人教版七年级上数学第一次月考试卷
人教版七年级上册数学第一次月考试卷及参考答案
人教版七年级上册数学第一次月考试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3 7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.已知,|a|=﹣a ,bb =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____.4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如图,直线12l l //,120︒∠=,则23∠+∠=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()3321x x x +=-- (2)3210123x x --=-2.已知|5﹣2x |+(5﹣y )2=0,x ,y 分别是方程ax ﹣1=0和2y ﹣b +1=0的解,求代数式(5a ﹣4)2011(b ﹣1102)2012的值.3.如图所示,宽为20米,长为32米的长方形地面上,修筑宽度为x 米的两条互相垂直的小路,余下的部分作为耕地,如果要在耕地上铺上草皮,选用草皮的价格是每平米a 元,(1)求买草皮至少需要多少元?(用含a ,x 的式子表示)(2)计算a =40,x =2时,草皮的费用.4.如图,在△ABC 和△ADE 中,AB=AC ,AD=AE ,且∠BAC=∠DAE ,点E 在BC 上.过点D 作DF ∥BC ,连接DB .求证:(1)△ABD≌△ACE;(2)DF=CE.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、C6、B7、B8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、55°3、﹣2c4、±10.5、2或2.56、200°三、解答题(本大题共6小题,共72分)1、(1)12x=-;(2)5x=2、1 2 -.3、(1)(640-52x+ x2)a;(2)21600元.4、(1)证明略;(2)证明略.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
人教版七年级数学上册第一次月考试卷及答案
人教版七年级数学上册第一次月考试题一、单选题1.在(2)--,|2|--,2(2)--,3(2)--中,正数共有( )A .1个B .2个C .3个D .4个 2.若m 为有理数,则|m|-m 一定是( )A .零B .非负数C .正数D .负数 3.若0ab <,0a b +<,则( )A .0,0a b >>B .0,0a b <<C .a,b 异号,且正数的绝对值较大D .a,b 异号,且负数的绝对值较大4.下列说法中错误的是( )A .正分数、负分数统称分数B .零是整数,但不是分数C .正整数、负整数统称整数D .零既不是正数,也不是负数 5.2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为( )A .73×106B .7.3×103C .7.3×107D .0.73×108 6.若a <c <0<b ,则abc 与0的大小关系是( )A .abc <0B .abc=0C .abc >0D .无法确定 7.若01m <<,m 、2m 、1m 的大小关系是( ). A .21m m m << B .21m m m << C .21m m m << D .21m m m << 8.下列运算正确的个数为( )①(-2)-(-2)=0 ②(-6)+(+4)=-10 ③0-3=3 ④512663⎛⎫+-= ⎪⎝⎭ A .0 B .1 C .2 D .39.已知有理数a,b,c 在数轴上的位置如图所示,下列错误的是( )A .b+c<0B .−a+b+c<0C .|a+b|<|a+c|D .|a+b|>|a+c| 10.若m 是有理数,则下列各数中一定是正数的是( )A .|m|B .m 2C .m 2+1D .|m+1|11.m,n 是有理数,它们在数轴上的对应点的位置如图所示,把m,-m ,n,-n 从小到大的顺序排列是( )A .-n<-m<m<nB .-m<-n<m<nC .-n<m<-m<nD .-n<n<-m<m12.下列说法中:①0是最小的整数;②有理数不是正数就是负数; ③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数; ⑤2π-不仅是有理数,而且是分数; ⑥237是无限不循环小数,所以不是有理数; ⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为( )A .7个B .6个C .5个D .4个13.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 14.如图,25的倒数在数轴上表示的点位于下列两个点之间( )A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I15.一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价( )A .高12.8%B .低12.8%C .高40%D .高28%二、填空题16.|x| = |-2019| ,x=__________。
人教版七年级上册数学第一次月考试卷含答案
七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b|11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …}负数集合:{ …}分数集合:{ …}非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|b﹣c|+|a+c|.21.(1)已知a是绝对值最小的有理数,b和c的倒数都是它本身,b<c.求a+b+c﹣ab﹣bc﹣ac的值.(2)a,b互为倒数,c和d互为相反数.求ab﹣dc﹣2c﹣2d的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd≠0,直接写出a b c da b c d+++的值.参考答案1.D【解析】【分析】根据负数是小于0的数找出即可.【详解】负数有:﹣1,﹣3.05,﹣π,﹣12,故选:D.【点睛】本题考查了负数的定义,是基础题,熟记概念是解题的关键.2.B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,若增加表示为正,则减少表示为负.【详解】如果零上7℃记作+7℃,那么零下7℃记作﹣7℃,故选:B.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】A、“向东走和向西走是方向相反,不是相反意义的量,故本选项错误;B、“盈利100元”与“支出100元”是不是表示相反意义的量,故本选项错误;C、水位上升 2 米和水位下降 2 米是表示相反意义的量,故本选项正确;D、黑色与白色是颜色相反,是不具有相反或相同的意义的量,故本选项错误.故选:C.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.D【解析】【分析】根据大于零的分数是正分数,可得答案.【详解】A、是正整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点睛】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.5.B【解析】【分析】根据数轴的特点,从左到右越来越大,单位长度是确定的,可以判断哪个选项是正确的.【详解】∵数轴从左到右越来越大,∴选项A和选项C错误,选项B正确,∵数轴的单位长度是确定的,∴选项D错误,故选:B.【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.6.B【解析】【分析】利用有理数的性质判断即可.【详解】A、0不可以是负数也不可以是正数,不符合题意;B、﹣3和0都是整数,符合题意;C、不是正数的数不一定是负数,不是负数的数不一定是正数,不符合题意;D、0℃表示温度为0,不符合题意,故选:B.【点睛】此题考查了有理数的分类及性质,弄清有理数的性质是解本题的关键.7.C【解析】【分析】根据题意和数轴的特点,可以求得数轴上与﹣3距离3个单位的数,分该点在-3的右边和左边两种情况求解即可.【详解】数轴上与﹣3距离3个单位的数是:﹣3+3=0或﹣3﹣3=﹣6,故选:C.【点睛】本题考查数轴两点间的距离及分类讨论的数学思想,解答本题的关键是明确数轴的特点,求出相应的数据.8.C【解析】【分析】利用相反数,绝对值,倒数的定义以及乘方的意义判断即可.【详解】A、﹣1=﹣|﹣1|=﹣1,相等,不符合题意;B、2与﹣12互为负倒数,不符合题意;C、﹣(﹣1)=1与﹣|﹣1|=﹣1,互为相反数,符合题意;D、(﹣2)3=﹣23=﹣8,相等,不符合题意,故选:C.【点睛】此题考查了有理数的乘方,相反数,倒数以及绝对值,熟练掌握各自的性质是解本题的关键.9.C【解析】【分析】根据0与任何数相乘的积为0,互为相反数的两数的和为0,得绝对值小于100的所有有理数的和与它的积,相减得结论.【详解】∵0的绝对值小于100,所以绝对值小于100的有理数的积为0;∵互为相反数的两数的绝对值相等,互为相反数的两数的和为0,所以小于100的所有有理数除0外都成互为相反数的对出现,所以它们的和为0;绝对值小于100的所有有理数的和与它的积的差是:0﹣0=0.故选:C.【点睛】本题考查了绝对值的意义与0与有理数相乘的积.解决本题的关键是知道:0与任何实数相乘的积为0,互为相反数的两数的绝对值相等,互为相反数的两数的和为0.10.D【解析】【分析】根据绝对值的定义即可求出答案.【详解】A.若a=0,b=﹣7,则|a|<|b|,但a>b,故A错误;B.若a=﹣3,b=2,则a<b,但|a|>|b|,故B错误;C.若a=1,b=﹣2,则a>0,b>0,但|a|>|b|,故C错误;D. 若a<b<0,则|a|>|b|,故D正确.故选:D.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.11.D【解析】根据绝对值的意义即可得到结论.【详解】∵|(﹣3)+★|=3,∴(﹣3)+★=±3,∴★=0或6,故选:D.【点睛】本题考查了数轴,绝对值,熟记绝对值的意义是解题的关键.12.亏损500.【解析】【分析】根据正负数的意义即可求出答案.【详解】由题意可知:﹣500元表示亏损500元,故答案为:亏损500.【点睛】本题考查了相反意义的量,解题的关键是正确理解正负数的意义,为了区分相反意义的量,我们把其中一种意义的量规定为正的,那么与它相反意义的量规定为负的.本题属于基础题型.13.434﹣419434.【解析】根据相反数、倒数及绝对值的定义解答即可. 【详解】﹣434的相反数是:434,它的倒数是:﹣419,它的绝对值是:434,故答案为434,﹣419,434.【点睛】本题考查了相反数、倒数及绝对值的定义,熟知相反数、倒数及绝对值的定义是和解决问题的关键.14.0【解析】【分析】根据a,b互为相反数,m,n互为倒数,可以求得所求式子的值,本题得以解决.【详解】∵a,b互为相反数,m,n互为倒数,∴a+b=0,mn=1,∴(a+b)×mn﹣2mn+2=0×mn﹣2×1+2=0﹣2+2=0,故答案为:0.【点睛】本题考查了相反数、倒数的意义,有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.:4.8×104.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于48 380的整数位有5位,所以可以确定n=5﹣1=4,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【详解】48 380人,保留两个有效数字,用科学记数法表示为4.8×104.故答案为:4.8×104.【点睛】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.16.-1【解析】【分析】根据非负数的性质即可得到结论.【详解】∵(a+2018)2+|2017﹣b|=0,∴a+2018=0,2017﹣b=0,∴a=﹣2018,b=2017,∴(a+b)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质,熟练掌握非负数的性质是解题的关键.17.详见解析【解析】【分析】根据有理数的分类即可求出答案.【详解】解:整数集合:+15,﹣3,101,0负数集合:﹣3,﹣,﹣0.9,﹣1分数集合:﹣,﹣0.9,0.81,,﹣1非负数集合:+15,0.81,,101,0【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.18.(1)0;(2)-2【解析】【分析】1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值.【详解】解:(1)原式=64﹣64﹣36+36=0;(2)原式=﹣8+9﹣5+2=﹣2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.﹣22<﹣|3.14|<﹣12<0<34<﹣(﹣2.5)<π.【解析】【分析】把各个数表示在数轴上,最后根据在数轴上表示的有理数的比较方法,用“<”连接各数.【详解】解:∵﹣22=﹣4,﹣|﹣3.14|=﹣3.14,﹣(﹣2.5)=2.5,∴在数轴上表示为:∴﹣22<﹣|3.14|<﹣<0<<﹣(﹣2.5)<π.【点睛】本题考查了数轴上表示有理数,相反数、绝对值的化简及有理数大小的比较方法.题目相对简单.注意在数轴上表示的数一定是题目给出的数据,不能是经过化简后的数据.20.2b.【解析】【分析】根据数轴,可以判断a、b、c的正负情况,从而可以判断a﹣b、b﹣c、a+c的正负情况,从而可以解答本题.【详解】解:由数轴可得,﹣3<a<0<b<3<c,∴a﹣b<0,b﹣c<0,a+c>0,∴|a﹣b|﹣|b﹣c|+|a+c|=b﹣a﹣(c﹣b)+a+c=b﹣a﹣c+b+a+c=2b.【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.21.(1)1;(2)2【解析】【分析】利用相反数,倒数,以及绝对值的代数意义判断即可.【详解】解:(1)根据题意得:a=0,b=﹣1,c=1,则原式=0﹣1+1﹣0+1﹣0=1;(2)根据题意得:ab=1,c+d=0,则原式=1﹣(﹣1)﹣0=2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)80,115,135,125,110,100,85.(2)4月29日至5月5日,7日间景区共接待游客750万人;(3)60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【解析】【分析】(1)根据每天的人数变化可直接求出每天的旅游人数;(2)分别计算出每天的旅游人数,求和即可;(3)自己预估人均消费,计算当地景点大致收入,然后写出感想即可.【详解】解:(1)4月29日人数为:70+10=80(万人),4月30日人数为:80+35=115(万人),5月1日人数为:115+20=135(万人),5月2日人数为:135﹣10=125(万人),5月3日人数为:125﹣15=110(万人),5月4日人数为:110﹣10=100(万人),5月5日人数为:100﹣15=85(万人);故答案为:80,115,135,125,110,100,85.(2)80+115+135+125+110+100+85=750(万人),答:4月29日至5月5日,7日间景区共接待游客750万人;(3)若每人在黄果树瀑布周边景区平均旅游消费800元,则黄果树瀑布及周边景区旅游收入为:800×7500000=6000000000(元)=60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【点睛】本题考查了正负数的意义及有理数的加减运算.题目难度不大.解决(3)需自己预估数据.23.6天后,此班列在该城市东边,距离200km,共计行程5912km.【解析】【分析】根据题意,可以求得题目中数据的和和它们的绝对值的和,从而可以解答本题.【详解】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.24.(1)4;(2)①12﹣2t;②原点【解析】【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【详解】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点睛】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A相等列出方程式关键.25.(1)①,x=±1;②x=4或0,③x=2或﹣2;(2)±1,或±3.(3)±2,±4,0.【解析】【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a b ca b c++得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【详解】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,a b ca b c++=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,a b ca b c++=1+1+1=3;③a,b,c两负一正,a b ca b c++=﹣1﹣1+1=﹣1;④a,b,c两正一负,a b ca b c++=﹣1+1+1=1.故a b ca b c++的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则a b c da b c d+++=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则a b c da b c d+++=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则a b c da b c d+++═﹣3+1=﹣2;④若a,b,c,d有四个负数,则a b c da b c d+++═﹣4;⑤若a,b,c,d有四个正数,则a b c da b c d+++═4;故a b c da b c d+++的值为:±2,±4,0.【点睛】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意xx=±1(x>0,结果为1,x<0,结果为﹣1).七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b|11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …}负数集合:{ …}分数集合:{ …}非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来. ﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a ﹣b |﹣|b ﹣c |+|a +c |.21.(1)已知a 是绝对值最小的有理数,b 和c 的倒数都是它本身,b <c .求a +b +c ﹣ab ﹣bc ﹣ac 的值.(2)a ,b 互为倒数,c 和d 互为相反数.求ab ﹣d c﹣2c ﹣2d 的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd≠0,直接写出a b c da b c d+++的值.成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
人教版七年级数学上册第一次月考试卷(含答案)
人教版七年级数学上册第一次月考试卷(含答案)1.如果记收入10元为+10元,则记支出10元为-10元。
2.在有理数1,2,-1中,最小的数是-1.3.近年来,我国5G发展取得明显成效,截至2020年2月底,全国建设开通5G基站达个,可用科学记数法表示为1.64×10^5.4.实数a,b,c在数轴上的对应点的位置不确定,无法确定这三个数中绝对值最大的是哪个。
5.计算(-6)/(-3)的结果是2.6.三位同学计算(+−)×12,___使用了乘法交换律,结果为-1.7.|1-2|+3的相反数是-4.8.相等的一组数是-1与-|-1|。
9.点A在数轴上,点A所对应的数用2a+1表示,且点A 到原点的距离等于3,则a的值为-2或1.10.图中点A表示1,经过两次移动后到达点A'.向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣8311.若|﹣x|=5,则x=-5.12.-3的相反数是3;3的倒数是1/3.13.已知|x|=3,|y|=2,且|x−y|=y−x,则x−y=0.14.如图A,B,C,D,E分别是数轴上五个连续整数所对应的点,其中有一点是原点,数a对应的点在B与C之间,数b对应的点在D与E之间,若|a|+|b|=3则原点可能是2或﹣2.15.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是2.a−b(a≥b)16.定义一种新运算:a※b={3b(a≤b),则2※3﹣4※3的值为﹣2/3.17.已知a与b的和为2,b与c互为相反数,若|c|=1,则a=1.18.a、b、c、d为互不相等的有理数,|a−c|=|b−c|=|d−b|=1,且c=2,则|2a−d|=3.19.计算:1)24×(8−3)﹣(﹣6)=198;2)﹣32+|5﹣7|﹣4÷(﹣2)×2=﹣19.20.数轴上的表示为:-5< -4< -4.5< 0< -2< 2.21.五个不同的算式为:1)(3+4)×(-6)×(-4)=24;2)(3+4)×(-6)÷(-0.25)=24;3)(-6)×(3-4)×(-4)=24;4)(-6)÷(3-4)×(-4)=24;5)(3-4)÷(-6)×(-4)=24.22.三名队员最终到达的位置分别为:150m,115m,73m。
人教版七年级上册数学第一次月考试卷【及参考答案】
人教版七年级上册数学第一次月考试卷【及参考答案】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .02.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总 人口为4400000000人,这个数用科学记数法表示为( ) A .4.4×108B .4.40×108C .4.4×109D .4.4×10103.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( ) A .6,(﹣3,5) B .10,(3,﹣5) C .1,(3,4)D .3,(3,2)4.4的算术平方根是( )A .-2B .2C .2±D 5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.如果a b -=22()2a b ab a a b+-⋅-的值为( )A B .C .D .7.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A.图①B.图②C.图③D.图④9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l410.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图所示,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3.如果a的平方根是3±,则a=_________。
人教版七年级上册数学第一次月考试卷含答案
七年级上册数学第一次月考试题一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7°B.﹣7℃C.+7°D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣23 9.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b|11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P 满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{…}负数集合:{…}分数集合:{…}非负数集合:{…}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|b﹣c|+|a+c|.21.(1)已知a是绝对值最小的有理数,b和c的倒数都是它本身,b<c.求a+b+c﹣ab﹣bc﹣ac的值.(2)a,b互为倒数,c和d互为相反数.求ab﹣dc﹣2c﹣2d的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A 之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的测试卷系列值.(3)若abcd≠0,直接写出a b c da b c d+++的值.参考答案1.D【解析】【分析】根据负数是小于0的数找出即可.【详解】负数有:﹣1,﹣3.05,﹣π,﹣12,故选:D.本题考查了负数的定义,是基础题,熟记概念是解题的关键.2.B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,若增加表示为正,则减少表示为负.【详解】如果零上7℃记作+7℃,那么零下7℃记作﹣7℃,故选:B.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】A、“向东走和向西走是方向相反,不是相反意义的量,故本选项错误;B、“盈利100元”与“支出100元”是不是表示相反意义的量,故本选项错误;C、水位上升2 米和水位下降2 米是表示相反意义的量,故本选项正确;D、黑色与白色是颜色相反,是不具有相反或相同的意义的量,故本选项错误.故选:C.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.D【解析】【分析】根据大于零的分数是正分数,可得答案.A、是正整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点睛】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.5.B【解析】【分析】根据数轴的特点,从左到右越来越大,单位长度是确定的,可以判断哪个选项是正确的.【详解】∵数轴从左到右越来越大,∴选项A和选项C错误,选项B正确,∵数轴的单位长度是确定的,∴选项D错误,故选:B.【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.6.B【解析】【分析】利用有理数的性质判断即可.【详解】A、0不可以是负数也不可以是正数,不符合题意;B、﹣3和0都是整数,符合题意;C、不是正数的数不一定是负数,不是负数的数不一定是正数,不符合题意;D、0℃表示温度为0,不符合题意,故选:B.此题考查了有理数的分类及性质,弄清有理数的性质是解本题的关键.7.C【解析】【分析】根据题意和数轴的特点,可以求得数轴上与﹣3距离3个单位的数,分该点在-3的右边和左边两种情况求解即可.【详解】数轴上与﹣3距离3个单位的数是:﹣3+3=0或﹣3﹣3=﹣6,故选:C.【点睛】本题考查数轴两点间的距离及分类讨论的数学思想,解答本题的关键是明确数轴的特点,求出相应的数据.8.C【解析】【分析】利用相反数,绝对值,倒数的定义以及乘方的意义判断即可.【详解】A、﹣1=﹣|﹣1|=﹣1,相等,不符合题意;B、2与﹣12互为负倒数,不符合题意;C、﹣(﹣1)=1与﹣|﹣1|=﹣1,互为相反数,符合题意;D、(﹣2)3=﹣23=﹣8,相等,不符合题意,故选:C.【点睛】此题考查了有理数的乘方,相反数,倒数以及绝对值,熟练掌握各自的性质是解本题的关键.9.C【解析】【分析】根据0与任何数相乘的积为0,互为相反数的两数的和为0,得绝对值小于100的所有有理数的和与它的积,相减得结论.【详解】∵0的绝对值小于100,所以绝对值小于100的有理数的积为0;∵互为相反数的两数的绝对值相等,互为相反数的两数的和为0,所以小于100的所有有理数除0外都成互为相反数的对出现,所以它们的和为0;绝对值小于100的所有有理数的和与它的积的差是:0﹣0=0.故选:C.【点睛】本题考查了绝对值的意义与0与有理数相乘的积.解决本题的关键是知道:0与任何实数相乘的积为0,互为相反数的两数的绝对值相等,互为相反数的两数的和为0.10.D【解析】【分析】根据绝对值的定义即可求出答案.【详解】A.若a=0,b=﹣7,则|a|<|b|,但a>b,故A错误;B.若a=﹣3,b=2,则a<b,但|a|>|b|,故B错误;C.若a=1,b=﹣2,则a>0,b>0,但|a|>|b|,故C错误;D. 若a<b<0,则|a|>|b|,故D正确.故选:D.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.11.D【解析】【分析】根据绝对值的意义即可得到结论.【详解】∵|(﹣3)+★|=3,∴(﹣3)+★=±3,∴★=0或6,故选:D.【点睛】本题考查了数轴,绝对值,熟记绝对值的意义是解题的关键.12.亏损500.【解析】【分析】根据正负数的意义即可求出答案.【详解】由题意可知:﹣500元表示亏损500元,故答案为:亏损500.【点睛】本题考查了相反意义的量,解题的关键是正确理解正负数的意义,为了区分相反意义的量,我们把其中一种意义的量规定为正的,那么与它相反意义的量规定为负的.本题属于基础题型.13.434﹣419434.【解析】【分析】根据相反数、倒数及绝对值的定义解答即可. 【详解】﹣434的相反数是:434,它的倒数是:﹣419,它的绝对值是:434,故答案为434,﹣419,434.【点睛】本题考查了相反数、倒数及绝对值的定义,熟知相反数、倒数及绝对值的定义是和解决问题的关键.14.0【解析】根据a,b互为相反数,m,n互为倒数,可以求得所求式子的值,本题得以解决.【详解】∵a,b互为相反数,m,n互为倒数,∴a+b=0,mn=1,∴(a+b)×mn﹣2mn+2=0×mn﹣2×1+2=0﹣2+2=0,故答案为:0.【点睛】本题考查了相反数、倒数的意义,有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.:4.8×104.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于48 380的整数位有5位,所以可以确定n=5﹣1=4,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【详解】48 380人,保留两个有效数字,用科学记数法表示为4.8×104.故答案为:4.8×104.【点睛】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.16.-1【解析】【分析】根据非负数的性质即可得到结论.∵(a+2018)2+|2017﹣b|=0,∴a+2018=0,2017﹣b=0,∴a=﹣2018,b=2017,∴(a+b)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质,熟练掌握非负数的性质是解题的关键.17.详见解析【解析】【分析】根据有理数的分类即可求出答案.【详解】解:整数集合:+15,﹣3,101,0负数集合:﹣3,﹣,﹣0.9,﹣1分数集合:﹣,﹣0.9,0.81,,﹣1非负数集合:+15,0.81,,101,0【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.18.(1)0;(2)-2【解析】【分析】1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值.【详解】解:(1)原式=64﹣64﹣36+36=0;(2)原式=﹣8+9﹣5+2=﹣2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.﹣22<﹣|3.14|<﹣12<0<34<﹣(﹣2.5)<π.【解析】【分析】把各个数表示在数轴上,最后根据在数轴上表示的有理数的比较方法,用“<”连接各数.【详解】解:∵﹣22=﹣4,﹣|﹣3.14|=﹣3.14,﹣(﹣2.5)=2.5,∴在数轴上表示为:∴﹣22<﹣|3.14|<﹣<0<<﹣(﹣2.5)<π.【点睛】本题考查了数轴上表示有理数,相反数、绝对值的化简及有理数大小的比较方法.题目相对简单.注意在数轴上表示的数一定是题目给出的数据,不能是经过化简后的数据.20.2b.【解析】【分析】根据数轴,可以判断a、b、c的正负情况,从而可以判断a﹣b、b﹣c、a+c的正负情况,从而可以解答本题.【详解】解:由数轴可得,﹣3<a<0<b<3<c,∴a﹣b<0,b﹣c<0,a+c>0,∴|a﹣b|﹣|b﹣c|+|a+c|=b﹣a﹣(c﹣b)+a+c=b﹣a﹣c+b+a+c=2b.【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.21.(1)1;(2)2【解析】【分析】利用相反数,倒数,以及绝对值的代数意义判断即可.【详解】解:(1)根据题意得:a=0,b=﹣1,c=1,则原式=0﹣1+1﹣0+1﹣0=1;(2)根据题意得:ab=1,c+d=0,则原式=1﹣(﹣1)﹣0=2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)80,115,135,125,110,100,85.(2)4月29日至5月5日,7日间景区共接待游客750万人;(3)60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【解析】【分析】(1)根据每天的人数变化可直接求出每天的旅游人数;(2)分别计算出每天的旅游人数,求和即可;(3)自己预估人均消费,计算当地景点大致收入,然后写出感想即可.【详解】解:(1)4月29日人数为:70+10=80(万人),4月30日人数为:80+35=115(万人),5月1日人数为:115+20=135(万人),5月2日人数为:135﹣10=125(万人),5月3日人数为:125﹣15=110(万人),5月4日人数为:110﹣10=100(万人),5月5日人数为:100﹣15=85(万人);故答案为:80,115,135,125,110,100,85.(2)80+115+135+125+110+100+85=750(万人),答:4月29日至5月5日,7日间景区共接待游客750万人;(3)若每人在黄果树瀑布周边景区平均旅游消费800元,则黄果树瀑布及周边景区旅游收入为:800×7500000=6000000000(元)=60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【点睛】本题考查了正负数的意义及有理数的加减运算.题目难度不大.解决(3)需自己预估数据.23.6天后,此班列在该城市东边,距离200km,共计行程5912km.【解析】【分析】根据题意,可以求得题目中数据的和和它们的绝对值的和,从而可以解答本题.【详解】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.24.(1)4;(2)①12﹣2t;②原点【解析】【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【详解】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点睛】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A相等列出方程式关键.25.(1)①,x=±1;②x=4或0,③x=2或﹣2;(2)±1,或±3.(3)±2,±4,0.【解析】【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a b c a b c ++得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【详解】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,a b ca b c++=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,a b ca b c++=1+1+1=3;③a,b,c两负一正,a b ca b c++=﹣1﹣1+1=﹣1;④a,b,c两正一负,a b ca b c++=﹣1+1+1=1.故a b ca b c++的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则a b c da b c d+++=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则a b c da b c d+++=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则a b c da b c d+++═﹣3+1=﹣2;④若a,b,c,d有四个负数,则a b c da b c d+++═﹣4;⑤若a,b,c,d有四个正数,则a b c da b c d+++═4;故a b c da b c d+++的值为:±2,±4,0.【点睛】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意xx=±1(x>0,结果为1,x<0,结果为﹣1).附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
人教版七年级(上)数学第一次月考试卷(含答案)
人教版七年级数学(上)第一次月考时间:120分钟 满分:120分班级: 姓名: 得分:题号 一 二 三 总分 得分一、选择题(每小题3分,共30分) 1.-1.5的相反数是( )A.0B.-1.5C.1.5D.232.飞机在飞行过程中,如果上升23米记作“+23米”,那么下降15米应记作( ) A.-8米 B.+8米 C.-15米 D.+15米3.下列各数:0,1-2,-(-1),⎪⎪⎪⎪⎪⎪-12,(-1)2,(-3)3,其中负数的个数是( )A.1个B.2个C.3个D.4个4.研究表明,可燃冰是一种可替代石油的新型清洁能源.在我国某海域已探明的可燃冰储存量约150000000000立方米,其中数字150000000000用科学记数法可表示为( )A.15×1010B.0.15×1012C.1.5×1011D.1.5×10125.下列运算错误的是( )A.(-14)+7-(+5)=-12B.(-6)÷(-2)×0.5=-1.5C.(-5)×(-2)×(-4)=-40D.(-3)×(-4)÷(-2)=-66.若x 是最大的负整数,y 是最小的正整数,z 是绝对值最小的数,w 是相反数等于它本身的数,则x -z +y -w 的值是( )A.0B.-1C.1D.-27.有理数a ,b 在数轴上的对应点的位置如图所示,则a ,b ,-a ,|b|的大小关系正确的是( )A.|b |>a >-a >bB.|b |>b >a >-aC.a >|b |>b >-aD.a >|b |>-a >b 8.一个病人每天下午需要测量血压,该病人上周日的收缩压为120单位,下表是该病人这周一到周五与前一天相比较收缩压的变化情况:星期一二三 四 五增减 +20 -30 -25 +15 +30本周四的收缩压是( )A.100单位B.110单位C.115单位D.120单位9.点A 为数轴上一点,距离原点4个单位长度,一只蚂蚁从A 点出发,向右爬了2个单位长度到达B 点,则点B 表示的数是( )A.-2B.6C.-2或6D.-6或210.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号.这些符号与十进制数的对应关系如下表: 十六进制 0 1 2 3 4 5 6 7 8 9 ABCDEF十进制12345678910 11 12 13 14 15例如,用十六进制表示:E +F =1D ,则A ×B 用十六进制表示为( ) A.B0 B.1A C.5F D.6E 二、填空题(每小题3分,共24分)11.-⎝ ⎛⎭⎪⎫+52的倒数是 . 12.比较大小:-23 -45;-22 (-2)2(填“>”或“<”).13.用四舍五入法对0.06398取近似值,精确到千分位是 . 14.如果有理数a ,b 满足(a -3)2+|b +1|=0,那么b a= .15.草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是 千克.16.如图所示是一个程序运算,若输入的x 为-6,则输出y 的结果为 .17.已知|a |=6,|b |=4,且ab <0,则a +b 的值为 .18.规定:对任意有理数对【a ,b 】,都有【a ,b 】=a 2+2b +1.例如:有理数对【-5,-2】=(-5)2+2×(-2)+1=22.若有理数对【-2,1】=n ,则有理数对【n ,-1】= .三、解答题(共66分) 19.(12分)计算:(1)0-(-11)+(-9); (2)|-0.75|+(-3)-(-0.25)+⎪⎪⎪⎪⎪⎪-18+78;(3)(-56)×⎝ ⎛⎭⎪⎫47-38+114; (4)2×(-3)2-5÷⎝ ⎛⎭⎪⎫-12×(-2).20.(6分)如图,一名跳水运动员参加10m 跳台的跳水比赛(10m 跳台是指跳台离水面的高度为10m ),这名运动员举高手臂时身长为2m ,跳水池池深为5.4m .(1)若以水面为基准,高于水面为正,则这名运动员指尖的高度及池底的深度分别如何表示?(2)若以池底为基准,高于池底为正,则水面的高度、跳台的高度及这名运动员指尖的高度分别如何表示?(3)若以跳台为基准,高于跳台为正,则池底的深度与水面的高度分别如何表示?21.(8分)阅读下题的解答过程:计算:⎝ ⎛⎭⎪⎫-124÷⎝ ⎛⎭⎪⎫23-34+78. 分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:⎝ ⎛⎭⎪⎫23-34+78÷⎝ ⎛⎭⎪⎫-124=⎝ ⎛⎭⎪⎫23-34+78×(-24)=-16+18-21=-19. 所以原式=-119.根据阅读材料提供的方法,完成下面的计算: ⎝ ⎛⎭⎪⎫-142÷⎣⎢⎡⎦⎥⎤12-13+57+⎝ ⎛⎭⎪⎫-232×(-6).22.(8分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm ):+5,-3,+10,-8,-6,+12,-10.问:(1)小虫最后是否回到出发点O ?(2)小虫离开出发点O 的最远距离是多少?(3)在爬行过程中,若每爬行1cm 奖励一粒芝麻,则小虫共可得到多少粒芝麻?23.(10分)某矿泉水厂从所生产的瓶装矿泉水中,抽取了40瓶检查质量,质量超出标准质量的用正数表示,质量低于标准质量的用负数表示,结果记录如下表:瓶数 2 3 13 14 6 2(1)这40瓶矿泉水中,最重的一瓶比最轻的一瓶重多少克? (2)这40瓶矿泉水的总质量比标准质量多还是少?两者相差多少?24.(10分)小明有5张写着不同数字的卡片,如图所示,请你按要求完成下列问题: (1)从中取出2张卡片,使这2张卡片上的数字乘积最大,如何抽取?最大值是多少? (2)从中取出3张卡片,使这3张卡片上数字乘积最小,如何抽取?最小值是多少? (3)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).25.(12分)观察下列各式:13=1=14×12×22;13+23=9=14×22×32;13+23+33=36=14×32×42;13+23+33+43=100=14×42×52;……回答下面的问题:(1)13+23+33+43+…+103=(写出算式即可);(2)计算13+23+33+…+993+1003的值;(3)计算113+123+…+993+1003的值.参考答案与典题详析1.C2.C3.B4.C5.B6.A7.A8.A9.C 10.D 11.-25 12.> < 13.0.06414.-1 15.20.1 16.-517.2或-2 解析:因为|a |=6,|b |=4,所以a =±6,b =±4.因为ab <0,所以a =6,b =-4或a =-6,b =4,所以a +b =2或-2.18.48 解析:根据规定,n =【-2,1】=(-2)2+2×1+1=4+2+1=7,所以【n ,-1】=【7,-1】=72+2×(-1)+1=49-2+1=48.19.解:(1)原式=0+11-9=2.(3分)(2)原式=0.75-3+0.25+18+78=-2+1=-1.(6分)(3)原式=-32+21-4=-36+21=-15.(9分) (4)原式=18-20=-2.(12分)20.解:(1)若以水面为基准,则这名运动员指尖的高度表示为+12m ,池底的深度表示为-5.4m .(2分)(2)若以池底为基准,则水面的高度表示为+5.4m ,跳台的高度表示为+15.4m ,这名运动员指尖的高度表示为17.4m .(4分)(3)若以跳台为基准,则池底的深度表示为-15.4m ,水面的高度表示为-10m .(6分)21.解:⎣⎢⎡⎦⎥⎤12-13+57+⎝ ⎛⎭⎪⎫-232×(-6)÷⎝ ⎛⎭⎪⎫-142=⎝ ⎛ 12-⎭⎪⎫13+57-83×(-42)=-21+14-30+112=75.(6分)所以原式=175.(8分)22.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=27+(-27)=0,所以小虫最后回到出发点O .(3分)(2)根据记录,小虫离开出发点O 的距离分别为5cm 、2cm 、12cm 、4cm 、2cm 、10cm 、0cm ,所以小虫离开出发点O 的最远距离为12cm .(5分)(3)根据记录,小虫共爬行的路程为5+3+10+8+6+12+10=54(cm ),所以小虫共可得到54粒芝麻.(8分)23.解:(1)10-(-8)=18(克).(3分)答:这40瓶矿泉水中,最重的一瓶比最轻的一瓶重18克.(4分)(2)-8×2+(-6)×3+0×13+4×14+5×6+10×2=-16-18+0+56+30+20=-34+106=72(克).(8分)因为72>0,所以这40瓶矿泉水的总质量比标准质量多,多72克.(10分)24.解:(1)取+4,+5,乘积最大值为20.(3分) (2)取-6,+4,+5,乘积最小值为-120.(6分)(3)取-2,-6,+4,+5,(+4)×(+5)-[-6-(-2)]=24(答案不唯一).(10分) 25.解:(1)14×102×112(3分)(2)原式=14×1002×1012=25502500.(7分)(3)原式=(13+23+…+993+1003)-(13+23+…+93+103)=14×1002×1012-14×102×112=25502500-3025=25499475.(12分)。
人教版数学七年级上册第一次月考数学试卷及答案解析
人教版数学七年级上册第一次月考数学试卷一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.2.图中所画的数轴,正确的是()A.B.C.D.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.254.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.25.|﹣|等于()A.2B.﹣2C.D.﹣6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣249.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣210.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.12.计算:6÷(﹣3)=.13.计算(﹣5)+3的结果是.14.计算:﹣1﹣2=.15.若|x+2|+|y﹣3|=0,则xy=.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).21.已知|a|=7,|b|=3,求a+b的值.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车辆;(2)产量最多的一天比产量最少的一天多生产自行车辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣2的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,每小题的四个选项中,有且只有一个符合题意,请将正确的选项填涂到答题卡上)1.下列各数中,为负数的是()A.0B.﹣2C.1D.【考点】正数和负数.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.图中所画的数轴,正确的是()A.B.C.D.【考点】数轴.【分析】数轴的三要素:原点,单位长度,正方向.缺一不可.【解答】解:A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不统一,故错误;D、正确.故选D.【点评】此题考查数轴的画法,属基础题.3.下列几组数中互为相反数的是()A.﹣和0.7B.和﹣0.333C.﹣(﹣6)和6D.﹣和0.25【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:A符号不同,数也不同,故A不是相反数;B数的绝对值不同,故B不是相反数;C符号相同,故C不是相反数;D只有符号不同,故D是相反数;故选:D.【点评】本题考查了相反数,只有符号不同的两个数互为相反数.4.计算2×(﹣)的结果是()A.﹣1B.1C.﹣2D.2【考点】有理数的乘法.【分析】根据异号两数相乘,结果为负,且2与﹣的绝对值互为倒数得出.【解答】解:2×(﹣)=﹣1.故选A.【点评】本题考查有理数中基本的乘法运算.5.|﹣|等于()A.2B.﹣2C.D.﹣【考点】绝对值.【分析】根据负数的绝对值等于它的相反数,可得负数的绝对值.【解答】解:|﹣|=,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.6.北方某地9月1日早晨的气温是﹣1℃,到中午上升了6℃,那么中午的气温是()A.5℃B.7℃C.﹣5℃D.﹣7℃【考点】有理数的加法.【分析】根据9月1日早晨的气温是﹣1℃,到中午上升了6℃,可以求得中午的气温.【解答】解:∵9月1日早晨的气温是﹣1℃,到中午上升了6℃,∴中午的温度是:﹣1+6=5℃,故选A.【点评】本题考查有理数的加法,解题的关键是明确有理数加法的计算方法.7.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有,不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:A、非负有理数就是正有理数和零,故A错误;B、零表示没有,是自然数,故B错误;C、整正数、零、负整数统称为整数,故C错误;D、整数和分数统称有理数,故D正确;故选:D.【点评】本题考查了有理数,利用了有理数的分类.8.下列运算错误的是()A.(﹣2)×(﹣3)=6B.C.(﹣5)×(﹣2)×(﹣4)=﹣40 D.(﹣3)×(﹣2)×(﹣4)=﹣24【考点】有理数的乘法.【分析】根据有理数的乘法法则计算.【解答】解:A、C、D显然正确;B、(﹣)×(﹣6)=3,错误.故选B.【点评】解答此题只需牢记有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.9.如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数()A.7B.3C.﹣3D.﹣2【考点】数轴.【专题】图表型.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=1,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.10.下列结论正确的是()A.若|x|=|y|,则x=﹣y B.若x=﹣y,则|x|=|y|C.若|a|<|b|,则a<b D.若a<b,则|a|<|b|【考点】绝对值;相反数.【专题】计算题.【分析】根据绝对值和相反数的性质对各个选项逐一分析,排除错误答案.【解答】解:A、若|x|=|y|,则x=﹣y或x=y;故错误;B、互为相反数的两个数的绝对值相等,故正确;C、若a=2,b=﹣3,则|a|<|b|,但a>b,故错误;D、若a=﹣2,b=1,则a<b,但|a|>|b|,故错误.故选B.【点评】熟练掌握绝对值的性质是解题的关键.二、填空题(本大题共7小题,每小题3分,共21分,请将答案填涂到答题卡上)11.1的倒数是.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:1的倒数是,故答案为:.【点评】本题考查了倒数,把带分数化成假分数再求倒数是解题关键.12.计算:6÷(﹣3)=﹣2.【考点】有理数的除法.【专题】计算题.【分析】原式利用异号两数相除的法则计算即可得到结果.【解答】解:原式=﹣(6÷3)=﹣2.故答案为:﹣2【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.13.计算(﹣5)+3的结果是﹣2.【考点】有理数的加法.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣5)+3=﹣(5﹣3)=﹣2.故答案为:﹣2.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.14.计算:﹣1﹣2=﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算法则,减去一个是等于加上这个数的相反数进行计算.【解答】解:﹣1﹣2=﹣1+(﹣2)=﹣3.故答案为﹣3.【点评】本题考查了有理数的减法,熟记减去一个是等于加上这个数的相反数是解题的关键.15.若|x+2|+|y﹣3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程组求出x、y的值,代入代数式求值即可.【解答】解|x+2|+|y﹣3|=0,∴x+2=0,解得x=﹣2;y﹣3=0,解得y=3.∴xy=﹣2×3=﹣6.故答案为:6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=9900.【考点】有理数的混合运算.【专题】规律型.【分析】100!=100×99×98×97×...×1,98!=98×97× (1)【解答】解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴==100×99=9900.【点评】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.17.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=110.【考点】规律型:数字的变化类.【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故答案为:110【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.三、解答题(共7小题,计59分)18.计算:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+).【考点】有理数的加减混合运算.【分析】(1)先化简,再算加减法;(2)先算同分母分数,再算加减法.【解答】解:(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16)=﹣12﹣13+14﹣15+16=﹣40+30=﹣10;(2)(﹣)﹣(﹣)+(﹣0.75)+﹣(+)=(﹣﹣0.75)+(+)﹣=﹣1+1﹣=﹣.【点评】考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.19.计算:(1)﹣0.75×(﹣0.4)×1;(2)0.6×(﹣)•(﹣)•(﹣2)【考点】有理数的乘法.【分析】根据有理数的乘法,即可解答.【解答】解:(1)﹣0.75×(﹣0.4)×1==.(2)0.6×(﹣)•(﹣)•(﹣2)=﹣=1【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法.20.计算:(1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).【考点】有理数的除法.【分析】根据有理数的除法:除以一个数等于乘以这个数的倒数,即可解答.【解答】解:(1)﹣5÷(﹣1)=5×=1.(2)(﹣)÷(﹣)÷(﹣1)=﹣=﹣.【点评】本题考查了有理数的除法,解决本题的关键是熟记除以一个数等于乘以这个数的倒数.21.已知|a|=7,|b|=3,求a+b的值.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义进行分析:互为相反数的两个数的绝对值相等.然后a,b搭配的时候,注意考虑四种情况.【解答】解:∵|a|=7,|b|=3.∴a=±7,b=±3.①当a=7,b=3时,a+b=7+3=10;②当a=7,b=﹣3时,a+b=7﹣3=4;③当a=﹣7,b=3时,a+b=﹣7+3=﹣4;④当a=﹣7,b=﹣3时,a+b=﹣7﹣3=﹣10.【点评】考查了绝对值的性质和有理数的运算.此题要特别注意a和b结合起来分析,有四种情况.22.已知x,y为有理数,如果规定一种运算“*”,即x*y=xy+1,试根据这种运算完成下列各题.(1)求2*4;(2)求(2*5)*(﹣3);(3)任意选择两个有理数x,y,分别计算x*y和y*x,并比较两个运算结果,你有何发现?【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义计算即可得到结果;(3)两数利用新定义化简得到结果,即可作出判断.【解答】解:(1)根据题中的新定义得:2*4=8+1=9;(2)根据题中的新定义得:(2*5)*(﹣3)=11*(﹣3)=﹣33+1=﹣32;(3)根据题中的新定义得:x*y=xy+1,y*x=yx+1,则x*y=y*x.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.某自行车厂计划每天生产200辆自行车,但由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减+6﹣2﹣4+12﹣10+16﹣8(1)根据记录的数据可知该厂星期四生产自行车212辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖20元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少元?【考点】正数和负数.【分析】(1)该厂星期四生产自行车200+12=212辆;(2)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(3)这一周的工资总额是200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+12=212辆,故该厂星期四生产自行车212辆.故答案为212;(2)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆.故答案为26;(3)根据图示本周工人工资总额=200×7×30+(6﹣2﹣4+12﹣10+16﹣8)×(30+20)=42500元,故该厂工人这一周的工资总额是42500元.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2|;(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【考点】绝对值;数轴.【分析】本题应从绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离)下手,分别解出答案.【解答】解:(1)数轴上表示2和5两点之间的距离是|5﹣2|=3,数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;(2)根据绝对值的定义有:数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|或|﹣2﹣x|=|x+2|;(3)根据绝对值的定义有:|x﹣1|+|x+3|可表示为点x到1与﹣3两点距离之和,根据几何意义分析可知:当x在﹣3与1之间时,|x﹣1|+|x+3|有最小值4.【点评】本题考查学生的阅读理解能力及知识的迁移能力.。
人教版七年级上册数学《第一次月考》试卷(及参考答案)
人教版七年级上册数学《第一次月考》试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <62.下列说法中正确的是( ) A .若0a <,则20a < B .x 是实数,且2x a =,则0a > C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.下列图形中,是轴对称图形的是( )A .B .C .D .4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( ) A .1个B .2个C .3个D .4个8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.已知23a b=(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b10.下列等式变形正确的是( ) A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6 D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.若32m x =+,278m y =-,用x 的代数式表示y ,则y =__________. 2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a ±,若4410m =,则m =________. 4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.2的相反数是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)446x x -=- (2)()()35221x x x --=- (3)142123x x ---= (4)0.20.40.050.20.50.03x x x ---=2.已知关于x ,y 的方程组mx 7234ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,求m ,n 的值.3.如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱) 销售价(元/箱)甲25 35乙35 48求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、C7、B8、D9、B 10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3(2)8x --2、150°3、10±4、50°5、﹣2.6、54°三、解答题(本大题共6小题,共72分)1、(1)2x =;(2)1x =;(3)1x =-;(4)4417x =2、m=5 n=13、(1)证明见解析;(2)75.4、(1)证明略;(2)证明略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)购进甲矿泉水300箱,购进乙矿泉水200箱;(2)该商场售完这500箱矿泉水,可获利5600元.。
人教版七年级上册数学第一次月考试卷及答案
人教版七年级上册数学第一次月考试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.523220x yx y+=⎧⎨+=⎩B.522320x yx y+=⎧⎨+=⎩C.202352x yx y+=⎧⎨+=⎩D.203252x yx y+=⎧⎨+=⎩5.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A .4 cmB .5 cmC .6 cmD .10 cm9.已知3,5a b x x ==,则32a b x -=( ) A .2725B .910 C .35D .5210.下列等式变形正确的是( ) A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6 D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是__________°.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________. 6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x yx y-=⎧⎨-=⎩(2)33255(2)4x yx y+⎧=⎪⎨⎪-=-⎩2.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、D5、B6、B7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、105°3、<4、2m≤-5、2或2.56、±3三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、x≥3 53、略4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.。
人教版七年级上册数学第一次月考试卷【带答案】
人教版七年级上册数学第一次月考试卷【带答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .3.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.已知a =b ,下列变形正确的有( )个.①a +c =b +c ;②a ﹣c =b ﹣c ;③3a =3b ;④ac =bc ;⑤a b c c =. A .5 B .4 C .3 D .25.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x﹣1)2+4C.y=(x+1)2+2 D.y=(x﹣1)2+27.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.6的相反数为()A.-6 B.6 C.16-D.169.如图,a,b,c在数轴上的位置如图所示,化简22()a a c c b-++-的结果是()A.2c﹣b B.﹣b C.b D.﹣2a﹣b 10.下列等式变形正确的是()A.若﹣3x=5,则x=3 5B.若1132x x-+=,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6 D.若3(x+1)﹣2x=1,则3x+3﹣2x=1二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简a c b abc a b c abc+++结果是________. 2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4+x x -有意义,+1x =___________.5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.已知关于x 的不等式(1﹣a )x >2的解集为x <21a-,则a 的取值范围是_______. 三、解答题(本大题共6小题,共72分)1.解方程组:34165633x y x y +=⎧⎨-=⎩2.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.为响应党的“文化自信”号召,某校开展了古诗词诵读大赛活动,现随机抽取部分同学的成绩进行统计,并绘制成如下的两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a= ,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、C6、D7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、203、0.4、15、16、a >1三、解答题(本大题共6小题,共72分)1、612x y =⎧⎪⎨=-⎪⎩2、-4≤a<-3.3、(1)略;(2)∠D=75°.4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)30,补图见解析;(2)扇形B 的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
人教版七年级(上)第一次月考数学试卷及答案
人教版七年级(上)第一次月考数学试卷及答案一、选择题(共10小题).1.(3分)的相反数是()A.B.C.D.2.(3分)下列数:﹣0.5,,0.1,﹣3,0,﹣(﹣0.7),其中负分数有()A.2个B.3个C.4个D.5个3.(3分)温度上升﹣3℃后,又下降2℃,实际上就是()A.上升1℃B.上升5℃C.下降5℃D.下降1℃4.(3分)绝对值不大于3的所有整数的个数是()A.3B.4C.6D.75.(3分)不改变原式的值,将1﹣(+2)﹣(﹣3)+(﹣4)写成省略加号和括号的形式是()A.﹣1﹣2+3﹣4B.1﹣2﹣3﹣4C.1﹣2+3﹣4D.1﹣2﹣3+46.(3分)若一个数的绝对值除以这个数所得的商是﹣1,则这个数一定是()A.﹣1B.1或﹣1C.负数D.正数7.(3分)若x的倒数等于它本身的数,y是绝对值最小的数,z是最大的负整数,则x﹣y+z=()A.﹣1或1B.0或﹣2C.﹣2D.08.(3分)马小虎在学习有理数的运算时,做了如下6道填空题:①(﹣5)+5=0;②﹣5﹣(﹣3)=﹣8;③(﹣3)×(﹣4)=12;④(﹣)×(﹣)=1;⑤(﹣)÷(﹣)=.你认为他做对了()A.5题B.4题C.3题D.2题9.(3分)已知a、b、c三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②a×b×c>0;③a+b>0;④c﹣a>0,其中结论正确的有()A.1个B.2个C.3个D.4个10.(3分)若在正方形的四个顶点处依次标上“振”“兴”“中”“华”四个字,且将正方形放置在数轴上,其中“中”“华”对应的数分别为﹣2和﹣1,如图,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚.例如,第一次翻滚后“振”所对应的数为0,则连续翻滚后数轴上数2020对应的字是()A.振B.兴C.中D.华二.填空题(共5小题)11.(3分)如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作.12.(3分)某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000米高空的气温﹣23℃,则地面气温约为.13.(3分)已知|a|=5,b=3,且ab<0,则a﹣b=.14.(3分)在等式4×□﹣2×□=30的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是.15.(3分)若a,b,c为有理数,且abc≠0,则++﹣=.三.解答题(共8小题)16.把下列各数分别填入相应的括号内:﹣3,+0.3,0,﹣3.4,7,﹣9,4,﹣.(1)正数:{…};(2)整数:{…};(3)分数:{…};(4)负分数:{…}.17.把下列各数在数轴上表示出来,并直接用“<”把各数连接起来.+2,﹣(﹣5),﹣3,|﹣3|,﹣(﹣2)218.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)2×(﹣1)×÷(﹣);(3)(﹣+)÷(﹣);(4)﹣13×﹣0.34××(﹣13)×0.34.19.如图,按程序框图中的顺序计算,当运算结果小于或等于0.99时,则将此时的值返回第一步重新运箅,直至运算结果大于0.99才输出最后的结果.若输入的初始值为0,则最后输出的结果是多少?20.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,求5(a+b)+﹣7m的值.21.a、b、c在数轴上的位置如图所示,则:(1)用“<、>、=”填空:a0,b0,c0;(2)用“<、>、=”填空:﹣a0,a﹣b0,c﹣a0;(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|22.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,(单位:元):星期一二三四五六日收入+15+180+160+25+24支出10 14138101415(1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?23.借助下面的材料,材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离:|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离:|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A点B在数轴上分别表示有理数a,b,那么点A、点B之间的距离可表示为|a﹣b|.问题:如图,数轴上A,B两点对应的有理数分别为﹣8和12,点P从点O出发,以每秒1个单位长度的速度沿数轴负方向运动,点Q同时从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)求经过2秒后,数轴点P、Q分别表示的数;(2)当t=3时,求PQ的值;(3)在运动过程中是否存在时间t使AP=AB,若存在,请求出此时t的值,若不存在,请说明理由.参考答案一.选择题(共10小题)1.(3分)的相反数是()A.B.C.D.解:﹣的相反数是:.故选:A.2.(3分)下列数:﹣0.5,,0.1,﹣3,0,﹣(﹣0.7),其中负分数有()A.2个B.3个C.4个D.5个解:﹣0.5,﹣是负分数,故选:A.3.(3分)温度上升﹣3℃后,又下降2℃,实际上就是()A.上升1℃B.上升5℃C.下降5℃D.下降1℃解:上升﹣3℃实际是下降了3℃,又下降2℃,所以实际上就是下降5℃.故选:C.4.(3分)绝对值不大于3的所有整数的个数是()A.3B.4C.6D.7解:不大于3的整数绝对值有0,1,2,3.因为互为相反数的两个数的绝对值相等,所以绝对值不大于3的整数是0,±1,±2,±3,共7个;故选:D.5.(3分)不改变原式的值,将1﹣(+2)﹣(﹣3)+(﹣4)写成省略加号和括号的形式是()A.﹣1﹣2+3﹣4B.1﹣2﹣3﹣4C.1﹣2+3﹣4D.1﹣2﹣3+4解:原式=1﹣2+3﹣4,故选:C.6.(3分)若一个数的绝对值除以这个数所得的商是﹣1,则这个数一定是()A.﹣1B.1或﹣1C.负数D.正数解:由已知得这个数的绝对值等于它的相反数,且这个数可作除数,当然不为0,那么这个数只能是负数.故选:C.7.(3分)若x的倒数等于它本身的数,y是绝对值最小的数,z是最大的负整数,则x﹣y+z=()A.﹣1或1B.0或﹣2C.﹣2D.0解:∵x的倒数等于它本身的数,y是绝对值最小的数,z是最大的负整数,∴x=±1,y=0,z=﹣1.∴x﹣y+z=0或﹣2.故选:B.8.(3分)马小虎在学习有理数的运算时,做了如下6道填空题:①(﹣5)+5=0;②﹣5﹣(﹣3)=﹣8;③(﹣3)×(﹣4)=12;④(﹣)×(﹣)=1;⑤(﹣)÷(﹣)=.你认为他做对了()A.5题B.4题C.3题D.2题解:①(﹣5)+5=0,符合题意;②﹣5﹣(﹣3)=﹣5+3=﹣2,不符合题意;③(﹣3)×(﹣4)=12,符合题意;④(﹣)×(﹣)=1,符合题意;⑤(﹣)÷(﹣)=,不符合题意,故选:C.9.(3分)已知a、b、c三个有理数在数轴上的对应点的位置如图所示,则下列几个判断:①|a|<|c|<|b|;②a×b×c>0;③a+b>0;④c﹣a>0,其中结论正确的有()A.1个B.2个C.3个D.4个解:由数轴可得:b<a<0<c,|a|<|c|<|b|;①|a|<|c|<|b|,正确;②a×b×c>0,正确;③a+b<0,错误;④c﹣a>0,正确;故结论正确的有3个.故选:C.10.(3分)若在正方形的四个顶点处依次标上“振”“兴”“中”“华”四个字,且将正方形放置在数轴上,其中“中”“华”对应的数分别为﹣2和﹣1,如图,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚.例如,第一次翻滚后“振”所对应的数为0,则连续翻滚后数轴上数2020对应的字是()A.振B.兴C.中D.华解:由题意可知:“中”字是数字除以4余2的,“华”是除以4余3的,“振”是能被4整除的,“兴”是除以4余1的,因为2020÷4=505,所以数字对应的是“振”,故选:A.二.填空题(共5小题)11.(3分)如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作﹣32.2元.解:∵向银行存入人民币20元记作+20元,∴从银行取出人民币32.2元记作﹣32.2元.故答案为:﹣32.2元.12.(3分)某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000米高空的气温﹣23℃,则地面气温约为37℃.解:底面的气温约为﹣23+6×=﹣23+60=37(℃),故答案为:37℃.13.(3分)已知|a|=5,b=3,且ab<0,则a﹣b=﹣8.解:∵|a|=5,∴a=±5,∵ab<0,b=3,∴a=﹣5,∴a﹣b=﹣5﹣3=﹣8.故答案为:﹣8.14.(3分)在等式4×□﹣2×□=30的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是5.解:设第一个方格内的数是a,则第二个方格的数是﹣a,所以,4a﹣2(﹣a)=30,即6a=30,解得a=5.故答案为:5.15.(3分)若a,b,c为有理数,且abc≠0,则++﹣=2或﹣2.解:当a、b、c中没有负数时,都是正数,则原式=1+1+1﹣1=2;当a、b、c中只有一个负数时,不妨设a是负数,则原式=﹣1+1+1+1=2;当a、b、c中有2个负数时,不妨设a、b是负数,则原式=﹣1﹣1+1﹣1=﹣2;当a、b、c都是负数时,则原式=﹣1﹣1﹣1+1=﹣2,总是代数式的值是2或﹣2,故答案为:2或﹣2;三.解答题(共8小题)16.把下列各数分别填入相应的括号内:﹣3,+0.3,0,﹣3.4,7,﹣9,4,﹣.(1)正数:{+0.3,7,4…};(2)整数:{0,7,﹣9…};(3)分数:{﹣3,+0.3,﹣3.4,4,﹣…};(4)负分数:{﹣3,﹣3.4,﹣…}.解:(1)正数:{+0.3,7,4…};(2)整数:{0,7,﹣9…};(3)分数:{﹣3,+0.3,﹣3.4,4,﹣…};(4)负分数:{﹣3,﹣3.4,﹣…}.故答案为:+0.3,7,4,0,7,﹣9;﹣3,+0.3,﹣3.4,4,﹣;﹣3,﹣3.4,﹣.17.把下列各数在数轴上表示出来,并直接用“<”把各数连接起来.+2,﹣(﹣5),﹣3,|﹣3|,﹣(﹣2)2解:在数轴上表示为:由数轴上的点表示的数右边的总比左边的大,得.18.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)2×(﹣1)×÷(﹣);(3)(﹣+)÷(﹣);(4)﹣13×﹣0.34××(﹣13)×0.34.解:(1)23﹣17﹣(﹣7)+(﹣16)=23+(﹣17)+7+(﹣16)=(23+7)+[(﹣17)+(﹣16)]=30+(﹣33)=﹣3;(2)2×(﹣1)×÷(﹣)==;(3)(﹣+)÷(﹣)=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=(﹣8)+9+(﹣2)=﹣1;(4)﹣13×﹣0.34××(﹣13)×0.34=(﹣13)×()﹣0.34×()=(﹣13)×1﹣0.34×1=﹣13﹣0.34=﹣13.34.19.如图,按程序框图中的顺序计算,当运算结果小于或等于0.99时,则将此时的值返回第一步重新运箅,直至运算结果大于0.99才输出最后的结果.若输入的初始值为0,则最后输出的结果是多少?解:把x=0代入得:[0+(﹣6)]÷5﹣(﹣2)=0.8,0.8<0.99,把x=0.8代入得:[0.8+(﹣6)]÷5﹣(﹣2)=0.96,0.96<0.99,把x=0.96代入得:[0.96+(﹣6)]÷5﹣(﹣2)=0.992.0.992>0.99,则输出的结果为0.992,20.已知a,b互为相反数,c,d互为倒数,m的绝对值为4,求5(a+b)+﹣7m的值.解:∵a,b互为相反数,c,d互为倒数,m的绝对值为4,∴a+b=0,cd=1,m=±4,当m=4时,5(a+b)+﹣7m=5×0+﹣7×4=0+6﹣28=﹣22;当m=﹣4时,5(a+b)+﹣7m=5×0+﹣7×(﹣4)=0+6+28=34.21.a、b、c在数轴上的位置如图所示,则:(1)用“<、>、=”填空:a<0,b<0,c>0;(2)用“<、>、=”填空:﹣a>0,a﹣b<0,c﹣a>0;(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|解:(1)a<0,b<0,c>0;(2)﹣a>0,a﹣b<0,c﹣a>0;(3)|﹣a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=﹣a﹣b+c.故答案为<、<、>;>、<、>.22.李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,(单位:元):星期一二三四五六日收入+15+180+160+25+24支出10 14138101415 (1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?解:(1)用正数表示收入,负数表示支出,则这七天的收入为:15+18+0+16+0+25+24=98,支出为:10+14+13+8+10+14+15=84,98﹣84=14,所以到这个周末,李强节余14元;(2)由(1)可知其每天能节余14÷7=2(元),30×2=60(元),即照这个情况估计,李强一个月(按30天计算)能有60元的节余;(3)84÷7=12(元),30×12=360(元),即按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常开支.23.借助下面的材料,材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离:|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离:|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A点B在数轴上分别表示有理数a,b,那么点A、点B之间的距离可表示为|a﹣b|.问题:如图,数轴上A,B两点对应的有理数分别为﹣8和12,点P从点O出发,以每秒1个单位长度的速度沿数轴负方向运动,点Q同时从点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒.(1)求经过2秒后,数轴点P、Q分别表示的数;(2)当t=3时,求PQ的值;(3)在运动过程中是否存在时间t使AP=AB,若存在,请求出此时t的值,若不存在,请说明理由.解:(1)1×2=2,2×2=4.∵点P沿数轴负方向运动,点Q沿数轴正方向运动,∴经过2秒后,点P表示的数为﹣2,点Q表示的数为4.(2)1×3=3,2×3=6.∵点P沿数轴负方向运动,点Q沿数轴正方向运动,∴当t=3时,点P表示的数为﹣3,点Q表示的数为6,∴PQ=|﹣3﹣6|=9.(3)当运动时间为t秒时,点P表示的数为﹣t,点Q表示的数为2t,点A表示的数为﹣8,点B表示的数为12,∴AP=|﹣8﹣(﹣t)|=|t﹣8|,AB=|﹣8﹣12|=20.∵AP=AB,∴|t﹣8|=×20,∴t=18或t=﹣2(不合题意,舍去).∴当t=18时,AP=AB.。
人教版七年级数学上学期第一次月考试题及答案
七年级上学期第一次月考数学试卷一、选择题1.2的相反数是()A.﹣B.C.2D.﹣22.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a﹣b+c ﹣d的值为()A.1B.3C.1或3 D.2或﹣13.已知数轴上三点A、B、C分别表示有理数a、1、﹣1,那么|a+1|表示()A.A与B两点的距离B.A与C两点的距离C.A与B两点到原点的距离之和D.A与C两点到原点的距离之和4.1339000000用科学记数法表示为()A.1.339×108B.13.39×108C.1.339×109D.1.339×10105.在﹣(﹣2011),﹣|﹣2012|,(﹣2013)2,﹣20142这4个数中,属于负数的个数是()A.1B.2C.3D.46.若|﹣a|+a=0,则()A.a>0 B.a≤0 C.a<0 D.a≥07.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<a C.a<0,b>0且|a|<b D.a>0,b<0且|b|>a 8.如果四个互不相同的正整数m,n,p,q满足(6﹣m)(6﹣n)(6﹣p)(6﹣q)=4,那么m+n+p+q=()A.24 B.25 C.26 D.289.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边10.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为.现已知,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014的值为()A.B.C.D.4二、填空题11.若m、n满足|m﹣2|+(n+3)2=0,则n m=.12.对于任意非零有理数a、b,定义运算如下:a*b=(a﹣2b)÷(2a﹣b),(﹣3)*5=.13.按照如图所示的操作步骤,若输入的值为3,则输出的值为.14.观察下列运算:81=8,82=64,83=512,84=4096,85=32768,86=262144,…,则81+82+83+84+…+82014的和的个位数字是.三、计算题15.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)|﹣1|﹣2÷+(﹣2)2.16.计算:(1)(﹣+)×(﹣42);(2)﹣14+[4﹣(+﹣)×24]÷5.17.计算:(1)4×(﹣3)2﹣5×(﹣2)+6;(2)﹣14﹣×[3﹣(﹣3)2].四、解答题18.若m>0,n<0,|n|>|m|,用“<”号连接m,n,|n|,﹣m,请结合数轴解答.19.已知|a|=3,|b|=5,且a<b,求a﹣b的值.20.已知:有理数m所表示的点与﹣1表示的点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2a+2b+(﹣3cd)﹣m的值.21.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣4,+2,+1,﹣2,﹣1,0,﹣2 (单位:元)(1)当他卖完这八套儿童服装后盈利(或亏损)了多少元?(2)每套儿童服装的平均售价是多少元?22.已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.23.已知|ab﹣2|与|a﹣1|互为相互数,试求下式的值:+++…+.一、选择题1.考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:D.点评:此题主要考查了相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.考点:倒数;有理数;绝对值.专题:计算题.分析:根据最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1,分别求出a,b,c及d的值,由d的值有两解,故分两种情况代入所求式子,即可求出值.解答:解:∵设a为最小的正整数,∴a=1;∵b是最大的负整数,∴b=﹣1;∵c是绝对值最小的数,∴c=0;∵d是倒数等于自身的有理数,∴d=±1.∴当d=1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣1=1+1﹣1=1;当d=﹣1时,a﹣b+c﹣d=1﹣(﹣1)+0﹣(﹣1)=1+1+1=3,则a﹣b+c﹣d的值1或3.故选C.点评:此题的关键是弄清:最小的正整数是1,最大的负整数是﹣1,绝对值最小的数是0,倒数等于自身的有理数±1.这些知识是初中数学的基础,同时也是20XX届中考常考的内容.3.考点:数轴;绝对值.分析:此题可借助数轴用数形结合的方法求解、分析.解答:解:|a+1|=|a﹣(﹣1)|即:该绝对值表示A点与C点之间的距离;所以答案选B.点评:此题综合考查了数轴、绝对值的有关内容.4.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1339000000用科学记数法表示为:1.339×109.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.考点:正数和负数;相反数;绝对值;有理数的乘方.分析:求出每个式子的值,再根据正数和负数的定义判断即可.解答:解:﹣(﹣2011)=2011,是正数,﹣|﹣2012|=﹣2012,是负数,(﹣2013)2=20132,是正数,﹣20142是负数,即负数有2个,故选B.点评:本题考查了正数和负数,相反数,绝对值,有理数的乘方和化简等知识点的应用.6.考点:绝对值.分析:根据互为相反数的和为0,可得a与|a|的关系,根据负数的绝对值是它的相反数,可得绝对值表示的数.解答:解:|﹣a|+a=0,∴|a|=﹣a≥0,a≤0,故选:B.点评:本题考查了绝对值,先求出绝对值,再求出a的值,注意﹣a不一定是负数.7.考点:有理数的乘法;有理数的加法.分析:根据有理数的乘法法则,由ab<0,得a,b异号;根据有理数的加法法则,由a+b<0,得a、b 同负或异号,且负数的绝对值较大,综合两者,得出结论.解答:解:∵ab<0,∴a,b异号.∵a+b<0,∴a、b同负或异号,且负数的绝对值较大.综上所述,知a、b异号,且负数的绝对值较大.故选D.点评:此题考查了有理数的乘法法则和加法法则,能够根据法则判断字母的符号.8.考点:代数式求值;多项式乘多项式.专题:计算题.分析:由题意m,n,p,q是四个互不相同的正整数,又(6﹣m)(6﹣n)(6﹣p)(6﹣q)=4,因为4=﹣1×2×(﹣2)×1,然后对应求解出m、n、p、q,从而求解.解答:解:∵m,n,p,q互不相同的是正整数,又(6﹣m)(6﹣n)(6﹣p)(6﹣q)=4,∵4=1×4=2×2,∴4=﹣1×2×(﹣2)×1,∴(6﹣m)(6﹣n)(6﹣p)(6﹣q)=﹣1×2×(﹣2)×1,∴可设6﹣m=﹣1,6﹣n=2,6﹣p=﹣2,6﹣q=1,∴m=7,n=4,p=8,q=5,∴m+n+p+q=7+4+8+5=24,故选A.点评:此题是一道竞赛题,难度较大,不能硬解,要学会分析,把4进行分解因式,此题主要考查多项式的乘积,是一道好题.9.考点:实数与数轴.分析:根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.解答:解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=B C,∴原点O的位置是在点B、C之间且靠近点B的地方.故选C.点评:本题考查了实数与数轴,理解绝对值的定义是解题的关键.10.考点:规律型:数字的变化类;倒数.分析:根据差倒数的定义分别计算出x1=﹣,x2==,x3==4,x4=﹣=﹣,…则得到从x1开始每3个值就循环,而2014=3×671+1,所以x2014=x1=﹣.解答:解:x 1=﹣,x 2==,x3==4,x4=﹣=﹣,…2014=3×671+1,所以x2014=x1=﹣.故选:A.点评:此题考查了数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题11.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.故答案为:9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.12.考点:有理数的混合运算.专题:新定义.分析:利用题中的新定义计算即可得到结果.解答:解:根据题意得:(﹣3)*5=(﹣3﹣10)÷(﹣6﹣5)=.故答案为:.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.考点:代数式求值.专题:图表型.分析:根据运算程序列式计算即可得解.解答:解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.点评:本题考查了代数式求值,读懂题目运算程序是解题的关键.14考点:尾数特征;规律型:数字的变化类.分析:易得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0,呈周期性循环.那么让2014除以4看余数是几,得到相和的个位数字即可.解答:解:2014÷4=503…2,循环了503次,还有两个个位数字为8,4,所以81+82+83+84+…+82014的和的个位数字是503×0+8+4=12,故答案为:2.点评:本题主要考查了数字的变化类﹣尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点.三、计算题15.考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣4﹣28+29﹣24=﹣27;(2)原式=1﹣6+4=﹣1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.考点:有理数的混合运算.专题:计算题.分析:(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣7+30﹣28=﹣5;(2)原式=﹣1+(4﹣9﹣4+18)÷5=﹣1+=.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:(1)原式=4×9+10+6=36+10+6=52;(2)原式=﹣1﹣×(﹣6)=﹣1+1=0.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、考点:有理数大小比较;数轴;绝对值.分析:根据已知得出n<﹣m<0,|n|>|m|>0,在数轴上表示出来,再比较即可.解答:解:因为n<0,m>0,|n|>|m|>0,∴n<﹣m<0,将m,n,﹣m,|n|在数轴上表示如图所示:用“<”号连接为:n<﹣m<m<|n|.点评:本题考查了有理数的大小比较,绝对值的应用,注意:在数轴上表示的数,右边的数总比左边的数大.19.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.解答:解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.点评:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.20.考点:代数式求值;数轴;相反数;倒数.分析:根据数轴求出m,再根据互为相反数的两个数的和等于0可得a+b=0,互为倒数的两个数的乘积是1可得cd=1,然后代入代数式进行计算即可得解.解答:解:∵有理数m所表示的点与﹣1表示的点距离4个单位,∴m=﹣5或3,∵a,b互为相反数,且都不为零,c,d互为倒数,∴a+b=0,cd=1,当m=﹣5时,原式=2a+2b+(﹣3cd)﹣m,=﹣1﹣3×1﹣(﹣5),=﹣1﹣3+5,=1,当m=3时,原式=2a+2b+(﹣3cd)﹣m,=﹣1﹣3﹣3,=﹣7,综上所述,代数式的值为1或﹣7.点评:本题考查了代数式求值,主要利用了数轴,相反数的定义,倒数的定义,整体思想的利用是解题的关键.21.考点:正数和负数.专题:计算题.分析:(1)所得的正负数相加,再加上预计销售的总价,减去总进价即可得到是盈利还是亏损.(2)用销售总价除以8即可.解答:解:(1)售价:55×8+(2﹣4+2+1﹣2﹣1+0﹣2)=440﹣4=436,盈利:436﹣400=36(元);(2)平均售价:436÷8=54.5(元),答:盈利36元;平均售价是54.5元.点评:此题考查正数和负数;得到总售价是解决本题的突破点.22.考点:整式的加减;数轴;绝对值.分析:本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.解答:解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.点评:解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.23.考点:代数式求值;非负数的性质:绝对值.分析:根据互为相反数的两个数的和等于0列方程,再根据非负数的性质列式求出a、b,然后代入代数式并裂项解答即可.解答:解:∵|ab﹣2|与|a﹣1|互为相互数,∴|ab﹣2|+|a﹣1|=0,∴ab﹣2=0,a﹣1=0,解得a=1,b=2,因此,原式=+++…+,=1﹣+﹣+﹣+…+﹣,=1﹣,=.点评:本题考查了代数式求值,绝对值非负数的性质,难点再利用裂项.。
人教版七年级上册数学第一次月考试题及答案
人教版七年级数学上册第一次月考试卷一、选择题(每小题3分,共36分)1. –5的绝对值是( ).A.5B.–5C.51D.51-2.在–2,+3.5,0,32-,–0.7,11中.负分数有( ).A.l 个B.2个C.3个D.4个3.下列各组数中,相等的是( ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169D.2)4(-与–16 4. 下面说法正确的有( ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数. A.0个 B.1个 C.2个 D.3个5.在x 2+2, +4, ab 2, -1, -5x , 0这6个式子中,整式有( )A.6个B.5个C.4个D.3个6.下列结论正确的是( )A.单项式的系数是,次数是4B.单项式-xy 2z 的系数是-1,次数是4C.单项式m 的次数是1,没有系数D.多项式2x 2+xy 2+3是二次三项式7.单项式x m-1y3与4xy n的和是单项式,则n m的值是()A.3B.6C.8D.98.已知a+b=4,c-d=-3,则(b-c)-(-d-a)的值为()A.7B.-7C.1D.-19.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=10.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.a=11.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣212.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚 B.赚了10元C.赔了10元D.赚了50元二、填空题(每题3分,共15分)13.最大的负整数是,绝对值最小的有理数是.14.用科学记数法表示:2 450 000 000 000=15.如果x=2是关于x的方程2x+3m-1=0的解,那么m的值是.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.17.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是________.三、解答题(共69分)18.计算1. (-10)+8×(-2)2-(-4)×(-3) (每小题5共10分)2.19.化简:(每小题6共12分)1. (5a-3a2+1)-(4a3-3a2);2. -2(ab-3a2)-[2b2-(5ab+a2)+2ab].1122(1)(1)x x x x ⎡⎤---=-⎢⎥20先化简,再求值:3(2x 2-3xy -5x -1)+6(-x 2+xy -1),其中x 、y 满足(x +2)2+|y -23|=0(8分)21.解方程:(每小题5共20分)1. 76163x x +=-;2.)5(4)3(2+-=-x x3 . . 4.22.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(9分)23.公园门票价格规定如下表:(10分)购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?参考答案一、选择题1.A 2 .B 3 .B 4 .A 5. C 6. B 7. D 8 .A 9. B 10 .C 11 . B 12 . C二、填空题13 -1 0 14. 2.45×101215 , -1 16 ,504 17 , 800三、解答题18 (1)(-10)+8×(-2)2-(-4)×(-3)=(-10)+8×4-12=-10+32-12=10.20(1)原式=5a-3a2+1-4a3+3a2=-4a3+5a+1.(2)原式=-2ab+6a2-2b2+5ab+a22ab=7a2+ab-2b2.21.原式=6x2-9xy-15x-3-6x2+6xy-6=-3xy-15x-9.由(x+2)2+|y-2 3|=0,得x=-2,y=23.当x=-2,y=23时,原式=-3×(-2)×23-15×(-2)-9=4+30-9=25.22.解方程(1)x=-2 (2)y=2/3(3).解:(1)去分母,得18x﹣6﹣20x+28=24,移项、合并同类项,得﹣2x=2,化未知数的系数为1,得x=﹣1;(4)x=12/2322.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?解:设x张制盒身,则可用(150﹣x)张制盒底,列方程得:2×16x=43(150﹣x),解方程得:x=86.答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.23.解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.版七年级数学上册第一次月考试卷二、选择题(每小题3分,共36分)1. –5的绝对值是().A.5B.–5C.51D.51-2.在–2,+3.5,0,32-,–0.7,11中.负分数有( ).A.l 个B.2个C.3个D.4个3.下列各组数中,相等的是( ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169D.2)4(-与–16 4. 下面说法正确的有( ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数. A.0个 B.1个 C.2个 D.3个5.在x 2+2, +4, ab 2, -1, -5x , 0这6个式子中,整式有( )A.6个B.5个C.4个D.3个6.下列结论正确的是( )A.单项式的系数是,次数是4B.单项式-xy 2z 的系数是-1,次数是4C.单项式m 的次数是1,没有系数D.多项式2x 2+xy 2+3是二次三项式7.单项式x m-1y 3与4xy n 的和是单项式,则n m 的值是( )A.3B.6C.8D.98.已知a+b=4,c-d=-3,则(b-c)-(-d-a)的值为()A.7B.-7C.1D.-19.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=1 D.x﹣1=10.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.a=11.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2 C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣212.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.不赔不赚 B.赚了10元C.赔了10元D.赚了50元二、填空题(每题3分,共15分)13.最大的负整数是,绝对值最小的有理数是.14.用科学记数法表示:2 450 000 000 000=15.如果x=2是关于x的方程2x+3m-1=0的解,那么m的值是.16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.17.平移小菱形◇可以得到美丽的“中国结”图案,下面四个图案是由◇平移后得到的类似“中国结”的图案,按图中规律,第20个图案中,小菱形的个数是________.三、解答题(共69分)18.计算1. (-10)+8×(-2)2-(-4)×(-3) (每小题5共10分)2.19.化简:(每小题6共12分)1. (5a-3a2+1)-(4a3-3a2);2. -2(ab-3a2)-[2b2-(5ab+a2)+2ab].20先化简,再求值:3(2x2-3xy-5x-1)+6(-x2+xy-1),其中x、y满足(x+2)2+|y-23|=0(8分)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦21.解方程:(每小题5共20分)1. 76163x x +=-;2.)5(4)3(2+-=-x x3 .. 4.22.用白铁皮做罐头盒,每张铁片可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?(9分)24.公园门票价格规定如下表:(10分)购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
人教版七年级数学上册第一次月考测试题(含答案)
人教版七年级数学上册第一次月考测试题(含答案)考试时间:100分钟一、单选题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.﹣8的相反数是()A.8 B.18C.18-D.-82.在数轴上与表示3-的点距离等于5的点所表示的数是()A.1 B.2和8 C.8-D.8-和23.下列关于有理数的分类正确的是()A.有理数分为正有理数和负有理数B.有理数分为整数、正分数和负分数C.有理数分为正有理数、0、分数D.有理数分为正整数、负整数、分数4.两个非零有理数的和为零,则它们的商是()A.0B.1-C.1D.不能确定5.实数a,b在数轴上的对应点的位置如图所示,把a,b,-a,-b,0按照从小到大的顺序排列,正确的是()A.a<-a<0<b<-b B.-b<a<0<b<-a C.-a<a<0<-b<b D.-b<a<0<-a<b 6.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-17.在12,2,4,-2这四个数中,互为相反数的是()A.12与2 B.2与-2 C.-2与12D.-2与48.如果m的相反数是最大的负整数,n的相反数是它本身,则m n+的值为()A.1 B.0 C.2 D.-19.已知A,B两点在数轴上表示的数是-5,1,在数轴上有一点C,满足AB=2BC,则C点表示的数为( )A.-2 B.0 C.4 D.-2或410.给出下列说法:①0是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有()A .1个B .2个C .3个D .4个二、填空题(每小题3分,共15分) 11.比较大小:47____________611.12.数轴上点A 所对应的数是3,点B 所对应的数是-4,那么A 、B 两点间的距离是_______. 13.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.14.如图,在单位长度是1的数轴上,点A 和点C 所表示的两个数互为相反数,则点B 表示的数是______.15.如图,在数轴上点A 表示数1,现将A 沿x 轴作如下移动:第一次点A 向左移动3个单位长度到点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种规律移动下去,则点13A ,点14A 之间的长度是_______.三、解答题(本大题共3小题,共75分)16.(10分)把下列各数填入相应的大括号内(将各数用逗号分开)6,-3,2.4,34 ,0,-3.14,29,+2,-312,-1.414,-17,23.正数:{ } 非负整数:{ } 整数:{ } 负分数:{ }17.(9分)检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A 地出发,到收工时行程记录为(单位:千米):+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A 地的哪边?距A 地多远?(2)若每千米耗油0.3升,从A 地出发到收工时,共耗油多少升?18.(8分)化简下列各数:(1)﹣(﹣100); (2) | - 11|+| - 2|; (3)+(﹣2.8); (4) | - 5| + | 0 | - | - 2|.19.(10分)(1)在数轴上表示下列各数: 113,2,,0,1,223---(2)如图所乐,指出点A 、B 、C 、E 、F 所表示的数.20.(9分)已知点O 为数轴的原点,点A ,B 在数轴上,AO =10,AB =8,且点A 表示的数比点B 表示的数小,则点B 表示的数是多少?21.(9分)若1002y x =-+,试问,当x 为何值时,y 有最大值,最大值是多少?22.(10分)如图,A,B,C三点在数轴上,点A表示的数为-10,点B表示的数为14,点C到点A和点B之间的距离相等.(1)求A,B两点之间的距离;(2)求C点对应的数;(3)甲、乙分别从A,B两点同时相向运动,甲的速度是每秒运动1个单位长度,乙的速度是每秒运动2个单位长度,求相遇点D对应的数.23.(10分)已知数轴上三点A,O,B对应的数分别为-3,0,2,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=________;(2)当x=________时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是________.(4)若点P到点A,点B,点O的距离之和最小,则此距离之和最小为______题号 1 2 3 4 5 6 7 8 9 10答案 A D B B D C B A D B 11.> 12.7 13.4 -4 14.﹣2 15.4216.正数:{6,2.4,29,+2,23…}非负整数:{6,0,+2 …}整数:{6,-3,0,+2,-17 …}负分数:{-34,-3.14,-312,-1.414 …}17.解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=﹣6千米,故收工时,检修工在A 地西边,距A 地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5| =8+9+4+7+2+10+11+3+7+5 =66,0.3×66=19.8(升).18.(1)100;(2)13;(3)-2.8;(4)3 19.解:(1)如下图数轴所示:(2)点A 表示0,点B 表示52-,点C 表示52,点E 表示-1,点F 表示3.20.解:∵AO =10, ∴点A 表示的数为±10,∵AB =8,且点A 表示的数比点B 表示的数小, ∴点B 表示的数是-2或18. 21.解:因为20x +≥,所以2x +有最小值,且当2x =-时,2x +的最小值是0, 所以当2x =-时,y 有最大值,y 的最大值是100. 22.解:(1)14-(-10)=24所以A ,B 两点之间的距离为24个单位长度. (2)设C 点对应的数是x. 则x-(-10)=14-x 解得:x=2所以C 点对应的数是2; (3)设相遇的时间是t 秒, 则t+2t=24 解得:t=8所以甲走了8个单位长度到D 点.所以相遇点D对应的数为-223.解:(1)320.5,2x-+==-故答案为:-0.5;(2)由题意得,|x+3|+|x-2|=6,解得,x=2.5或x=-3.5;故答案为:x=2.5或x=-3.5;(3)∵点P到点A,点B的距离之和最小,∴点P在点A与点B之间,因此-3≤x≤2,故答案为:-3≤x≤2;(4)∵点P到点A,点B,点O的距离之和最小,∴点P在点O时,点P到点A,点B,点O的距离之和最小,此时,这个最小距离为AB的长,即为5,故答案为:5。
人教版七年级上册数学第一次月考考试卷及答案【完美版】
人教版七年级上册数学第一次月考考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2cB .2a +2bC .2cD .02.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( ) A .6B .6-C .6±D .无法确定4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天5.已知x 是整数,当x 取最小值时,x 的值是( ) A .5B .6C .7D .86.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( ) A .3 B .7 C .3或7 D .1或79.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m的取值范围是_________________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)2976x x -=+ (2)332164x x+-=-2.解不等式组20{5121123x x x ->+-+≥①②,并把解集在数轴上表示出来.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、B5、A6、B7、A8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1002、20°.3、-2≤m<34、78°5、316、4.三、解答题(本大题共6小题,共72分)1、(1)x=﹣3;(2)x=3 4.2、﹣1≤x<2.3、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、(1)与∠D相等的角为∠DCG,∠ECF,∠B(2)155°(3)25°或155°5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。
人教版七年级上册数学第一次月考试卷((含答案)
七年级(上)第一次月考数学试卷一、填空题1.如果盈利700元记为+700元,那么﹣800元表示.2.在数轴上距离原点1.5个单位的点表示的数是.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过,最小不低于.4.用“>”、“<”、“=”号填空:(1)﹣0.02 1;(2)﹣﹣.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是℃.7.化简:﹣|﹣|= ,﹣(﹣2.3)= .8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= .9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= .10.若|x﹣2|与(y+3)2互为相反数,则x+y= .二、选择题11.当|x|=﹣x时,则x一定是()A.负数B.正数C.负数或0 D.012.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+616.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.717.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和018.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ …}非正数集合{ …}负分数集合{ …}有理数集合{ …}.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = .(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题1.如果盈利700元记为+700元,那么﹣800元表示亏损800元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵盈利700元记为+700元,∴﹣800元表示亏损800元.故答案为:亏损800元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在数轴上距离原点1.5个单位的点表示的数是±1.5 .【考点】数轴.【分析】在数轴上距离原点1.5个单位的点表示的数有两个:分别是﹣1.5、1.5.【解答】解:在数轴上距离原点1.5个单位的点表示的数是:±1.5;故答案为:±1.5.【点评】本题考查了数轴的有关知识,比较简单,明确所有的有理数都可以用数轴上的点表示,数轴上与原点的距离为a的点有两个,是互为相反数.3.一种零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8.04 ,最小不低于7.96 .【考点】正数和负数.【分析】根据正数与负数表示相反意义的量得到8±0.04(m)的含义为最大不超过8+0.04m,最小不超过8﹣0.04m,然后回答问题.【解答】解:零件的内径尺寸在图纸上是8±0.04(m),加工要求最大不超过8+0.04=8.04m,最小不低于8﹣0.04=7.96m,故答案为8.04;7.96.【点评】本题考查了正数和负数:用正数与负数表示相反意义的量,此题基础题,比较简单.4.用“>”、“<”、“=”号填空:(1)﹣0.02 < 1;(2)﹣<﹣.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据两负数比较大小,绝对值大的反而小,可得答案.【解答】解:(1)﹣0.02<1;(2),﹣,故答案为:<,<.【点评】本题考查了有理数比较大小,(1)正数大于负数,(2)先比较绝对值,再比较两负数的大小.5.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【考点】规律型:数字的变化类.【专题】规律型.【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.6.南通市某天上午的温度是8℃,中午又上升了5℃,下午由于冷空气南下,到夜间又下降了7℃,则这天夜间的温度是 6 ℃.【考点】有理数的加减混合运算.【专题】计算题.【分析】根据有理数的加减混合运算的运算方法,用南通市某天上午的温度加上中午又上升的温度,再减去夜间又下降的温度,求出这天夜间的温度是多少即可.【解答】解:8+5﹣7=13﹣7=6(℃)答:这天夜间的温度是6℃.故答案为:6.【点评】此题主要考查了有理数的加减混合运算,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.7.化简:﹣|﹣|= ﹣,﹣(﹣2.3)= 2.3 .【考点】绝对值;相反数.【专题】推理填空题.【分析】根据绝对值的含义和求法,以及相反数的含义和求法,逐一求解即可.【解答】解:﹣|﹣|=﹣,﹣(﹣2.3)=2.3.故答案为:﹣、2.3.【点评】此题主要考查了绝对值的含义和应用,以及相反数的含义和求法,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若a、b互为相反数,c、d互为倒数,则1.5cd+a+b= 1.5 .【考点】代数式求值.【分析】依据互为相反数的两数之和为0可知a+b=0,互为倒数的两数的乘积为1求解即可.【解答】解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=1.5×1+0=1.5,故答案为:1.5.【点评】本题主要考查的是求代数式的值,掌握倒数的定义和互为相反数的两数之和为0是解题的关键.9.用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如1☆4=42+1=17,那么﹣3☆2= 1 .【考点】实数的运算.【专题】计算题;新定义;实数.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:﹣3☆2=4﹣3=1.故答案为:1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.若|x﹣2|与(y+3)2互为相反数,则x+y= ﹣1 .【考点】相反数;非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据相反数的定义列式,然后根据非负数的性质列式求出x、y的值,再代入进行计算即可得解.【解答】解:∵|x﹣2|与(y+3)2互为相反数,∴|x﹣2|+(y+3)2=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义,绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.二、选择题11.当|x|=﹣x时,则x一定是()A.负数B.正数C.负数或0 D.0【考点】绝对值.【分析】根据绝对值的意义得到x≤0.【解答】解:∵|x|=﹣x,∴x≤0.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.12.a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<﹣b<﹣a<b【考点】有理数大小比较;数轴.【分析】根据数轴和相反数比较即可.【解答】解:因为从数轴可知:a<0<b,|a|>|b|,所以a<﹣b<b<﹣a,故选B.【点评】本题考查了数轴,相反数的,有理数的大小比较的应用,能根据数轴得出﹣a和﹣b的位置是解此题的关键.13.绝对值小于3.5的整数共有()A.3个B.5个C.7个D.9个【考点】有理数大小比较;绝对值.【分析】根据绝对值的意义,可得答案.【解答】解:绝对值小于3.5的整数﹣3,﹣2,﹣1,0,1,2,3,故选:C.【点评】本题考查了有理数比较大小,到原点的距离小于3.5的整数.14.下列说法中正确的是()A.最小的整数是0B.互为相反数的两个数的绝对值相等C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【考点】绝对值;有理数.【分析】根据绝对值的性质、整数的定义、正数和负数的定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、∵﹣1是整数,但﹣1<0,故A错误;B、∵|a|=|﹣a|,∴互为相反数的两个数的绝对值相等,故B正确;C、∵0也是有理数,故C错误;D、∵|﹣1|=|1|,但﹣1≠1,故D错误;【点评】此题主要考查整数的定义、正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a≤0时,|a|=﹣a,是一道基础题.15.绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为()A.+6和﹣6 B.+3和﹣3 C.+6和﹣3 D.+3和+6【考点】绝对值;数轴.【分析】绝对值相等的两个数只有两种情况,相等或互为相反数,因为绝对值相等的两个数在数轴上对应的两个点的距离为6,所以这两个数是互为相反数的,可求得为±3.【解答】解:由题意可得,这两个数是互为相反数的,因为两个数在数轴上对应的两个点的距离为6,从而求得这两个数为±3.答案:B.【点评】考查了绝对值在数轴上的定义(绝对值定义是坐标轴上的点到原点的距离),要求熟悉绝对值定义和数轴上数的规律.16.比﹣5.1大,而比1小的整数的个数是()A.5 B.4 C.6 D.7【考点】有理数大小比较.【分析】根据有理数的大小比较法则求出﹣6.1和1之间的整数即可.【解答】解:比﹣5.1大,而比1小的整数有﹣5,﹣4,﹣3,﹣2,﹣1,0,共6个.故选:C.【点评】本题考查了有理数的大小比较法则的应用,能求出所有的整数是解此题的关键,题目比较好,难度不大.17.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.18.下列每组数中,相等的是()A.﹣(﹣1.2)和﹣1.2 B.+(﹣1.2)和﹣(﹣1.2)C.﹣(﹣1.2)和|﹣1.2| D.﹣(﹣1.2)和﹣|﹣1.2|【考点】绝对值;相反数.【分析】分别化简各选项即可判断.【解答】解:A、﹣(﹣1.2)=1.2≠﹣1.2,此选项错误;B、+(﹣1.2)=﹣1.2,﹣(﹣1.2)=1.2,此选项错误;C、﹣(﹣1.2)=1.2,|﹣1.2|=1.2,此选项正确;D、﹣(﹣1.2)=1.2,﹣|﹣1.2|=﹣1.2,此选项错误,故选:C.【点评】本题主要考查相反数和绝对值,掌握相反数的表示方法及绝对值是解题的关键.19.如果|x﹣1|+|y+2|+|z﹣3|=0,则(x+1)(y﹣2)(z+3)的值是()A.48 B.﹣48 C.0 D.xyz【考点】非负数的性质:绝对值;代数式求值.【分析】本题可根据非负数的性质解出x、y、z的值,再把x、y、z的值代入(x+1)(y﹣2)(z+3)中求解即可.【解答】解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得x=1,y=﹣2,z=3.∴(x+1)(y﹣2)(z+3)=﹣48.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.20.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.其中正确的结论是()A.②③④B.①②③C.①②④D.①②【考点】相反数.【专题】探究型.【分析】根据相反数的定义对各小题进行逐一分析即可.【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b=0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选C.【点评】本题考查的是相反数的定义,在解答此题时要注意0的相反数是0.三.把下列各数填在相应的大括号里.21.把下列各数填在相应的大括号里+5,0.375,0,﹣2.04,﹣(﹣7),0.1010010001…,﹣|﹣1|,,﹣,π,0.正整数集合{ +5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{ ﹣2.04,﹣…}有理数集合{ +5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…}.【考点】有理数;绝对值.【分析】根据大于零的整数是正整数,小于或等于零的数是非正数,小于零的分数是负分数,有限小数或无限循环小数是有理数,可得答案.【解答】解:正整数集合{+5,﹣(﹣7)…}非正数集合{ 0,﹣2.04,﹣|﹣1|,﹣…}负分数集合{﹣2.04,﹣…}有理数集合{+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0.…};故答案为:+5,﹣(﹣7);0,﹣2.04,﹣|﹣1|,﹣;﹣2.04,﹣;+5,0.375,0,﹣2.04,﹣(﹣7),﹣|﹣1|,,﹣,0..【点评】本题考查了有理数,利用有理数的分类是解题关键,注意不能重复,也不能遗漏.四.画出数轴,在数轴上表示下列各数,并用“<”连接22.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣2.5,﹣1,1,0,3.75.【考点】有理数大小比较;数轴.【分析】先画出数轴并在数轴上表示出各数,再按照数轴的特点从左到右用小于号把各数连接起来.【解答】解:画出数轴并在数轴上表示出各数:按照数轴的特点用小于号从左到右把各数连接起来为:【点评】本题考查的是有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.五、计算下列各题23.计算下列各题(1)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣)(2)÷(﹣2)﹣×+÷4(3)(+﹣)×(﹣24)(4)×(﹣)×÷(5)|﹣2|﹣(﹣2.5)+1﹣|1﹣2|(6)(﹣)÷(﹣+﹣)(7)(﹣4.3)+(﹣3.2)﹣(﹣2.2)﹣|﹣15.7|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算括号中的运算,再从左到右依次计算即可得到结果;(5)原式利用绝对值的代数意义化简,计算即可得到结果;(6)原式被除数与除数换过,求出倒数,即可确定出原式的值;(7)原式利用减法法则变形,计算即可得到结果.【解答】解:(1)原式=6﹣6.25++﹣﹣=﹣;(2)原式=﹣×﹣×+×=﹣×(+﹣1)=﹣×=﹣;(3)原式=﹣14﹣40+18=﹣36;(4)原式=×(﹣)××=﹣;(5)原式=+2.5+1﹣2+1=﹣0.5;(6)∵(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,∴原式=﹣;(7)原式=﹣4.3﹣3.2+2.2﹣15.7=﹣23.2+2.2=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.六、24.思考题观察下列等式=1﹣, =﹣, =﹣,将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果:①+++…+= ;②+++…+= .【考点】规律型:数字的变化类.【专题】推理填空题.【分析】(1)观察题目所给等式,总结隐含的恒等变换,直接写出所求等式.(2)利用等式: =﹣将相邻两个正整数的积的倒数写成它们的倒数的差,然后计算出结果即可.【解答】解:(1)∵﹣=﹣=∴=﹣(2)①+++…+=1﹣+﹣+﹣+…+﹣=1﹣=②+++…+=1﹣+﹣+﹣+…+﹣=1﹣=故答案为:(1)﹣;(2)①;②【点评】本题考查了数字的变化规律问题,解题的关键是能够总结出题目隐含的数字变换规律并加以运用先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版数学七年级上册人教版数学七年级(上)第一次月考考试试卷(含解析)
七年级数学试卷(考试范围:第1章1.1正数和负数——1.4有理数的乘除法)(总分:120分 测试时间:90分钟)题号 一 二 三 总分 得分一、选择题(每小题3分,共30分)1.3-的相反数是( )A .B .13C .13-D . 3-2.在–2,+3.8,0,32-,–0.7,15中.分数有( ) A .1个B .2个C .3个D .4个3.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数.以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A .2+B .3-C .3+D .4+4.如图,数轴上点A 所表示的数的倒数是( )A .-2B .2C .12 D .-12A第4题图5.下列说法正确的是( )A .绝对值大的数一定大于绝对值小的数B .任何有理数的绝对值都不可能是负数C .任何有理数的相反数都是正数D .有理数的绝对值都是正数6.计算12÷(﹣3)﹣2×(﹣3),它的结果是( )A .﹣18B .﹣10C .2D .187.下列等式成立的是( )A .100÷71×(-7)=100÷⎥⎦⎤⎢⎣⎡-⨯)7(71 B .100÷71×(-7)=100×7×(-7) C .100÷71×(-7)=100×71×7 D .100÷71×(-7)=100×7×7 8.已知|m |=4,|n |=6,且m +n =|m +n |,则m ﹣n 的值是( )A .﹣10B .﹣2 或10C .2D .﹣2或﹣109.已知a 、b 、c 大小如图所示,则a b ca b c++的值( )A.1B.1-C.1±D.0第9题图10.将正整数依次按下表规律排成4列,根据表中的排列规律,数2016应在()C.第671行第2列D.第671行第3列二、填空题(每小题3分,共30分)11.在知识抢答中,如果用+10表示为:得10分,那么扣20分表示为:_________.12.﹣2016的绝对值是.13.两个有理数在数轴上对应点的位置如图所示,则-a-b.(填“>”、“<”或“=”)第13题图14.某天温度最高是12℃,最低是-7℃,这一天温差是 ℃.15.满足条件大于﹣1而小于π的整数共有 个.16.114-的倒数与14的相反数的积为 .17.计算(﹣9)﹣18×(1162-)的结果是 . 18.在数轴上,点A 表示数﹣1,距A 点2个单位长度的点表示的数是 .19.如果|2|a -+|1|b +=0,那么a ÷b = .20.如果ab <0,那么||||||a b ab a b ab++= . 三、解答题(共60分)21.(8分)计算:(1)22(2016)(2)2016+-+-+(2))131(13)5()105(-÷+-÷-22.(10分)用简便方法计算:(1) (13+14﹣16)×(﹣24)(2) 0.7×1949+234×(-14)+0.7×59+14×(-14)23.(6分)将下列各数填入适当的括号内(填编号即可)①3.14,②5,③﹣3,④34,⑤8.9,⑥67,⑦﹣314,⑧0,⑨325(1)整数集合{ …}(2)分数集合{ …}(3)正整数集合{ …}.24.(6分)在数轴上表示下列各数,再用“<”号把各数连接起来:2+,()4+-,()1-+,3-,5.1-–4–3–2–1012345–525.(6分)已知a 与b 互为相反数,c 与d 互为倒数,m =﹣2,求a +b ﹣cd ×m ﹣m .26.(6分)8袋大米,以每袋50千克为准,超过的千克记作正数分别为:﹣2、+1、+4、+6、﹣3、﹣4、+5、﹣3,求8袋大米共重多少千克?27.(8分)小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:加数的个数n连续偶数的和S1 2=1×22 2+4=6=2×33 2+4+6=12=344 2+4+6+8=20=4×55 2+4+6+8+10=30=5×6请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用字母n的式子表示S,则S=2+4+6+8+…+2n=;(3)利用上题的猜想结果,计算202+204+206+…+1998+2000的值(要有计算过程).28.(10分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的5‰(千分之五)的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?参考答案1.D2.C3.A4.D故选D.5.B【解析】根据绝对值的性质和有理数的大小比较对各选项分析判断利用排除法求解.解:A.绝对值大的数一定大于绝对值小的数错误,负数相比较,绝对值大的反而小,故本选项错误;B.任何有理数的绝对值都不可能是负数,故本选项正确;C.任何有理数的相反数都是正数或零,故本选项错误;D.有理数的绝对值都是正数或零,故本选项错误.故选B.6.C【解析】根据运算顺序,先计算乘除运算,再计算加减运算,即可得到结果.解:原式=﹣4﹣(﹣6)=﹣4+6=2.故选C7.B.【解析】有理数乘除混合运算可以将除法转化为乘法进行.则1100(7)1007(7)7÷⨯-=⨯⨯-.故选B.8.D.【解析】∵m+n=|m+n|,|m|=4,|n|=6,∴m=4,n=6或m=﹣4,n=6,∴m﹣n =4﹣6=﹣2或m﹣n=﹣10,故选D.9.A.【解析】由图示,知:a<0<b<c,∴a b ca b c++=a b ca b c-++=﹣1+1+1=1.故选A.10.A.【解析】每行有3列,奇数开始的从左边开始排列,偶数开始的从右边开始排列.每行的最后都是3的倍数.2016÷3=672,所以数2016应在第672行第2列.故选A.11.-20【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为-20.12.2016.【解析】根据负数的绝对值是它的相反数,﹣2016的绝对值是|﹣2016|=2016,故答案为:2016.13.<.【解析】根据数轴得:a>b,所以-a<-b.14.19.【解析】12-(-7)=19(℃).故答案为:19.15.4【解析】由数轴可得出大于﹣1而小于π的整数有4个.解:如图,从数轴上可得出满足条件大于﹣1而小于π的整数有:0,1,2,3共4个.故答案为:4.【解析】根据题意,距A点2个单位长度的点有2个,分别位于点A的两侧,据此求出距A点2个单位长度的点表示的数是多少即可.解:(1)当所求点在点A的左侧时,距A点2个单位长度的点表示的数是:﹣1﹣2=﹣3.(2)当所求点在点A的右侧时,距A点2个单位长度的点表示的数是:﹣1+2=1.即距A点2个单位长度的点表示的数是﹣3或1.故答案为:﹣3或1.19.-2.【解析】根据非负数的性质列式求出a、b的值.解:根据题意得,a-2=0,b+1=0,解得a=2,b=-1所以a÷b=-220.﹣1【解析】解:∵ab<0,∴|a|和|b|必有一个是它本身,一个是它的相反数,|ab|是它的相反数,∴=1﹣1﹣1=﹣1;或=﹣1+1﹣1=﹣1.故答案为:﹣1.21.(1)20;(2)148-【解析】(1)先把互为相反数的两个数相加,再算另两个数的和即可;(2)先算除法,再算加法即可 解:(1)22(2016)(2)2016+-+-+=(22-2)+[(-2016)+2016]=20+0=20;(2))131(13)5()105(-÷+-÷- =21-169=-148; 22.(1)﹣10;(2)-28 .【解析】运用分配律进行计算即可.解:(1)原式=31×(-24)+41×(-24)-61×(-24)=-8-6+4=-10; (2)原式=0.7×(199594+)+(-14)×(24143+)=0.7×20+(-14)×3=14-42=-28. 23. ②③⑦⑧;①④⑤⑥⑨;②【解析】根据有理数的概念和分类方法解答即可.解:(1)整数集合{②③⑦⑧…}(2)分数集合{①④⑤⑥⑨…}(3)正整数集合{②…}.24.答案见解析【解析】根据有理数大小的比较方法,先化简再判断大小.∴-(+4)<-1.5<+2<|-3|.25.4【解析】利用相反数,倒数的定义求出a +b ,cd 的值,代入原式计算即可得到结果. 解:根据题意得:a +b =0,cd =1,m =﹣2,则原式=0+2+2=4.26.404千克【解析】先计算超过的千克数的和,然后加上以每袋50千克为准的8袋大米的重量即可.解:50×8+(﹣2+1+4+6﹣3﹣4+5﹣3)=400+4=404(千克).答:8袋大米共重404千克.27.(1)72;(2)n(n+1);(3)990900.【解析】(1)当n=8时,表示出S,计算得到S的值;(2)根据表格得到从2开始的偶数之和为偶数个数乘以个数加1,用n表示出即可;(3)将所求式子表示为(2+4+6+…+298+300+302+304+…+2010+2012)﹣(2+4+6+…+298),用上述规律计算,即可得到结果.解:(1)当n=8时,那么S=2+4+6+8+10+12+14+16=8×9=72;(2)∵2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,∴S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);(3)202+204+…+1998+2000=(2+4+6+...+200+202+204+...+1998+2000)﹣(2+4+6+ (200)=1000×1001﹣100×101=1001000﹣10100=990900.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级____班 座号__ 姓名_________ (时间:120分钟) 成绩_________
一、选择题(每小题2分,共20分)
1. -2的相反数是
A. -2
B. 21
C. -2
1 D.
2 2、如果一个有理数的绝对值是8,那么这个数一定是( )。
A 、-8 B 、-8或8 C 、8 D 、以上都不对
3. 有理数中倒数等于它本身的数一定是( )
A 、1
B 、0
C 、-1
D 、±1
4. 一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是
A .24.70千克
B .25.30千克
C .24.80千克
D . 25.51千克
5.下列关于0 的说法错误..
的是( ) A. 0 既不是正数也不是负数 B. 0 的相反数是0
C. 0 的绝对值是0
D. 0 的倒数是0
6. 在数轴上,原点及原点左边的点表示的数是 ( )
A 正数
B 负数
C 非正数
D 非负数
7. 五个有理数的积为负数,则五个数中负数的个数是
A.1
B.3
C.5
D.1或3或5
8、下列各组量中,不.是.
相反意义的量是( ) A 、收入200元与支出-200元 B 、上升10米与下降-10米
C 、向前走7 米与向右走10米
D 、增大2升与减少2升
9、如果∣a ∣= a ,下列成立的是( )
A 、0a >
B 、0a <
C 、0a >或0a =
D 、0a <或0a =
10.有理数a ,b 如图所示位置,则正确的是( )
A 、a+b>0
B 、ab>0
C 、b-a<0
D 、|a|>|b|
二、填空题(每题2分,共20分)
11.比较大小:71- 61-;332 1338. 12. -23
的倒数是负二分之三 ;绝对值是三分之二 。
13. 若某次数学考试标准成绩定为96分,规定高于标准记为正,两位学生
的成绩分别记作:+9;-3,则两名学生的实际得分分别为 ;
14. 数轴上表示数-3的点与表示数-7的点的距离为________
15.正阳县某天上午的温度是5℃,中午上升了3℃,下午由于冷空气南下,
到夜间下降了9℃,则这天夜间的温度是 ℃.
16. 化简:-|-8|= ;
-(-5)=+5 。
17、若ab=1,且a=-1
32,则b= -一有二分之三 18. 如果3>a ,则______3正数
=-a ,______3负数=-a
19. 若a 、b 互为相反数,c 、d 互为倒数,则(a+b)-cd= 。
20. 观察下面一列数,探究其中的规律:—1、 二分子一、 31-、 、 4151-、 6
1…那么,第13个数是2的13次方 , 第2012个数是2的2012次方 。
三、解答题: 21. 计算[5分×4=20分 (5) 6分] (26分)
(1)22+(-4)+(-2)+4; (2)()()()⎪⎭
⎫ ⎝⎛-+--++-41925.08
(3)()22475.281311---⨯⎪⎭
⎫ ⎝⎛-+ (4)241×383÷(-2.25)×94
(5)(-1)×[ 4
32÷(-4)+(-14
1)×(-0.4)]÷(-31)
22.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接:
5+ ,5.3-,21,211-,4,0,5.2
23.(4分)把下列各数分别填入相应的集合里.
3225,,0, 3.14,,2008, 1.99,(6).47
---+-- (1)正数集合:{ …};
(2)负数集合:{ …};
(3)整数集合:{ …};
(4)分数集合:{ …}.
24.(6分)若
5=a ,3=b ,求b a ⋅的值.
25.(9分)一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):
+5,-3,+10,-8,-6,+12,-10.
(1)守门员是否回到了原来的位置?
(2)守门员一共走了多少路程?
(3)守门员离开球门的位置最远是多少?
26.(9分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用
(1)20
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?。