中学数学竞赛讲座及练习(第22讲)+分式

合集下载

完整分式讲义

完整分式讲义

分式1. 分式的概念:形如(A,B是整式,且B中含有字母)。

要使分式有意义,作为分母的整式B的值不能为0,即B≠0。

要使分式的值为0,只能分子的值为0,同时保证分母的值不为0,即A=0,且B≠0。

1、式子① ② ③ ④中,是分式的有( )A.①② B. ③④ C. ①③ D.①②③④2、分式中,当时,下列结论正确的是( )A.分式的值为零 B.分式无意义C. 若时,分式的值为零D. 若时,分式的值为零3. 若分式无意义,则x的值是( )A. 0B. 1C. -1D.4.如果分式的值为负数,则的x取值范围是( )A. B. C. D.2. 分式的基本性质:分式的分子,分母同时乘以,或除以一个不等于0的整式,分式的值不变。

即=,=(C≠0)1.不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以()A.10 B.9 C.45 D.902.下列等式:①=-;②=;③=-;④=-中,成立的是( )A.①② B.③④ C.①③ D.②④3.不改变分式的值,使分子、分母最高次项的系数为正数,正确的是()A. B. C. D.4.对于分式,永远成立的是( )A. B. C. D.5.下列各分式正确的是( )A. B. C. D.3. 最简分式及分式的约分与通分:1) 最简分式:分子分母没有公因式的分式称之为最简分式。

2) 约分:利用分式的基本性质约去分子分母中所有公因式,使所得的结果为最简分式或是整式。

3) 通分:利用分式的基本性质,对分式的分子,分母同时乘以适当的整式,不改变分式的值,把几个不同分母的分式化成相同分母的分式,这样的分式变形称为通分。

通分的第一步是确定分式间的最简公分母,一般取各分母的所有因式的最高次幂的积作为公分母,即最简公分母。

总结:分式的通分,约分前都需要将分子,分母中的多项式因式分解1.化简分式的结果是________.2.约分:(1) , (2) , (3).3.把下列各式通分:(1) , (2).(3) , (3).4. 分式的运算:1) 分式的乘除法法则:分式乘分式,分子的积作为积得分子,分母的积作为积得分母;分式除以分式,把除式的分子,分母颠倒位置后与被除式相乘。

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。

八年级数学竞赛讲座 分式

八年级数学竞赛讲座 分式

八年级数学竞赛讲座 分式一、知识结构:1、分式的有关概念;2、分式的基本性质;3、分式的乘除与乘方;4、分式的加减;二、典型例题:例1、x 为何值时,下列分式有意义? ①122+-x x ②x111+ ③222--+x x ax x ④3||62---x x x例2、x 为何值时,下列分式的值为0? ①62322-++-x x x x ②222--+x x ax x例3、已知x 为非零实数,那么||||||3322x x x x x x ++的值?例4、若x+2是多项式b ax x x +++23的一个因式,03222≠++b ab a ,求分式 2223323244bab a b a b a ab ++-+-的值?例5、化简下列分式:(1))2)(2()2)(2()2)(2(a x c x a c c x b x c b b x a x b a ++-+++-+++-(2)1814121111842+-+-+-+--x x x x x(3)874261)1)(1)(1(xx x x x x -++++(4)[])(11[])2(11][)1(11222n x x x +-+-+-Λ例6、(1)已知211=-b a ,求b ab a b ab a ---+322的值?(2) 已知:)0(0132≠=+-x x x ,求441xx +的值?(3)已知712=+-x x x ,则求1242++x x x 的值?(4)已知012=++a a ,求20022002)1(aa+的值?(5)已知0132,02=-+=--z y x z y x ,求22222272322z y x z y x --+-的值?(6)若yx z x z y z y x +=+=+=k ,求k 的值?(7)已知k a a a a a a a a a a a a a a a a =++=++=++=++4321342124311432,求k 的值?(8)已知:05442222=+--++y x y x y x , 求222222244)(22y y x yxy xy x y xy x y x +÷--⋅-+-的值?例7、已知,0,1=++=++z c y b x a c z b y a x 求证:1222222=++cz b y a x ;例8、已知abc=1,求证:1111=++++++++c ca c b bc b a ab a ;作业题:1、计算: (1)158137)43542132(22++++÷++-+++++-++x x x x x x x x x x x x ;(2)))(())(())((a x a b c b b x b a c b b x a x c x ---+---+---(3)4422222232233223311y x y x y x y x y xy y x x y y xy y x x x -+-+--+-+-++++(4)233311111222231*********++2、已知使分式117++bx ax 有意义的一切x 的值,都使这个分式的值为一个定值,求a 、b 应满足的条件;3、把a b b a -写成两个因式的积,使这两个因式的和为a b b a +,求出这两个因式;4、已知),3,2,1(11,11Λ=-==+n a a x a n n ,求20005432,,,,a a a a a ;5、不等于零的三个数a 、b 、c 满足cb ac b a ++=++1111, (1)求证:a ,b ,c 中至少有两个互为相反数;(2)求abcc b a b a a c c b 3)()()(333333-+++++++的值;6、设by ax z ax cz y cz by x +=+=+=,,,求111+++++c c b b a a 的值;。

完整分式讲义

完整分式讲义

分式1. 分式的概念:形如BA(A,B 是整式,且B 中含有字母)。

要使分式有意义,作为分母的整式B 的值不能为0,即B ≠0。

要使分式的值为0,只能分子的值为0,同时保证分母的值不为0,即A=0,且B ≠0。

1、式子①x 2 ②5y x + ③a -21 ④1-πx中,是分式的有( )A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x ax 中,当a x -=时,下列结论正确的是( )A .分式的值为零 B.分式无意义C. 若31-≠a 时,分式的值为零D. 若31≠a 时,分式的值为零3. 若分式1-x x无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4.如果分式x 211-的值为负数,则的x 取值范围是( )A.21≤xB.21<xC.21≥xD.21>x2. 分式的基本性质:分式的分子,分母同时乘以,或除以一个不等于0的整式,分式的值不变。

即B A =CB C A ⋅⋅ ,B A =CB C A ÷÷ (C ≠0) 1.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .902.下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a bc+;④m n m --=-m n m-中,成立的是( )A .①②B .③④C .①③D .②④3.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.对于分式11-x ,永远成立的是( ) A .1211+=-x x B. 11112-+=-x x x C. 2)1(111--=-x x x D. 3111--=-x x 5.下列各分式正确的是( )A.22a b a b =B. b a b a b a +=++22C. a a a a -=-+-11122D. xx xy y x 2168432=--3. 最简分式及分式的约分与通分:1)最简分式:分子分母没有公因式的分式称之为最简分式。

分式的概念和性质+答案

分式的概念和性质+答案

分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。

分式习题精讲含详细解答答案

分式习题精讲含详细解答答案

1.分式的定义及性质1-1.若分式mx x +-212不论x 取任何实数总有意义,则m 的取值范围为( D ) A. 1≥m B. m >1 C. 1≤m D.m ≠1分析:分式有意义的条件是分母不为0.只要m x x +-22≠0,即可,而m x x +-22=()1122-++-m x x =()112-+-m x ,要使()112-+-m x ≠0,因为()012≥-x ,所以只需要m -1≠0,即m ≠1。

1-2.若()()30622----x x 有意义,那么x 的范围是( D )。

A. x >2B. x <3C. x ≠3或x ≠2D. x ≠3且x ≠2 1-3.已知分式的值为正或负,或1,-1,或0.求字母的取值。

① 当x 时,分式21+x 的值为正。

解:由题意得21+x >0,根据实数运算法则,同号两数相除得正,异号两数相除得负,可知x+2与1同号,所以x+2>0,所以x >-2. ② 当x 时,分式112+-x x的值为负。

解:由题意得112+-x x <0,因为x 2+1>0,根据实数运算法则,同号两数相除得正,异号两数相除得负,可知1-x 与x 2+1异号,所以1-x <0,所以x >1. ③ 当x 时,分式22-+x x 的值为-1。

解:由题意得22-+x x =-1,所以x+2与x -2互为相反数,所以x+2+x -2=0,所以x =-x ,所以x ≤0总结:以上题型为:已知分式的值为正或负,或为1,-1等常数,求x 的值。

这种题型的解法是:运用转化的思想。

A.若分式的值为正或负,则转化成解分式不等式,解分式不等式的方法是运用实数运算法则将分式不等式转化成整式不等式,再解整式不等式。

B.或分式的值为1,-1等常数时,则转化成求解分式方程,解分式方程的方法是先转化成整式方程,再解整式方程。

最后记得要检验是否有增根。

附加练习:④ 当x >5 时,分式52-x 的值为正。

分式竞赛资料

分式竞赛资料

因式分解第一课时(学、教案)主讲人: 初中数学组 吴安全一、因式分解在初中数学计算中,用途很广泛,具体来说用得较多的有如下几个方面: (1)利用因式分解简化计算;(2)利用因式分解求较复杂的代数式的值;(3)利用因式分解确定多项式中的某些相关的待定系数; (4)利用因式分解解决某些数的整除问题;(5)利用因式分解解某些特殊的方程或方程组等问题. 二、因式分解常见的类型: 1、提取公因式 2、运用公式法 3、分组分解法 4、十字相乘法 5、换元法6、配方法及拆项法 三、基础知识准备 1、因式分解的概念 2、我们已经学过的方法 3、常见的公式:4)(464432234b a b ab b a b a a +=++++常用公式除课本上的几个公式以外,大家还应熟悉以下的公式(结论): a 3±3a 2b+3ab 2±b 3=(a ±b )3; a 3±b 3=(a ±b )(a 2ab+b 2);a 2+b 2+c 2+2ab+2bc+2ac=(a+b+c )2;a 3+b 3+c 3-3abc=(a+b+c )(a 2+b 2+c 2-ab-bc-ac ); a 4+4=(a 2+2a+2)(a 2-2a+2). …… ……四、分类导讲: 1、提取公因式 例1:()()()nmn m x b x a x b x a )(11++-++-+2、运用公式法 例2:()()66yx y xy x -+-3、分组分解法 例3:23323+++a a a4、十字相乘法 例4:28643bb ab a -+-5、换元法例5:()2223)67(65x x x x x-++++6、配方法及拆项法例6:2426923+++x x x五、学生习题准备:1、())()(223y x x y x y y x +++-+ 2、y x y xy x 939622+-+- 3、()32321x x x x -+++4、87625344352678y xy y x y x y x y x y x y x x +-+-+-+- 5、()12)2(122-++++x x x x6、证明四个连续自然数的积与1的和必是一个完全平方数。

初中数学竞赛指导:《分式》竞赛专题训练(含答案)

初中数学竞赛指导:《分式》竞赛专题训练(含答案)

《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x--有意义? (2)当x 为何值时,分式22211x x--的值为零? 解题策略(1) 要使分式22211x x--有意义,应有分母不为零这个分式有两个分母x 和11x -,它们都不为零,即0x ≠且110x -≠,于是当0x ≠且1x ≠时,分式22211x x--有意义, (2) 要使分式22211x x--的值为零,应有2220x -=且110x -≠,即1x =±且1x ≠,于是当1x =-时,分式22211x x--的值为零 画龙点睛1. 要使分式有意义,分式的分母不能为零.2. 要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1. (1)要使分式24x x -有意义的x 的取值范围是( ) (A)2x = (B) 2x ≠ ( C)2x =- (D)2x ≠-(2)若分式的的值为零,则x 的值为( )(A)3 (B)3或3- (C) 3- (D)0 2. (1)当x 时,分式23(1)16x x -+-的值为零;(2) 当x 时,分式2101x x +≥- 3. 已知当2x =-时,分式x b x a -+无意义;当4x =时,分式的值x b x a -+为零,求a b +.融会贯通4.0≤,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题 若2731x x x =-+,求2421x x x ++的值 解题策略 因为2731x x x =-+,所以0x ≠ 将等式2731x x x =-+的左边分子、分母同时除以x ,得1713x x=-+,所以有 1227x x += 因此242222211149112214351()1()17x x x x x x x ====+++++-- 画龙点睛 对于含有1x x+形式的分式,要注意以下的恒等变形: 22211()2x x x x+=++ 22211()2x x x x-=+- 2211()()4x x x x+--= 举一反三1. (1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b c a b c -+++(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a a a ---+ 2. 已知13xy x y =--,求2322x xy y x y xy +---的值.3. 已知13x x+=,求2421x x x ++的值.融会贯通4. 已知3a b b a+=,求22224a ab b a ab b ++++的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x y x y x y x y x y x y--+-÷+--+- 解题策略 原式2222()4()43()()8x y y x y x x y x y xy x y x y x y--+-+--=÷-+- ()(3)(3)()(3)(3)x y x y x y y x x y x y x y x y x y +-+--=-++- y x =-画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1. 先化简,再求值:262393m m m m -÷+--,其中2m =-.2. 计算:322441124a a a b a b a b a b+++-+++= 3. (1)已知实数a 满足2280a a +-=,求22213211143a a a a a a a +-+-⨯+-++的值(2)已知a 、b 为实数,且1ab =,设11a b M a b =+++,1111N a b =+++,试比较M 、 N 的大小关系.融会贯通4. 甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法 我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x x x x -+=---- 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B AB B A ±=±,111(1)1n n n n =-++ 经典例题已知54(1)(21)121x A B x x x x -=-----,求A 、B 的值 解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x ----=-=------(2)(1)(21)A B x B A x x -+-=--,可得254A B B A -=⎧⎨-=-⎩,解得13A B =⎧⎨=-⎩ 画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B 的值即可.举一反三1. 若在关于x 的恒等式222Mx N c x x x a x b +=-+-++中,22Mx N x x ++-为最简分式,且有a b >,a b c +=,求M ,N .2. 化简:222211113256712x x x x x x x x ++++++++++3. 计算:222222a b c b c a c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+融会贯通 4. 已知21(2)(3)23x b c a x x x x -=++----,当1,2,3x ≠时永远成立,求以a 、b -、c 为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决.经典例题已知x y z x y z x y z z y x +--+-++==,且()()()1x y y z z x xyz +++=-,求x y z ++的值解题策略 由x y z x y z x y z z y x+--+-++== 得111x y x z y z z y x +++-=-=- 从而x y x z y z z y x+++== 设x y x z y z k z y x+++===,则x y kz +=,x z ky +=,y z kx +=三式相加得2()()x y z k x y z ++=++,即()(2)0x y z k ++-=,所以0x y z ++=,或2k =若0x y z ++=,则1x y x z y z z y x+++•=-,符合条件; 若2k =,则()()()81x y y z z x xyz+++=≠-与题设矛盾,所以2k =不成立 因此0x y z ++=画龙点睛1. 将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2. 在得到等式2()()x y z k x y z ++=++后.不要直接将等式的两边除以x y z ++,因为此式可能等于0. 3. 在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1. (1)已知275x y z ==,求值①x y z z ++;②x y z +;③x y z x +-(2)已知2310254a b b c c a +-+==,求56789a b c a b +-+的值2. 若a b c d b c a a ===,求a b c d a b c d -+-+-+的值3. 已知实数a 、b 、c 满足0a b c ++≠,并且a b c k b c c a a b===+++,则直线3y kx =-一定通过( )(A)第一、二、三象限 (B)第一、二、四象限(C)第二、三、四象限 (D)第一、三、四象限 融会贯通 4. 已知9p q r ++=,且222p q r x yz y zx z xy ==---,求px qy rz x y z++++的值6 整数指数幂一般地,当n 是正整数时,1(0)n n a a a-=≠,这就是说(0)n a a -≠是n a 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2m x-=,3n y =,求24()m n x y ---的值解题策略 242(4)(4)84()m n m n m n x y x y x y -------==848481()()23256m n x y ---==⨯=画龙点睛将所求的代数式转化为以m x-、n y 为底的乘方,进而代入相应的值进行计算. 举一反三1. 计算(1)222242(2)()a b a b a b ----÷(2)541321111(1)()()()()21023----++-+-⨯-(3)10222(510)(0.210)(200)⨯÷-⨯⨯-2. 水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310-⨯kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510-⨯kg ,求一个氢原子的质量.3. 已知2310a a -+=,求(1)1a a -+;(2)22a a -+;(3)44a a -+融会贯通4. 如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答.经典例题解方程52432332x x x x --=-- 解题策略解法一 去分母,得(52)(32)(43)(23)x x x x --=--2215610486129x x x x x x --+=--+所以1x =-验根知1x =-为原方程的解.解法二 方程两边加1,得5243112332x x x x --+=+-- 即222332x x =-- 所以2332x x -=-解得1x =-验根知1x =-为原方程的解.解法三 原式可化为22112332x x -=--- 所以222332x x =-- 以下同解法二画龙点睛1. 通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2. 除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3. 解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1. (1)解方程2227461x x x x x +=+--(2)解方程2222112x x x x x x x x -++=--+-2. (1)解方程22252571061268x x x x x x x x x --+=+----+(2)解方程253336237456x x x x x x x x ----+=+----3. 若解方程61(1)(1)1m x x x -=+--是会有增根,求它的增根融会贯通4. 已知方程11x c x c +=+ (c 是常数,0c ≠)的解是c 或1c,求方程2131462a a x x a+++=- (a 是常数,且0a ≠)的解.8 列分式方程解应用题和整式中的一元一次方程一样,列分式方程所解的应用题也包括工程问题、行程问题、经济问题等,本节介绍列分式方程解应用问题的方法.经典例题某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份水费是18元,而今年5月份的水费是36元,已知小明家今年5月份的用水量比去年12月多6立方米,求该市今年居民用水的价格.解题策略设该市去年居民用水价格为x 元/m 3,则今年用水价格为(125%)x +元/m 3.根据题意得:36186(125%)x x-=+,解得: 1.8x = 经检验: 1.8x =是原方程的解.所以(125%) 2.25x +=所以该市今年居民用水的价格为2. 25元/m 3.画龙点睛列分式方程解应用题的步骤与列一元一次方程解应用题步骤基本上是一致的:审查题意,设未知数;找出等量关系,列出方程;解分式方程并验根;写出答案.举一反三1. 某服装厂准备加工300套演出服,加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用了9天完成任务,请问:该厂原来每天加工多少套演出服?2. 便民服装店的老板在株洲看到一种夏季衫,就用8000元购进若干件,以每件58元的价格出售,很快售完.又用17 600元购进同种衬衫,数量是第一次的2倍,每件进价比第一次贵了4元,服装店仍按每件58元出售,全部售完.问该服装店这笔生意共盈利多少元?3. 从甲地到乙地共50 km ,其中开始的10 km 是平路,中间的20 km 是上坡路,余下的20 km 又是平路,小明骑自行车从甲地出发,经过2小时10分钟到达甲、乙两地的中点,再经过1小时50分钟到达乙地,求小明在平路上的速度(假设小明在平路上和上坡路上保持匀速).融会贯通4. 某工程队(有甲、乙两组)承包一项工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间多30天,乙组单独完成这项工程所需时间比规定时间多12天,如果甲乙两组先合做20天,剩下的由甲组单独做,恰好按规定的时间完成,那么规定的时间是多少天?(2)实际工作中,甲乙两组合做完成这项工程的56后,工程队又承包了新工程,需要抽调一组过去,从按时完成任务考虑,你认为留下哪一组更好?说明理由.参考答案1 分式的概念1. (1)B (2) C2. (1)3x =- (2) 12x ≤-或1x > 3. 64. 21a -≤<2分式的基本性质1. (1)1561561510a b c a b c -+++(2)3211a a a --+ 2. 由已知,得3x y xy -=-,所以 原式2()36333()23255x y xy xy xy xy x y xy xy xy xy -+-+-====----- 3. 242222211111113181()1x x x x x x x====++-+++- 4. 将22224a ab b a ab b ++++分子和分母同时除以ab ,得13143474a b b a a b b a +++==+++3 分式的四则运算1. 262393m m m m -÷+-- 633(3)(3)2m m m m m -=-++- 33m m -=+ 当2m =-时,原式3235323m m ---===-+-+ 2. 322441124a a a b a b a b a b +++-+++ 3222244224a a a a b a b a b =++-++ 33444444a a a b a b =+-+ 7884a a b=- 3. (1) 22213211143a a a a a a a +-+-⨯+-++ 213(1)1(1)(1)(1)(3)a a a a a a a +-=-⨯++-++2111(1)a a a -=-++ 22(1)a =+ 由2280a a +-=知2(1)9a += 所以原式222(1)9a ==+ (2)11()()1111a b M N a b a b -=+-+++++ 111111a b a a b b =-+-++++ 1111a b a b --=+++ (1)(1)(1)(1)(1)(1)a b b a a b -++-+=++ (1)(1)(1)(1)ab a b ab b a a b +--++--=++ 220(1)(1)ab a b -==++ 所以M N =4. 设两次购买肥料的单价分别为a 元/千克和b 元/千克(a 、b 为正数,且a b ≠),则 甲两次购买肥料的平均单价为:8008008008002a b a b ++=+ (元/千克). 乙两次购买肥料的平均单价为:6006002600600ab a b a b +=++ (元/千克). 因为22()2()a b ab a b a b a a b +--=++,又a b ≠,0a >,0b >,所以2()0()a b a a b ->+ 所以甲的平均单价比乙的高,所以乙的购货方式更合算一些4 分式的运算技巧——裂项法1. 222(2)22()()()()Mx N x b cx ca c x b ca x x x a x b x a x b ++---+-==+-++++ 且22(1)(2)x x x x +-=-+,a b >所以2a =,1b =-,1c a b =+=从而可得21M x =-=,24N b ca =-=-2. 原式1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x =++++++++++ 111111*********x x x x x x x x =-+-+-+-+++++++ 114x x =-+ 3. 原式()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-=++------ 111111a c a b b a b c c b c a=+++++------ 0=4. 因为23b c a x x ++-- (2)(3)(3)(2)(2)(3)a x xb xc x x x --+-+-=-- 25632(2)(3)ax ax a bx b cx c x x -++-+-=-- 所以2215632x ax ax a bx b cx c -=-++-+-所以1a =,50a b c -++=,6321a b c --=-解得1a =,3b =-,8c =所以四边形的第四边d 的取值范围应满足138d ++>,138d ++>,182d ++>,381d ++>,解得412d <<5 含有几个相等分式问题的解法1. (1)设275x y z k ===,则2,7,5x k y k z k === ① 2751455x y z k k k z k ++++== ② 27955x y k k z k ++== ③ 27522x y z k k k x k+-+-== (2)设2310254a b b c c a k +-+===则2253104a b k b c k c a k +=⎧⎪-=⎨⎪+=⎩解得2a k b k c k =⎧⎪=⎨⎪=-⎩56756(14)25898917a b c k k k a b k k +-+--==++ 2. 设a b c d k b c a a==== 则234,,,d ak c dk ak b ck ak a bk ak =======所以41k =,得1k =±当1k =时,a b c d ===,原式0=当1k =-时,a b c d =-==-,原式2=-3. (),(),()k a b c k b c a k c a b +=+=+=于是2()k a b c a b c ++=++因为0a b c ++≠ 所以12k =直线132y x =-的图象经过第一、三、四象限 故选择D4. 设222p q r k x yz y zx z xy===---, 故222(),(),()p k x yz q k y zx r k z xy =-=-=-所以222()9p q r k x y z yz zx xy ++=++---=又px qy rz ++=333()k x xyz y xyz z xyz -+-+-333()k x y z xyz xyz xyz =++--- 222()()k x y z x y z yz zx xy =++++---9()x y z =++所以px qy rz x y z++++9= 6 整数指数幂1. (1)424b a(2)149(3)12510⨯2. 232.6710⨯个 271.67510-⨯ kg 3. (1)因为2310a a -+=,且0a ≠所以213a a += 所以2113a a a a -++== (2) 2212()27a aa a --+=+-= (3)44222()247a a a a --+=+-=4. 1M 表示的数为310.110100-⨯= 1N 表示的数为3511010100--⨯= 1P 5711010100--⨯= 37P 表示的数为637 3.710-=⨯7 分式方程的解法1. (1)原方程分母因式分解为746(1)(1)(1)(1)x x x x x x +=+-+- 去分母得7(1)4(1)6x x x -++= 解得35x =检验知35x =为原方程的根(2) 原方程式变形为22221112x x x x +=+--+- 整理得2212x x x x --=+- 解得12x =检验知12x =为原方程的根 2. (1) 原方程分母因式分解为525710(3)(2)(4)(3)(2)(4)x x x x x x x x x --+=+--+-- 去分母得5(4)(25)(2)(710)(3)x x x x x x -+--=-+解得1x =检验知1x =为原方程的根(2)原方程化为2(7)93(4)93(5)92(6)97456x x x x x x x x -+-+-+-++=+---- 999923327456x x x x +++=+++---- 11117456x x x x +=+---- 11117654x x x x -=----- (6)(7)(4)(5)(7)(6)(5)(4)x x x x x x x x ------=---- 11(7)(6)(5)(4)x x x x =---- 22111342920x x x x =-+-+ 422x = 解得112x = 检验把112x =代入最简公分母(7)(4)(5)(6)0x x x x ----≠,所以112x =是原方程的根3. 去分母,得6(1)(1)(1)m x x x -+=+-如果增根为1x =,则6(11)0m -+=,3m =如果增根为1x =-,则6(11)0m --+=,无解,所以3m =4. 将方程2131462a a x x a+++=-整理得 112323x a x a+=++- 112323x a x a -+=+- 所以23x a -=,或123x a -=故32a x +=或312a x a +=8 列分式方程解应用题1. 设服装厂原来每天加工x 套演出服.根据题意,得603006092x x -+= 解得20x =经检验20x =是原方程的根.2. 设原进价为x 元一件,则第二次进价为(4)x +元一件,依题意得176********x x =+ 解得40x = 经检验40x =是原方程的根 服装店这笔生意第一次购进8000200x =件,第二次购进176004004x =+件,服装店这笔生意共盈利200(5840)400(5844)9200⨯-+⨯-=(元). 3. 设小明在平路上的速度是x km/h ,根据题意,得131011203()66x x -=-, 解得15x =经检验15x =是原方程的根,且符合题意.4. (1)设规定的时间是x 天,则甲单独完成需要(30)x +天,乙单独完成需要(12)x +,由题意,得11120()(20)1301230x x x x ++⨯-=+++, 解得24x =经检验24x =是原方程的根,所以规定的时间是24天;(2)由题意,因为规定时间是24天,所以甲单独完成需要243054+=(天),乙单独完成需要241236+=(天).留下甲完成需要的时间是:51151()(1)65436654÷++-÷189=+ 27=24>,不能在规定时间完成任务;留下乙完成需要的时间是:51151()(1)1862465436636÷++-÷=+= 能在规定时间完成任务.所以留下乙组好.。

八年级数学竞赛讲座 分式方程及其应用

八年级数学竞赛讲座 分式方程及其应用

八年级数学竞赛讲座 分式方程及其应用一、知识要点:1、分式方程的定义;2、分式方程的解法;3、增根的检验;4、带有字母系数的方程根的讨论;5、列分式方程解应用题;二、典型例题:例1、解下列方程(组):①917161101-+-=-+-x x x x ②32148521761543103--+--=--+--x x x x x x x x③5353323222-+-=-+-x x x x x x④200019991001)100)(99(1)3)(2(1)2)(1(1=+++++++++++x x x x x x x⑤解关于x 的方程)0())((2≠-=-+++ab bx a b x x a ab x a b⑥ 1221553210-=--+-=-++yx y x y x y x⑦ 2223427352=++-=--+x y x y x y y x ⑧ c xz zx b z y yz a y x xy =+=+=+ (abc ≠0)例2、①若a ≠0,b ≠0,且0)(21122=++-+b a b a b a ,则b a 的值?②已知:,51,41,31=+=+=+a c ca c b bc b a ab 求ca bc ab abc ++的值?例3、m 为何值时,关于x 的方程234222+=-+-x x mx x 有增根?例4、如果要使关于x 的方程0)2(22=-+---x x x x m x x x 有唯一解,则m 必须满足什么条件?例5、要使方程21212-+=--++x x a x x x x 的解是正数,求a 的范围?例6、(1)甲船从上游的A 地顺流而下行至B 地,乙船同时从下游的B 地逆流而上,经过12小时后两船相遇,这时甲船已走了全程的一半又9千米,已知甲船在静水中的速度是每小时4千米,乙船在静水中的速度是每小时5千米,求水流速度和A 、B 两地间的距离。

(2)某项工程由甲、乙两队承包,522天可以完成,需支付1800元;由乙、丙两队承包,433天可以完成,需支付1500元;由丙、甲两队承包,762天可以完成,需支付1600元。

第10章《分式》竞赛专题

第10章《分式》竞赛专题

第10章《分式》竞赛专题【例1】若20a b =,10b c =,则a b b c ++的值为( ) A.1121 B.2111 C.11021 D.21011【解析】 由题设,得12012101111110a a b b c b c b +++===+++【答案】 D 。

【例2】2(2)0ab -=,则111(1)(1)(2015)(2015)ab a b a b +++++++的值为 。

【解析】 由非负性可得1a =,2b = 原式=111112233420162017++++⨯⨯⨯⨯ =111111112233420162017-+-+-++- =12016120172017-=【答案】 20162017【例3】设2314x y -=,x 、y 都是正整数,则方程有 组正整数解。

【解析】 原方程式可化为2314y x xy-=,4(23)y x xy -=,1280xy x y +-=,即(8)(12)96x y -+=-,故8x -和12y +都是96-的约数,且1212y +>,780x -≤-<。

又59623=,故只有以下5种可能:(1)811296x y -=-⎧⎨+=⎩⇒784x y =⎧⎨=⎩ (2)821248x y -=-⎧⎨+=⎩⇒636x y =⎧⎨=⎩ (3)831232x y -=-⎧⎨+=⎩⇒520x y =⎧⎨=⎩ (4)841224x y -=-⎧⎨+=⎩⇒412x y =⎧⎨=⎩ (5)861216x y -=-⎧⎨+=⎩⇒24x y =⎧⎨=⎩共5组正整数解。

【答案】 51.设0c b a <<<,1a b c ++=,b c M a +=,a c N b +=,a b P c +=,则M 、N 、P之间的关系是 。

2.使分式1x aax --有意义的x 应满足的条件是( )A.0x ≠B.1(0)x a a ≠≠C.10(0)x x a a ≠≠≠或 D.10(0)x x a a ≠≠≠且3.设关于x 的分式方程2222a a x x --=--有无穷多个解,则a 的值有( )。

北师大版八年级数学上册竞赛讲义-分式方程(组)及其应用

北师大版八年级数学上册竞赛讲义-分式方程(组)及其应用

分式方程(组)及其应用竞赛热点1.分式方程的概念:分母中含有未知数的有理方程称为分式方程。

2.解分式方程的方法:解分式方程的基本思想是转化思想,即把分式方程转化为整式方程来解;转化的基本方法是;去分母,换元法等。

分式方程在转化过程中会产生增根或漏根,因此解分式方程必须验根。

3.分式方程应用题:列分式方程应用题与列整式方程应用题的思路相同,首先要注意审题,弄清未知数与已知数之间的关系,并把它们表示出来,从而转化成数学模型,要善于运用列表,画图等辅助手段帮助分析问题;但与解整式方程应用题不同的是:对所求的结果既要验根又要检验方程的根是否符合实际意义,二者缺一不可。

解题示范例1.解方程9182716x x x x x x x x -+-+=+----。

思考题1.解下列方程: ⑴13217219211211215217292x x x xx x x x ----+=+----;⑵1321121111x x x++=+++。

例2.解方程组1034331522x y x y x y x y -⎧+=⎪+⎪⎨-⎪-=-⎪+⎩。

思考题2. .解方程组 ⑴4955210x y y x⎧=+⎪⎪⎨⎪=+⎪⎩ ; ⑵345xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩。

例3.一只虫子从A处爬到B处,如果它的速度每分钟增加1米,可提前10分钟到达;如果它的速度每分钟再增加2米,则可又提前10分钟到达,求A,B之间的路程。

思考题3.甲、乙两人做一项工程,合做4小时后,甲另有任务被调走,余下部分由乙单独做,又用了6小时才完成这项工程。

已知甲独做6小时的工作量,由乙单独做要7小时30分钟,问甲、乙单独完成这项工程各需多少小时?例4.如图,在矩形ABCD中,甲、乙二人分别从A、B两点同时出发,甲、乙速度分别为65米/分,74米/分,沿矩形A→B→C→D→A→B→……顺序前进,乙至少跑第几圈时才可能第一次追上甲?又乙至少在跑第几圈时一定又追上甲?请说明理由。

初中数学竞赛指导:《分式》竞赛专题训练(含答案)

初中数学竞赛指导:《分式》竞赛专题训练(含答案)

《分式》竞赛专题训练1 分式的概念分母中含有字母的有理式叫做分式.分式的分母不能为零;只有当分式的分母不为零,而分式的分子为零时,分式的值为零.经典例题(1)当x 为何值时,分式22211x x有意义?(2)当x 为何值时,分式22211x x的值为零?解题策略(1)要使分式22211x x有意义,应有分母不为零这个分式有两个分母x 和11x,它们都不为零,即0x 且110x,于是当0x 且1x 时,分式22211x x有意义,(2)要使分式22211x x的值为零,应有2220x且110x,即1x 且1x ,于是当1x 时,分式22211x x的值为零画龙点睛1.要使分式有意义,分式的分母不能为零.2.要使分式的值为零,应有分式的分母不为零,而分式的分子等于零,以上两条,缺一不可.举一反三1.(1)要使分式24x x 有意义的x 的取值范围是()(A)2x (B) 2x ( C)2x (D)2x (2)若分式的的值为零,则x 的值为() (A)3(B)3或3(C)3(D)02.(1)当x时,分式23(1)16x x 的值为零;(2) 当x时,分式2101x x 3.已知当2x 时,分式x b xa无意义;当4x时,分式的值x b xa为零,求a b .融会贯通4.若201a a ,求a 值的范围.2 分式的基本性质分式的基本性质是:分式的分子和分母都乘以或除以同一个不等于0的整式,分式的值不变.分式的基本运算,例如改变分子、分母或分式的符号以及通分、约分等,都要用到这个性质.本节主要讲解它在解答一些分式计算综合题时的应用.经典例题若2731x xx ,求2421x xx 的值解题策略因为2731x xx ,所以0x 将等式2731x xx 的左边分子、分母同时除以x ,得1713x x,所以有1227xx因此242222211149112214351()1()17xx xxxxx画龙点睛对于含有1xx 形式的分式,要注意以下的恒等变形:22211()2x x x x 22211()2x xx x 2211()()4xxxx举一反三1.(1)不改变分式的值,使分式的分子和分母的系数都化为整数;10.50.2210.20.53a b ca b c(2)不改变分式的值,使分式的分子和分母的最高次项系数是正数:3211a aa 2.已知13xy xy,求2322x xy y xyxy的值.3.已知13xx,求2421x xx 的值.融会贯通4.已知3a b ba,求22224a ab baabb的值.3 分式的四则运算分式的四则运算和分数的四则运算是一致的,加减法的关键是通分和约分.综合运算时要遵循先乘除后加减,以及先做括号内的,再做括号以外的次序.经典例题计算:22448()()[3()]y x xy x yx yx y xyxyxy解题策略原式2222()4()43()()8xy y x y xxy x y xyx y x yx yg()(3)(3)()(3)(3)x y x y x y yx xy x y x y xy xy ggyx画龙点睛在进行分式的四则运算时,要注意运算次序.在化简时,因式分解是重要的恒等变形方法;在解答求值问题时,一般应该先化简分式,再将字母对应的值代入计算.举一反三1.先化简,再求值:262393m m mm ,其中2m .2.计算:322441124a aa babab ab3.(1)已知实数a 满足2280aa ,求22213211143a aa a aaa的值(2)已知a 、b 为实数,且1ab ,设11a b Ma b ,1111Na b ,试比较M 、N 的大小关系.融会贯通4.甲、乙两位采购员同去一家肥料公司购买两次肥料,两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.请问谁的购货方式更合算?4 分式的运算技巧——裂项法我们知道,多个分式的代数和可以合并成一个分式,如134512(1)(2)x x xx x 反过来,由右边到左边的计算往往可以使一些复杂的分式计算变得简捷常见的裂项有:11A B ABBA,111(1)1n n nn 经典例题已知54(1)(21)121x A B x x x x ,求A 、B 的值解题策略由54(21)(1)(1)(21)121(1)(21)x A B A x B x x x x x x x (2)(1)(21)A B x B Ax x ,可得254A B BA,解得13A B画龙点睛已知等式右边通分并利用同分母分式的减法法则计算,利用分式相等的条件求出A 、B的值即可. 举一反三1.若在关于x 的恒等式222Mx N c xxxax b中,22Mx N xx 为最简分式,且有a b ,abc ,求M ,N .2.化简:222211113256712xxxx xx xx 3.计算:222222a b c b c a c a b aabacbcbabbcaccacbcab融会贯通4.已知21(2)(3)23xb c ax x x x ,当1,2,3x时永远成立,求以a 、b 、c为三边长的四边形的第四边d 的取值范围.5 含有几个相等分式问题的解法有一类化简求值问题,已知条件中含有若干个相等的分式,其本质是几个比的比值相等的问题.解决此类问题常将这个相等的比用一个字母表示,从而将其转化为一个整式的问题来解决. 经典例题已知x y z x y z x y zzyx,且()()()1x y y z z x xyz,求x y z 的值解题策略由x y z x y z x y zzyx得111x yx zy zz y x 从而xy x z yz z yx设x yxz y zk zyx,则x y kz ,x z ky ,y z kx三式相加得2()()x yz k xyz ,即()(2)0x y z k ,所以0xy z ,或2k若0xy z ,则1x y xz y zzy x g,符合条件;若2k ,则()()()81x y y z zx xyz与题设矛盾,所以2k 不成立因此0x yz画龙点睛1.将相等的比用一个字母表示,是解决含有连等分式问题的常见解法.2.在得到等式2()()x yz k x y z 后.不要直接将等式的两边除以x y z ,因为此式可能等于0.3.在求出值后.要注意验证,看是否与已知条件矛盾.举一反三1.(1)已知275x y z ,求值①x y zz;②x yz;③x y zx(2)已知2310254a b b c c a,求56789a b cab的值2.若a b c d bcaa,求a b c d abcd的值3.已知实数a 、b 、c 满足0a b c,并且a b c k bccaab,则直线3y kx 一定通过()(A)第一、二、三象限(B)第一、二、四象限(C)第二、三、四象限(D)第一、三、四象限融会贯通4.已知9pq r ,且222p qrxyzyzxzxy,求px qy rz xyz的值6 整数指数幂一般地,当n 是正整数时,1(0)nnaaa,这就是说(0)na a是na 的倒数.引入了负整数指数幂后,指数的取值范围就推广到全体整数.经典例题已知2mx ,3ny,求24()mn xy 的值解题策略242(4)(4)84()mn m n mnxy xyxyg g 848481()()23256mn xy 画龙点睛将所求的代数式转化为以mx、ny 为底的乘方,进而代入相应的值进行计算.举一反三1.计算(1)222242(2)()ab a b a b g (2)541321111(1)()()()()21023(3)10222(510)(0.210)(200)2.水与我们日常生活密不可分,科学家研究发现,一个水分子的质量大约是26310kg ,8 g 水中大约有多少个水分子?通过进一步研究科学家又发现,一个水分子是由2个氢原子和一个氧原子构成的.已知一个氧原子的质量约为262.66510kg ,求一个氢原子的质量.3.已知2310aa ,求(1)1a a ;(2)22aa ;(3)44aa融会贯通4.如图,点O 、A 在数轴上表示的数分别是0、0. 1.将线段(OA 分成100等份,其分点由左向右依次为1M 、2M ,…,99M ;再将线1OM 分成100等份,其分点由左向右依次为1N 、2N ,…,99N ;继续将线段1ON 分成100等份,其分点由左向右依次为1P 、2P …,99P .则点37P 所表示的数用科学记数法表示为7 分式方程的解法分母中含有未知数的方程是分式方程.通常我们采用去分母的方法,将其变形为整式方程来解答. 经典例题解方程52432332x x x x 解题策略解法一去分母,得(52)(32)(43)(23)x x x x 2215610486129xxxxxx所以1x 验根知1x 为原方程的解.解法二方程两边加1,得5243112332x x x x 即222332x x 所以2332x x 解得1x 验根知1x 为原方程的解.解法三原式可化为22112332x x所以222332xx以下同解法二画龙点睛1.通常我们采用去分母的方法来解分式方程,先将其变形为整式方程,再用解整式方程的方法来解答.2.除了用去分母的方法来解分式方程外,采用部分分式的方法,即将分式分解为一个整式和一个分式之和,这样可以使解方程的过程变得简单.3.解完分式方程后,要进行检验,这是一个必不可少的步骤.因为在去分母时容易产生增根.举一反三1.(1)解方程2227461xxxxx。

分式知识点题型总结

分式知识点题型总结

分式知识点题型总结分式是数学中的一个重要概念,在代数运算和实际问题中都有广泛的应用。

以下是对分式相关知识点和常见题型的总结。

一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。

其中 A 叫做分子,B 叫做分母。

需要注意的是,分母 B 不能为 0,否则分式无意义。

例如:1/x,(x + 2)/(x 1) 都是分式,而 1/2 就不是分式,因为它的分母 2 是常数。

二、分式有意义的条件分式有意义的条件是分母不为 0。

即对于分式 A/B,当B ≠ 0 时,分式有意义。

例如:对于分式 1/(x 3),当x 3 ≠ 0,即x ≠ 3 时,分式有意义。

三、分式值为 0 的条件分式值为 0 的条件是分子为 0,且分母不为 0。

即对于分式 A/B,当 A = 0 且B ≠ 0 时,分式的值为 0。

例如:对于分式(x 1)/(x + 2),当 x 1 = 0 且 x +2 ≠ 0,即 x = 1 时,分式的值为 0。

四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。

即:A/B =(A×C)/(B×C) ,A/B =(A÷C)/(B÷C)(C 为不为 0 的整式)例如:将分式 2/3 的分子分母同时乘以 2,得到 4/6,分式的值不变。

五、约分把一个分式的分子和分母的公因式约去,叫做约分。

约分的关键是确定分子和分母的公因式。

例如:对分式(6x²y)/(9xy²)进行约分,分子分母的公因式是 3xy,约分后得到 2x/3y。

六、通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做通分。

通分的关键是确定几个分式的最简公分母。

例如:将分式 1/2x 和 1/3y 通分,最简公分母是 6xy,通分后分别为3y/6xy 和 2x/6xy 。

七、分式的运算1、分式的乘除法分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

人教版数学八年级培优竞赛 分式化简与求值 专题课件

人教版数学八年级培优竞赛 分式化简与求值 专题课件

b
c
a
(1)因 a a1= 3 ,所以
a a1
2
9,
a2 1 7 ,再次两边平方得 a4 1 47 ;
a2
a4
(2)
a4
a2 a2
1
a2
1
1
1 a2
1.
8
12.已知下面一列等式:1× 1 =1- 1 ;1 × 1 = 1 - 1 ;1 × 1 = 1 - 1 ;1 × 1 =
ab3
ba
A. 1
3
B.- 1
3
C.3 D.-3
2.已知: 1 - 1 =3,则 2x 3xy 2y 的值是( D )
xy
x xy y
A.- 7
2
B.- 11
2
C. 9
2
D. 3
4
3.当 x 分别取-2018、-2017、-2016、……、-2、-1、0、1、1 、1 、……、
23
1 、 1 、 1 时,计算分式 x2 1 的值,再将所得结果相加,其和等于( C )
14.有一列按一定顺序和规律排列的数:
第一个数是 1 ;第二个数是 1 ;第三个数是 1 ;…对任何正整数 n,第(n
1 2
23
3 4
+1)个数
的和等于 2 . nn 2
(1)经过探究,我们发现: 1 =1- 1 ; 1 = 1 - 1 ; 1 = 1 - 1 ;请直接写出
1 2
2 23 2 3 34 3 4
2
22 3 2 33 4 3 44 5
1 - 1 ;……
45
(1)请你按这些等式左边的结构特征写出它的一般性等式;
(2)验证一下你写出的等式是否成立; (3)利用等式计算: 1 + 1 + 1 + 1 的值.

分式方程讲义

分式方程讲义

学科教师辅导讲义学员编号: 年 级: 八年级 课时数:3学员姓名: 辅导科目: 初中数学 学科教师:课 题分式 授课时间: 备课时间:教学目标重点、难点考点及考试要求教学内容【基本知识点】1、分式的概念:形如A/B ,A 、B 是整式,B 中含有未知数且B 不等于0的整式叫做分式(fraction)。

其中A 叫做分式的分子,B 叫做分式的分母。

注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。

这里,分母是指除式而言。

而不是只就分母中某一个字母来说的。

也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

2、分式的四则运算(1).同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c(2).异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: bdbc ad d c b a +=+ (3).分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:bdac d c b a =⨯ (4).分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.bcad d c b a =÷ (2).除以一个分式,等于乘以这个分式的倒数:bc ad c d b a d c b a =⨯=÷ 3、分式方程:分母中含有未知数的方程叫做分式方程,区别分式方程与整式方程最好的方法就是看分母是否含有未知数,例如38735=++x a x ,当x 是未知数时,它是整式方程,不是分式方程,当a 是未知数时,它是分式方程。

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义全

初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。

2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。

3、 分式运算:实质就是分式的通分与约分。

[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。

解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。

解:13313232+++++x ax x X ax1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21 证:左边=21(1 - 31 + 31 - 51 + …… + 121-n - 121+n ) aaax ax xO x -++++1133223=21(1- 121+n ) ∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21[小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。

初中数学 分式22 人教版精品公开课件

初中数学  分式22 人教版精品公开课件
第二重境界是“衣带渐宽终不悔,为伊消得人憔悴”。事情是需要去做才能成的,成越大的事业,需要越大的努力和付出,甚至要经受越大的磨难和困苦。这个世间,从来都是“艰难困苦,玉汝于成”;所以无论如何,都要“天行健,君子”。这说的是历经磨难而逐渐成熟、成长,最终豁然贯通、水到渠成。这其中蕴含一个重要道理,就是苏东坡所说的“厚积而薄发”。只有厚积才能薄发,人要做的,就是不断厚积,等待薄发。这就是拿得起的完整路径,也是事业成功的完整过程。 跟佛家学放得下 。佛家是追求出世、讲究清净的,要求能看到《金刚经》所言的“一切有为法,如梦幻泡影”,做到《心经》所言的“照见五蕴皆空”。概括为三个字,就是“放得下”。 什么是“放得下”?且看这个“佛”字——左边一个“人”,右边一个“弗”,弗的意思是“不”,合起来就是“不人”和“人不”。不人就是无人,也就是放下自我,摆脱私心的困缚;人不就是懂得拒绝,也就是放下欲望,超脱对外物的追逐。这两点能做到,就是放得下。
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
a
(2) x
2
(3) x y
15
2a
(5) a 1
这五个
代数式中是分式的是_(1_)(4_)(_5)。
返回
返回
黄牌警告
15
16
自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二讲分式的化简与求值
分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.
例1 化简分式:
分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.
=[(2a+1)-(a-3)-(3a+2)+(2a-2)]
说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式
当a=2时的值.
分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),
可将分式分步通分,每一步只通分左边两项.
例3 若abc=1,求
分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.
解法2 因为abc=1,所以a≠0,b≠0,c≠0.
例4 化简分式:
分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.
说明
互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):
似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.

说明本例也是采取“拆项相消”法,所不同的是利用
例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求
分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.
解令x-a=u,y-a=v,z-a=w,则分式变为
u2+v2+w2+2(uv+vw+wu)=0.
由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有
说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.
例7 化简分式:
适当变形,化简分式后再计算求值.
(x-4)2=3,即x2-8x+13=0.
原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10
=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10
=10,
原式分母=(x2-8x+13)+2=2,
说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.
解法1 利用比例的性质解决分式问题.
(1)若a+b+c≠0,由等比定理有
所以
a+b-c=c,a-b+c=b,-a+b+c=a,
于是有
(2)若a+b+c=0,则
a+b=-c,b+c=-a,c+a=-b,
于是有
说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.
解法2 设参数法.令

a+b=(k+1)c,①
a+c=(k+1)b,②
b+c=(k+1)a.③
①+②+③有
2(a+b+c)=(k+1)(a+b+c),
所以(a+b+c)(k-1)=0,
故有k=1或a+b+c=0.
当k=1时,
当a+b+c=0时,
说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.
练习四
1.化简分式:
2.计算:
3.已知:
(y-z)2+(z-x)2+(x-y)2
=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,
的值.。

相关文档
最新文档