标 污泥龄 (sludge age)
BOD5污泥负荷
2019/11/26
21
一、表示及控制活性污泥微生物量的指标
1、混合液悬浮固体浓度(MLSS)
(Mixed Liquor Suspended Solids)

量)
1

VX
即每天只要将系统的活性污泥排出1/。
2019/11/26
30
一般情况下,Xr是活性污泥特性和二次沉淀池沉 淀效果的函数,可由下式求定其近似值:
Xr

10 6 SVI
污泥龄(生物固体平均停留时间)是活性污泥处理系 统设计、运行的重要参数,在理论上也有重要意义。
污泥平均停留时间和增殖的关系密切,用控制 剩余污泥量,已是一种重要方法。
教学内容:
• 2.1 活性污泥法的基本原理 • 2.2 活性污泥法的控制指标与设计、
运行参数 • 2.3 曝气理论和曝气系统 • 2.4 曝气池的构造 • 2.5 活性污泥法的发展与演变 • 2.6 活性污泥处理系统的工艺设计
2019/11/26
3
2.1 活性污泥法的基本原理
一、活性污泥 二、活性污泥法的基本流程 三、活性污泥降解有机物的过程及机理
• 一般认为:
– SVI < 100 – 100 < SVI < 200 – SVI > 200
污泥沉降性能良好 污泥沉降性能一般 污泥沉降性能较差,易膨胀,
• 一般控制SVI在50-150之间较好。
三、污泥龄(sludge age)
概念:污泥龄是指曝气池内活性污泥总量与每日
排放的剩余污泥量之比,即活性污泥在曝气池内 的平均停留时间,故又称“生物固体平均停留时 间” (Mean Cell Retention Time,简写为 MCRT),单位为d。用θc 或ts表示。 • 在运行稳定时,曝气池中活性污泥的量保持常数, 每日排出的污泥量也就是新增长的污泥量。
2019/11/26
22
一般活性污泥法中,MLSS浓度一般为2~4g/L。 特点:测定方法比较简便易行,此项指标应
用较为普遍,但不能精确地表示具有活性的 活性污泥数,而表示的是活性污泥的相对值。
MLSS是活性污泥处理系统重要的设计、运 行参数。
2019/11/26
23
2、混合液挥发性悬浮固体浓度( MLVSS )
活性污泥中的真菌主要为丝状真菌,分属酵母菌及霉菌 两大类。
真菌常出现于某些含碳较高或pH 较低的工业废水处理系统中。
在常规处理系统中出现真菌往往提示负荷较高。 真菌具有分解碳水化合物、脂肪、蛋白质及其他含氮化
合物的功能,但若大量异常的增殖会引发污泥膨胀现象。
(3)原生动物
在活性污泥中存活的原生动物有肉足虫、鞭毛虫 和纤毛虫等3类。
形成的沉降污泥与原混合液的体积比的百分数。
• 计算式:
SV





过30min 沉 淀 后 的 污 混合液原体积


积 100
%
• 正常范围:15% ~ 30% Nhomakorabea• 作用:
–可用以控制剩余污泥的排放量。
–可用以发现污泥膨胀等异常现象。
–是活性污泥处理系统重要的运行参数
–是评定活性污泥数量和质量的重要指标。
• 污泥龄也就是新增长的污泥在曝气池中平均停留 时间,或污泥增长一倍平均所需要的时间。
2019/11/26
28
计算式:
c

VX X
式 中 :V — 曝 气 池 容 积 ; X —曝气池活性污泥浓度; X — 曝 气 池 内 每 日 增 长 的 活性 污 泥 量 , 即 应 排 出 系 统 外 的 污 泥量 。
相对密度 粒经
比表面积
2019/11/26
似矾花絮绒颗粒
曝气池混合液:1.002~1.003 回流污泥:1.004~1.006
0.02~0.2mm 20~100cm2/mL
7
2019/11/26
8
曝气池
2019/11/26
9
2019/11/26
10
曝气池出水堰
2019/11/26
11
曝气池混合液配水进入二沉池
1、初期吸附去除 (吸附阶段)
BOD
t-最佳吸
附时间
废水与活性污泥微生物充 分接触,形成悬浮混合液。 废水中的污染物被微生物吸 附和粘连。
t
曝气时间
BOD5下降曲线
2019/11/26
吸附机理:物理吸附和 生物吸附的综合作用。
吸附量的大小,主要取 决于有机物的状态、活性污 泥性质和反应器中水力条件。
(5)微型藻类
在活性污泥系统中藻类数量及品种较少,大多为单细胞类; 沉淀池边缘、出水槽等阳光暴露处较多见。在氧化塘及氧 化沟等占地大、空间开阔的构筑物中数量及种类较多,呈 藻菌共生状态。
作用
藻类代谢过程中产生的氧可供异养细菌氧化有机物之需。
脱氮除磷。

106CO2+16NO3-+HPO4-+122H2O+18H+
19
2、微生物的代谢(稳定阶段)
呈胶体的大分子有机物被吸附后,首先被水解 酶作用分解成小分子物质,然后和溶解性有机 物在透膜酶或浓差的作用下选择性地渗入细胞 体内。
转移到细胞体内的有机物,在各种胞内酶的催 化作用下,被微生物所代谢而降解,一部分经 过一系列中间状态氧化为最终产物CO2和H2O等, 另一部分转化为新的有机体,使细胞增殖。
2、基本流程
2019/11/26
空 气

曝 气







回流污泥
剩余 污泥
活性污泥法的基本流程
活性污泥法处理系统的组成:
(1)曝气池 微生物降解有机物的反应场所.
(2)曝气系统
为微生物提供溶解氧
搅拌混合作用
(3)沉淀池 (一般称为“二沉池”)
相关文档
最新文档