浙江省温州四中中考数学模拟试题(无答案) 浙教版
中考数学模拟试卷浙教版.doc
2019-2020 年中考数学模拟试卷浙教版一.选择题(本大题有10 小题 , 每小题 4 分 , 共 40 分)1.- 3 的倒数是()A. 1B. - 3C. -1D. 33 32. 2 x 在实数范围内有意义,则x 的取值范围是( ) A.x≥ 2 B. x>2 C. x≤2 D. x<2 3.下列运算正确的是()A .a2·a3 a61 12 C .16 4 D .| 6 | 6B .( )24.若每人每天浪费水0.32 升,那么 1000 人每天浪费的水,用科学记数法表示为()A. 3.2 102 升B. 3.2 103升C. 3.2 10 4升D. 0.32 102升5.下面四个几何体中,左视图是四边形的几何体共有()( 第 5 题图 ) (第 6 题图)A. 1 个B. 2 个C. 3 个D.4 个6.如图,在方格纸中有、、三个角,则它们的大小关系为()A. B. C. D.7. 已知圆锥底面半径为3cm,侧面积为 18 cm2,则该圆锥的高为()A. 6 cmB. 4 cmC. 3 3 cmD. 3 cm8.下列命题 : ①有理数和数轴上的点一一对应;②带根号的数不一定是无理数;③ 在数据1,3,3,0,2中 , 众数是3, 中位数是3;④若圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;其中真命题的个数是()A. 0 个B. 1个C. 2个D.3个9. 在直角坐标系中,点P 是直线 y-2x+4=0 上的一个动点,O为坐标原点,则线段OP的最小值为()Q(第 10 题图 )A. 2B. 254 5 8 5 C.D.5510.在矩形纸片 ABCD 中, AB=3, AD=5.如图所示,折叠纸片,使点 A 落在 BC 边上的A ′处,折痕为PQ,当点A ′在BC 边上移动时,折痕的端点P . Q 也随之移动,若限定点 P 、Q 分别在线段 AB 、AD 边上移动,则点 A ′在为() A.1 B. 2 C. 3 D.4BC 边上可移动的最大距离二.填空题(本大题有6 小题,每小题 5 分,共 30 分)11.在实数范围内分解因式x 34x的结果为.12.两圆的半径分别 3 和 5,两圆心的距离是 7,则这两圆的位置关系是.13. 不等式 4-2x > 1 的自然数解为.14. “上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469取一个十位数字是3 的两位数,则该两位数是 “上升数”的概率是等).若.15.如图,△ AOB 为等边三角形,点 B 的坐标为( -2 , 0),过点 C ( 2, 0)作直线 l 交 AO于 D ,交 AB 于 E ,点 E 在某反比例函数图象上,当△ADE 和△ DCO 的面积相等时,那么该反比例函数解析式为.16. 如图,图 1 是一块边长为 1,面积记为 S 1 的正三角形纸板,沿图1 的底边剪去一块边长为1 的正三角形纸板后得到图2,然后沿同一底边依次剪去一块更小的正三角形纸板2(即其边长为前一块被剪掉正三角形纸板边长的1 )后,得图 3,图 4, ,记第n ( n ≥3) 2块纸板的面积为S n ,则S n-1 - S n =.l点1中学初三语图文2中考模拟卷图 3图 42011 年绍兴市部分重图 (第 15 题图)( 第 16 题图)答题卷一.选择题题号 12345678910答案二.填空题11.. 12..13. .14. . 15. .16. .三.解答题(本大题有8 小题 , 第 17~ 20 小题每小题8 分, 第 21 小题 10 分 , 第 22,23 小题每小题 12 分 , 第 24 小题 14 分 , 共 80 分)17.计算( 2)0 3 tan30 o 1218.先化简,再求值: a 2 1 ,其中 a=3.a 2 a 2 a 2 419.如图 , 已知在等腰△ABC中,∠ A=∠ B=30°,过点 C作 CD⊥ AC交 AB于点 D.(1)尺规作图:过 A,D, C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证: BC是过 A, D, C三点的圆的切线.CBA20. 2010 年 4 月 14 日青海玉树发生7.1 级地震,地震灾情牵动全国人民的心,某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1: 5,请结合图中相关数据回答下列问题.第20 题图( 1) A 组的频数是 __________,本次调查样本的容量是__________.( 2)补全捐款户数直方图;( 3)若该社区有500 户住户,请估计捐款不少于300 元的户数是多少?21. 2010 年上海世博会期间,专为残疾人开辟了“绿色通道”.为了使残疾人朋友的通行更加方便,为此需将某一路段的台阶改造成供轮椅行走的斜坡,台阶截面如图所示,已知每级台阶的宽度 ( 如 CD)均为 0.3m,高度 ( 如 BE)均为 0.2m,设计斜坡的倾斜角∠ A 为 9°.( 1)求斜坡AC的长度;⑵如果需要在上坡点 A 处的左侧留出 4 米的通道,试判断距离 B 点 7.5 米的报刊亭MNPQ是否需要挪走,并说明理由.(说明:⑴,⑵的计算结果都精确到0.1 米,参考数据:sin9 °≈ 0.16 , cos9 °≈ 0.99)22.A、B 两城间的公路长为450 千米,甲、乙两车同时从 A 城出发沿这一公路驶向 B 城,甲车到达 B 城1小时后沿原路返回.如图是它们离 A 城的路程 y(千米)与行驶时间x(小时)之间的函数图像.( 1)求甲车返回过程中y 与 x 之间的函数解析式,并写出自变量x 的取值范围;( 2)乙车行驶 6 小时与返回的甲车相遇,求乙车的行驶速度.y(千米)450 C EFOD4 5 10 x(小时)23.如图①,点 O为线段 MN的中点, PQ 与 MN相交于点 O,且 PM∥ NQ,可证△ PMO≌△ QNO根.据上述结论完成下列探究活动:探究一:如图②,在四边形 ABCD中, AB∥DC, E 为 BC边的中点,∠ BAE=∠ EAF, AF 与 DC的延长线相交于点 F.试探究线段 AB与 AF、 CF之间的数量关系,并证明你的结论;探究二:如图③,DE. BC相交于点 E,BA 交 DE于点 A,且 BE: EC=1: 2,∠BAE=∠ EDF,CF∥AB.若AB= 4, CF=2,求 DF的长度.图③24.已知二次函数y ax2bx c a0 的图象与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C,其顶点的横坐标为1,且过点 2,3 和 3, 12 .(1)求此二次函数的表达式;(2)若直线 l : y kx k0 与线段BC交于点D,(不与点B、C重合),则是否存在这样的直线 l 使得B、O、D为顶点的三角形与△BAC相似?若存在.求出该直线的函数表达式及点 D 的坐标;若不存在,请说明理由;(3) 若点 P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ ACO的大小 ( 不必证明 ) ,并写出此时点P 的横坐标x 的取值范围.参考答案一、选择题CCDAB ACBCB二、填空题x(x+2)(x-2);相交;0、1;3;5y=-3 3;3.4x4n三、解答题17、 1+ 3 ;18、a2 4 ,当a=3时,原式=13;19、略20、(1)2,50;(2)略;(3)180户21、(1) AC=5;( 2) AP=3.45< 4, 要挪走 .22、( 1) y=-90x+900 ( 5≤ x≤ 10);( 2) 60 千米 / 小时.23、( 1) AB=AF+CF (2) DF=624、( 1)可以用顶点式,设 y=a( x-1 )2 +k,则 a k 316a k 12 解得: a -1 ∴ y= -( x-1 )2+4=-x 2+2x+3,或用一般式求得。
浙江省温州四中九年级数学模拟考试试题(无答案) 浙教
浙江省温州四中2012届九年级数学模拟考试试题(无答案)浙教版卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.6的相反数是(▲ )A.6 B.6- C.61D.61-2.方程042=-x的解是(▲ )A.1=x B.1-=x C.2=x D.2-=x3.如图,由几个小立方体组成的立体图形的左视图是(▲)4.如图所示的几何体,它的主视图是(▲ )5.不等式组211420xx->⎧⎨-⎩,≤的解在数轴上表示为(▲ )6.如图,在边长为1的正方形构成的网格中,点A、B、C、D是格点,半径为2的⊙O的圆心O也在格点上,连结AD交⊙O于点E,则∠EBC的正切值是(▲ )A. 2B.21C.32D.237.要使二次根式3-x有意义,则x应满足(▲ )A.3≥x B.3>x C.3-≥x D.3≠x8.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是(▲)A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月10 2C.10 2D.10 2A.10 2B.9.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 ( ▲ )A .25°B .30°C .40°D .50° 10. 如图,在△ABC 中,AB = AC ,AB = 5,BC =8,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( ▲ )A .6825-π B .625-π C .12425-πD .1225-π卷 Ⅱ二、填空题(本题共6小题,每小题5分,共30分) 11.分解因式:92-x = ▲ .12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是 ▲ . 13.写一个正比例函数,使它的图象经过一、三象限: ▲ . 14.温州某地动车组于2010年10月1日正式开通.动车组和普通火车相比,有什么区别,又有什么优点,你了解吗? 小明对本班同学进行了调查,绘制统计图如图.若该班有 50人,则比较了解....的同学有 ▲ 人. 15.如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC →CD 运动至点D 停止.设点P运动的路程为x ,△APB 的面积为y ,如果y 关于x 的函数图象如图2所示,则△BCD的面积是 ▲%50一点知道%30不清楚%20比较了解)14(题第 21 第12题16.如图,△ABC 中,AB=AC=2,∠BAC=120°,过点A 作 AD 1⊥BC 于点D 1;再过点D 1作D 1D 2⊥AB 于D 2;又过点D 2 作D 2D 3⊥BC 于点D 3;……;以此类推得到一组线段D 1D 2, D 2D 3,……,则D 2010D 2011=_▲_____________三、解答题(本题有8小题,共80分) 17.(本题10分)(1)计算: 02)2(30sin 43-+-︒π (2) 已知213x -=,求代数式2(3)2(3+)7x x x -+-的值.18.(本题8分)已知:如图,在四边形ABCD 中,AC 是对角线,AD=BC ,∠1=∠2. 求证:AB=CD19.(本题8分)一个布袋中有2个红球和2个白球,它们除颜色外都相同.(1)若从袋中摸出一个球,求摸到红球的概率; (2)若从袋中摸出一个球,不放回,再摸出第二个球,求摸到一个红球一个白球的概率(画出树状图或列表).20.(本题8分)如图,AB 是⊙O 的直径,AC 是弦, 点D 是弧BC 的中点,DP AC ⊥,垂足为点P. 求证:PD 是⊙O 的切线.21.(本题10分)已知在同一直角坐标系中,反比例函数y=x5与二次函数y=x 2-2x+c 的图象交于点A(1,m) (1)求m ,c 的值;(2)求二次函数y=x 2-2x+c 的对称轴及它的最大(小)值.23. (本题12分)小丽、小强、小红三位同学参加了寒假社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话:小丽:如果以10元/千克的价格销售,那么每天可出售300千克。
浙江省湖州四中中考数学模拟试题(2)(无答案) 浙教版
浙江省湖州四中中考数学模拟试题(2) 浙教版班级 姓名一、选择题(本大题共10小题,每小题3分,共30分)1.-2的相反数是 【 】 A. 21-B. 21C. -2D. 2 2. 国家统计局初步测算,2011年中国国内生产总值(GDP )471564亿元,比上年增长9.2% 。
其中471564亿用科学计数法表示记为(保留3个有效数字) 【 】 A. 131071.4⨯ B. 131072.4⨯ C. 121071.4⨯ D. 1410472.0⨯ 3.在下列命题中,正确的是 【 】 A. 正多边形一个内角与一个外角相等,则它是正六边形; B. 正多边形都是中心对称图形;C. 边数大于3的正多边形的对角线长都相等;D. 正多边形的一个外角为36°,则它是正十边形.4.如图,下列条件中,不能推断AB ∥CD 的是 【 】 A .∠1=∠2; B. ∠3=∠4; C. ∠B=∠5; D. ∠B+∠BCD=180°5.二元一次方程组20x y x y +=⎧⎨-=⎩的解是 【 】A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩6..如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边 OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为 (6-,4),则△AOC 的面积为 【 】A .12B .9C .6D .47.为了解某班学生每天使用零花钱的情况,小明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法正确的是( )每天使用零花钱(单位:元) 0 1 3 4 5 人数 1 3 5 4 2第6题54321E DC BA第4题A .众数是5元B .平均数是2.5元C .极差是4元D .中位数是3元8.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足22(20)1558y x =--+,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是 【 】 A .1558. B. 1508 C. 1550 D. 209.已知二次函数263y kx x =-+,若k 在数组{3211234}---,,,,,,中随机取一个,则所得抛物线的对称轴在直线1x =的右方时的概率为( )A .17 B .27C .47D .5710.如图,n+1个直角边长为1的等腰直角三角形,斜边在同一直线上,设112C D B ∆的面积为1S ,223C D B ∆的面积为2S ,…,n n n C D B 1+∆的面积为n S ,则n S =____ (用含n 的式子表示). 【 】 A .13+n n B. 222+n nC.22+n nD. n n n 232+二、填空题 (本大题共6小题,每小题4分,共24分) 11.计算4133m m m -+++= 。
2024年浙江省温州市初中学业水平考试数学模拟预测试题
2024年浙江省温州市初中学业水平考试数学模拟预测试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.某班期末考试数学的平均成绩是83分,小亮得了90分,记作7+分,小英的成绩记作3-分,表示得了( )分.A .86B .83C .87D .80 2.如图是一个放置在水平桌面上的陀螺的示意图,它的俯视图是( )A .B .C .D . 3.第19届亚运会即将在杭州举办,据官网消息杭州奥体中心体育场建筑总面积约为216000平方米,数据216000用科学记数法表示为( )A .52.1610⨯B .421.610⨯C .42.1610⨯D .321610⨯ 4.从甲、乙、丙、丁4名同学中随机抽取2名同学参加图书节志愿服务活动,其中甲同学是女生,乙、丙、丁同学都是男生,被抽到的2名同学都是男生的概率为( )A .13B .12 C .23 D .345.下列运算正确的是( )A .()2224x x +=+B .224a a a +=C .2235x x x +=D .()23624x x -= 6.化简24242+--a a a 的结果是( ) A .12a + B .22a + C .22a - D .24a -7.如图,直线332y x =-+分别与x 轴,y 轴交于点A ,B ,将OAB V 绕着点A 顺时针旋转90o 得到CAD V,则点B 的对应点D 的坐标是( )A .()2,5B .()3,5C .()5,2D .) 8.港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”.某校九年学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60︒,然后向后走160米(160BC =米),到达C 处,此时看塔顶A ,仰角为30︒,则该主塔的高度是( )A .80米B .C .160米D . 9.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m 10.如图,在Rt ABC △中,90ACB ∠=︒,以其三边为边向外作正方形,连接AD ,AH ,AG ,DH ,若10AH AG ==,则ADH S △的面积为( )A .40B .45C .D .二、填空题11.把多项式2312x -分解因式的结果是.12.一个袋子中装有4个黑球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到白球的概率为35,则白球的个数n 为. 13.2023年元旦期间,小华和家人到汾河公园景区游玩,湖边有大小两种游船,小华发现:2艘大船与3艘小船一次共可以满载游客60人,1艘大船与1艘小船一次共可以满载游客26人.则1艘大船可以满载游客的人数为.14.如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为.15.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是.16.如图1是矩形ABCD ,它由三个直角三角形和一个梯形组成,将其重新组成不重叠、无缝隙的正方形IJKL (如图2).连结BD ,交AF 于点H .此时点B ,G ,D 在同一直线上,若1AB =,则正方形边长IJ 为,连结OI 交MJ 于点P ,则OP GH的值为.三、解答题17.(1)计算:()101π2023+12cos30+2-⎛⎫--︒ ⎪⎝⎭. (2)解不等式组:3(2)42113x x x x ->-⎧⎪+⎨≥-⎪⎩,把解集表示在数轴上,并写出它的所有的整数解.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,请按要求画图.(1)在图1中画出一个格点ABC V ,使90ABC ∠=︒,且AB 与BC 的长度都是无理数.(1)在图2中画出一个格点四边形ABCD ,使AC BD ⊥,且四边形的面积为5. 19.为讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党知识测试,该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息: a .八年级的频数分布直方图如下(数据分为5组:50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100);b .八年级学生成绩在80≤x <90的这一组是:80 、81、 82 、83、 84、 84、84、84、84、85、85、 86、86.5、87、88、89.5 c .七、八年级学生成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)表中m 的值为;(2)在随机抽样的学生中,建党知识成绩为84分的学生,在年级排名更靠前,理由是;(3)若各年级建党知识测试成绩前90名将参加线上建党知识竞赛,预估八年级分数至少达到分的学生才能入选;(4)若成绩85分及以上为“优秀”,请估计八年级达到“优秀”的人数.20.如图,直线y kx b =+与双曲线(0)m y x x=<相交于()3,1A -,B 两点,与x 轴相交于点()4,0C -.(1)分别求一次函数与反比例函数的解析式;(2)连接OA ,OB ,求AOB V 的面积;(3)直接写出当0x <时,关于x 的不等式m kx b x+<的解集. 21.【模型搭建】(1)如图1,D 是等边三角形ABC 的边AB 上一点,现将ABC V 折叠,使点C 与点D 重合,折痕为EF ,点E F 、分别在AC 和BC 上.①若2BF AD =,则DE DF=______. ②若2BD AD =,ADE V 与BFD △的周长分别为,m n ,则m n=______,CE CF =______. 【灵活应用】(2)如图2,在Rt ABC △中,90C ∠=︒,60A ∠=︒,点,D E 分别在边,AB AC上将ADE V 沿DE 向下翻折至FDE V ,连结,BF BC 平分ABF ∠.若20BF =,1CE =,求AC 的长.22.如图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1m =AB ,0.6m BC =,123ABC ∠=︒,该车的高度 1.7m AO =,如图2,打开后备箱,车后盖ABC 落在AB C ''处,AB '与水平面的夹角27B AD '∠=︒.(1)求打开后备箱后,车后盖最高点B '到地面l 的距离;(2)若小明爸爸的身高为1.83m ,他从打开的车后盖C 处经过,有没有碰头的危险请说明理由(结果精确到0.01m ,参考数据:sin270.454︒≈,cos270.891︒≈,tan270.510︒≈,1.732)23.如图1,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度为h (单位:m ).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度3m DE =,竖直高度为EF 的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2m ,高出喷水口0.5m ,灌溉车到l 的距离OD 为d (单位:m ).(1)若 1.5h =,0.5m EF =;①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC ;②求下边缘抛物线与x 轴的正半轴交点B 的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d 的取值范围;(2)若1m EF =.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h 的最小值.24.如图,点E ,F 分别为矩形ABCD 边AD ,CD 上的点,以BE 为直径作O e 交BF 于点G ,且EF 与O e 相切,连结EG .(1)若AE EG =,求证:ABE GBE △≌△.(2)若2AB =,1tan 2EBF ∠=. ①求DE 的长.②连结AG ,若ABG V 是以AG 为腰的等腰三角形,求所有满足条件的BC 的长.(3)连结CG ,若CG 的延长线经过点A ,且ED EG =,求CG EF的值.。
2023年浙江省温州市中考数学模拟试卷及答案解析
2023年浙江省温州市中考数学模拟试卷一、单选题选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣2)+3的结果是()A.﹣5B.﹣1C.1D.52.(4分)如图是由七个完全相同的小正方体组成的立体图形,则它的主视图是()A.B.C.D.3.(4分)如图是某班学生选择校服尺码的人数统计图,若选择M码的有15人,那么选择L码的有()A.50人B.12人C.10人D.8人4.(4分)下列计算正确的是()A.2a+3b=5ab B.2ab2÷b=2b C.2a2•3a2=6a2D.(3ab)2=9a2b2 5.(4分)随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A.B.C.D.16.(4分)一元二次方程x2﹣2x+m=0有两个实数根,则实数m的取值范围是()A.m<1B.m=1C.m≤1D.m≥17.(4分)将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是()A.B.C.D.8.(4分)如图,线段AB是⊙O的直径,C,D为⊙O上两点,如果AB=6,AC=3,那么∠ADC的度数是()A.15°B.30°C.45°D.60°9.(4分)已知二次函数y=ax2﹣2ax+a+2(a≠0),若﹣1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.B.±1C.﹣1或D.1或10.(4分)由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示,点E为小正方形的顶点,延长CE交AD于点F,BF分别交AM,DN于点G,H,过点D 作DN的垂线交BF延长线于点K,连结EK,若△BCF为等腰三角形,,则的值为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2﹣16=.12.(5分)小明在跳绳考核中,前4次跳绳成绩(次数/分钟)记录为:140,138,140,137,若要使5次跳绳成绩的平均数与众数相同,则小明第5次跳绳成绩是.13.(5分)计算:=.14.(5分)传统服饰日益受到关注,如图1为明清时期女子主要裙式之一的马面裙,如图2马面裙可以近似地看作扇环,其中AD长度为米,BC长度为米,圆心角∠AOD =60°,则裙长AB为.15.(5分)如图,菱形ABCD的对角线相交于点O,点E是线段BO上的动点,连接AE,以AE为边,在AE的右侧作等边△AEF,连接BF,若AB=2,∠ABC=60°,则AF+BF 的最小值是.16.(5分)如图,ED为一条宽为4米的河,河的西岸建有一道防洪堤、防洪堤与东岸的高度差为3米(即CE=3米),因为施工需要,现准备将东岸的泥沙将通过滑轨送到西岸的防洪堤上,防洪堤上已经建好一座固定滑轨一端的钢架,现准备在东岸找一个点P作为另一端的固定点,已知吊篮的截面为直径为1米的半圆(直径MN=1米),绳子QM =QN=1.3米,钢架高度2.2米(AB=2.2米),距离防洪堤边缘为0.5米(BC=0.5米).(1)西岸边缘点C与东岸边缘点D之间的距离为米;(2)滑轨在运送货物时保持笔直,要想做到运输过程中吊篮一定不会碰到点C,则DP 的长度至少保持米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)计算:﹣12022+24÷(﹣2)3﹣32×(﹣)2;(2)解不等式组:.18.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2.19.(8分)第七次全国人口普查显示,我国60岁及以上人口约为26402万人,占全国人口的18.7%,老年人已成为我们社会中不可忽视的一个重要群体.某社区想了解本社区老年人的健康意识,随机调查了该社区10%的老年人某一周锻炼身体的次数,并将调查结果绘制成如下条形统计图和扇形统计图(均不完整).(1)请将上述条形统计图和扇形统计图补充完整.(2)请根据调查结果估计本社区该周锻炼身体的次数在3至6次的老年人的人数.(3)学生小华利用课余时间从这个社区该周锻炼身体次数为4次的老年人中随机调查了40人,对他们每次锻炼身体的平均时间进行了统计,统计结果如表所示:时间/h0.51 1.52人数/人181264请你计算这40位老年人每次锻炼身体的平均时间.20.(8分)如图,在▱ABCD中,E为CD的中点,连接BE并延长,交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)若BC=3,求AF的长.21.(10分)如图,点A,B是反比例函数图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接BC,已知点C(2,0),BD=3,S△BCD=3.(1)求点B坐标及反比例函数解析式;(2)若AB所在直线的解析式为y2=ax+b(a≠0),根据图象,请直接写出不等式的解集.22.(10分)如图,在▱ABCD中,连接BD,点E为线段AD的中点,连接BE并延长与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)在不添加任何辅助线的情况下,请直接写出图中的四个等腰三角形.(△ABE除外)23.(12分)一座拱桥的界面轮廓为抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2),其表达式是y=ax2+c的形式,请根据所给的数据求出a、c的值;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽3m的隔离带),其中的一条行车道要能并排行驶三辆宽2m的汽车(汽车间的间隔忽略不计),则在最外侧车道上的汽车最高为m.高为2.5m的汽车在最外侧车道(填“能”或“不能”)顺利通过拱桥下面.24.(14分)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O 与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=,求⊙O的半径;(3)若F是AB的中点,求证:CE+BD=AF.2023年浙江省温州市中考数学模拟试卷参考答案与试题解析一、单选题选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.【分析】根据有理数的加法法则:绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.【解答】解:(﹣2)+3=3﹣2=1故选:C.【点评】此题主要考查了有理数的加法,关键是掌握异号两数相加的计算法则,注意结果符号的判断.2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,得到的主视图为,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【分析】根据选择M码的有15人的人数及所占比例,即可求得被调查的学生总人数,再用调查的学生总人数乘24%即可.【解答】解:调查的学生总人数为:15÷30%=50(人),所以选择L码的有:50×24%=12(人).故选:B.【点评】此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.4.【分析】根据合并同类项法则、单项式除单项式除法法则、单项式乘单项式乘法法则、积的乘方解决此题.【解答】解:A.根据合并同类项法则,2a+3b≠5ab,那么A错误,故A不符合题意.B.根据单项式除单项式的除法法则,2ab2÷b=2ab,那么B错误,故B不符合题意.C.根据单项式乘单项式的乘法法则,2a2•3a2=6a4,那么C错误,故C不符合题意.D.根据积的乘方,(3ab)2=9a2b2,那么D正确,故D符合题意.故选:D.【点评】本题主要考查合并同类项、单项式除单项式、单项式乘单项式、积的乘方,熟练掌握合并同类项法则、单项式除单项式除法法则、单项式乘单项式的除法法则、积的乘方解决此题.5.【分析】首先利用列举法,列得所有等可能的结果,然后根据概率公式即可求得答案.【解答】解:随机掷一枚均匀的硬币两次,可能的结果有:正正,正反,反正,反反,∴两次正面都朝上的概率是.故选:A.【点评】此题考查了列举法求概率的知识.解题的关键是注意不重不漏的列举出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.6.【分析】根据方程的系数结合根的判别式Δ≥0,即可得出关于m的一元一次方程,求出实数m的值即可.【解答】解:∵方程x2﹣2x+m=0有两个实数根,∴Δ=(﹣2)2﹣4m≥0,解得:m≤1.故选:C.【点评】本题考查了根的判别式,牢记“当Δ≥0时,方程有实数根”是解题的关键.7.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t (min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.【分析】连接BC,构造直角三角形,利用已知边的长度结合锐角三角函数的定义求得∠ABC的度数,最后利用圆周角定理确定∠ADC的度数即可.【解答】解:如图,连接BC,∵AB是直径,∴∠ABC=90°,∵AB=6,AC=3,∴sin∠ABC==,∴∠ABC=30°,∴∠ADC=∠ABC=30°,故选:B.【点评】考查了圆周角定理的知识,解题的关键是能够作出半径构造直角三角形,难度不大.9.【分析】根据二次函数y=ax2﹣2ax+a+2=a(x﹣1)2+2,可以得到该函数的对称轴,再根据当﹣1≤x≤2时,函数的最大值与最小值的差为4和二次函数的性质,可以得到|a(﹣1﹣1)2+2﹣2|=4,然后求解即可.【解答】解:二次函数y=ax2﹣2ax+a+2=a(x﹣1)2+2,∴该函数的对称轴为直线x=1,∵当﹣1≤x≤2时,函数的最大值与最小值的差为4,∴当|a(﹣1﹣1)2+2﹣2|=4,解得a1=1,a2=﹣1,故选:B.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.10.【分析】设CF交DN于点Q,作KL⊥CF交CF的延长线于点L,由△BCF为等腰三角形,得BF=CF,再证明Rt△ABF≌Rt△DCF,而Rt△ADN≌Rt△BAM≌Rt△CBE≌Rt △DCQ,则∠ABF=∠CDF=∠BAM=∠CBE=∠ADN,可推导出∠GFA=∠GAF,则BG=AG=FG=,所以BF=CF=5,即可证明AF:AB:BF=1:2:,进而求得BC=AD=2,则CE=BC=2,BE=2CE=4,所以DQ=BM=CE=2,EF=3,再证明四边形DQLK是矩形,则KL=DQ=2,由=tan∠KFL=tan∠BFE==,得FL=KL=,则EL=EF+FL=,由勾股定理得EK==,再求得DK=QL=QF+FL=,由=tan∠DHK=tan∠EBF==,得DH=DK=,即可求得=,于是得到问题的答案.【解答】解:设CF交DN于点Q,作KL⊥CF交CF的延长线于点L,则∠L=90°,∵四边形ABCD是正方形,∴AB=DC=AD=BC,∠BAF=∠CDF=90°,∴BF>AB,CF>CD,∴BF≠BC,CF≠BC,∵△BCF为等腰三角形,∴BF=CF,∴Rt△ABF≌Rt△DCF(HL),∵Rt△ADN≌Rt△BAM≌Rt△CBE≌Rt△DCQ,∴∠ABF=∠CDF=∠BAM=∠CBE=∠ADN,∵∠GFA+∠ABF=90°,∠GAF+∠BAM=90°,∴∠GFA=∠GAF,∴BG=AG=FG=,∴BF=CF=2×=5,设AB=DC=AD=BC=2m,∴AF=DF=AD=m,∴BF===m,∴AF:AB:BF=1:2:,∵m=5,∴AF=DF=m=,∴BC=AD=2,∵∠BEC=90°,∴=sin∠CBE=sin∠ABF=,=tan∠CBE=tan∠ABF=,∴CE=BC=×2=2,BE=2CE=4,∴DQ=BM=CE=2,EF=CF﹣CE=5﹣2=3,∵四边形MNQE是正方形,DK⊥DN,∴∠L=∠DQL=∠KDQ=90°,∴四边形DQLK是矩形,∴KL=DQ=2,∵∠KFL=∠BFE,∴=tan∠KFL=tan∠BFE==,∴FL=KL=×2=,∴EL=EF+FL=3+=,∴EK===,∵CQ=BE=4,∴QF=CF﹣CQ=5﹣4=1,∴DK=QL=QF+FL=1+=,∵QN∥EM,∴∠DHK=∠EBF,∴=tan∠DHK=tan∠EBF==,∵DH=DK=×=,∴==,故选:D.【点评】此题重点考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、勾股定理、矩形的判定与性质、锐角三角函数与解直角三角形、二次根式的化简等知识与方法,此题综合性强,难度较大,正确地作出所需要的辅助线是解题的关键.二、填空题(本题有6小题,每小题5分,共30分)11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(m+4)(m﹣4),故答案为:(m+4)(m﹣4)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.【分析】根据一组数据中出现次数最多的数据叫做众数可知小明5次跳绳成绩的众数为140,设小明第5次跳绳成绩是x次数/分钟,根据5次跳绳成绩的平均数与众数相同列出方程,求解即可.【解答】解:设小明第5次跳绳成绩是x次数/分钟,根据题意得,(140+138+140+137+x)=140,解得x=145.故答案为:145.【点评】本题考查了众数与平均数,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和除以数据的个数.掌握定义是解题的关键.13.【分析】根据分式的加减运算法则进行化简即可求出答案.【解答】解:原式===1,故答案为:1.【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的加减运算法则,本题属于基础题型.14.【分析】由题意知,==,==计算求解OA,OB 的值,然后根据AB=OB﹣OA计算求解即可.【解答】解:由题意知,==,==,解得OA=1,,∴=0.8(米),故答案为:0.8米.【点评】本题考查了扇形的弧长公式.解题的关键在于正确的计算.15.【分析】连接CF并延长交AD于H,连接DF,如图,先根据菱形的性质得到AB=BC=AD=CD=2,AC⊥BD,OB=OD,OA=OC,∠ABD=∠CBD=∠ABC=30°,则可判断△ABC和△ACD为等边三角形,再由△AEF为等边三角形得到AE=AF,∠EAF =60°,接着证明△ACF≌△ABE得到∠ACF=∠ABE=30°,所以CF⊥AD,从而可判断点F在CH运动,利用等边三角形的对称性得到AF+BF=DF+BF,然后根据三角形边的关系得到DF+BF≥BD(当且仅当B、F、D共线时取等号),所以AF+BF的最小值为BD的长,从而求出OB得到BD的长即可.【解答】解:连接CF并延长交AD于H,连接DF,如图,∵四边形ABCD为菱形,∴AB=BC=AD=CD=2,AC⊥BD,OB=OD,OA=OC,∠ABD=∠CBD=∠ABC =30°,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=CB=CD=AD,∠BAC=60°∴△ACD为等边三角形,∵△AEF为等边三角形,∴AE=AF,∠EAF=60°,∵∠BAE+∠EAC=60°,∠CAF+∠EAC=60°,∴∠BAE=∠CAF,在△ACF和△ABE中,,∴△ACF≌△ABE(SAS),∴∠ACF=∠ABE=30°,∴CF⊥AD,即点F在CH上,∵△ACD关于直线CH对称,∴AF=DF,∴AF+BF=DF+BF,∵DF+BF≥BD(当且仅当B、F、D共线时取等号),∴DF+BF的最小值为BD的长,即AF+BF的最小值为BD的长,在Rt△AOB中,OB===,∴BD=2OB=2,∴AF+BF的最小值为2.故答案为:2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了全等三角形的判定与性质、等边三角形的判定与性质好、菱形的性质和最短路径问题.16.【分析】(1)连接CD、DE,利用勾股定理求解即可;(2)延长EC交AP于点G,过点Q作QK⊥MN于点K,延长AB与PE相交于点O,根据等腰三角形的性质和勾股定理求得QK=1.2,从而求得吊篮的总长度为1.2+0.5=1.7,根据题意可得点C到滑轨的距离不小于1.7,再利用△GPE∽△APD可得,设PD=x,根据比例关系即可求出PD.【解答】解:(1)如图1所示,连接CD,DE,由题意可知∠CED=90°,CE=3,DE=4,则由勾股定理可得:CD===5,故答案为:5;(2)如图2所示,延长EC交AP与点G,过点Q作QK′⊥MN于点K,延长AB与PE 相交于点O,∵QM=QN=13,MN=1,∴△QMN是等腰三角形,∴MK=MN=,∴QK==1.2,∵滑轨在运送货物时保持笔直,要想做到运输过程中吊篮一定不会碰到点C,则CG至少为1.2+0.5=1.7米,∵∠AOP=∠GEP=90°,∠GPE=∠APO,∴△GPE∽△APO,∴,设PD=x,则PE=x+4,GE=GC+CE=1.7+3=4.7,AO=3+2.2=5.2,PO=x+4+0.5=4.5+x,∴,解得x=0.7,故答案为:0.7.【点评】本题考查勾股定理的应用、相似三角形的性质和判定、等腰三角形的性质,构造相似三角形和求出吊盒的总长度是解题的关键.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)先计算乘方,再计算乘除,最后计算减法即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)原式=﹣1+24÷(﹣8)﹣9×=﹣1﹣3﹣1=﹣5;(2)解不等式①,得:x>1,解不等式②,得:x<3,则不等式组的解集为1<x<3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】(1)根据平移的性质作图即可.(2)根据中心对称的性质作图即可.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.【点评】本题考查作图﹣平移变换、中心对称,熟练掌握平移和中心对称的性质是解答本题的关键.19.【分析】(1)用0至2次的人数除以所占百分比28%可得样本容量,再用样本容量乘24%可得7次及其以上的人数,用3至6次的人数除以样本容量可得3至6次所占百分比,进而补全条形统计图和扇形统计图;(2)用本社区人数乘样本中该周锻炼身体的次数在3至6次的老年人的人数所占百分比可得答案;(3)根据加权平均数的计算方法解答即可.【解答】解:(1)由题意得,样本容量为:420÷28%=1500,7次及其以上的人数为:1500×24%=360(人),3至6次所占百分比为:720÷1500=48%,补全条形统计图和扇形统计图如下:(2)1500÷10%×48%=7200(人),答:估计本社区该周锻炼身体的次数在3至6次的老年人的人数约7200人;(3)(0.5×18+1×12+1.5×6+2×4)=0.95(h).答:这40位老年人每次锻炼身体的平均时间为0.95h.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】(1)根据平行四边形的性质得出AD∥BC,根据平行线的性质求出∠F=∠CBE,再根据全等三角形的判定定理证明即可;(2)根据全等三角形的性质得出DF=BC=3,根据平行四边形的性质得出AD=BC=3,再求出AF即可.【解答】(1)证明:∵E为CD的中点,∴DE=CE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F=∠CBE,在△BCE和△FDE中,,∴△BCE≌△FDE(AAS);(2)解:∵△BCE≌△FDE,BC=3,∴DF=BC=3,∵四边形ABCD是平行四边形,∴AD=BC=3,∴AF=AD+DF=3+3=6.【点评】本题考查了平行四边形的性质,全等三角形的性质和判定,能求出△BCE≌△FDE是解此题的关键,平行四边形的对边平行且相等.21.【分析】(1)根据点C(2,0),BD=3,可表示出点A,B的坐标,根据S△BCD=3可算出CD的长,由此即可求解;(2)根据(1)可求出点A,B的坐标,根据图象即可求解.【解答】解:(1)点A,B是反比例函数图象上,AC⊥x轴于点C,BD⊥x轴于点D,点C(2,0),∴点,∵BD=3,∴,即点,∵,∴CD=2,即,解得,k=12,∴反比例函数解析式为,∴A(2,6),B(4,3),∴点B的坐标为(4,3),反比例函数解析式为;(2)已知点A(2,6),B(4,3),∴由图象可知,当0<x≤2时,,即;当x≥4时,,即;综上所述,当0<x≤2时或当x≥4时,.【点评】本题主要考查反比例函数与一次函数的综合,理解图示的意义,掌握待定系数法求解析式,一次函数以反比例函数交点的含义及计算是解题的关键.22.【分析】(1)先证明△EAB≌△EDF,得EB=EF,则四边形ABDF是平行四边形,而∠BDF=90°,即可根据矩形的定义证明四边形ABDF是矩形;(2)先证明DF=DC,BD⊥CF,则BF=BC,所以△BCF是等腰三角形;由矩形的性质得AE=DE=BE=FE,所以△DBE、△DFE、△AFE都是等腰三角形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠EDF,∵点E为线段AD的中点,∴EA=ED,在△EAB和△EDF中,,∴△EAB≌△EDF(ASA),∴EB=EF,∴四边形ABDF是平行四边形,∵∠BDF=90°,∴四边形ABDF是矩形.(2)解:△BCF、△DBE、△DFE、△AFE,理由:由(1)得△EAB≌△EDF,∴AB=DF,∵四边形ABCD是平行四边形,∴AB=DC,∴DF=DC,∵BD⊥CF,∴BF=BC;∵四边形ABDF是矩形,且对角线AD、BF相交于点E,∴AE=DE=AD,BE=FE=BF,∵AD=BF,∴AE=DE=BE=FE,∴△BCF、△DBE、△DFE、△AFE都是等腰三角形.【点评】此题重点考查平行四边形的性质、全等三角形的判定与性质、矩形的判定与性质、线段的垂直平分线的性质、等腰三角形的判定等知识,证明△EAB≌△EDF是解题的关键.23.【分析】(1)根据题意得出A(﹣10,0)、B(10,0)、C(0,6),代入y=ax2+c,即可求得.(2)根据相邻两支柱间的距离均为5m,设N(5,n),将N(5,n)代入求解.(3)找到隔离带与并排行驶的车辆位置,转化为图上的点,求出点的坐标,带入解析式计算即可.【解答】解:(1)由题意可得,A(﹣10,0)、B(10,0)、C(0,6),将B(10,0)、C(0,6)代入y=ax2+c,得,解得,c=6.(2)由(1)知,,根据相邻两支柱间的距离均为5m,设N(5,n),将N(5,n)代入,解得n=4.5,由图可知,拱桥最高处到地面得距离为10m,故支柱MN的长度为10m﹣4.5m=5.5m.(3)如图所示,设最外侧车道上得汽车位于点G处,汽车高度为GH,DE为3m的隔离带,EG为并排行驶三辆宽2m的汽车得宽度,则OE=1.5,EG=3×2=6∴OG=OE+EG=1.5+6=7.5∴G(7.5,0)设H(7.5,h),将H(7.5,h)代入,解得h=2.625,故在最外侧车道上的汽车最高为2.625m;∵2.625>2.5故高为2.5m的汽车在最外侧车道能顺利通过拱桥下面.【点评】此题考查了二次函数的实际应用,解题的关键是根据题意求出点的坐标.24.【分析】(1)由切线的性质可得∠ADO=90°,由“SSS”可证△ACO≌△ADO,可得∠ADO=∠ACO=90°,可得结论;(2)由锐角三角函数可设AC=4x,BC=3x,由勾股定理可求BC=6,再由勾股定理可求解;(3)由“SAS”可知△COE≌△DOE,可得∠OCE=∠OED,由三角形内角和定理可得∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∠DFE=180°﹣∠BCF﹣∠CBF =180°﹣2∠OCE,可得∠DEF=∠DFE,可证DE=DF=CE,可得结论.【解答】(1)证明:∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,∴OD⊥AB,又∵OC是半径,∴AC是⊙O的切线;(2)解:∵tan B==,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6﹣OC)2=OC2+4,∴OC=,故⊙O的半径为;(3)证明:由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠ODE,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.【点评】本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键。
2022年浙江温州第四中学中考数学模拟试题含解析
2021-2022中考数学模拟试卷含解析注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,点E 是△ABC 的内心,过点E 作EF ∥AB 交AC 于点F ,则EF 的长为( )A .52B .154C .83D .1032.在平面直角坐标系中,二次函数y =a (x –h )2+k (a <0)的图象可能是A .B .C .D .3.一元二次方程2240x x ++=的根的情况是( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根4.如图,四边形ABCD 中,AC ⊥BC ,AD ∥BC ,BC =3,AC =4,AD =1.M 是BD 的中点,则CM 的长为( )A.32B.2 C.52D.35.下列计算正确的是()A.2x2+3x2=5x4B.2x2﹣3x2=﹣1C.2x2÷3x2=23x2D.2x2•3x2=6x46.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°7.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是()A.-5 B.-2 C.3 D.58.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.9.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+3B.23C.3+3D.3310.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.12.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.15.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____..若小华先买了3张3D立体贺卡,16.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡则剩下的钱恰好还能买______张普通贺卡.三、解答题(共8题,共72分)17.(8分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.18.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.19.(8分)解不等式组:12231 xx x-⎧⎨+≥-⎩<.20.(8分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.21.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.22.(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=32,求四边形ABCD的面积.23.(12分)如图,AB为⊙O的直径,D为⊙O上一点,以AD为斜边作△ADC,使∠C=90°,∠CAD=∠DAB求证:DC是⊙O的切线;若AB=9,AD=6,求DC的长.24.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=56,∴EF=3k=52.故选A.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.2、B【解析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【详解】二次函数y=a(x﹣h)2+k(a<0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.3、D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.4、C【解析】延长BC到E使BE=AD,利用中点的性质得到CM=12DE=12AB,再利用勾股定理进行计算即可解答.【详解】解:延长BC到E使BE=AD,∵BC//AD,∴四边形ACED是平行四边形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中点,∵M是BD的中点,∴CM=12DE=12AB,∵AC⊥BC,∴AB=22AC BC=224+3=5,∴CM=52,故选:C.【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.5、D【解析】先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.【详解】A、2x2+3x2=5x2,不符合题意;B、2x2﹣3x2=﹣x2,不符合题意;C、2x2÷3x2=23,不符合题意;D、2x23x2=6x4,符合题意,故选:D.【点睛】本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.6、A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.7、B【解析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.8、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.9、A【解析】设AC =a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC =a ,则BC =30AC tan ︒=3a ,AB =30AC sin ︒=2a , ∴BD =BA =2a ,∴CD =(2+3)a ,∴tan ∠DAC =2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.10、B【解析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯=233π-. 故选B .二、填空题(本大题共6个小题,每小题3分,共18分) 11、1 【解析】 解:连接OC ,∵AB 为⊙O 的直径,AB ⊥CD , ∴CE =DE =12CD =12×6=3, 设⊙O 的半径为xcm ,则OC =xcm ,OE =OB ﹣BE =x ﹣1, 在Rt △OCE 中,OC 2=OE 2+CE 2, ∴x 2=32+(x ﹣1)2, 解得:x =1, ∴⊙O 的半径为1, 故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.12、D【解析】D.试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.考点:1.动点问题的函数图象分析;2.排他法的应用.13、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1.答:这两年平均每年绿地面积的增长率为10%.故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14、4.8或64 11【解析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CP CB =CQCA , 即16216t -=12t ,解得t =4.8;②CP 和CA 是对应边时,△CPQ ∽△CAB ,所以CP CA =CQCB , 即16212t -=16t ,解得t =6411. 综上所述,当t =4.8或6411时,△CPQ 与△CBA 相似. 【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论. 15、3.05×105 【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】故答案为:.【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法. 16、1 【解析】根据已知他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡得:1张3D 立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡,根据3张3D 立体贺卡y +张普通贺卡5=张3D 立体贺卡,可得结论. 【详解】解:设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡. 则1张普通贺卡为:5x 1x 204=元,由题意得:15x3x x y4-=⋅,y8=,答:剩下的钱恰好还能买1张普通贺卡.故答案为:1.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价=单价⨯数量列式计算.三、解答题(共8题,共72分)17、1 6【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.详解:列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18、1m【解析】连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.【详解】连接AN、BQ,∵点A 在点N 的正北方向,点B 在点Q 的正北方向, ∴AN ⊥l ,BQ ⊥l ,在Rt △AMN 中:tan ∠AMN=ANMN, ∴3在Rt △BMQ 中:tan ∠BMQ=BQMQ,∴3过B 作BE ⊥AN 于点E , 则BE=NQ=30, ∴3 在Rt △ABE 中, AB 2=AE 2+BE 2, AB 2=32+302, ∴AB=1.答:湖中两个小亭A 、B 之间的距离为1米. 【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 19、﹣4≤x <1 【解析】 先求出各不等式的 【详解】12231x x x -⎧⎨+≥-⎩< 解不等式x ﹣1<2,得:x <1,解不等式2x+1≥x﹣1,得:x≥﹣4,则不等式组的解集为﹣4≤x<1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、(1)60°;(2)见解析;(3)对应的M点坐标分别为:M1(2,﹣23)、M2(﹣2,﹣23)、M3(﹣2,23)、M4(2,23).【解析】(1)由于∠OAC=60°,易证得△OAC是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC,因此OA=AC=AP,即OP边上的中线等于OP的一半,由此可证得△OCP是直角三角形,且∠OCP=90°,由此可判断出PC与⊙O的位置关系.(3)此题应考虑多种情况,若△MAO、△OAC的面积相等,那么它们的高必相等,因此有四个符合条件的M点,即:C点以及C点关于x轴、y轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3);劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣;劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,);优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,;优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣、M2(﹣2,﹣、M3(﹣2,、M4(2,.【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.21、(1);(2)35 ADBD=.【解析】【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34 DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.22、(1)证明见解析;(2)S平行四边形ABCD3.【解析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;(2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵sin∠ACD=32,∴∠ACD=60°,∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=12CD=1,∴33AC=AE+CE=3,∴S平行四边形ABCD =2S△ACD3 23、(1)见解析;(2)25【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD ABCD BD=,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了. 详解:(1)如下图,连接OD . ∵OA=OD , ∴∠DAB=∠ODA , ∵∠CAD=∠DAB , ∴∠ODA=∠CAD ∴AC ∥OD∴∠C+∠ODC=180° ∵∠C=90° ∴∠ODC=90° ∴OD ⊥CD , ∴CD 是⊙O 的切线. (2)如下图,连接BD , ∵AB 是⊙O 的直径, ∴∠ADB=90°, ∵AB=9,AD=6,∴ ∵∠CAD=∠BAD ,∠C=∠ADB=90°, ∴△ACD ∽△ADB , ∴AD ABCD BD=, ∴6CD =∴.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.24、(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.。
2019年浙教版数学中考模拟(温州市)试卷 含精品解析
【备考2019】浙教版数学中考模拟(温州市)试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.在中,有理数的个数有()A.2个 B.3个 C.4个 D.5个2.如图,该几何体的哪个视图是轴对称图形()A.左视图 B.主视图 C.俯视图 D.左视图和主视图3.下列运算正确的是()A. B. C. D.4.我市五月份连续五天的最高气温分别为,,,,(单位:),这组数据的中位数和众数分别是()A., B., C., D.,5.掷一枚质地均匀的正方体骰子,骰子的六个面上分别标有、、、、、的点数,掷得面朝上的点数为奇数的概率为()A. B. C. D.6.若分式的值为零,则的值为()A. B.-1 C.1 D.07.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向下平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于y轴对称的△A2B2C2,则点B对应点B2的坐标是()A.(﹣5,﹣2) B.(﹣2,﹣5) C.(2,﹣5) D.(5,﹣2)8.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为()A. B. C. D.9.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A、B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A.3 B.4 C.5 D.1010.如图,一个含有角的直角三角板,在水平桌面上绕点按顺时针方向旋转到的位置,若的长为,那么的长为()A. B. C. D.二、填空题11.若x(x+1)+y(xy+y)=(x+1)·M,则M=_____.12.如图,四边形ABCD内接于半径为2的⊙O,E为CD延长线上一点.若∠ADE=120°,则劣弧AC的长为_____.13.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.14.不等式组的解集是 ____________.15.如图,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是_____.16.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为__(结果保留π).三、解答题17.(1)计算:;(2)解方程:18.已知:如图,,,,E,F是垂足,.求证:;.19.在义乌中小学生“我的中国梦”读书活动中,某校对部分学生作了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类。
2024届浙江地区中考数学四模试卷含解析
2024学年浙江地区中考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.单项式2a3b的次数是()A.2 B.3 C.4 D.52.在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.13.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.104.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A.80°B.50°C.30°D.20°5.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.6.下列图形中,既是中心对称图形又是轴对称图形的是( )A.B.C.D.7.2-的相反数是A.2-B.2 C.12D.12-8.|–12|的倒数是( ) A .–2B .–12C .12D .29.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cm D .5cm ,5cm ,11cm 10.在平面直角坐标系中,点(2,3)所在的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题(共7小题,每小题3分,满分21分)11.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________. 12.对于实数a ,b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ;当a <b 时,max {a ,b ]=b ;如:max {4,﹣2}=4,max {3,3}=3,若关于x 的函数为y =max {x +3,﹣x +1},则该函数的最小值是_____.13.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,67AB BC =,EF=4cm ,上下两个阴影三角形的面积之和为54cm 2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___cm14.若反比例函数ky x=的图象与一次函数y=ax+b 的图象交于点A (﹣2,m )、B (5,n ),则3a+b 的值等于_____.15.已知一组数据3-,x ,﹣2,3,1,6的中位数为1,则其方差为____.16.如图,已知点A(4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O 、A),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于______.17.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m=0(m >0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:112220182018111111...αβαβαβ++++++的值为_____.三、解答题(共7小题,满分69分)18.(10分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:该超市“元旦”期间共销售 个绿色鸡蛋,A 品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B 种品牌的绿色鸡蛋的个数?19.(5分)解不等式组:2(2)3{3122x x x +>-≥-,并将它的解集在数轴上表示出来.20.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x ,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表: 摸球总次数 1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x 的值可以为7吗?为什么? 21.(10分)先化简,再求值:()()()2(2)5x y x y x y x x y ++-+--,其中21x =+,21y =-.22.(10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)23.(12分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.24.(14分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.2、A【解题分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【题目详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【题目点拨】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.3、A【解题分析】∵9<11<16,∴91116<<,即3114<<,∵a,b为两个连续的整数,且11<<,a b∴a=3,b=4,∴a+b=7,故选A.4、D【解题分析】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.5、A【解题分析】【分析】根据中心对称图形的定义逐项进行判断即可得.【题目详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【题目点拨】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.6、C【解题分析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.7、B【解题分析】根据相反数的性质可得结果.【题目详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【题目点拨】本题考查求相反数,熟记相反数的性质是解题的关键.8、D【解题分析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.【题目详解】|−12|=12,12的倒数是2;∴|−12|的倒数是2,故选D.【题目点拨】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.9、C【解题分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【题目详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【题目点拨】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.10、A【解题分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【题目详解】解:点(2,3)所在的象限是第一象限.故答案为:A【题目点拨】考核知识点:点的坐标与象限的关系.二、填空题(共7小题,每小题3分,满分21分)11、.【解题分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【题目详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:.故答案为:.【题目点拨】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.12、2试题分析:当x+3≥﹣x+1, 即:x≥﹣1时,y=x+3, ∴当x=﹣1时,y min =2, 当x+3<﹣x+1,即:x <﹣1时,y=﹣x+1, ∵x <﹣1, ∴﹣x >1, ∴﹣x+1>2, ∴y >2, ∴y min =2, 13、503【解题分析】试题分析:根据67AB BC =,EF=4可得:AB=和BC 的长度,根据阴影部分的面积为542cm 可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为256,则菱形的周长为:256×4=503. 考点:菱形的性质. 14、0 【解题分析】分析:本题直接把点的坐标代入解析式求得m n a b ,,,之间的关系式,通过等量代换可得到3a b +的值. 详解:分别把A (−2,m )、B (5,n ), 代入反比例函数ky x=的图象与一次函数y =ax +b 得 −2m =5n ,−2a +b =m ,5a +b =n , 综合可知5(5a +b )=−2(−2a +b ), 25a +5b =4a −2b , 21a +7b =0, 即3a +b =0. 故答案为:0.点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础. 15、3试题分析:∵数据﹣3,x ,﹣3,3,3,6的中位数为3,∴112x +=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3. 考点:3.方差;3.中位数.16【解题分析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题. 【题目详解】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=2,DE= 设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BFDE = ,OF CM AM OE DE AE=,代入求出BF 和CM ,相加即可求出答案.过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M , ∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA , ∴BF ∥DE ∥CM . ∵OD=AD=3,DE ⊥OA , ∴OE=EA=12OA=2,由勾股定理得:DE= ,设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴,BF OF CM AMDE OE DE AE==, ∵AM=PM= 12(OA-OP )= 12(4-2x )=2-x ,222x x -==,解得:BF ==∴BF+CM=5 【题目点拨】考核知识点:二次函数综合题.熟记性质,数形结合是关键. 17、40362019. 【解题分析】利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案. 【题目详解】∵x 2+2x-m 2-m=0,m=1,2,3,…,2018, ∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2; α2+β2=-2,α2β2=-2×3; …α2018+β2018=-2,α2018β2018=-2018×1.∴原式=3320182018112211223320182018αβαβαβαβαβαβαβαβ+++++++⋯+ =222212233420182019+++⋯+⨯⨯⨯⨯ =2×(111111112233420182019-+-+-+⋯+-)=2×(1-12019)=40362019, 故答案为40362019.【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.三、解答题(共7小题,满分69分) 18、(1)2400,60;(2)见解析;(3)500 【解题分析】 整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500. 解:(1)共销售绿色鸡蛋:1200÷50%=2400个, A 品牌所占的圆心角:4002400×360°=60°; 故答案为2400,60;(2)B 品牌鸡蛋的数量为:2400﹣400﹣1200=800个, 补全统计图如图:(3)分店销售的B 种品牌的绿色鸡蛋为:8002400×1500=500个. 19、-1≤x<4,在数轴上表示见解析. 【解题分析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可. 试题解析:()223{3x 122x x +>-≥-①②,由①得,x<4; 由②得,x ⩾−1.故不等式组的解集为:−1⩽x<4. 在数轴上表示为:20、(1)出现“和为8”的概率是0.33;(2)x 的值不能为7.【解题分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案. 【题目详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33, 故出现“和为8”的概率是0.33. (2)x 的值不能为7.理由:假设x =7,则P (和为9)=16≠13,所以x 的值不能为7. 【题目点拨】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键. 21、9 【解题分析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题. 【题目详解】()()()2(2)5x y x y x y x x y ++-+--222224455x xy y x y x xy =+++--+ 9xy =当21x =,21y =时,原式()92121=()921=⨯-91=⨯ 9=【题目点拨】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.22、2.7米【解题分析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE" ·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.23、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解题分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【题目详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【题目点拨】本题考查一次函数的应用.24、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解题分析】解:(1)填表如下:平均数(分) 中位数(分) 众数(分) 初中部 85 85 85 高中部8580100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高, ∴在平均数相同的情况下中位数高的初中部成绩好些. (3)∵,222222S 7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可.。
2024年浙江省中考模拟测数学试题
2024年浙江省中考模拟测数学试题一、单选题1.将正实数a 的整数部分记为[]a ,例如:[]3.143=,则3⎡=⎣( )A .3B .2C .1D .02.下列运算正确的是( )A .236()a a =B .33a a a ⋅=C .224a a a +=D .623a a a ÷= 3.“一带一路”中一带指的是丝绸之路经济带”,“一路指的是21”,一带一路沿线大多是新兴经济体和发展中国家,经济总量约210000亿美元,将“210000亿”用科学记数法表示应为( )A .42110⨯亿B .42.110⨯亿C .52.110⨯亿D .60.2110⨯亿 4.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立体的个数是A .3B .4C .5D .65.如图,为了测量山坡护坡石坝的坡度(坡面的铅垂高度与水平宽度的比称为坡度),把一根长5m 的竹竿AC 斜靠在石坝旁,量出杆长1m 处的D 点离地面的高度0.6DE m =,又量得杆底与坝脚的距离3AB m =,则石坝的坡度为( )A .34B .3C .35D .46.学校准备从甲、乙、丙、丁四个科技创新小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )A .甲B .乙C .丙D .丁7.若12x x 、是2670x x --=的根,则12x x ⋅=( )A .7-B .7C .6D .6-8.如图,EF ⊥AB 于点H ,EF ⊥CD 于点F ,HI ∥FG ,FG 与AB 交于点G ,∠GFD =40°,则∠EHI 的度数是( )A .40°B .45°C .50°D .55°9.如图,将一个边长和宽分别为8,4的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕BE 的长是( )A .3B .4C .5D .610.如图,在Rt ABC V 中,∠C=90°,点P 为AC 边上的一点,延长BP 至点D ,使得AD=AP=5,当AD ⊥AB 时,过D 作DE ⊥AC 于E ,若DE=4,则BCP V 面积为( )A .9B .12C .15D .20二、填空题11.将244x-分解因式得.12.若分式1xx-的值为0,则x=13.若12xy=⎧⎨=⎩是关于x,y的二元一次方程组128ax byax by+=⎧⎨-=⎩的解,则a+b的值为.14.已知圆锥底面圆的直径是20cm,母线长40cm,其侧面展开图圆心角的度数为.15.如图,AD是△ABC的中线,点E,F是AD的三等分点,若△ABC的面积为30cm2,则图中阴影部分的面cm2.16.如图,圆心角为90︒的扇形ACB内,以BC为直径作半圆,连接AB.若阴影部分的面积为(1)π-,则AC=.三、解答题17.在平面直角坐标系中,△ABC的三个顶点的坐标为A(3,4),B(1,2),C(5,1).(1)写出A、B、C关于y轴对称的点A1、B1、C1的坐标: A1_____、B1、C1;(2)若ABC∆各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A'、B'、C',并依次连接这三个点,判断所得△A′B′C′与原ABC∆有怎样的位置关系.18.2331154x x ---≤. 19.某校为了解学生对共青团的认识,组织七、八年级全体学生进行了“团史知识”竞赛,为了解竞赛成绩,现从该校七、八年级中各随机抽取10名学生的竞赛成绩(满分100分,90分及90分以上为优秀)进行整理、描述和分析(成绩得分用x 表示,共分成四组:.8085A x ≤<,.8590B x ≤<,.9095C x ≤<,.95100D x ≤≤,下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82 八年级抽取的10名学生的竞赛成绩在C 组中的数据是:94,90,91七、八年级抽取的学生竞赛成绩统计表:根据以上信息,解答下列问题:(1)图表中a =___________,b =___________,c =___________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握团史知识较好?请说明理由(一条理由即可);(3)该校七年级有450人,八年级有500人参加了此次“团史知识”竞赛,估计参加竞赛活动成绩优秀的学生人数是多少?20.为发展旅游经济.我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人.非节假日打a 折售票.节假日按团队人数分段定价售票,即m 人以下(含m 人)的团队接原价售票;超过m 人的团队.其中m 人仍按原价售票.超过m 人部分的游客打b 折售票.设某旅游团人数为x 人.非节假日购票款为1y (元),节假日购票款为2y (元).12,y y 与x 之间的函数图象如图所示.(1)观察图象可知:a=______;b=______;m=______;(2)直接写出12,y y 与x 之间的函数关系式:(3)某旅行社导游王娜于5月1日带A 团.5月20日(非节假日)带B 团都到该景区旅游.共付门票款1900元.A ,B 两个团队合计50人,求A ,B 两个团队各有多少人?21.已知抛物线2246y x x =-++与x 轴交于A 、B 两点.(1)求该抛物线的对称轴;(2)求线段AB 的长.22.在Rt ABC △中,1AC =,90C ∠=︒,D 为BC 边上一动点,且1AC BC n=(n 为正整数),在直线BC 上方作ADE V ,使得ADE ACB △△∽.(1)如图1,在点D 运动过程中,ACD V 与ABE V 始终保持相似关系,请说明理由;n ,M为AB中点,当点E在射线CM上时,求CD的长;(2)如图2,若2(3)如图3,设AE的中点为P,求点D从点C运动到点B的过程中,点P运动的路径长(用含n的代数式表示).23.如图,抛物线y=ax2+bx﹣4与x轴交于点A(2,0)和点B,与y轴交于点C,顶点为点D,对称轴为直线x=﹣1,点E为线段AC的中点,点F为x轴上一动点.(1)直接写出点B的坐标,并求出抛物线的函数关系式;(2)当点F的横坐标为﹣3时,线段EF上存在点H,使△CDH的周长最小,请求出点H,使△CDH的周长最小,请求出点H的坐标;(3)在y轴左侧的抛物线上是否存在点P,使以P,F,C,D为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.。
2024届浙江省温州市各校中考数学考试模拟冲刺卷含解析
2024届浙江省温州市各校中考数学考试模拟冲刺卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )A .7B .8C .9D .102.函数22a y x--=(a为常数)的图像上有三点17()2y -,,21()2y -,,33()2y ,,则函数值123,,y y y 的大小关系是( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 13.若31x -与4x互为相反数,则x 的值是( ) A .1B .2C .3D .44.将二次函数2yx 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+5.如图是由若干个小正方体块搭成的几何体的俯视图,小正方块中的数字表示在该位置的小正方体块的个数,那么这个几何体的主视图是( )A .B .C .D .6.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A.0.15 B.0.2 C.0.25 D.0.37.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,53)C.(0,2)D.(0,103)8.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×10710.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )A.7 B.﹣7 C.1 D.﹣1二、填空题(本大题共6个小题,每小题3分,共18分)11.△ABC中,∠A、∠B都是锐角,若sin A=3cos B=12,则∠C=_____.12.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,OE3=OA5,则EFGHABCDSS四边形四边形=_____.13.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.14.如图,⊙O的直径AB=8,C为AB的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.15.关于x的一元二次方程(k-1)x2+6x+k2-k=0的一个根是0,则k的值是______.16.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.三、解答题(共8题,共72分)17.(8分)计算:32|+2cos30°3)2+(tan45°)﹣118.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.19.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.20.(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OAB C中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=3,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.21.(8分)如图,在正方形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F.求证:DF2=EF•BF.22.(10分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值24.先化简,后求值:22321113x x xx x-++⋅---,其中21x=.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【题目详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C.【题目点拨】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.2、A【解题分析】试题解析:∵函数y=2-2ax-(a为常数)中,-a1-1<0,∴函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,∵32>0,∴y3<0;∵-72<-12,∴0<y1<y1,∴y3<y1<y1.故选A.3、D【解题分析】由题意得31x-+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.4、B【解题分析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【题目详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B.【题目点拨】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.5、B【解题分析】根据俯视图可确定主视图的列数和每列小正方体的个数.【题目详解】由俯视图可得,主视图一共有两列,左边一列由两个小正方体组成,右边一列由3个小正方体组成.故答案选B.【题目点拨】由几何体的俯视图可确定该几何体的主视图和左视图.6、B【解题分析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是20100=0.2,故选B.7、B【解题分析】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小.∵四边形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中点,∴D(﹣2,0).设直线DA′的解析式为y=kx+b,∴5402k bk b=+⎧⎨=-+⎩,∴5653kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线DA′的解析式为5563y x=+.当x=0时,y=53,∴E(0,53).故选B.8、D【解题分析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.9、B【解题分析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1.故选B.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、C【解题分析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故选A.考点:代数式的求值;整体思想.二、填空题(本大题共6个小题,每小题3分,共18分)11、60°.【解题分析】先根据特殊角的三角函数值求出∠A 、∠B 的度数,再根据三角形内角和定理求出∠C 即可作出判断. 【题目详解】∵△ABC 中,∠A 、∠B 都是锐角sinA=2,cosB=12,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°. 故答案为60°. 【题目点拨】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单. 12、925【解题分析】试题分析:∵四边形ABCD 与四边形EFGH 位似,位似中心点是点O , ∴EF AB =OE OA =35, 则EFGH ABCDS S 四边形四边形=2()OE OA =23()5=925.故答案为925. 点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键. 13、1° 【解题分析】根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE ,AB=AD ,根据等腰三角形的性质和三角形内角和定理计算即可. 【题目详解】 ∵△ABC ≌△ADE , ∴∠BAC=∠DAE ,AB=AD , ∴∠BAD=∠EAC=40°, ∴∠B=(180°-40°)÷2=1°, 故答案为1. 【题目点拨】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.14、2π 【解题分析】分析:以AC 为斜边作等腰直角三角形ACQ ,则∠AQC =90°,依据∠ADC =135°,可得点D 的运动轨迹为以Q 为圆心,AQ 为半径的AC ,依据△ACQ 中,AQ =4,即可得到点D 运动的路径长为904180π⨯⨯=2π.详解:如图所示,以AC 为斜边作等腰直角三角形ACQ ,则∠AQC =90°.∵⊙O 的直径为AB ,C 为AB 的中点,∴∠APC =45°.又∵CD ⊥CP ,∴∠DCP =90°,∴∠PDC =45°,∠ADC =135°,∴点D 的运动轨迹为以Q 为圆心,AQ 为半径的AC .又∵AB =8,C 为AB 的中点,∴AC =42,∴△ACQ 中,AQ =4,∴点D 运动的路径长为904180π⨯⨯=2π.故答案为2π.点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键. 15、2. 【解题分析】试题解析:由于关于x 的一元二次方程()22160k x x k k -++-=的一个根是2,把x =2代入方程,得20k k -= ,解得,k 2=2,k 2=2当k =2时,由于二次项系数k ﹣2=2,方程()22160k x x k k -++-=不是关于x 的二次方程,故k ≠2.所以k 的值是2.故答案为2. 16、(2,2). 【解题分析】连结OA ,根据勾股定理可求OA ,再根据点与圆的位置关系可得一个符合要求的点B 的坐标. 【题目详解】 如图,连结OA , OA =2234+5, ∵B 为⊙O 内一点,∴符合要求的点B 的坐标(2,2)答案不唯一.故答案为:(2,2).【题目点拨】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.三、解答题(共8题,共72分)17、1【解题分析】本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【题目详解】解:原式=23+2×33+1=1.【题目点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.18、(1)10;(2)35 ADBD=.【解题分析】【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【题目详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:2231+10;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34 DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【题目点拨】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.19、(1)证明见试题解析;(2)1.【解题分析】试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中{AC DB A D AE DF=∠=∠=,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;(2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴当BE=1时,四边形BFCE是菱形,故答案为1.【考点】平行四边形的判定;菱形的判定.20、(1)①(2,0),(1,2),(﹣1,2);②y=2x;③ y=2x,y=﹣22x+2;(2)①半径为4,M(833,433);②3﹣1<r<3+1.【解题分析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.【题目详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为(2,0),(1,2),(﹣1,2);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,∴21y x=,∴y=2x;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x y-=,∴y=﹣22x+2,故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴MN=433,ON=2MN=833,∴M(833,433);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴3当FN=1时,3﹣1,当EN=1时,3,观察图象可知当⊙M的半径r3﹣1<r3.31<r3.【题目点拨】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.21、见解析【解题分析】证明△FDE∽△FBD即可解决问题.【题目详解】解:∵四边形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共边,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四边形ABCD是正方形,∴∠ECD=12∠BCD=45°,∠ADB=12∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴EFDF=DFBF,即DF2=EF•BF.【题目点拨】本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.22、(1);(2),见解析.【解题分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【题目详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种, ∴拿出两只,恰好为一双的概率为=.【题目点拨】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关【解题分析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可;【题目详解】(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【题目点拨】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.24、21x - 【解题分析】 分析:先把分值分母因式分解后约分,再进行通分得到原式=21x -,然后把x 的值代入计算即可. 详解:原式=311x x x -+-()()•213x x ()+-﹣1 =11x x +-﹣11x x -- =21x -当x +1时,原式点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.。
2022年浙江省温州市中考数学模拟试题及答案解析
2022年浙江省温州市中考数学模拟试卷一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. −2的相反数是( )A. −2B. 2C. −12D. 122. 近年来,我国建成的5G基站超过了1420000个.数据1420000用科学记数法表示为( )A. 14.2×105B. 1.42×106C. 0.142×107D. 1.42×1073. 某积木零件如图所示,它的俯视图是( )A.B.C.D.4. 一个不透明的布袋里装有9个只有颜色不同的球,其中3个白球,2个红球,4个黄球.从布袋里任意摸出1个球,是红球的概率为( )A. 29B. 13C. 49D. 595. 某校调查了150名学生最喜爱的体育活动,制成了如图所示的扇形统计图.在被调查的学生中,选羽毛球的学生人数为( )A. 30人B. 45人C. 60人D. 75人6. 小明在实验中测得一组导线电阻R(Ω)与横截面积S(mm2)的对应值如图,根据图中数据,R关于S的函数表达式可为( )A. R=S6(S>0) B. R=6S(S>0) C. R=16S(S>0) D. R=6S(S>0)7. 如图,等边三角形ABC的边长为4,D为BC延长线上一点,过点D作DE⊥AB于点E,DE交AC于点F,若CD=2,则EFFD的值为( )A. 13B. 12C. √33D. √328. 若x<y,且(a−3)x≥(a−3)y,则a的取值范围是( )A. a>3B. a<3C. a≥3D. a≤39. 如图为北京冬奥会“雪飞天”滑雪大跳台赛道.若点D与点A的水平距离DE=a米,水平赛道BC=b米,赛道AB,CD的坡角均为θ,则点A的高AE为( )A. (a−b)tanθ米B. a−b米 C. (a−b)sinθ米 D. (a−b)cosθ米tanθ10. 如图,在正方形ABCD中,延长DC至点G,以CG为边向下画正方形CEFG.延长AB交边FG 于点H,连结CF,AF分别交AH,CE于点M,N.收录在清朝四库全书的《几何通解》利用此图得:2AB2+2BH2=AH2+MH2.若正方形ABCD与CEFG的面积之和为68,CN=3NE,则AH的长为( )A. 4√2B. 8C. 8√2D. 16二、填空题(本大题共6小题,共30.0分)11. 因式分解:x2−4y2=.12. 某项目小组对新能源汽车充电成本进行抽测,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中充电成本在300元/月及以上的车有______辆.13. 方程2x =3x−2的解是______.14. 若扇形的圆心角为150°,半径为6,则该扇形的弧长为______(结果保留π).15. 如图,⊙O与△OAB的边AB相切于点A,OB交⊙O于点C,△ABC沿AC翻折,点B的对称点为点B′,AB′与⊙O交于点D,连结CD.若∠B=20°,则∠DCB′=______度.16. 图1是一折叠桌,桌板DEIJ固定墙上,支架AD,HE绕点D,E旋转时,AD//HE,桌板边缘AH//BG//CF//DE,桌脚AN⊥AH,桌子放平得图2.图3是打开过程中侧面视图,当点N 在直线CF上时,点N到墙OE的距离为______cm.视图中以C,K为顶点的长方形表示一圆柱体花瓶,桌子打开至点M,C,F在同一直线时,桌板边缘GL恰卡在点K,为不影响桌板BG收放,则至少将花瓶沿CF方向平移______cm.三、计算题(本大题共1小题,共10.0分)17. (1)计算:2×(−1)+(−3)0−√16+|−5|.(2)化简:(x+3)2−x(x+3).四、解答题(本大题共7小题,共70.0分。
浙江地区2024届中考四模数学试题含解析
浙江地区2024届中考四模数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠ABE=20°,那么∠EFC′的度数为( )A .115°B .120°C .125°D .130°2.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC=35°,则∠CAB 的度数为( )A .35°B .45°C .55°D .65°3.已知点()P m,n ,为是反比例函数3y=-x上一点,当-3n<-1≤时,m 的取值范围是( ) A .1m<3≤B .-3m<-1≤C .1<m 3≤D .-3<m -1≤4.下列各组数中,互为相反数的是( ) A .﹣2 与2B .2与2C .3与13D .3与35.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .326.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形7.如图,BC平分∠ABE,AB∥CD,E是CD上一点,若∠C=35°,则∠BED的度数为()A.70°B.65°C.62°D.60°8.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为().A.12B.33C.313-D.314-9.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2B.3cm2C.4πcm2D.3πcm210.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定二、填空题(共7小题,每小题3分,满分21分)11.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.12.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.13.函数y=231xx+-中自变量x的取值范围是_____.14.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只.15.化简:2222444221(1)2a a aa a a a--+÷-+++-=____.16.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.17.已知关于x的不等式组521x ax-≥⎧⎨-⎩只有四个整数解,则实数a的取值范是______.三、解答题(共7小题,满分69分)18.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a=___ ;b=____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.19.(5分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.20.(8分)解不等式组43(2)52364x xxx--<-⎧⎪⎨-≥-⎪⎩并写出它的整数解.21.(10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?22.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC 不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.23.(12分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A 型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.24.(14分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.详解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵点D沿EF折叠后与点B重合,∴∠DEF=∠BEF=12∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折叠的性质可得∠EFC′=∠EFC=125°.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.2、C【解题分析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.3、A【解题分析】直接把n的值代入求出m的取值范围.【题目详解】解:∵点P(m,n),为是反比例函数y=-3x图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【题目点拨】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.4、A【解题分析】根据只有符号不同的两数互为相反数,可直接判断.【题目详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与13互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【题目点拨】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.5、A【解题分析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误. 故选B. 7、A 【解题分析】由AB ∥CD ,根据两直线平行,内错角相等,即可求得∠ABC 的度数,又由BC 平分∠ABE ,即可求得∠ABE 的度数,继而求得答案. 【题目详解】 ∵AB ∥CD,∠C=35°, ∴∠ABC=∠C=35°, ∵BC 平分∠ABE , ∴∠ABE=2∠ABC=70°, ∵AB ∥CD ,∴∠BED=∠ABE=70°. 故选:A. 【题目点拨】本题考查了平行线的性质,解题的关键是掌握平行线的性质进行解答. 8、C 【解题分析】设B ′C ′与CD 的交点为E ,连接AE ,利用“HL ”证明Rt △AB ′E 和Rt △ADE 全等,根据全等三角形对应角相等∠DAE =∠B ′AE ,再根据旋转角求出∠DAB ′=60°,然后求出∠DAE =30°,再解直角三角形求出DE ,然后根据阴影部分的面积=正方形ABCD 的面积﹣四边形ADEB ′的面积,列式计算即可得解. 【题目详解】如图,设B ′C ′与CD 的交点为E ,连接AE ,在Rt △AB ′E 和Rt △ADE 中,AE AEAB AD '=⎧⎨=⎩, ∴Rt △AB ′E ≌Rt △ADE (HL ),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=12×60°=30°,∴DE=1×33=33,∴阴影部分的面积=1×1﹣2×(12×1×33)=1﹣33.故选C.【题目点拨】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.9、A【解题分析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【题目详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=×3π×3=4.5πcm2,故选A.【题目点拨】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.10、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=1.12、2【解题分析】试题解析:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=12DE=1.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠1,∴∠1=∠1,∴AD=DG .∵AG ⊥DE ,∴OA=12AG .在Rt △AOD 中,, ∴AG=2AO=2.故答案为2.13、x≥﹣32且x≠1. 【解题分析】根据分式有意义的条件、二次根式有意义的条件列式计算.【题目详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-32且x≠1, 故答案为:x≥-32且x≠1. 【题目点拨】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.14、1【解题分析】求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.【题目详解】解:()20420÷÷2020%=÷100=只.故答案为:1.【题目点拨】本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.15、2a a - 【解题分析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.【题目详解】原式()()22222(1)222(1)(2)222a a a a a a a a a a +-++-=⋅-==+----, 故答案为2a a - 【题目点拨】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.16、1.【解题分析】∵AB =5,AD =12,∴根据矩形的性质和勾股定理,得AC =13.∵BO 为R t△ABC 斜边上的中线∴BO =6.5∵O 是AC 的中点,M 是AD 的中点,∴OM 是△ACD 的中位线∴OM =2.5∴四边形ABOM 的周长为:6.5+2.5+6+5=1故答案为117、-3<a ≤-2【解题分析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a 的范围. 详解:0521x a x ①②,-≥⎧⎨->⎩ 由不等式①解得:x a ≥;由不等式②移项合并得:−2x >−4,解得:x <2,∴原不等式组的解集为2a x ,≤<由不等式组只有四个整数解,即为1,0,−1,−2,可得出实数a 的范围为3 2.a -<≤-故答案为3 2.a -<≤-点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数a 的取值范围.三、解答题(共7小题,满分69分)18、(1)0.3,45;(2)108︒;(3)16【解题分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【题目详解】(1)a=0.3,b=45(2)360°×0.3=108° (3)列关系表格为:由表格可知,满足题意的概率为:16. 考点:1、频数分布表,2、扇形统计图,3、概率19、(1)见解析;(2)见解析【解题分析】(1)从所给的条件可知,DE 是△ABC 中位线,所以DE ∥BC 且2DE=BC ,所以BC 和EF 平行且相等,所以四边形BCFE 是平行四边形,又因为BE=FE ,所以四边形BCFE 是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【题目详解】解:(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC 且2DE=BC .又∵BE=2DE ,EF=BE ,∴EF=BC ,EF ∥BC .∴四边形BCFE 是平行四边形.又∵BE=FE ,∴四边形BCFE 是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC 是等边三角形.∴菱形的边长为4,高为∴菱形的面积为4×20、不等式组的解集是5<x ≤1,整数解是6,1【解题分析】先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.【题目详解】43(2)52364x x x x --<-⎧⎪⎨-≥-⎪⎩①② ∵解①得:x >5,解不等式②得:x ≤1,∴不等式组的解集是5<x ≤1,∴不等式组的整数解是6,1.【题目点拨】本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法21、(1)应安排4天进行精加工,8天进行粗加工(2)①20001000(140)W m m =+-=1000140000m +②安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元【解题分析】解:(1)设应安排x 天进行精加工,y 天进行粗加工,根据题意得12{515140.x y x y +=+=, 解得4{8.x y ==,答:应安排4天进行精加工,8天进行粗加工.(2)①精加工m 吨,则粗加工(140m -)吨,根据题意得20001000(140)W m m =+-=1000140000m + ②要求在不超过10天的时间内将所有蔬菜加工完,14010515m m -∴+≤ 解得5m ≤ 05m ∴<≤ 又在一次函数1000140000W m =+中,10000k =>, W ∴随m 的增大而增大,∴当5m =时,10005140000145000.W =⨯+=最大∴精加工天数为55÷=1,粗加工天数为(1405)159-÷=.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.22、(1)证明见解析;(2)能;BE=1或116;(3)9625 【解题分析】(1)证明:∵AB =AC ,∴∠B =∠C ,∵△ABC ≌△DEF ,∴∠AEF =∠B ,又∵∠AEF +∠CEM =∠AEC =∠B +∠BAE ,∴∠CEM =∠BAE ,∴△ABE ∽△ECM ;(2)能.∵∠AEF =∠B =∠C ,且∠AME >∠C ,∴∠AME >∠AEF ,∴AE≠AM ;当AE =EM 时,则△ABE ≌△ECM ,∴CE =AB =5,∴BE =BC−EC =6−5=1,当AM =EM 时,则∠MAE =∠MEA ,∴∠MAE +∠BAE =∠MEA +∠CEM ,即∠CAB =∠CEA ,又∵∠C =∠C ,∴△CAE ∽△CBA , ∴CE AC AC CB=,∴CE =2256CB AC =, ∴BE =6−256=116; ∴BE =1或116; (3)解:设BE =x ,又∵△ABE ∽△ECM , ∴CM CE BE AB=,即:65CM x x -=, ∴CM =22619(3)5555x x x , ∴AM =5−CM 2116(3)55x , ∴当x =3时,AM 最短为165, 又∵当BE =x =3=12BC 时, ∴点E 为BC 的中点, ∴AE ⊥BC ,∴AE =4, 此时,EF ⊥AC ,∴EM 22125CM , S △AEM =116129625525. 23、(1)每辆A 型自行车的进价为2 000元,每辆B 型自行车的进价为1 600元;(2)当购进A 型自行车34辆,B 型自行车66辆时获利最大,最大利润为13300元.【解题分析】(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x +10)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y 与x 的关系式,利用一次函数性质确定出所求即可.【题目详解】(1)设每辆B 型自行车的进价为x 元,则每辆A 型自行车的进价为(x+10)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+10=1 600+10=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤1,∵m为正整数,∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【题目点拨】本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.24、(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解题分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【题目详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【题目点拨】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法。
2024届浙江省温州地区达标名校中考数学四模试卷含解析
2024届浙江省温州地区达标名校中考数学四模试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)1.如图,A ,C ,E ,G 四点在同一直线上,分别以线段AC ,CE ,EG 为边在AG 同侧作等边三角形△ABC ,△CDE ,△EFG ,连接AF ,分别交BC ,DC ,DE 于点H ,I ,J ,若AC=1,CE=2,EG=3,则△DIJ 的面积是( )A .38B .34C .12D .322.若代数式12-x在实数范围内有意义,则x 的取值范围是( ) A .x>2B .x<2C .x -2≠D .x 2≠3.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件才能按时交货,则x 应满足的方程为( )A .72072054848x -=+ B .72072054848x +=+ C .720720548x-= D .72072054848x-=+ 4.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2705.下列计算正确的是( ) A .x 2x 3=x 6B .(m +3)2=m 2+9C.a10÷a5=a5D.(xy2)3=xy66.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 27.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°8.“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1069.a的倒数是3,则a的值是()A.13B.﹣13C.3 D.﹣310.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+二、填空题(本大题共6个小题,每小题3分,共18分)11.一组数据:1,2,a,4,5的平均数为3,则a=_____.12.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则ba=_____.13.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是_____.14.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.15.一元二次方程x(x﹣2)=x﹣2的根是_____.16.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:①这次数学测试成绩中,甲、乙两个班的平均水平相同;②甲班学生中数学成绩95分及以上的人数少;③乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是______.(填序号)三、解答题(共8题,共72分)17.(8分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.18.(8分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额20元15元10元5元获奖人数商家甲超市 5 10 15 20乙超市 2 3 20 25(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?19.(8分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x 轴上的一个动点.求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.20.(8分)先化简22442x xx x-+-÷(x-4x),然后从-5<x<5的范围内选取一个合适的正整数作为x的值代入求值.21.(8分)如图,在边长为1 个单位长度的小正方形网格中:(1)画出△ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.22.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?23.(12分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.24.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到AEAG=EJGF=36,ACAE=CIEF=13,根据三角形的面积公式即可得到结论.【题目详解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等边三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE =EF =3,∴∠FAG =∠AFE =30°, ∴∠AFG =90°, ∵△CDE 是等边三角形, ∴∠DEC =60°,∴∠AJE =90°,JE ∥FG , ∴△AJE ∽△AFG ,∴AE AG =EJ GF =36, ∴EJ =13,∵∠BCA =∠DCE =∠FEG =60°, ∴∠BCD =∠DEF =60°, ∴∠ACI =∠AEF =120°, ∵∠IAC =∠FAE , ∴△ACI ∽△AEF , ∴AC AE =CI EF =13, ∴CI =1,DI =1,DJ =12,∴IJ =2,∴DIJS=12•DI•IJ =12×12 故选:A . 【题目点拨】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键. 2、D 【解题分析】 试题解析:要使分式12-x有意义, 则1-x≠0, 解得:x≠1.故选D . 3、D 【解题分析】因客户的要求每天的工作效率应该为:(48+x )件,所用的时间为:72048x+, 根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:72072054848x-=+. 故选D . 4、C 【解题分析】根据三角形的内角和定理和三角形外角性质进行解答即可. 【题目详解】 如图:1D DOA ∠∠∠=+,2E EPB ∠∠∠=+,DOA COP ∠∠=,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++ =D E 180C ∠∠∠++- =309018090210++-=, 故选C . 【题目点拨】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键. 5、C 【解题分析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案. 【题目详解】x 2•x 3=x 5,故选项A 不合题意;(m+3)2=m2+6m+9,故选项B不合题意;a10÷a5=a5,故选项C符合题意;(xy2)3=x3y6,故选项D不合题意.故选:C.【题目点拨】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.6、D【解题分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【题目详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【题目点拨】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.7、C【解题分析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.8、C【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【题目详解】567000=5.67×105,【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、A【解题分析】根据倒数的定义进行解答即可.【题目详解】∵a的倒数是3,∴3a=1,解得:a=13.故选A.【题目点拨】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.10、D【解题分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【题目详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【题目点拨】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.12、1 2【解题分析】因为方程有实根,所以△≥0,配方整理得(a+2b)2+(a﹣1)2≤0,再利用非负性求出a,b的值即可. 【题目详解】∵方程有实根,∴△≥0,即△=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化简得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣12,∴ba=﹣12.故答案为﹣1 2 .13、27π【解题分析】试题分析:设扇形的半径为r.则1206180rππ=,解得r=9,∴扇形的面积=21209360π⨯=27π.故答案为27π.考点:扇形面积的计算.14、y=﹣x+1【解题分析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.【题目详解】∵一次函数y随x的增大而减小,∴k<0,∵一次函数的解析式,过点(1,0),∴满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.15、1或1【解题分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可得答案.【题目详解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案为:1或1.【题目点拨】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.16、①③【解题分析】根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.【题目详解】解:①∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,∴这次数学测试成绩中,甲、乙两个班的平均水平相同;故①正确;②∵甲班的中位数是95.5分,乙班的中位数是90.5分,∴甲班学生中数学成绩95分及以上的人数多,故②错误;③∵甲班的方差是41.25分,乙班的方差是36.06分,∴甲班的方差大于乙班的方差,∴乙班学生的数学成绩比较整齐,分化较小;故③正确;上述评估中,正确的是①③;故答案为:①③.【题目点拨】.中位数是将一组数据从小到大(或从大到小)重新本题考查平均数、中位数和方差,平均数表示一组数据的平均程度排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.三、解答题(共8题,共72分)17、(1)见解析;(1)3.5;(3)见解析;(4)3.1【解题分析】根据题意作图测量即可.【题目详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.【题目点拨】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.18、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4)3.10【解题分析】(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【题目详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=.【题目点拨】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.19、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+102,32),或P(1﹣102,32)【解题分析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.【题目详解】解:(1)、∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;令y=0,则0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=12CD×|y B|=12×4×3=6;(3)由(2)知,S △BCD =12CD×|y B |=12×4×3=6;CD=4, ∵S △PCD =12S △BCD , ∴S △PCD =12CD×|y P |=12×4×|y P |=3, ∴|y P |= 32, ∵点P 在x 轴上方的抛物线上,∴y P >0,∴y P = 32, ∵抛物线的解析式为y=﹣(x ﹣1)2+4; ∴32=﹣(x ﹣1)2+4,∴,∴P (1+ 2, 32),或P (1﹣2,32). 【题目点拨】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.20、当x=-1时,原式=1=11+2-; 当x=1时,原式=11=1+23【解题分析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【题目详解】 原式=22(2)4(2)x x x x x--÷- =()2(2)•(2)2(2)x x x x x x --+- =12x +∵x x 为整数,∴若使分式有意义,x 只能取-1和1当x =1时,原式=13.或:当x =-1时,原式=121、(1)见解析(2)见解析(3)9【解题分析】试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;(2)根据题意画出图形,△A2B2C2为所求三角形.考点:1.作图-位似变换,2. 作图-平移变换22、(1)1000 (2)200 (3)54°(4)4000人【解题分析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人).答:校20000名学生一餐浪费的食物可供4000人食用一餐.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、两人之中至少有一人直行的概率为59.【解题分析】【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【题目详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.24、(3)证明见解析; (3)AB=3.【解题分析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【题目详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=22=5,1312∴AB=AD+BD=33+5=3.【题目点拨】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用. 考点:3.全等三角形的判定与性质;3.等腰直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 4
浙江省温州四中2012届中考数学模拟试题(无答案) 浙教版
一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错
选,均不给分)
1、计算:1+(-2)的结果是 ( ) A. -1
B. 1
C. -3
D. 3
2、方程2x+1=5的解是 ( ) A. 4
B. 3
C. 2
D. 1
3、在下列几何体中,主视图是长方形的是 ( )
4、在一个不透明的箱中装有3个红球2个白球,它们除颜色不同外,其余的均相同,则从中任取一球是白球的概率为 ( ) A.
13
B.
15
C.
25
D.
35
5、点A(1,2)关于x 轴的对称点的坐标是 ( ) A.(1,-2)
B. (-1,2)
C. (2,-1)
D. (-2,1)
6、如图,AB 是⊙O 的直径,点C 在⊙O 上,∠B=70°则∠A 的度数是 ( ) A .20°
B.25°
C.30°
D.35°
7、已知两圆内切,它们的半径分别是1和3,则圆心距为 ( ) A .1
B .2
C .3
D .4
8、函数y =2 x 中,自变量x 的取值范围是 ( ) A .x ≥2 B .x ≥0 C .x ≥-2 D .x ≤2
9、圆锥的母线长为8cm ,底面半径为6cm ,则圆锥的侧面积是 ( ) A. 96∏cm 2
B. 60∏cm 2
C. 48∏cm 2
D. 24∏cm 2
10、将反比例函数y=
x
k
图象上的点P (x 1,y 1)的横坐标增加1,纵坐标减少1,所得的点仍在此反比例
2 / 4
C
B A
D
1.5
太阳光
太阳光
2
函数的图象上,则点P 必在下列哪条直线上?答 ( ) A. y=x-1
B. y=x+1
C. y=-x-1
D. y=-x-1
二、填空题(本题有6小题,每小题5分,共30分) 11、若x-y =1,则y-x = .
12、梯形的上底长为3,下底长为5,那么梯形的中位线长是 . 13、已知扇形的圆心角为120°半径为3,则扇形的面积为 . 14、如图,A 、B 、C 、D 四点在⊙O 上,∠ADC=50°
则∠ABC= 度. C
(第15题) (第14题)
A D B
15、如图,D 是AB 边上一点,且DB=
2
1
AD=2,∠BCD=∠A ,则CD CA 的值为 .
16、数学兴趣小组利用影长测量大树的高度,测得 大树落在水平地面上的影子的长为5.02米,落在斜 坡上的影子的长为2米,同时测得直立于水平地面 上的2 米长的竹竿在水平地面上的影长为1.5米 (如图),若水平地面与斜坡面的夹角为150°则大树
的高为 米(3取1.73)
三、解答题(本题有8小题,共同80分) 17、(本题10分)
(1)计算:4-2-1-(1-3)0
(2)解不等式组34
135x x x x >-⎧⎨->-⎩
18、(本题8分)如图,AC 是⊙O 的直径,BD 交AC 于点E (1)求证:AE ·EC=BE ·ED
(2)若CD=OC 求sinB 的值
O
19、(本题9分)某机械化养鸡场有一批同时开始饲养的良种鸡1000只,任取10只,称得
其质量情况如下:
鸡的质量(单位:Kg) 2.0 2.2 2.4 2.5 2.6 3.0
鸡的数量(单位:只) 1 2 3 2 1 1 求(1)这10只鸡的平均质量为多少Kg?
(2)考虑到经济效益,该养鸡场规定质量在2.2 Kg以上(包括2.2 Kg)的鸡才可以出售,请估计这批
鸡中有多少只可以出售?
20、(本题10分)已知一次函数y=kx+4的图象交x轴于点A,交y轴于点B,O为坐标原
点,且S⊿AOB=4。
(1)求OA的长, (2)求K的值.
21、(本题10分)如图,二次函数y=ax2+bx+c(a≠o)的图象与x轴交于点A(1,O)和点B(点B在
点A右则),与y轴交于点C(0 ,2)。
(1)请说明a、b、c的积是正数还是负数;
(2)若∠OCA=∠CBO,求这个二次函数的解析式;
22、(本题9分)如图,在△ABC中,已知∠A=105°,∠C=45°,△DEF是正三角形,画直线a、b,使直
线a、b将△ABC分为三个小三角形;画直线e、f,使直线e、f将△DEF分为三个小三角形,并使△ABC分成的三个小三角形分别与△DEF分成的三个小三角形相似(画图工具不限,不要求写画法与证明,但要标出能够说明分法所得三角形内角的度数或记号,否则不给分)
A D
B C E F
23、(本题10分)某织布厂有工人200名,为改善经营,增设制衣项目,已知每人每天能织布30米,
或利用所织布制衣4件,制衣一件需用布1.5米,将布直接出售,每米布可获利2元;将布制成衣后出售,每件可获利25元,若每名工人一天只能做一项工作,且不计其它因素,设安排x名工人制衣,
3 / 4
该厂一天中所获总利润为y元。
(1)求y关于x的函数解析式,
(2)当x为何值时,该厂一天所获总利润为最大?最大利润为多少元?
24、(本题14分)在梯形ABCD中AD∥BC,AD=5,AB=CD=2,
(1)若P为AD边上一点,且∠BPC=∠A,求证:△ABP∽△DPC(如图)
(2)若点P在AD边上移动(不与A、D两点重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交
直线CD于点Q,那么:
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式(不要求写出自变量
x的取值范围); A P D
②当CE=1时,求出AP的长。
B C
4 / 4。