2017年浙江省温州市中考数学试卷(含答案解析版)
2017年各地中考真卷-2017年浙江省温州市中考数学试卷
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C (点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt △ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD 关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP 的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG 和△DEG 的面积之比为.理由:如图6,∵DM ∥AF ,∴DF=AM=DE=1,又由对称性可得GE=GD ,∴△DEG 是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE ,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD ﹣∠GDM=15°,∴GMD=∠GDM ,∴GM=GD=1,过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=, ∵S △DEG =,∴S △ACG :S △DEG =.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
(答案版)2017年浙江省温州市中考数学试卷
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A 至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C (点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt △ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD 关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36, ∴Rt △APM 中,MP=8,故DQ=8=OG , ∴BQ=12﹣8=4,由BQ ∥CG 可得,△ABQ ∽△ACG ,∴=,即=,∴CG=12,OC=12+8=20, ∴C (20,0),又∵水流所在抛物线经过点D (0,24)和B (12,24), ∴可设抛物线为y=ax 2+bx +24,把C (20,0),B (12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x 2+x +24,又∵点E 的纵坐标为10.2, ∴令y=10.2,则10.2=﹣x 2+x +24,解得x 1=6+8,x 2=6﹣8(舍去), ∴点E 的横坐标为6+8,又∵ON=30, ∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP 的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG 和△DEG 的面积之比为.理由:如图6,∵DM ∥AF ,∴DF=AM=DE=1,又由对称性可得GE=GD ,∴△DEG 是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE ,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD ﹣∠GDM=15°,∴GMD=∠GDM ,∴GM=GD=1,过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=, ∵S △DEG =,∴S △ACG :S △DEG =.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
浙江省温州市年中考数学试卷(含答案)复习进程
20
15
18
10
O
神奇 魅力 数学 趣题
课程
魔方 数独 故事 巧解
20.(本题 8 分) 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是
)
A.3
B. 4
C.5
D. 6
5.温州某企业车间有 50 名工人,某一天他们生产的机器零件个数统计如下表:
零件个数(个)
5 678
人数(人)
3 15 22 10
表中表示零件个数的数据中,众数是(
)
A.5 个
B.6 个
C.7 个
D.8 个
6.已知点( 1, y1 ),( 4, 7 )在一次函数 y 3x 2 的图象上,则 y1 , y2 , 0 的大小
y
A'
B'
C
B
O
A
(第 15 题图) 三、解答题(共 8 小题,共 80 分):
17.(本题 10 分)( 1)计算: 2 ( 3) ( 1)2
(第 16 题图)
8 ;( 2)化简: (1 a)(1 a) a( a 2) .
18.(本题 8 分) 如图,在五边形 ABCDE 中,∠ BCD =∠ EDC=90 °, BC=ED,AC =AD. (1)求证: △ ABC≌△ AED ; (2)当∠ B=140°时,求∠ BAE 的度数.
甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设
x 米,根据题意
可列出方程: _____________________ .
只供学习与交流
此文档仅供收集于网络,如有侵权请联系网站删除
15.如图,矩形 OABC 的边 OA,OC 分别在 x 轴、 y 轴上,点 B 在第一象限,点 D 在边 BC
浙江省温州市2017年中考数学试题
数学卷I 一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. -6的相反数是( A) 某校学生到校方式情况就计图A.6B.1C. OD. 62.某校学生到校方式情况的统计图如图所示.着该校步行到校的学生有100人,则乘公共汽车到校的学生有( A)A.75人B. 100人c. 125人D.200人3某运动会颁奖台如图所示,它的主视图是( A ) (第2题〉「丁寸寸曰c二L「主视方向(第3题).n.4.下列选项中的整数,与J于最接近的是( A) B c DA.3B.4 c.5 D.6•10 •'24.(本题14分〉如图,已知线段AB=2,MN上AB于点M,且AM=BM.P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的图与BP的另一交点为C(点C在线段BD上〉,连结AC,DE.(1)当ζAPB=28°时,求ζB和CM的度数.(2)求证:AC=AB.(3)在点P的运动过程中.①当M P=4时,取囚边形AC O E一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角兰角形,且Q为锐角顶点,求所有满足条件的MQ的值.@记AP与圆的另一个交点为F,将点F绕点D旋转90。
得点G,当点G恰好落在MN上时,连结AG,CG,DG,EG, B直接写出6ACG与6DEG的面积之比.p N(第24题〉•13 •,数学参考答案一、选择题(本题有10小题,每小题4分,共40分}|题号|1l 2l 3l 4lsls l 1l sl 9 |答案| A I D I c I B I c I B I A I D I c 二、填空题{本题有6,1、题,每小题5分,共30分}10B 11. m (m 十4)12.5 13. 3 160 200 14.一-=一一-::,; z十5 4 I 『15.丁二16. 24-8../2三、解答题{本题有8小题,共80分}17.(本题10分)解(1)原式=-6十1+2../2 = -5+2../2. (2)原式=l-a 2十a 2-2a =l 一2a .18. (本题8分〉,(1)证明·: AC=AD, :.ζACD =ζADC.·.·ζBCD =ζEDC= 90°, :. L'.'.ACB= L'.'.ADE.·: BC=ED, :.L,.ABC 且L,.AED(SAS).(2)解囱(1)得L,.ABC 望L,.AED,:.ζB =ζE=l40。
浙江温州2017中考试题数学卷(word版含解析)
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.﹣6的相反数是()A.6 B.1 C.0 D.﹣62.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.分解因式:m2+4m=.12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.已知扇形的面积为3π,圆心角为120°,则它的半径为.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E 到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C 在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.﹣6的相反数是()A.6 B.1 C.0 D.﹣6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【考点】VB:扇形统计图.【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.3.某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.4.下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.5.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个【考点】W5:众数.【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.6.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.6.5米D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.8.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【考点】A3:一元二次方程的解.【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.9.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【考点】D2:规律型:点的坐标.【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.二、填空题(共6小题,每小题5分,共30分):11.分解因式:m2+4m=m(m+4).【考点】53:因式分解﹣提公因式法.【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).12.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【考点】W4:中位数;W1:算术平均数.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.13.已知扇形的面积为3π,圆心角为120°,则它的半径为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【考点】B6:由实际问题抽象出分式方程.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.15.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E 到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.三、解答题(共8小题,共80分):17.(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式.【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.18.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.19.为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【考点】N4:作图—应用与设计作图.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,△PAB如图所示.21.如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∴∠FEC=∠B=45°,∠FEO=90°,∴∠CEO=45°,∵DE∥CF,∴∠ECD=∠FEC=45°,∴∠EOC=90°,∴EF∥OD,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.22.如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.23.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,由PQ ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.24.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C 在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的而得出S△ACG面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD , ∴△DEG 是等边三角形, ∴∠EDF=90°﹣60°=30°, ∴∠DEF=75°=∠MDE , ∴∠GDM=75°﹣60°=15°, ∴∠GMD=∠PGD ﹣∠GDM=15°, ∴GMD=∠GDM , ∴GM=GD=1, 过C 作CH ⊥AB 于H ,由∠BAC=30°可得CH=AC=AB=1=MG ,AH=,∴CG=MH=﹣1,∴S △ACG =CG ×CH=,∵S △DEG =,∴S △ACG :S △DEG =.2017年7月18日。
浙江省温州市中考数学试卷
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每题4分,共40分):1.(4 分)﹣6 的相反数是()A.6 B.1 C.0 D.﹣62.(4 分)某校学生到校方式状况的统计图以下图,若该校步行到校的学生有100 人,则乘公共汽车到校的学生有()A.75 人B.100 人C.125 人D.200 人3.(4 分)某运动会颁奖台以下图,它的主视图是()A.B.C.D.4.(4 分)以下选项中的整数,与最靠近的是()A.3 B.4 C.5 D.65.(4 分)温州某公司车间有50 名工人,某一天他们生产的机器部件个数统计以下表:部件个数(个) 5 6 7 8人数(人)3 15 22 10表中表示部件个数的数据中,众数是()A.5 个B.6 个C.7 个D.8 个6.(4 分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2 的图象上,则y1,y2,0 的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y17.(4 分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13 米,已知cosα= ,则小车上涨的高度是()A.5 米B.6 米C.6.5 米D.12 米2+2x﹣3=0 的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)8(.4 分)我们知道方程x2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣39.(4 分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2 E F,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4 分)我们把1,1,2,3,5,8,13,21,⋯这组数称为斐波那契数列,为了进一步研究,挨次以这列数为半径作90°圆弧,,,⋯获得斐波那契螺旋线,而后按序连接P1P2,P2P3,P3P4,⋯获得螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9 的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每题5分,共30分):2+4m=.11.(5分)分解因式:m12.(5分)数据1,3,5,12,a,此中整数a是这组数据的中位数,则该组数据的均匀数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每日多铺设5米,甲、乙达成铺设任务的时间同样,问甲每日铺设多少米?设甲每日铺设x米,依据题意可列出方程:.15.(5分)如图,矩形OABC的边O A,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=3°0,四边形O A′B′与D 四边形OABD对于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比率函数y=(k≠0)的图象恰巧经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完整开启后,水流路线呈抛物线,把手端点A,出水口B和落水滴C恰幸亏同向来线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的有关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.。
(完整版)浙江省温州市中考数学试卷(含解析).doc
2017 年浙江省温州市中考数学试卷一、选择题(共10 小题,每小题 4 分,共 40 分):1.(4 分)﹣ 6 的相反数是()A.6B.1C.0D.﹣ 62.(4 分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100 人,则乘公共汽车到校的学生有()A.75 人B.100 人C.125 人D.200 人3.(4 分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.4.(4 分)下列选项中的整数,与最接近的是()A.3B.4C.5D.65.(4 分)温州某企业车间有50 名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)315 2210表中表示零件个数的数据中,众数是()A.5 个 B.6 个 C.7 个 D.8 个6.(4 分)已知点(﹣ 1,y ),(4, y )在一次函数 y=3x﹣2 的图象上,则 y ,1 2 1y2, 0 的大小关系是()A.0<y < y B.y <0<y C. y <y <0 D.y <0<y11 2 1 2 1 2 27.(4 分)如图,一辆小车沿倾斜角为α的斜坡向上行驶 13 米,已知 cos α=,小上升的高度是()A.5 米 B.6 米 C.6.5 米D.12 米8.(4 分)我知道方程 x2+2x 3=0 的解是 x1=1,x2= 3,出另一个方程(2x+3)2+2(2x+3) 3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2= 3C.x1= 1,x2 =3D. x1= 1,x2= 3 9.(4 分)四个全等的直角三角形按示方式成正方形ABCD,各直角的中点作垂,成面S 的小正方形 EFGH.已知 AM Rt△ABM 直角, AM=2 EF,正方形 ABCD的面()A.12S B.10S C.9S D.8S10.( 4 分)我把1,1,2, 3,5, 8, 13,21,⋯数称斐波那契数列,了一步研究,依次以列数半径作90° 弧,,,⋯得到斐波那契螺旋,然后次P1 2,2 3 , 3 4,⋯得到螺旋折(如),已P P P P P知点 P1(,),2(,),3(,),折上的点9 的坐()0 1 P1 0 P 0 1 PA .(﹣ 6,24)B .(﹣ 6,25)C .(﹣ 5, 24)D .(﹣ 5,25)二、填空题(共 6 小题,每小题 5 分,共 30 分):.( 分)分解因式: m 2+4m= . 11 512.( 5 分)数据 1,3,5,12,a ,其中整数 a 是这组数据的中位数,则该组数 据的平均数是.13.( 5 分)已知扇形的面积为 3π,圆心角为 120°,则它的半径为 .14.(5 分)甲、乙工程队分别承接了 160 米、200 米的管道铺设任务,已知乙比 甲每天多铺设 5 米,甲、乙完成铺设任务的时间相同, 问甲每天铺设多少米?设 甲每天铺设 x 米,根据题意可列出方程:.15.( 5 分)如图,矩形 OABC 的边 OA ,OC 分别在 x 轴、 y 轴上,点 B 在第一象 限,点 D 在边 BC 上,且∠ AOD=30°,四边形 OA ′B ′D 与四边形 OABD 关于直线 OD对称(点 A ′和 A , B ′和 B 分别对应).若 AB=1,反比例函数 y=(k ≠ 0)的图象恰好经过点 A ′, B ,则 k 的值为.16.( 5 分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点 A ,出水口 B 和落水点 C 恰好在同一直线上,点 A至出水管 BD 的距离为 12cm ,洗手盆及水龙头的相关数据如图2 所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点 E 到洗手盆内侧的距离 EH 为cm .三、解答题(共8 小题,共 80 分):17.( 10 分)( 1)计算: 2×(﹣ 3)+(﹣ 1)2+;( 2)化简:(1+a)(1﹣a)+a( a﹣2).18.( 8 分)如图,在五边形ABCDE中,∠ BCD=∠ EDC=90°, BC=ED,AC=AD.(1)求证:△ ABC≌△ AED;(2)当∠ B=140°时,求∠ BAE的度数.19.(8 分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级 480 名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的 A, B, C 三个班,小聪、小慧都选择了“数学故事”,已知小聪不在 A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.( 8 分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点 A(2,3), B( 4, 4),请在所给网格区域(含边界)上按要求画整点三角形.( 1)在图 1 中画一个△ PAB,使点 P 的横、纵坐标之和等于点 A 的横坐标;( 2)在图 2 中画一个△ PAB,使点 P, B 横坐标的平方和等于它们纵坐标和的 4 倍.21.( 10 分)如图,在△ ABC中, AC=BC,∠ ACB=90°,⊙ O(圆心 O 在△ ABC 内部)经过 B、C 两点,交 AB于点 E,过点 E 作⊙ O 的切线交 AC 于点 F.延长 CO 交AB 于点 G,作 ED∥AC交 CG于点 D(1)求证:四边形 CDEF是平行四边形;(2)若 BC=3,tan∠DEF=2,求 BG的值.22.( 10 分)如图,过抛物线y=x2﹣ 2x 上一点 A 作 x 轴的平行线,交抛物线于另一点 B,交 y 轴于点 C,已知点 A 的横坐标为﹣ 2.(1)求抛物线的对称轴和点 B 的坐标;(2)在 AB 上任取一点 P,连结 OP,作点 C 关于直线 OP的对称点 D;①连结 BD,求 BD 的最小值;②当点 D 落在抛物线的对称轴上,且在 x 轴上方时,求直线 PD 的函数表达式.23.( 12 分)小黄准备给长 8m,宽 6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.( 1)若区域Ⅰ的三种瓷砖均价为 300 元/m 2,面积为 S(m2),区域Ⅱ的瓷砖均价为 200 元/m 2,且两区域的瓷砖总价为不超过 12000 元,求 S的最大值;(2)若区域Ⅰ满足 AB: BC=2: 3,区域Ⅱ四周宽度相等①求 AB,BC的长;②若甲、丙两瓷砖单价之和为 300 元/m 2,乙、丙瓷砖单价之比为 5:3,且区域Ⅰ的三种瓷砖总价为4800 元,求丙瓷砖单价的取值范围.24.(14 分)如图,已知线段AB=2,MN⊥AB 于点M ,且AM=BM,P 是射线MN 上一动点, E,D 分别是 PA,PB的中点,过点 A,M ,D 的圆与 BP 的另一交点 C (点 C 在线段 BD上),连结 AC,DE.( 1)当∠ APB=28°时,求∠ B 和的度数;(2)求证: AC=AB.(3)在点 P 的运动过程中①当 MP=4 时,取四边形 ACDE一边的两端点和线段 MP 上一点 Q,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;②记AP 与圆的另一个交点为 F,将点 F 绕点 D 旋转 90°得到点 G,当点 G 恰好落在MN 上时,连结 AG,CG, DG, EG,直接写出△ ACG和△ DEG的面积之比.2017 年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10 小题,每小题 4 分,共 40 分):1.(4 分)﹣ 6 的相反数是()A.6B.1C.0D.﹣ 6【分析】根据相反数的定义求解即可.【解答】解:﹣ 6 的相反数是 6,故选: A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数, 0 的相反数是 0.不要把相反数的意义与倒数的意义混淆.2.(4 分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100 人,则乘公共汽车到校的学生有()A.75 人B.100 人C.125 人D.200 人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选 D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4 分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选: C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4 分)下列选项中的整数,与最接近的是()A.3B.4C.5D.6【分析】依据被开方数越大对应的算术平方根越大进行解答即可.【解答】解:∵ 16<17< 20.25,∴4<<4.5,∴与最接近的是 4.故选: B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4 分)温州某企业车间有50 名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)315 2210表中表示零件个数的数据中,众数是()A.5 个 B.6 个 C.7 个 D.8 个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字 7 出现了 22 次,为出现次数最多的数,故众数为7 个,故选 C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4 分)已知点(﹣ 1,y1),(4, y2)在一次函数y=3x﹣2 的图象上,则 y1,y2, 0 的大小关系是()A.0<y1< y2B.y1<0<y2C. y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、2y 的值,将其与 0 比较大小后即可得出结论.【解答】解:∵点(﹣ 1,y1),(4,y2)在一次函数 y=3x﹣2 的图象上,∴y1=﹣ 5, y2=10,∵ 10>0>﹣ 5,∴y1<0<y2.故选 B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出 y1、 y2的值是解题的关键.7.(4 分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13 米,已知 cos α=,则小车上升的高度是()A.5 米 B.6 米 C.6.5 米D.12 米【分析】在 Rt△ ABC中,先求出 AB,再利用勾股定理求出BC即可.【解答】解:如图 AC=13,作 CB⊥AB,∵ cosα= =,∴AB=12,∴BC==132﹣ 122=5,∴小车上升的高度是5m.故选 A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4 分)我们知道方程 x2+2x﹣ 3=0 的解是 x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣ 3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3C.x1=﹣ 1,x2 =3D. x1=﹣ 1,x2=﹣3 【分析】先把方程( 2x+3)2+2(2x+3)﹣ 3=0 看作关于 2x+3 的一元二次方程,利用题中的解得到 2x+3=1 或 2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程( 2x+3)2+2(2x+3)﹣3=0 看作关于 2x+3 的一元二次方程,所以 2x+3=1 或 2x+3=﹣ 3,所以 x1=﹣1,x2=﹣3.故选 D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4 分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S 的小正方形 EFGH.已知 AM 为 Rt△ABM 较长直角边, AM=2 EF,则正方形 ABCD的面积为()A.12S B.10S C.9S D.8S【分析】AM=2a.BM=b.正方形 ABCD的面 =4a2+b2,由意可知 EF=(2a b) 2(a b)=2a b 2a+2b=b,由此即可解决.【解答】解: AM=2a.BM=b.正方形 ABCD的面 =4a2+b2由意可知 EF=(2a b) 2(a b)=2a b 2a+2b=b,∵AM=2 EF,∴ 2a=2 b,∴a= b,∵正方形 EFGH的面 S,∴b2=S,∴正方形 ABCD的面 =4a2+b2=9b2 =9S,故 C.【点】本考正方形的性、勾股定理、段的垂直平分的定等知,解的关是灵活运用所学知解决,属于中考中的.10.( 4 分)我把1,1,2, 3,5, 8, 13,21,⋯数称斐波那契数列,了一步研究,依次以列数半径作90° 弧,,,⋯得到斐波那契螺旋,然后次P1 2,2 3 , 3 4,⋯得到螺旋折(如),已P P P P P知点 P1(,),2(,),3(,),折上的点9 的坐()0 1 P1 0 P 0 1 PA.(﹣ 6,24) B.(﹣ 6,25) C.(﹣ 5, 24) D.(﹣ 5,25)【分析】观察图象,推出 P9的位置,即可解决问题.【解答】解:由题意, P5在 P2的正上方,推出 P9在 P6的正上方,且到 P6的距离=21+5=26,所以 P9的坐标为(﹣ 6,25),故选 B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定 P9的位置.二、填空题(共 6 小题,每小题 5 分,共 30 分):11.( 5 分)分解因式: m2+4m= m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解: m2+4m=m(m+4).故答案为: m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.( 5 分)数据 1,3,5,12,a,其中整数 a 是这组数据的中位数,则该组数据的平均数是 4.8 或 5 或 5.2.【分析】根据中位数的定义确定整数 a 的值,由平均数的定义即可得出答案.【解答】解:∵数据 1,3,5,12,a 的中位数是整数 a,∴a=3 或 a=4 或 a=5,当 a=3 时,这组数据的平均数为=4.8,当 a=4 时,这组数据的平均数为=5,当 a=5 时,这组数据的平均数为=5.2,故答案为: 4.8 或 5 或 5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a 的值.13.( 5 分)已知扇形的面积为 3π,圆心角为 120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为 r,由题意,得πr2×=3π,解得 r=3,故答案为: 3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5 分)甲、乙工程队分别承接了 160 米、200 米的管道铺设任务,已知乙比甲每天多铺设 5 米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设 x 米,根据题意可列出方程:=.【分析】设甲每天铺设x 米,则乙每天铺设( x+5)米,根据铺设时间 =和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x 米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.( 5 分)如图,矩形 OABC的边 OA,OC分别在 x 轴、 y 轴上,点 B 在第一象限,点 D 在边 BC上,且∠ AOD=30°,四边形 OA′B′D与四边形 OABD关于直线第14页(共 32页)对称(点 A′和 A, B′和 B 分别对应).若 AB=1,反比例函数 y=(k≠0)的图象恰好经过点 A′, B,则 k 的值为.【分析】设 B(m, 1),得到 OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′ OD=∠AOD=30°,求得∠ A′ OA=60,°过 A′作 A′E⊥OA 于 E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形 ABCO是矩形, AB=1,∴设 B(m, 1),∴OA=BC=m,∵四边形 OA′B′D与四边形 OABD关于直线 OD 对称,∴OA′=OA=m,∠ A′OD=∠AOD=30°,∴∠ A′OA=60,°过 A′作 A′E⊥ OA 于 E,∴OE= m,A′E= m,∴A′( m, m),∵反比例函数 y=(k≠0)的图象恰好经过点A′,B,∴m? m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.( 5 分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口 B 和落水点 C 恰好在同一直线上,点 A 至出水管 BD 的距离为 12cm,洗手盆及水龙头的相关数据如图 2 所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点 D 和杯子上底面中心E,则点 E 到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过 A 作 AG⊥ OC于 G,交 BD 于 Q,过 M 作 MP⊥AG 于 P,根据△ ABQ∽△ ACG,求得 C(20,0),再根据水流所在抛物线经过点D(0,24)和 B( 12,24),可设抛物线为y=ax2+bx+24,把 C(20,0), B( 12,24)代入抛物线,可得抛物线为 y=﹣x2+x+24,最后根据点 E 的纵坐标为 10.2,得出点 E的横坐标为 6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过 A 作 AG⊥ OC于 G,交 BD 于 Q,过M 作 MP⊥AG 于 P,由题可得, AQ=12, PQ=MD=6,故 AP=6,AG=36,∴Rt△APM 中, MP=8,故 DQ=8=OG,∴BQ=12﹣ 8=4,由BQ∥CG可得,△ ABQ∽△ ACG,∴= ,即 = ,∴CG=12,OC=12+8=20,∴C( 20,0),又∵水流所在抛物线经过点D(0,24)和 B( 12,24),∴可设抛物线为y=ax2+bx+24,把C(20, 0),B(12,24)代入抛物线,可得,解得,∴抛物线为 y=﹣ x2+ x+24,又∵点 E的纵坐标为 10.2,∴令 y=10.2,则 10.2=﹣x2+ x+24,解得 x1=6+8,x2=6﹣8(舍去),∴点 E 的横坐标为 6+8,又∵ ON=30,∴EH=30﹣( 6+8 ) =24﹣8 .故答案为: 24﹣ 8 .【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8 小题,共 80 分):17.( 10 分)( 1)计算: 2×(﹣ 3)+(﹣ 1)2+;( 2)化简:(1+a)(1﹣a)+a( a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.( 2)运用平方差公式即可解答.【解答】解:(1)原式 =﹣6+1+2 =﹣5+2;(2)原式 =1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.( 8 分)如图,在五边形ABCDE中,∠ BCD=∠ EDC=90°, BC=ED,AC=AD.(1)求证:△ ABC≌△ AED;(2)当∠ B=140°时,求∠ BAE的度数.【分析】(1)根据∠ ACD=∠ADC,∠ BCD=∠ EDC=90°,可得∠ACB=∠ADE,进而运用 SAS即可判定全等三角形;( 2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ ACD=∠ADC,又∵∠ BCD=∠EDC=90°,∴∠ ACB=∠ADE,在△ ABC和△ AED中,,∴△ ABC≌△ AED(SAS);(2)解:当∠ B=140°时,∠E=140°,又∵∠ BCD=∠EDC=90°,∴五边形 ABCDE中,∠ BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8 分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级 480 名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的 A, B, C 三个班,小聪、小慧都选择了“数学故事”,已知小聪不在 A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480 乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480 名学生选“数学故事”的人数;(2)画树状图展示所有 6 种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480 名学生选“数学故事”的人数为 90 人;( 2)画树状图为:共有 6 种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率 = = .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m,然后利用概率公式计算事件 A 或事件 B 的概率.20.( 8 分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3), B( 4, 4),请在所给网格区域(含边界)上按要求画整点三角形.( 1)在图 1 中画一个△ PAB,使点 P 的横、纵坐标之和等于点 A 的横坐标;( 2)在图 2 中画一个△ PAB,使点 P, B 横坐标的平方和等于它们纵坐标和的 4 倍.【分析】(1)设 P(x, y),由题意 x+y=2,求出整数解即可解决问题;(2)设 P(x,y),由题意 x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设 P(x,y),由题意 x+y=2,∴P( 2, 0)或( 1,1)或( 0, 2)不合题意舍弃,△ PAB如图所示.( 2)设 P(x,y),由题意 x2+42=4(4+y),整数解为( 2,1)或( 0,0)等,△ PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.( 10 分)如图,在△ ABC中, AC=BC,∠ ACB=90°,⊙ O(圆心 O 在△ ABC 内部)经过 B、C 两点,交 AB于点 E,过点 E 作⊙ O 的切线交 AC 于点 F.延长 CO 交AB 于点 G,作 ED∥AC交 CG于点 D(1)求证:四边形 CDEF是平行四边形;(2)若 BC=3,tan∠DEF=2,求 BG的值.【分析】(1)连接 CE,根据等腰直角三角形的性质得到∠ B=45°,根据切线的性质得到∠ FEO=90°,得到 EF∥OD,于是得到结论;( 2)过 G 作 GN⊥BC 于 N,得到△ GMB 是等腰直角三角形,得到 MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠ CGM=∠ DEF,根据三角函数的定义得到 CM=2GM,于是得到结论.【解答】解:(1)连接 CE,∵在△ ABC中, AC=BC,∠ ACB=90°,∴∠ B=45°,∴∠ COE=2∠ B=90°,∵EF是⊙ O 的切线,∴∠FEO=90°,∴ EF∥OC,∵DE∥CF,∴四边形 CDEF是平行四边形;(2)过 G 作 GN⊥BC于 N,∴△ GMB 是等腰直角三角形,∴ MB=GM,∵四边形 CDEF是平行四边形,∴∠ FCD=∠FED,∵∠ ACD+∠GCB=∠GCB+∠CGM=90°,∴∠ CGM=∠ ACD,∴∠ CGM=∠ DEF,∵ tan∠DEF=2,∴ tan∠ CGM= =2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG= GM= .第22页(共 32页)【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.( 10 分)如图,过抛物线y=x2﹣ 2x 上一点 A 作 x 轴的平行线,交抛物线于另一点 B,交 y 轴于点 C,已知点 A 的横坐标为﹣ 2.(1)求抛物线的对称轴和点 B 的坐标;(2)在 AB 上任取一点 P,连结 OP,作点 C 关于直线 OP的对称点 D;①连结 BD,求 BD 的最小值;②当点 D 落在抛物线的对称轴上,且在 x 轴上方时,求直线 PD 的函数表达式.【分析】(1)首先确定点 A 的坐标,利用对称轴公式求出对称轴,再根据对称性可得点 B 坐标;( 2)①由题意点 D 在以 O 为圆心 OC为半径的圆上,推出当O、D、 B 共线时,BD 的最小值 =OB﹣OD;②当点 D 在对称轴上时,在 Rt△OD=OC=5,OE=4,可得 DE===3,求出 P、D 的坐标即可解决问题;【解答】解:(1)由题意 A(﹣ 2,5),对称轴 x=﹣=4,∵A、 B 关于对称轴对称,∴ B( 10,5).( 2)①如图 1 中,由题意点 D 在以 O 为圆心 OC为半径的圆上,∴当 O、D、 B 共线时, BD 的最小值 =OB﹣OD= ﹣5=5 ﹣5.②如图 2 中,图2当点 D 在对称轴上时,在Rt△ ODE中, OD=OC=5,OE=4,∴ DE===3,∴点 D 的坐标为( 4,3).设PC=PD=x,在 Rt△PDK中, x2=(4﹣x)2+22,∴ x= ,∴ P(,5),∴直线 PD的解析式为 y=﹣ x+ .【点评】本题考查抛物线与 X 轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.( 12 分)小黄准备给长 8m,宽 6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形 ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足 PQ∥AD,如图所示.( 1)若区域Ⅰ的三种瓷砖均价为 300 元/m 2,面积为 S(m2),区域Ⅱ的瓷砖均价为 200 元/m 2,且两区域的瓷砖总价为不超过 12000 元,求 S的最大值;(2)若区域Ⅰ满足 AB: BC=2: 3,区域Ⅱ四周宽度相等①求 AB,BC的长;②若甲、丙两瓷砖单价之和为 300 元/m 2,乙、丙瓷砖单价之比为 5:3,且区域Ⅰ的三种瓷砖总价为 4800 元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得 300S+(48﹣ S) 200≤ 12000,解不等式即可;(2)①设区域Ⅱ四周宽度为 a,则由题意( 6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为 5x 元/m 2和 3x 元/m 2,则甲的单价为( 300﹣3x)元/m 2,由 PQ∥AD,可得甲的面积 =矩形 ABCD的面积的一半 =12,设乙的面积为s,则丙的面积为( 12﹣s),由题意 12(300﹣ 3x)+5x?s+3x?(12﹣ s)=4800,解得 s= ,由 0< s< 12,可得 0<< 12,解不等式即可;【解答】解:(1)由题意 300S+( 48﹣S)200≤12000,解得 S≤24.∴ S的最大值为 24.(2)①设区域Ⅱ四周宽度为 a,则由题意( 6﹣2a):(8﹣2a)=2:3,解得 a=1,∴ AB=6﹣ 2a=4, CB=8﹣ 2a=6.②设乙、丙瓷砖单价分别为 5x 元/m 2和 3x 元/m 2,则甲的单价为( 300﹣3x)元/m 2,∵PQ∥AD,∴甲的面积 =矩形 ABCD的面积的一半 =12,设乙的面积为 s,则丙的面积为( 12 ﹣ s),由题意 12(300﹣ 3x)+5x?s+3x?(12﹣ s)=4800,解得 s=,∵0< s<12,∴0<<12,又∵ 300﹣3x>0,综上所述, 50< x<100, 150<3x<300,∴丙瓷砖单价 3x 的范围为 150<3x<300 元/m 2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14 分)如图,已知线段AB=2,MN⊥AB 于点M ,且AM=BM,P 是射线MN 上一动点, E,D 分别是 PA,PB的中点,过点 A,M ,D 的圆与 BP 的另一交点 C (点 C 在线段 BD上),连结 AC,DE.( 1)当∠ APB=28°时,求∠ B 和的度数;(2)求证: AC=AB.(3)在点 P 的运动过程中①当 MP=4 时,取四边形 ACDE一边的两端点和线段 MP 上一点 Q,若以这三点为顶点的三角形是直角三角形,且 Q 为锐角顶点,求所有满足条件的 MQ 的值;②记AP 与圆的另一个交点为 F,将点 F 绕点 D 旋转 90°得到点 G,当点 G 恰好落在MN 上时,连结 AG,CG, DG, EG,直接写出△ ACG和△ DEG的面积之比.【分析】(1)根据三角形 ABP是等腰三角形,可得∠ B 的度数,再连接 MD,根据MD 为△ PAB的中位线,可得∠ MDB=∠APB=28°,进而得到 =2∠MDB=56°;(2)根据∠ BAP=∠ ACB,∠ BAP=∠B,即可得到∠ ACB=∠B,进而得出 AC=AB;(3)①记 MP 与圆的另一个交点为 R,根据 AM2+MR2=AR2=AC2+CR2,即可得到PR= ,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠ QCD=90°时,当∠ QDC=90°时,当∠ AEQ=90°时,即可求得MQ 的值为或或;②先判定△ DEG是等边三角形,再根据GMD=∠ GDM,得到 GM=GD=1,过 C 作CH⊥AB 于 H,由∠ BAC=30°可得 CH= AC=1=MG,即可得到 CG=MH=﹣1,进而得出 S△ACG= CG×CH=,再根据S△DEG=,即可得到△ ACG和△ DEG的面积之比.【解答】解:(1)∵ MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠ B=76°,如图 1,连接 MD,∵MD 为△PAB的中位线,∴ MD∥AP,∴∠ MDB=∠ APB=28°,∴ =2∠ MDB=56°;(2)∵∠ BAC=∠MDC=∠APB,又∵∠ BAP=180°﹣∠ APB﹣∠ B,∠ ACB=180°﹣∠ BAC﹣∠ B,∴∠ BAP=∠ACB,∵∠ BAP=∠B,∴∠ ACB=∠B,∴AC=AB;( 3)①如图 2,记 MP 与圆的另一个交点为R,∵MD 是 Rt△MBP 的中线,∴ DM=DP,∴∠ DPM=∠DMP=∠RCD,∴RC=RP,∵∠ ACR=∠AMR=90°,2 2 2 2 2∴ AM +MR =AR=AC +CR,2 2 2 2∴ 1 +MR =2 +PR,∴12+( 4﹣ PR)2=22+PR2,∴PR= ,∴MR= ,Ⅰ .当∠ ACQ=90时°, AQ 为圆的直径,∴Q 与 R 重合,∴MQ=MR= ;Ⅱ .如图 3,当∠ QCD=90时°,在 Rt△QCP中, PQ=2PR=,∴MQ= ;Ⅲ.如图 4,当∠ QDC=90时°,∵BM=1,MP=4,∴ BP= ,∴ DP= BP=,∵cos∠ MPB= = ,∴ PQ= ,∴ MQ= ;Ⅳ .如图 5,当∠ AEQ=90时°,由对称性可得∠ AEQ=∠ BDQ=90°,∴MQ= ;综上所述, MQ 的值为或或;②△ ACG和△ DEG的面积之比为.理由:如图 6,∵ DM∥ AF,∴ DF=AM=DE=1,又由对称性可得GE=GD,∴△ DEG是等边三角形,∴∠ EDF=90°﹣ 60°=30°,∴∠ DEF=75°=∠MDE,∴∠ GDM=75°﹣60°=15°,∴∠ GMD=∠ PGD﹣∠ GDM=15°,∴ GMD=∠GDM,∴ GM=GD=1,过 C 作 CH⊥AB 于 H,由∠ BAC=30°可得 CH= AC= AB=1=MG, AH=,∴CG=MH= ﹣1,∴S△ACG= CG×CH=,∵S△DEG= ,∴ S△ACG: S△DEG=.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含 30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2017年浙江省温州市中考数学试卷-答案
160 200 . x x5
【提示】设甲每天铺设
x
米,则乙每天铺设(
x
5
)米,根据铺设时间
铺设任务 铺设速度
和甲、乙完成铺设任务
的时间相同列出方程即可.
【考点】由实际问题抽象出分式方程 15.【答案】 4 3
3 【解析】∵四边形 ABCO 是矩形, AB 1 ,∴设 B(m,1) ,∴ OA BC m ,
故选 B. 【提示】根据点的横坐标利用一次函数图象上点的坐标特征,即可求 y1、y2 的值,将其与 0 比较大小后即可
1 / 12
得出结论. 【考点】一次函数图象上点的坐标特征 7.【答案】A 【解析】如图 AC 13 ,作 CB AB ,
∵ cos 12 AB ,∴ AB 12 ,∴ BC AC2 AB2 132 122 5 ,∴小车上升的高度是 5m.故选 A. 13 AC
2 / 12
11.【答案】 m(m 4) 【解析】 m2 4m m(m 4) .
年浙江省温州市中考数学试卷(含解析)
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1ﻩC.0ﻩD.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A.75人B.100人ﻩC.125人 D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A.ﻩB.ﻩC.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4ﻩC.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个 B.6个C.7个D.8个6.(4分)已知点(﹣1,y),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大1小关系是( )A.0<y1<y2ﻩB.y1<0<y2ﻩC.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米ﻩB.6米ﻩC.6.5米ﻩD.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3ﻩC.x1=﹣1,x2=3ﻩD.x1=﹣1,x2=﹣39.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为( )A.12S B.10SﻩC.9SﻩD.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)ﻩB.(﹣6,25) C.(﹣5,24)ﻩD.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m= .12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为. 14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD. (1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB 于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN 上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A.75人ﻩB.100人ﻩC.125人ﻩD.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)某运动会颁奖台如图所示,它的主视图是()A.ﻩB. C. D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)下列选项中的整数,与最接近的是()A.3ﻩB.4C.5 D.6【分析】依据被开方数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个ﻩB.6个 C.7个ﻩD.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2ﻩB.y1<0<y2ﻩC.y1<y2<0ﻩD.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,<0<y2.∴y1故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是( )A.5米ﻩB.6米C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3ﻩB.x1=1,x2=﹣3ﻩC.x1=﹣1,x2=3ﻩD.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为( )A.12SB.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为( )P2A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2c m的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门). (1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交A B于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD 的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)如图,已知线段AB=2,MN ⊥AB 于点M,且AM=BM ,P 是射线MN 上一动点,E,D分别是PA,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点C(点C 在线段BD 上),连结A C,DE. (1)当∠A PB=28°时,求∠B和的度数;(2)求证:AC=AB. (3)在点P 的运动过程中①当MP=4时,取四边形A CDE 一边的两端点和线段MP 上一点Q,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值; ②记A P与圆的另一个交点为F,将点F 绕点D 旋转90°得到点G,当点G 恰好落在M N上时,连结AG ,C G,DG,EG ,直接写出△A CG和△DEG 的面积之比.【分析】(1)根据三角形ABP 是等腰三角形,可得∠B 的度数,再连接MD ,根据MD 为△PAB 的中位线,可得∠MDB=∠APB=28°,进而得到=2∠M DB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B ,即可得到∠ACB=∠B,进而得出AC=AB; (3)①记M P与圆的另一个交点为R ,根据AM 2+MR 2=AR 2=AC 2+CR 2,即可得到PR=,MR=,再根据Q 为直角三角形锐角顶点,分四种情况进行讨论:当∠AC Q=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠A EQ=90°时,即可求得MQ 的值为或或;②先判定△DEG 是等边三角形,再根据GMD=∠GDM ,得到GM=GD =1,过C作CH ⊥AB 于H,由∠BA C=30°可得CH=AC =1=M G,即可得到CG=M H=﹣1,进而得出S△ACG =CG ×CH=,再根据S△DE G=,即可得到△A CG 和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2017浙江温州中考数学试卷(解析版)
2017年浙江省温州市中考数学试卷满分:150分版本:浙教版一、选择题(每小题4分,共10小题,合计40分) 1.(2017浙江温州)-6的相反数是 A .6B .1C .0D .-6答案:A ,解析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数.2.(2017浙江温州)某校学生到校方式情况的统计图如图所示. A .75人 B .100人 C .125人 D .200人答案:D ,解析:数据统计,由题意可计算该校总人数为100÷20%=500人,则乘公共汽车到校的学生有500×40%=200人.3.(2017浙江温州)某运动会颁奖台如图所示,它的主视图是A .B .C .D .答案:C ,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的高度和长度,4. A .3B .4C .5D .6答案:B ,解析:∵4.1<√17<4.2,∴√17最接近的是4.5.(2017浙江温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表A .5个答案:C ,解析:众数的基本概念,一组数据中出现次数最多的数据叫做这组数据的众数.6.(2017浙江温州)已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是 A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2 <0D .y 2<0<y 1答案:B ,解析:∵当x =-1时,得y 1=-5;当x =4时,得y 2=10.∴y 1<0<y 2(第3题)主视方向步行20%骑自行车25%某校学生到校方式情况统计图(第2题)其他15%乘公共汽车40%7.(2017浙江温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是A .5米B .6米C .6.5米D .12米答案:A ,解析:如图示,在直角三角形中,小车水平行驶的距离为13×cos α=12米,则由勾股定理得到其上升的高度为√132−122=5.8.(2017浙江温州)我们知道方程x 2+2x −3=0的解是 x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是 A .x 1=1,x 2=3 B .x 1=1,x 2=-3 C .x 1=-1,x 2=3 D .x 1=-1,x 2=-3答案:D ,解析:由题意可得:2x +1=1或-3,解得x 1=-1,x 2=-3. 9.(2017浙江温州)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为 A .12S B .10S C .9S D .8S 答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =√S ,4个白色的矩形全等,且矩形的长均为√2S ,宽为(√2S −√S ),则直角三角形的短直角边长为:√S .由勾股定理得AB =√BM 2+AM 2=√S +8S =3√S , 所以正方形ABCD 的面积为9S . 10.(2017浙江温州)我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径做90°圆弧P 1P 2,P 2P 3,P 3P 4,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点P 9的坐标 A .(-6,24) B .(-6,25)C .(-5,24)D .(-5,25)答案:B ,解析:找准图形规律,依次可得P 6(-6,-1),P 7(2,-9),P 8(15,4),P 9(-6,25). 二、填空题:(每小题5分,共6小题,合计30分) 11.(2017浙江温州)分解因式m 2+4m =_________. 答案:m (m +4),解析:提公因式法因式分解.P 6M第9题HGFED12.(2017浙江温州)数据1,3,5,12,a 其中整数a 是这组数据中的中位数,则该组数据的平均数是_________. 答案:4.8或5或5.2,解析:中位数指的是,一组按大小顺序排列起来的数据中处于中间位置的数.当有奇数个(如17个)数据时,中位数就是中间那个数(第9个);当有偶数个(如18个)数据时,中位数就是中间那两个数的平均数(第九个和第十个相加除以二).由中位数的性质分类讨论得a =3,则平均数=1+3+3+5+125=4.8; a =4,则平均数=1+3+4+5+125=5; a =5,则平均数=1+3+5+5+125=5.2.13.(2017浙江温州)已知扇形的面积为3π,圆心角为120°,则它的半径为_________.答案:3,解析:设扇形的半径为r ,由扇形的面积公式S =120πr 2360=3π,得r =3.14.(2017浙江温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,己知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方 程:_______.答案:160x=200x +5,解析:分式方程的应用,根据甲乙两人铺设任务的时间相同.15.(2017浙江温州)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA ′B ′D ′与四边形OABD 关于直线OD 对称(点A ′和A ,B 和B ′分别对应),若AB =1,反比例函数y =kx (k ≠0)的图象恰好经过点A ′,B ,则k 的值为______.答案:4√33, 解析:由点B 在反比例函数上且AB =1,可得OA =k , 由对称性质可知OA ′=OA =k ,∠AOA ′=2∠AOD =60° ∴点A ′的坐标为(12k ,√32k ),它在反比例函数上,得:12k ×√32k =k ,∴k =4√33.三、解答题:本大题共8个小题,满分80分. 17.(2017浙江温州)(本小题满分10分) (1)计算:2×(-3)+(−1)2+√8.(2)化简:(1+a )(1-a )+a (a -2)思路分析:实数的混合运算, 解:原式=-6+1+2√2=2√2-5.(2)思路分析:平方差公式,整式的混合运算, 解:原式=1-a 2+a 2−2a =1−2a 18.(2017浙江温州)(本小题满分8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D. (2)当∠B =140°时,求∠BAE 的度数.思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE第18题EDB在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2)由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°. 19.(2017浙江温州)(本小题满分8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事"的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班.小聪、小慧都选择了“数学故事”.己知小聪不在A 班,求他和小慧被分到同一个班的概率(要求列表或画树状图)思路分析:考点条形统计图及列表法或树状图求概率,(1)计算出调查人数中选“数学故事”的比例,然后求总人数中选“数学故事”的人数. (2)通过列表法,列举出所有可能出现的分班情况,求出小聪与小慧分到同一个班的概率.解:(1)选“数学故事”的人数为:480×1815+27+18+36=90(人)(2)列表法:由该表可知,小聪和小慧在同一个班的概率为26=13.20.(2017浙江温州)(本小题满分8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整数的三角形为整点三角形.如图,已知整点A (2,3),B (4,4)请在所给网格区域(含边界)上按要求画整点三角形. (1)在图1中画一个△P A B ,使点P 的横、纵坐标之和等于点A 的横坐标.(2)在图2中画一个△P A B ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.人数(第19题)趣题巧解数学故事魅力数独神奇魔方课程思路分析:考点直角坐标系中点的位置坐标,根据点的横纵坐标的关系分类讨论符合情况的点的个数.解:如图所示.21.(2017浙江温州)(本小题满分10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,⊙O (圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E ,经过点E 做⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D . (1)求证:四边形CDEF 是平行四边形;(2)若BC =3,tan ∠DEF =2,求BG 的值.思路分析:考点平行四边形的判定,切线的性质,圆周角定理及锐角三角比,(1)由切线的性质,圆周角定理判定一组同旁内角∠FEO +∠COE =180°,得到EF ∥CD ,由两组对边平行的四边形判定四边形CDEF 是平行四边形.(2)由平行线的性质,得内错角相等,由等量代换得tan ∠2=CH GH=CHBH =2,在直角三角形中由锐角三角比求出CH =2,BH =1,再由勾股定理求出BG =√2.解:(1)证明:连接OE ∵AC =BC ,∠ACB =90° ∴∠B =45°∴∠COE =2∠B =90° ∵EF 是⊙O 的切线 ∴OE ⊥EF ∴∠FEO =90°∴∠FEO +∠COE =180°(第21题)(第21题)(2)(1)(第20题)∴EF ∥CD 又∵ED ∥A C∴四边形CDEF 是平行四边形. (2)过点G 作GH ⊥BC ,垂足为点H ∵四边形CDEF 是平行四边形 ∴∠DEF =∠1 又∵GH ⊥BC∴∠GHB =∠ACB =90° ∴AC ∥GH ∴∠1=∠2 ∴∠DEF =∠2在Rt △CHG 中,tan ∠2=CH GH=2在Rt △BHG 中,∠B =45° ∴GH =BH ∴tan ∠2=CH GH=CHBH =2 又∵BC =3 ∴CH =2,BH =1在Rt △BHG 中,由勾股定理得BG =√2.22.(2017浙江温州)(本小题满分10分)如图,过抛物线y =14x 2−2x 上一点A 作x 轴的平行线,交抛物线于另 一点B ,交y 轴于点C ,已知点A 的横坐标为-2. (1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D. ①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.思路分析:考点二次函数与一次函数的综合应用,(1)知道抛物线的解析式,求对称轴:直线x =−b2a =4,用待定系数法求出A (-2,5),B (10,5) (2)利用三角形三边关系可知当且仅当点O 、D 、B 三点共线时,BD 取得最小值; 分类讨论点D 的位置,利用待定系数法求出直线PD 的函数表达式. 解:(1)由抛物线的解析式y =14x 2−2x ,得对称轴:直线x =−b 2a=4由题意知点A 的横坐标为-2,代入解析式求得y =14(−2)2−2×(−2)=5,当14x 2−2x =5时,x 1=10,x 2=-2A (-2,5),B (10,5)(2)①连结OD 、OB 、BD ,利用三角形三边关系可得BD ≥OB -OD ,所以当且仅当点O 、D 、B 三点共线时,BD 取得最小值.由题意知OC =OD =5OB =√102+52=5√5,BD =OB -OD =5√5-5 ②(i )点P 在对称轴左侧时,连结OD在Rt △ODN 中,DN =√52−42=3,D (4,3),DM =2;设P (x ,5)在Rt △PMD 中,(4−x)2+22=x 2,得x =52,P (52,5)设直线PD 的函数表达式为y =kx +b ,利用待定系数法 3=4 k + b 得,k =−43 5=52k +bb =253∴直线PD 的函数表达式为y =−43x +253(ii )点P 在对称轴右侧时,如图所示,点D 在x 轴下方,不符合要求,舍去.综上所述,直线PD 的函数表达式为y =−43x +25323.(2017浙江温州)(本小题满分12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域I (阴影部分)和一个环形区域II (空白部分),其中区域I 用甲、乙、丙三种瓷砖铺设.且满足PQ ∥A D .如图所示.(1)若区域I 的三种瓷砖均价为300元/m 2,面积为S (m 2):区域II 的瓷砖均价为200元/m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值.(2)若区域I 满足AB :BC =2:3,区域II 四周宽度相等, ①求A B ,BC 的长.②若甲、乙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5:3.且区域I 的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.思路分析:考点一元一次方程,一元一次不等式及不等式组的应用,(1)根据两区域的瓷砖总价不超过12000,列出一元一次不等式方程求解;(2)根据各个边的关系求出AB =4m ,BC =6m ,再设各个瓷砖的单价,列一元一次不等式组求出丙瓷砖单价的取值范围.解:(1)由题意可得300S +200(6×8-S )≤12000,解得S ≤24, ∴S 的最大值为24(2)①设AB =2x ,则BC =3x ,由题意列方程6-2x =8-3x ,解得x =2, ∴AB =4m ,BC =6m②设乙瓷砖单价为5x 元,则丙瓷砖单价为3x 元,甲瓷砖单价为(300-3x )元.如图所示,PQ ∥AD ,所以S 甲=4×6×12=12m 2,S 乙+S 丙=12m 2.由题意列不等式组 300-3x >03x <4800−12(300−3x )12<5x解得,50<x <100 则150<3x <300∴丙瓷砖单价的取值范围为:150<3x <300.24.(2017浙江温州)(本小题满分14分)如图,已知线段A =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E 、D 分别是P A 、PB 的中点,过点A 、M 、D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC 、DE .(1)当∠APB =28°时,求∠B 和¼CM 的度数. (2)求证:AC =A B.(3)在点P 的运动过程中.(第23题)8m丙乙乙甲甲QP CB①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值. ②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上,连结AG 、CG 、DG 、EG ,直接写出△ACG 与△DEG 的面积比.思路分析:考点圆、等腰三角形、直角三角形、锐角三角比、垂直平分线的性质等知识的综合应用,(1)由垂直平分线的性质得到等腰△P A B ,由三线合一得∠APM =∠BPM =12∠APB =14°,∠B =90°-∠BPM =90°-14°=76°,再利用直角三角形斜边上的中线等于斜边的一半,得∠MDB =∠BAC =2∠DPM =28°,以此求得弧CD 的度数=2∠MDB =56°.(2)由同角的余角相等,得∠ACB =∠B ,AC =AB (3)由垂直分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1)如图1,连结M D . ∵AB ⊥MN ,AM =BM∴PM 垂直平分线段AB∴PA =PB在等腰△P AB 中,∠APB =28°,由三线合一得 ∠APM =∠BPM =12∠APB =14°∴∠B =90°-∠BPM =90°-14°=76° 在Rt △MPB 中,点D 为斜边BP 的中点 ∴DM =DP ∠MPD =∠DMP =14° ∴∠MDB =∠BAC =2∠DPM =28° ∴弧CD 的度数=2∠MDB =56°.(2)由(1)可得∠B =90°-∠BPM =90°-12∠BAC在△ABC 中,∠ACB =180°-∠B -∠BAC =180°-(90°-12∠BAC )-∠BAC =90°-12∠BAC∴∠ACB =∠B ,∴AC =AB.⑶①若要满足题意,则点Q 必为过点A 、C 、E 、D 的垂线与线段MN 的交点,分析图形可得只有过点C 、E 、D 的垂线与线段MN 的交点满足题意. (i )若CQ ⊥CP (如图2点Q 1)AM =BM =1,MP =4,由勾股定理得BP =√12+42=√17 由(1)(2)可得∠BAC =∠AP B , 又∵∠B =∠B ,∴△ABC ∽△PBA ∴AB BC=BPAB,得BC =4√1717.∴CP =13√1717由△PCQ 1∽△PM B ,得CPMP =PQ1PB ,解得PQ 1=134,∴MQ 1=4-PQ 1=34(ii )若QD ⊥BP ,由EP =DP 可知△EPQ 2≌△DPQ 2(如图2点Q 2),∴EQ 2⊥EP . (即过点E 、D 的垂线与线段MN 的交点重合) ∵点D 为线段AP 的中点,且Q 2D ⊥BP ∴Q 2D 垂直平分线段BP ,则Q 2P =Q 2B 设Q 2M =x ,则Q 2B =Q 2P =4-x由勾股定理BM 2+MQ 22=BQ 22, 得12+x 2=(4−x)2,解得x =158(iii )若AC ⊥CQ (如图2点Q 3)∵∠ACQ 3=90°, ∴Q 3A 为该圆的直径 ∴点Q 3为MP 与圆的交点∵∠MAC =∠MQ 3C =2∠MPC ,∠MQ 3C =∠MPC +∠Q 3CP ,∴PQ 3=CQ 3 设MQ 3=x ,则PQ 3=4-x ,AC =AB =2∵AQ 32=AM 2+MQ 32=AC 2+CQ 32,∴12+x 2=22+(4−x)2, 解得x =198综上所述,MQ 的值为34或158或198.③如图3过点E 作AP 的中垂线,交MP 于点K .过点C 作CJ ⊥AB 于点J ,连结AK ,KE ,DM .∵点M 、D 分别为AB 、BP 的中点∴MD 为△ABP 的中位线∴MD ∥AP ,AM =DF又∵AM ∥ED∴四边形MADE 为平行四边形 ∴AM =DE ,∠MDE =∠MAP ,∴DE =DF ∵△GHE ≌△GHD ,∴GE =GD∴GE =GD =DE =DF ,则△GDE 为正三角形,∠GDE =60°∵∠EDF =90°-60°-30°,∴∠DEF =12(180°-∠EDF )=75°∴∠APM =15°,则∠AKM =2∠APM =30°∴MK =√3,AK =KP =2,tan 75°=tan ∠MAP =PM MA =2+√31=2+√3 ∴tan ∠MAP =tan ∠HEP =tan 75°=2+√3,MP =2+√3 ∵EH 为△AMP 的中位线,∴EH =12,GH =√32∴tan ∠HEP =PH EH =2+√3,HP =12(2+√3),∴MG =1 ∵∠MAC =2∠MPA =30°,AM =1,CJ =12AC =12AB =1,∴MI =√33,IG =1-√33,AJ =√3 ∴S △ACG =12IG ×AJ =12×(1-√33)×√3=√3−12,S △GED =12ED ×GH =12×1×√32=√34 ∴S △ACGS △GED √3−12√346−2√33B。
2017年浙江省温州市中考数学试卷含答案解析
浙江省温州市2017年中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6B.1C.0D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3B.4C.5D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC 内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)(2017•温州)﹣6的相反数是()A.6B.1C.0D.﹣6【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【考点】VB:扇形统计图.【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)(2017•温州)某运动会颁奖台如图所示,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017•温州)下列选项中的整数,与最接近的是()A.3B.4C.5D.6【考点】2B:估算无理数的大小.【分析】依据被开放数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)5678人数(人)3152210表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【考点】W5:众数.【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)(2017•温州)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)(2017•温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【考点】A3:一元二次方程的解.【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)(2017•温州)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【考点】D2:规律型:点的坐标.【专题】17:推理填空题.【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)(2017•温州)分解因式:m2+4m=m(m+4).【考点】53:因式分解﹣提公因式法.【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)(2017•温州)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2.【考点】W4:中位数;W1:算术平均数.【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)(2017•温州)已知扇形的面积为3π,圆心角为120°,则它的半径为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【考点】B6:由实际问题抽象出分式方程.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)(2017•温州)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【考点】G6:反比例函数图象上点的坐标特征;LB:矩形的性质.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)(2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【专题】153:代数几何综合题.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP ⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(2017•温州)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【考点】4F:平方差公式;2C:实数的运算;4A:单项式乘多项式.【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)(2017•温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【考点】KD:全等三角形的判定与性质.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】解:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)(2017•温州)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【考点】X6:列表法与树状图法;V5:用样本估计总体;VC:条形统计图.【专题】11:计算题.【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)(2017•温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【考点】N4:作图—应用与设计作图.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【考点】MC:切线的性质;L7:平行四边形的判定与性质;T7:解直角三角形.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∵EF是⊙O的切线,∴∠FEC=∠B=45°,∠FEO=90°,∴∠CEO=45°,∵DE∥CF,∴∠ECD=∠FEC=45°,∴∠EOC=90°,∴EF∥OD,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)(2017•温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式.【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【考点】MR:圆的综合题.【专题】16:压轴题.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C 作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,=CG×CH=,∴S△ACG=,∵S△DEG:S△DEG=.∴S△ACG【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。
2017年温州市中考数学试卷
2017年温州市中考数学试卷一、选择题(共10小题;共50分)1. 的相反数是A. B. C. D.2. 某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有人,则乘公共汽车到校的学生有A. 人B. 人C. 人D. 人3. 某运动会颁奖台如图所示,它的主视图是A. B.C. D.4. 下列选项中的整数,与最接近的是A. B. C. D.5. 温州某企业车间有名工人,某一天他们生产的机器零件个数统计如下表.零件个数个人数人表中表示零件个数的数据中,众数是A. 个B. 个C. 个D. 个6. 已知点,在一次函数的图象上,则,,的大小关系是A. B. C. D.7. 如图,一辆小车沿倾斜角为的斜坡向上行驶米,已知,则小车上升的高度是A. 米B. 米C. 米D. 米8. 我们知道方程的解是,.现给出另一个方程,它的解是A. ,B. ,C. ,D. ,9. 四个全等的直角三角形按图示方式围成正方形,过各较长直角边的中点作垂线,围成面积为的小正方形.已知为较长直角边,,则正方形的面积为A. B. C. D.10. 我们把,,,,,,,,这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径作圆弧,,,得到斐波那契螺旋线,然后顺次连接,,,得到螺旋折线(如图).已知点,,,则该折线上点的坐标为A. B. C. D.二、填空题(共6小题;共30分)11. 分解因式:.12. 数据,,,,,其中整数是这组数据的中位数,则该组数据的平均数是.13. 已知扇形的面积为,圆心角为,则它的半径为.14. 甲、乙工程队分别承接了米,米的管道铺设任务,已知乙比甲每天多铺设米,甲、乙完成铺设任务的时间相同,问甲每天铺设米,根据题意可列出方程:.15. 如图,矩形的边,分别在轴、轴上,点在第一象限,点在边上,且,四边形与四边形关于直线对称(点和,和分别对应).若,反比例函数的图象恰好经过点,,则的值为.16. 小明家的洗手盆上装有一种抬启式水龙头(如图).完全开启后,水流路线呈抛物线,把手端点,出水口和落水点恰好在同一直线上,点到出水管的距离为,洗手盆及水龙头的相关数据如图所示,现用高的圆柱型水杯去接水,若水流所在抛物线经过点和杯子上底面中心,则点到洗手盆内侧的距离为.三、解答题(共8小题;共104分)17. (1)计算:.(2)化简:.18. 如图,在五边形中,,,.(1)求证:.(2)当时,求的度数.19. 为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C 三个班,小聪、小慧都选择了“数学故事”.已知小聪不在A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20. 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点,,请在所给网格区域(含边界)上按要求画整点三角形.(1)在图中画一个,使点的横、纵坐标之和等于点的横坐标.(2)在图画一个,使点,横坐标的平方和等于它们的纵坐标和的倍.21. 如图,在中,,,(圆心在内部)经过,两点,交于点,过点作的切线交于点,延长交于点,作交于点.(1)求证:四边形是平行四边形;(2)若,,求的值.22. 如图,过抛物线上一点作轴的平行线,交抛物线于另一点,交轴于点.已知点的横坐标为.(1)求抛物线的对称轴和点的坐标.(2)在上任取一点,连接,作点关于直线的对称点.①连接,求的最小值.②当点落在抛物线的对称轴上,且在轴上方时,求直线的函数表达式.23. 小黄准备给长,宽的长方形客厅铺设瓷砖,现将其划分成一个长方形区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足,如图所示.(1)若区域Ⅰ的三种瓷砖均价为元,面积为,区域Ⅱ的瓷砖均价为元,且两区域的瓷砖总价不超过元,求的最大值.(2)若区域Ⅰ满足,区域Ⅱ四周宽度相等.①求,的长.②若甲、丙瓷砖单价之和为元,乙、丙瓷砖单价之比为,且区域Ⅰ的三种瓷砖总价为元,求丙瓷砖单价的取值范围.24. 如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点为(点在线段上),连接,.(1)当时,求和的度数.(2)求证:.(3)在点的运动过程中.①当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.②记与圆的另一个交点为,将点绕点旋转得点,当点恰好落在上时,连接,,,,直接写出与的面积之比.答案第一部分1. A2. D3. C4. B5. C6. B7. A8. D9. C 10. B第二部分11.12.13.14.15.16.第三部分17. (1)原式(2)原式=.18. (1),.,.在和中,.(2)由()得,.五边形的内角和为,.19. (1)(人).答:估计该校七年级学生选“数学故事”的人数为人.(2)画树状图如下:共有种等可能的情况,其中小聪和小慧被分在同一个班的有种情况.所以小慧和小聪被分到同一个班.20. (1)如图.(答案不唯一)(2)如图.(答案不唯一)21. (1)连接.如图,,,,.与相切,,,.,四边形是平行四边形.(2)过点作于点.,,.在平行四边形中,,,,.,,.,,.22. (1)抛物线的对称轴是直线.点,关于直线对称,点的横坐标为,点的横坐标为.当时,,点的坐标为.(2)①如图,连接,,由()知点的坐标为,点,关于直线对称,.,,,当点在线段上时,有最小值.②如图,设抛物线的对称轴交轴于点,交于点.,,,,.设,则,,在中,,,.设直线的函数表达式为,将,的坐标值代入,得解得直线的函数表达式为.23. (1)由题意得,,的最大值为.(2)①设,则,由题意得,,,.②设丙瓷砖的单价为元,乙的面积为,由得甲的面积为,,.,,.又,,丙瓷砖单价大于元且小于元.24. (1),,,,,,如图,连接.为的中位线,,,的度数为.(2),,,.,,.(3)①如图2,记与圆的另一个交点为,连接,.是的中线,,,.,,,,,,,,,.1.当时,为圆的直径,与重合,.2.如图3,当时,在中,,,,,,,.3.如图4,当时,,,,,,,.4.如图5,当时,由对称性得,.综上所述,的值为或或.②.。
浙江省温州市2017年中考数学真题试题
主视方向2017年浙江省温州市初中毕业生学业考试(数学试卷)(考试时间:120分钟,满分150分)一、选择题(共10小题,每小题4分,共40分): 1.6−的相反数是( )A .6B .1C .0D .6−2.某校学生到校方式情况的统计图如图所示,若该校步行到校的 学生有100人,则乘公共汽车到校的学生有( ) A .75人 B .100人 C .125人 D .200人 3.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .4.下列选项中的整数,与17最接近的是( ) A .3 B .4 C .5 D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8 人数(人)3152210表中表示零件个数的数据中,众数是( ) A .5个B .6个C .7个D .8个6.已知点(1−,1y ),(4,7)在一次函数32y x =−的图象上,则1y ,2y ,0的大小关系是( )A .120y y <<B .120y y <<C .120y y <<D .210y y << 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是( ) A .5米B .6米C .6.5米D .12米α乘公共 汽车40%步行20%其他15%骑自行车25%(第2题图)8.我们知道方程2230x x +−=的解是11x =,23x =−,现给出另一个方程2(23)2(23)30x x +++−=,它的解是( )A .11x =,23x =B .11x =,23x =−C .11x =− ,23x =D .11x =−,23x =− 9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH ,已知AM 为Rt △ABM 较长直角边,AM=22EF ,则正方形AB CD 的面积为( ) A .12sB .10sC .9sD .8s10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP ,23P P ,34P P ,…得到斐波那契螺旋线,然后顺次连结12PP ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1−,0),3P (0,1−),则该折线上的点9P 的坐标为( )A .(6−,24)B .(6−,25)C .(5−,24)D .(5−,25)DBMAHEFGxyP 6P 5P 2P 4P 3P 1O(第9题图) (第10题图)二、填空题(共6小题,每小题5分,共30分): 11.分解因式:24m m +=_______________.12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__________.13.已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_____________________.15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形O A′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)ky k x=≠的图象恰好经过点 A′,B ,则k 的值为_________.16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为_________cm .yB 'A 'CAO B(第15题图) (第16题图)三、解答题(共8小题,共80分):17.(本题10分)(1)计算:22(3)(1)8⨯−+−+;(2)化简:(1)(1)(2)a a a a +−+−.18.(本题8分)如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD . (1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.ECDAB19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数。
2017年全国中考数学试题-温州中考数学试卷解析
2017年浙江省温州市中考数学试卷满分:150分 版本:浙教版一、选择题(每小题4分,共10小题,合计40分) 1.(2017浙江温州)-6的相反数是 A .6B .1C .0D .-6答案:A ,解析:利用知识点:性质符号相反,绝对值相等的两个数是互为相反数.2.(2017浙江温州)某校学生到校方式情况的统计图如图所示. A .75人 B .100人 C .125人 D .200人答案:D ,解析:数据统计,由题意可计算该校总人数为100÷20%=500人,则乘公共汽车到校的学生有500×40%=200人.3.(2017浙江温州)某运动会颁奖台如图所示,它的主视图是A .B .C .D .答案:C ,解析:主视图:从物体正面看到的平面图形,主视图能反映物体的正立面形状以及物体的4. A .3B .4C .5D .6答案:B ,解析: ∵4.1<√17<4.2, ∴ √17最接近的是4.5.(2017浙江温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表A .5个答案:C ,解析: 众数的基本概念, 一组数据中出现次数最多的数据叫做这组数据的众数.6.(2017浙江温州)已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是A .0<y 1<y 2 B .y 1<0< y 2 C .y 1<y 2 <0 D .y 2<0<y 1(第3题)主视方向步行20%骑自行车25%某校学生到校方式情况统计图(第2题)其他15%乘公共汽车40%答案:B ,解析:∵当x =-1时,得y 1=-5;当x =4时,得y 2=10.∴y 1<0< y 27.(2017浙江温州)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是A .5米B .6米C .6.5米D .12米答案:A ,解析:如图示,在直角三角形中,小车水平行驶的距离为13×cos α =12米,则由勾股定理得到其上升的高度为2−122=5.8.(2017浙江温州)我们知道方程x 2+2x −3=0的解是 x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是 A .x 1=1, x 2=3 B .x 1=1, x 2=-3 C .x 1=-1, x 2=3 D .x 1=-1, x 2=-3答案:D ,解析:由题意可得:2x +1=1或-3,解得x 1=-1, x 2=-3. 9.(2017浙江温州)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为 A .12S B .10S C .9S D .8S 答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =√S , 4个白色的矩形全等,且矩形的长均为√2S ,宽为(√2S −√S ),则直角三角形的短直角边长为:√S .由勾股定理得AB =√BM 2+AM 2=√S +8S =3√S , 所以正方形ABCD 的面积为9S . 10.(2017浙江温州)我们把1,1,2,3,5,8,13,21…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径做90°圆弧P 1P 2,P 2P 3,P 3P 4,…得到斐波那契螺旋线,然后顺次连结P 1P 2,P 2P 3,P 3P 4…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点P 9的坐标 A .(-6,24) B .(-6,25)C .(-5,24)D .(-5,25)P 6M第9题HGFED答案:B ,解析:找准图形规律,依次可得P 6(-6,-1),P 7(2,-9),P 8(15,4),P 9(-6,25), . 二、填空题:(每小题5分,共6小题,合计30分) 11.(2017浙江温州)分解因式m 2+4m =_________. 答案:m (m +4),解析:提公因式法因式分解.12.(2017浙江温州) 数据1,3,5,12,a 其中整数a 是这组数据中的中位数,则该组数据的平均数是_________.答案:4.8或5或5.2,解析:中位数指的是,一组按大小顺序排列起来的数据中处于中间位置的数.当有奇数个(如17个)数据时,中位数就是中间那个数(第9个);当有偶数个(如18个)数据时,中位数就是中间那两个数的平均数(第九个和第十个相加除以二).由中位数的性质分类讨论得a =3, 则平均数=1+3+3+5+125=4.8; a =4, 则平均数=1+3+4+5+125=5; a =5, 则平均数=1+3+5+5+125=5.2.13.(2017浙江温州)已知扇形的面积为3π,圆心角为120°,则它的半径为_________.答案:3,解析:设扇形的半径为r ,由扇形的面积公式S =120πr 2360=3π,得r =3.14.(2017浙江温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,己知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_______.答案:160x=200x +5,解析:分式方程的应用,根据甲乙两人铺设任务的时间相同.15.(2017浙江温州)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA ′B ′D ′与四边形OABD 关于直线OD 对称(点A ′和A ,B 和B ′分别对应),若AB =1,反比例函数y =kx (k ≠0)的图象恰好经过点A ′,B ,则k 的值为______.答案:4√33, 解析:由点B 在反比例函数上且AB =1,可得OA =k , 由对称性质可知OA ′=OA =k ,∠AOA ′=2∠AOD =60° ∴点A ′的坐标为( 12k ,√32k ), 它在反比例函数上,得: 12k ×√32k =k ,∴k =4√3316.(2017浙江温州)小明家的洗手盆上装有一种拾启式水龙头,完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图所示.现用高10.2cm 的圆柱形水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为________cm .答案:24-8√2,解析:以O 为坐标原点,水平向右为x 轴正方向,竖直向上为y 轴正方向建立平面直角坐标系.得到A (8,36), B (12,24), D (0,24), 利用待定系数法求得直线AB 的解析式为:y =3x +60,∴C (20,0).过B , D , C 三点的抛物线解析式为:y =- 320(x +8)(x -20),当y =10.2时,得x E =6+8√2, ∴ EH =30-(6+8√2)= 24-8√2三、解答题:本大题共8个小题,满分80分. 17.(2017浙江温州)(本小题满分10分) (1)计算:2×(-3)+(−1)2+√8. (2)化简:(1+a )(1-a )+a (a -2) (1)思路分析:实数的混合运算,解:原式=-6+1+2√2=2√2-5.(2)思路分析:平方差公式,整式的混合运算, 解:原式=1-a 2+a 2−2a =1−2a 18.(2017浙江温州)(本小题满分8分)如图,在五边形ABCDE 中, ∠BCD =∠EDC =90°,BC =ED ,AC =A D .(1)求证:△ABC ≌△AE D.(2)当∠B =140°时,求∠BAE 的度数.思路分析:(1)根据边角边判定△ABC 与△AED 三角形全等;(2)由三角形全等的性质得∠B =∠E =140°,五边形内角和为(5-2)×180°=540°,再求∠BAE 的度数.解:(1)∵AC =AD∴∠ACD =∠ADC又∵∠BCD =∠EDC =90°∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠ADE 在△ABC 和△AED 中 BC =ED∠BCA =∠ADE AC =AD∴△ABC ≌△AED (SAS ).(2) 由△ABC ≌△AED 得∠B =∠E =140°,五边形内角和为(5-2)×180°=540° ∴∠BAE =540°-2×140°-2×90°=80°. 19.(2017浙江温州)(本小题满分8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事"的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班.小 聪、小慧都选择了“数学故事”.己知小聪不在A 班,求他和小慧被分到同一个班的概率(要求列表或画树状图)思路分析:考点条形统计图及列表法或树状图求概率,(1)计算出调查人数中选“数学故事”的比例,然后求总人数中选“数学故事”的人数. (2)通过列表法,列举出所有可能出现的分班情况,求出小聪与小慧分到同一个班的概率.解:(1)选“数学故事”的人数为:480×1815+27+18+36=90(人)(2)列表法:第18题EDB(第19题)趣题巧解数学故事魅力数独神奇魔方课程由该表可知,小聪和小慧在同一个班的概率为26=1320.(2017浙江温州)(本小题满分8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整数的三角形为整点三角形.如图,已知整点A (2,3), B (4,4)请在所给网格区域(含边界)上按要求画整点三角形. (1)在图1中画一个△P A B ,使点P 的横、纵坐标之和等于点A 的横坐标.(2)在图2中画一个△P A B ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.思路分析:考点直角坐标系中点的位置坐标,根据点的横纵坐标的关系分类讨论符合情况的点的个数.解:.21.(2017浙江温州)(本小题满分10分)如图,在△ABC 中,AC =BC ,∠ACB =90°, ⊙O (圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E ,经过点E 做⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D .(1)求证:四边形CDEF 是平行四边形; (2)若BC =3,tan ∠DEF =2,求BG 的值.(2)(1)(第20题)思路分析:考点平行四边形的判定,切线的性质,圆周角定理及锐角三角比,(1)由切线的性质,圆周角定理判定一组同旁内角∠FEO +∠COE =180°,得到EF ∥CD ,由两组对边平行的四边形判定四边形CDEF 是平行四边形.(2)由平行线的性质,得内错角相等,由等量代换得tan ∠2=CH GH=CHBH =2,在直角三角形中由锐角三角比求出CH =2,BH =1,再由勾股定理求出BG =√2.解:(1)证明:连接OE ∵ AC =BC , ∠ACB =90° ∴ ∠B =45° ∴∠COE =2∠B =90° ∵ EF 是⊙O 的切线 ∴OE ⊥EF ∴∠FEO =90°∴∠FEO +∠COE =180° ∴EF ∥CD 又∵ED ∥A C∴四边形CDEF 是平行四边形. (2)过点G 作GH ⊥BC ,垂足为点H ∵四边形CDEF 是平行四边形 ∴∠DEF =∠1 又∵GH ⊥BC∴∠GHB =∠ACB =90° ∴AC ∥GH ∴∠1=∠2 ∴∠DEF =∠2在Rt △CHG 中,tan ∠2=CH GH=2在Rt △BHG 中,∠B =45°(第21题)(第21题)∴ GH =BH ∴tan ∠2=CH GH=CHBH =2 又∵BC =3 ∴ CH =2,BH =1在Rt △BHG 中,由勾股定理得BG =√2.22.(2017浙江温州)(本小题满分10分)如图,过抛物线y =14x 2−2x 上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为-2. (1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D. ①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.思路分析:考点二次函数与一次函数的综合应用, (1)知道抛物线的解析式,求对称轴:直线x =−b 2a=4,用待定系数法求出A (-2, 5),B(10, 5)(2)利用三角形三边关系可知当且仅当点O 、D 、B 三点共线时,BD 取得最小值; 分类讨论点D 的位置,利用待定系数法求出直线PD 的函数表达式.解:(1)由抛物线的解析式y =14x 2−2x , 得对称轴:直线x =−b 2a=4由题意知点A 的横坐标为-2,代入解析式求得y =14(−2)2−2×(−2)=5,当 14x 2−2x =5时, x 1=10, x 2=-2A (-2, 5),B (10, 5)(2)①连结OD 、OB 、BD ,利用三角形三边关系可得BD ≥OB -OD ,所以当且仅当点O 、D 、B 三点共线时,BD 取得最小值. 由题意知OC =OD =5OB =√102+52=5√5, BD = OB - OD = 5√5-5②(i ) 点P 在对称轴左侧时,连结OD在Rt △ODN 中,DN =√52−42=3,D (4,3), DM =2;设P (x ,5) 在Rt △PMD 中,(4−x)2+22=x 2, 得x = 52,P (52,5)设直线PD 的函数表达式为y =kx +b ,利用待定系数法 3=4 k + b 得, k =−435=52k +b b =253∴直线PD 的函数表达式为y =−43x +253(ii ) 点P 在对称轴右侧时,如图所示,点D 在x 轴下方,不符合要求,舍去.综上所述,直线PD 的函数表达式为y =−43x +25323.(2017浙江温州)(本小题满分12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域I (阴影部分)和一个环形区域II (空白部分),其中区域I 用甲、乙、丙三种瓷砖铺设.且满足PQ ∥A D .如图所示.(1)若区域I 的三种瓷砖均价为300元/m 2,面积为S (m 2):区域II 的瓷砖均价为200元/m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值.(2)若区域I 满足AB :BC =2:3,区域II 四周宽度相等, ①求A B ,BC 的长.②若甲、乙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5:3.且区域I 的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.思路分析:考点一元一次方程,一元一次不等式及不等式组的应用,(1)根据两区域的瓷砖总价不超过12000,列出一元一次不等式方程求解;(2)根据各个边的关系求出AB =4m , BC =6m ,再设各个瓷砖的单价,列一元一次不等式组求出丙瓷砖单价的取值范围.解:(1)由题意可得300S +200(6×8-S )≤12000,解得S ≤24, ∴S 的最大值为24(2)①设AB =2x ,则BC =3x ,由题意列方程6-2x =8-3x ,解得x =2, ∴AB =4m , BC =6m②设乙瓷砖单价为5x 元,则丙瓷砖单价为3x 元,甲瓷砖单价为(300-3x )元.如图所示,PQ ∥AD ,所以S 甲=4×6×12=12m 2 , S 乙+S 丙=12 m 2.由题意列不等式组 300-3x >03x <4800−12(300−3x )12<5x解得, 50 <x <100 则 150 <3x <300∴丙瓷砖单价的取值范围为:150 <3x <300.24.(2017浙江温州)(本小题满分14分)如图,已知线段A =2, MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E 、D 分别是P A 、PB 的中点,过点A 、M 、D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC 、DE .(1)当∠APB =28°时,求∠B 和CM 的度数. (2)求证:AC =A B.(3)在点P 的运动过程中.(第23题)6m8m丙乙乙甲甲QP CB①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值.②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G , 当点G 恰好落在MN 上,连结AG 、CG 、DG 、EG ,直接写出△ACG 与△DEG 的面积比.思路分析:考点圆、等腰三角形、直角三角形、锐角三角比、垂直平分线的性质等知识的综合应用,(1) 由垂直平分线的性质得到等腰△P A B ,由三线合一得 ∠APM =∠BPM = 12∠APB =14°,∠B =90°-∠BPM =90°-14°= 76°,再利用直角三角形斜边上的中线等于斜边的一半,得∠MDB =∠BAC =2∠DPM =28°,以此求得弧CD 的度数=2∠MDB =56°.(2)由同角的余角相等,得 ∠ACB =∠B ,AC =AB(3)由垂直分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1) 如图1,连结M D . ∵AB ⊥MN ,AM =BM∴PM 垂直平分线段AB∴PA =PB在等腰△P AB 中,∠APB =28°,由三线合一得 ∠APM =∠BPM = 12∠APB =14°∴∠B =90°-∠BPM =90°-14°= 76° 在Rt △MPB 中,点D 为斜边BP 的中点 ∴DM =DP ∠MPD =∠DMP =14° ∴∠MDB =∠BAC =2∠DPM =28° ∴弧CD 的度数=2∠MDB =56°.(2)由(1)可得∠B =90°-∠BPM =90°-12∠BAC 在△ABC 中,∠ACB =180°-∠B -∠BAC=180°-(90°- 12∠BAC )-∠BAC =90°- 12∠BAC∴∠ACB =∠B ∴AC =AB⑶①若要满足题意,则点Q 必为过点A 、C 、E 、D 的垂线与线段MN 的交点,分析图形可得只有过点C 、E 、D 的垂线与线段MN 的交点满足题意. (i )若CQ ⊥CP (如图2点Q 1)AM =BM =1, MP =4,由勾股定理得BP =√12+42√17由(1)(2)可得∠BAC =∠AP B ,又∵∠B =∠B∴△ABC ∽△PBA ∴AB BC=BPAB,得BC = 4√1717. ∴CP =13√1717由△PCQ 1∽△PM B , 得CPMP = PQ1PB ,解得PQ 1=4-PQ 1= 34(ii )若QD ⊥BP ,由EP =DP 可知△EPQ 2≌△DPQ 2(如图2点Q 2),∴ EQ 2⊥EP . (即过点E 、D 的垂线与线段MN 的交点重合)∵ 点D 为线段AP 的中点,且Q 2D ⊥BP ∴Q 2D 垂直平分线段BP ,则Q 2P =Q 2B 设Q 2M =x ,则Q 2B =Q 2P =4-x由勾股定理BM 2+MQ 22=BQ 22, 得12+x 2=(4−x)2,解得x =158(iii )若AC ⊥CQ (如图2点Q 3)∵∠ACQ 3=90°, ∴Q 3A 为该圆的直径 ∴点Q 3为MP 与圆的交点∵∠MAC =∠MQ 3C =2∠MPC , ∠MQ 3C =∠MPC +∠Q 3CP ∴PQ 3= CQ 3设MQ 3=x ,则PQ 3=4-x ,AC =AB =2∵AQ 32=AM 2+MQ 32=AC 2+CQ 32∴12+x 2=22+(4−x)2, 解得x = 198综上所述,MQ 的值为 34或158或198.③如图3过点E 作AP 的中垂线,交MP 于点K .过点C 作CJ ⊥AB 于点J ,连结AK ,KE∵点M 、D 分别为AB 、BP 的中点 ∴MD 为△ABP 的中位线 ∴MD ∥AP ,AM =DF 又∵ AM ∥ED∴四边形MADE 为平行四边形 ∴AM =DE ,∠MDE =∠MAP ∴DE =DF ∵△GHE ≌△GHD , ∴ GE =GD∴GE =GD =DE =DF ,则△GDE 为正三角形,∠GDE =60°∵∠EDF =90°-60°-30°∴∠DEF = 12(180°-∠EDF )=75° ∴∠APM =15°,则∠AKM =2∠APM =30°∴MK =√3, AK =KP =2, tan 75°= tan ∠MAP =PM MA=2+√31=2+√3∴tan ∠MAP = tan ∠HEP = tan 75°=2+√3,MP =2+√3∵EH 为△AMP 的中位线,∴EH = 12, GH =√32∴tan ∠HEP = PHEH =2+√3, HP = 12(2+√3) ,∴ MG =1 ∵∠MAC =2∠MPA =30°,AM =1,CJ = 12AC = 12AB =1 ∴MI = √33, IG =1- √33, AJ =√3 ∴S △ACG = 12IG ×AJ = 12×(1- √33)×√3= √3−12S △GED = 12ED ×GH = 12×1×√32=√34∴S △ACG S △GED√3−12√46−2√33B。
2017年浙江省初中毕业升学考试(温州市卷)数学试卷及答案
2017年浙江省初中毕业升学考试(温州市及答案)数学试题卷姓名: 准考证号: 亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题. 祝你成功!卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.-6的相反数是( ▲ )A .6B .1C .0D .-62.某校学生到校方式情况的统计图如图所示.若该校步行到校的学生有100人,则乘公共汽车到校的学生有( ▲ ) A .75人 B .100人 C .125人 D .200人3.某运动会颁奖台如图所示,它的主视图是( ▲ )4.下列选项中的整数,与17最接近的是( ▲ )A .3B .4C .5D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表.表中表示零件个数的数据中,众数是( ▲ )A .5个B .6个C .7个D .8个6.已知点(-1,y 1),(4,y 2)在一次函数y =3x -2的图象上,则y 1,y 2,0的大小关系是( ▲ ) A .0<y 1<y 2 B .y 1<0<y 2 C .y 1<y 2<0 D . y 2<0<y 1 7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是( ▲ ) A .5米 B .6米 C .6.5米 D .12米零件个数(个) 5 6 7 8人数(人) 3 15 22 10主视方向(第3题) (第7题)A BC D某校学生到校方式情况统计图(第2题)骑自行车25% 其他15% 步行 20%乘公共汽 车40%8.我们知道方程2230x x +-=的解是1213x x ==-,.现给出另一个方程2(2+3)2(2+3)30x x +-=,它的解是( ▲ )A .121,3x x ==B .121,3x x ==-C .121,3x x =-=D .121,3x x =-=- 9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .已知AM 为Rt △ABM 较长直角边,AM =22EF ,则正方形ABCD 的面积为( ▲ ) A .12SB .10SC .9SD .8S 10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列.为了进一步研究,依次以这列数为半径作90°圆弧¼12PP ,¼23P P ,¼34P P ,…得到斐波那契螺旋线,然后顺次连结12PP ,23P P ,34P P ,…得到螺旋折线(如图).已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上点9P 的坐标为( ▲ ) A .(-6,24) B .(-6,25) C .(-5,24) D .(-5,25) 卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:24m m += ▲ .12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是 ▲ . 13.已知扇形的面积为3π,圆心角为120°,则它的半径为 ▲ . 14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程: ▲ .15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC上,且∠AOD =30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应).若AB =1,反比例函数ky x=(k ≠0)的图象恰好经过点A ′,B ,则k 的值为 ▲ .16.小明家的洗手盆上装有一种抬启式水龙头(如图1).完全开启后,水流路线呈抛物线,把手端点A 、出水口B 和落水点C 恰好在同一直线上,点A 到出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为 ▲ cm .x yD A'B'B O A C(第15题) (第9题)(第16题)图1 图2 单位:cm141261030H E C AB D (第10题)xyP 3P 2OP 1P 6P 4P 5三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:22(3)(1)⨯-+-(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD =∠EDC =90°,BC =ED ,AC =AD . (1)求证:△ABC ≌△AED .(2)当∠B =140°时,求∠BAE 的度数.19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门). (1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班,小聪、小慧都选择了“数学故事”.已知小聪不在A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A (2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△P AB ,使点P 的横、纵坐标之和等于点A 的横坐标. (2)在图2中画一个△P AB ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.注:图1,图2在答题纸上.21.(本题10分)如图,在△ABC 中,AC =BC ,∠ACB =90°,⊙O (圆心O 在△ABC 内部)经过B ,C 两点,交AB 于点E ,过点E 作⊙O 的切线交AC 于点F ,延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D .(1)求证:四边形CDEF 是平行四边形. (2)若BC =3,tan ∠DEF =2,求BG 的值.B(第18题)(第20题)(第19题) 某校七年级部分学生选课巧解故事数独魔方人数22.(本题10分)如图,过抛物线2124y x x =-上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C .已知点A 的横坐标为-2.(1)求抛物线的对称轴和点B 的坐标.(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D .①连结BD ,求BD 的最小值.②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.23.(本题12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ ∥AD ,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/ m 2,面积为S (m 2),区域Ⅱ的瓷砖均价为200元/ m 2,且两区域的瓷砖总价不超过12000元,求S 的最大值. (2)若区域Ⅰ满足AB ﹕BC =2﹕3,区域Ⅱ四周宽度相等.①求AB ,BC 的长.②若甲、丙瓷砖单价之和为300元/m 2,乙、丙瓷砖单价之比为5﹕3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(本题14分)如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM .P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和¼CM的度数. (2)求证:AC =AB .(3)在点P 的运动过程中.①当4MP =时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值. ②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上时,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积之比.(第24题) NC DEABM P (第23题) (第22题)xyDA BC OP2017年浙江省初中毕业升学考试(温州市卷)数学参考答案和评分标准一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分)11.)4(+m m 12.245或5或265 13.3 14.1602005x x =+ 15.334 16.2824-三、解答题(本题有8小题,共80分) 17.(本题10分)解 (1)原式=61-++5=-+ (5分)(2)原式=2212a a a -+-12.a =- (5分)18.(本题8分)(1)证明 ∵AC =AD ,∴∠ACD =∠ADC .∵∠BCD =∠EDC =90°, ∴∠ACB =∠ADE .∵BC =ED ,∴△ABC ≌△AED (SAS ). (4分)(2)解 由(1)得△ABC ≌△AED ,∴∠B =∠E =140°.∵五边形ABCDE 的内角和为540°,∴∠BAE=()=︒+︒⨯-︒90140254080°. (4分) 19.(本题8分)解 (1)903618271518480=+++⨯(人).答:估计该校七年级学生选“数学故事”的人数为90人. (4分)(2)画树状图如下:∴1.3P =(同班) (4分) 20.(本题8分)解 (1)如图1或图2.(4分) (2)如图3或图4.(4分)A B CB C A CB 小慧小聪(第20题)21.(本题 10分)解 (1)连结OE .∵AC=BC ,∠ACB =90°,∴∠B =45°,∴∠COE =90°.∵EF 与⊙O 相切, ∴∠FEO =90°, ∴∠COE +∠FEO =180°,∴EF ∥CO . ∵DE ∥CF ,∴四边形CDEF 是平行四边形. (5分)(2)过点G 作GH ⊥CB 于点H .∵∠ACB =90°, ∴AC ∥GH ,∴∠FCD =∠CGH .在□CDEF 中,∠DEF =∠FCD ,∴∠DEF =∠CGH , ∴tan ∠CGH =tan ∠DEF =2,∴CH GH=2.∵∠B =45°,∴GH =BH ,∴CH =2BH .∵BC =3,∴BH =GH =1,∴BG(5分)22.(本题10分)解 (1)对称轴是直线=2b x a-2124-=-⨯=4. ∵点A ,B 关于直线x =4对称,点A 的横坐标为-2, ∴点B 的横坐标为10. 当x =10时,y =5,∴点B 的坐标为(10,5).(4分)(2)①如图1,连结OD ,OB . ∵点C ,D关于直线OP 对称, ∴OD =OC =5. ∵OD +BD ≥OB ,∴BD ≥OB -OD 5=-, ∴当点D 在线段OB 上时,BD 有最小值5. (2分)②如图2,设抛物线的对称轴交x 轴于点F ,交BC 于点H . ∵ OD =5,OF =4 ,∴DF =3, ∴D (4,3),DH =HF -DF =2. 设CP =a ,则PD =PC =a ,PH =4-a , 在Rt △PHD 中,(4-a )2+22=a 2, ∴a =52,∴5 52P (,).设直线PD 的函数表达式为 y =kx +b (k ≠0),∴5=524=3.k b k b ⎧+⎪⎨⎪+⎩, 解得4325.3k b ⎧=-⎪⎪⎨⎪=⎪⎩, (第22题) 图2 图1∴直线PD 的函数表达式为425.33y x =-+ (4分)23.(本题12 分)解 (1)由题意得3002004812000S S +-()≤,∴S ≤24,∴S 的最大值为24. (4分) (2)①设AB =2a (m ),则BC =3a (m ),由题意得6-2a =8-3a ,∴a =2,∴AB =4m ,BC =6m . (4分)②解法一:设丙瓷砖的单价为3x 元/m 2,乙的面积为S (m 2).由PQ ∥AD 得甲的面积为12m 2,∴()()12300353124800x xS x S -++-=,∴600.x S= ∵012S <<,∴50x >,∴3150x >.又∵3300x <,∴1503300x <<,∴丙瓷砖单价大于150元/m 2且小于300元/m 2. (4分)解法二:设丙瓷砖的单价为x 元/m 2,丙的面积为S (m 2). 由题意得()()5123001248003x x S xS -+-+=,∴180012x S=-.∵012S <<,∴150x >.又∵300x <,∴150300x <<. 24.(本题14分)解 (1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B . ∵∠APB =28°,∴∠B =76°.如图1,连结MD .∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°, ∴¼m CM 2∠MDB =56°. (4分)(2)∵∠BAC =∠MDC =∠APB ,又 ∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB . ∵∠BAP =∠B , ∴∠B =∠ACB , ∴AC =AB . (4分) (3)①如图2,记MP 与圆的另一个交点为R .∵MD 是Rt △MBP 的中线, ∴DM =DP ,∴∠DPM =∠DMP =∠RCD ,∴RC =RP . 图1∵∠ACR =∠AMR =90°,∴22222AM MR AR AC CR +==+. ∴22221+=2+MR PR ,∴22221+=2+PR PR (4-),∴138PR =,∴MR =198.Ⅰ.当∠ACQ =90°时,AQ 为圆的直径,∴Q 与R 重合,∴MQ =MR =198. Ⅱ.如图3,当QCD ∠=90°时,在Rt △QCP 中,1324PQ PR ==, ∴34MQ =. Ⅲ.如图4,当QDC ∠=90°时,∵BM=1,MP=4,∴,∴DP = ∵cos MP DPMPB PB PQ∠==, ∴178PQ =,∴158MQ =.Ⅳ.如图5,当AEQ ∠=90°时, 由对称性得∠AEQ =∠BDQ =90°, ∴158MQ =.综上所述,MQ 的值为198或34或158. (4分)(2分)提示:如图6,∵ DM ∥AF ,∴DF=AM=DE =1,可得△DEG 为正三角形. 易得∠GMD =∠GDM =15°,得MG=DG =1. 作CH ⊥AB 于点H ,由∠BAC =30°得CH =1=MG ,CG=MH -1,∴S △ACG∵S △DEG ,∴S △ACG ﹕S △DEG图5图3图6 (第24题)。
〖真题〗浙江省温州市数学中考试卷〖解析版〗
2017年浙江省温州市中考数学试卷一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣62.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()<A.75人B.100人C.125人D.200人3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.65.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:5678,零件个数(个)10人数(人)315》22表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y17.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是().A.5米 B.6米 C.米D.12米8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3 9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为():A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m=.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米设甲每天铺设x米,根据题意可列出方程:.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD 对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.&16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E 到洗手盆内侧的距离EH为cm.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.)(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.;(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO 交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.>22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.-(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.}(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2017年浙江省温州市中考数学试卷参考答案与试题解析-一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【解答】解:﹣6的相反数是6,故选:A.2.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()|A.75人B.100人C.125人D.200人【解答】解:所有学生人数为100÷20%=500(人);所以乘公共汽车的学生人数为500×40%=200(人).故选D.3.(4分)某运动会颁奖台如图所示,它的主视图是()}A. B.C.D.【解答】解:从正面看,故选:C.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<,∴4<<,@∴与最接近的是4.故选:B.5.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个)567|8人数(人)3152210表中表示零件个数的数据中,众数是()A.5个 B.6个 C.7个 D.8个,【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,【∴y1<0<y2.故选B.7.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米 B.6米 C.米D.12米【解答】解:如图AC=13,作CB⊥AB,-∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5m.故选A.8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3!【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S|【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,/故选C.10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主视方向2017年浙江省温州市初中毕业生学业考试 数学试题卷 一、选择题(共10小题,每小题4分,共40分)1.6-的相反数是( )A .6B .1C .0D .6-2.某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( )A .75人B .100人C .125人D .200人乘公共汽车40%步行20%其他15%骑自行车25%3.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .4.下列选项中的整数,与17最接近的是( )A .3B .4C .5D .65.温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是( )A .5个B .6个C .7个D .8个6.已知点(1-,1y ),(4,y2)在一次函数32y x =-的图象上,则1y ,2y ,0的大小关系是() A .120y y << B .120y y << C .120y y << D .210y y <<7.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知12cos 13α=,则小车上升的高度是()A .5米B .6米C .6.5米D .12米α 8.我们知道方程2230x x +-=的解是11x =,23x =-,现给出另一个方程2(23)2(23)30x x +++-=,它的解是( )A .11x =,23x =B .11x =,23x =-C .11x =- ,23x =D .11x =-,23x =-9.四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH ,已知AM 为Rt △ABM 较长直角边,AM=22EF ,则正方形AB CD 的面积为( ) DB M AH EF GA .12sB .10sC .9sD .8s10.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧12PP ,23P P ,34P P ,…得到斐波那契螺旋线,然后顺次连结12P P ,23P P ,34P P ,…得到螺旋折线(如图),已知点1P (0,1),2P (1-,0),3P (0,1-),则该折线上的点9P 的坐标为( )x yP 6P 5P 2P 4P 3P 1OA .(6-,24)B .(6-,25)C .(5-,24)D .(5-,25) 二、填空题(共6小题,每小题5分,共30分):11.分解因式:24m m +=_______________.12.数据1,3,5,12,a ,其中整数a 是这组数据的中位数,则该组数据的平均数是__________.13.已知扇形的面积为3π,圆心角为120°,则它的半径为________.14.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:_____________________.15.如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA ′B ′D 与四边形OABD 关于直线OD 对称(点A ′和A ,B ′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点 A ′,B ,则k 的值为_________. y B 'A 'C A O B第15题图 第16题图16.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同一直线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点D 和杯子上底面中心E ,则点E 到洗手盆内侧的距离EH 为_________cm .三、解答题(共8小题,共80分):17.(本题10分)(1)计算:22(3)(1)8⨯-+-+;(2)化简:(1)(1)(2)a a a a +-+-.18.(本题8分)如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.EC D B19.(本题8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图,根据该统计图,请估计该校七年级480名学生选“数学故事”的人数。
(2)学校将选“数学故事”的学生分成人数相等的A ,B ,C 三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A 班,求他和小慧被分到同一个班的概率.(要求列表或画树状图) 课程人数1527183610203040神奇魔方魅力数独数学故事趣题巧解某校七年级部分学生选课情况统计图O20.(本题8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A (2,3),B (4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB ,使点P 的横、纵坐标之和等于点A 的横坐标;(2)在图2中画一个△PAB ,使点P ,B 横坐标的平方和等于它们纵坐标和的4倍.x y1234512345B A O x y 1234512345B AO21.(本题10分)如图,在△ABC 中,AC=BC ,∠ACB=90°,⊙O (圆心O 在△ABC 内部)经过B 、C 两点,交AB 于点E ,过点E 作⊙O 的切线交AC 于点F .延长CO 交AB 于点G ,作ED ∥AC 交CG 于点D(1)求证:四边形CDEF 是平行四边形;(2)若BC=3,tan ∠DEF=2,求BG 的值.(图2) (图1)D F EGBAC O22.(本题10分)如图,过抛物线2124y x x =-上一点A 作x 轴的平行线,交抛物线于另一点B ,交y 轴于点C ,已知点A 的横坐标为2-.(1)求抛物线的对称轴和点B 的坐标;(2)在AB 上任取一点P ,连结OP ,作点C 关于直线OP 的对称点D ;①连结BD ,求BD 的最小值;②当点D 落在抛物线的对称轴上,且在x 轴上方时,求直线PD 的函数表达式.xyD BA C O P23.(本题12分)小黄准备给长8m ,宽6m 的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ ∥AD ,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/2m ,面积为S (2m ),区域Ⅱ的瓷砖均价为200/2m ,且两区域的瓷砖总价为不超过12000元,求S 的最大值;(2)若区域Ⅰ满足AB :BC=2:3,区域Ⅱ四周宽度相等①求AB ,BC 的长;②若甲、丙两瓷砖单价之和为300元/2m ,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求两瓷砖单价的取值范围.甲乙丙乙甲8m 6m Q D C ABP24.(本题14分)如图,已知线段AB=2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是PA ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB=28°时,求∠B 和CM 的度数;(2)求证:AC=AB 。
(3)在点P 的运动过程中①当MP=4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得到点G ,当点G 恰好落在MN 上时,连结AG ,CG ,DG ,EG ,直接写出△ACG 和△DEG 的面积之比.NC EDMAB P2017年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,共40分):1.(4分)﹣6的相反数是()A.6 B.1 C.0 D.﹣6【分析】根据相反数的定义求解即可.【解答】解:﹣6的相反数是6,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有()A.75人B.100人C.125人D.200人【分析】由扇形统计图可知,步行人数所占比例,再根据统计表中步行人数是100人,即可求出总人数以及乘公共汽车的人数;【解答】解:所有学生人数为 100÷20%=500(人);所以乘公共汽车的学生人数为 500×40%=200(人).故选D.【点评】此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.3.(4分)某运动会颁奖台如图所示,它的主视图是()A. B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【分析】依据被开方数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.5.(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:零件个数(个) 5 6 7 8人数(人) 3 15 22 10表中表示零件个数的数据中,众数是()A.5个B.6个C.7个D.8个【分析】根据众数的定义,找数据中出现最多的数即可.【解答】解:数字7出现了22次,为出现次数最多的数,故众数为7个,故选C.【点评】本题考查了众数的概念.众数是数据中出现次数最多的数.众数不唯一.6.(4分)已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y1【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.【点评】本题考查了一次函数图象上点的坐标特征,根据点的横坐标利用一次函数图象上点的坐标特征求出y1、y2的值是解题的关键.7.(4分)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米【分析】在Rt△ABC中,先求出AB,再利用勾股定理求出BC即可.【解答】解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC==132﹣122=5,∴小车上升的高度是5m.故选A.【点评】此题主要考查解直角三角形,锐角三角函数,勾股定理等知识,解题的关键是学会构造直角三角形解决问题,属于中考常考题型.8.(4分)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣3【分析】先把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,利用题中的解得到2x+3=1或2x+3=﹣3,然后解两个一元一次方程即可.【解答】解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣3,所以x1=﹣1,x2=﹣3.故选D.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.(4分)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.10.(4分)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选B.【点评】本题考查规律型:点的坐标等知识,解题的关键是理解题意,确定P9的位置.二、填空题(共6小题,每小题5分,共30分):11.(5分)分解因式:m2+4m= m(m+4).【分析】直接提提取公因式m,进而分解因式得出答案.【解答】解:m2+4m=m(m+4).故答案为:m(m+4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(5分)数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是 4.8或5或5.2 .【分析】根据中位数的定义确定整数a的值,由平均数的定义即可得出答案.【解答】解:∵数据1,3,5,12,a的中位数是整数a,∴a=3或a=4或a=5,当a=3时,这组数据的平均数为=4.8,当a=4时,这组数据的平均数为=5,当a=5时,这组数据的平均数为=5.2,故答案为:4.8或5或5.2.【点评】本题主要考查了中位数和平均数,解题的关键是根据中位数的定义确定a的值.13.(5分)已知扇形的面积为3π,圆心角为120°,则它的半径为 3 .【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.【点评】本题考查了扇形面积公式,利用扇形面积公式是解题关键.14.(5分)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【分析】设甲每天铺设x米,则乙每天铺设(x+5)米,根据铺设时间=和甲、乙完成铺设任务的时间相同列出方程即可.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.15.(5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.16.(5分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C (20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.三、解答题(共8小题,共80分):17.(10分)(1)计算:2×(﹣3)+(﹣1)2+;(2)化简:(1+a)(1﹣a)+a(a﹣2).【分析】(1)原式先计算乘方运算,化简二次根式,再计算乘法运算,最后算加减运算即可得到结果.(2)运用平方差公式即可解答.【解答】解:(1)原式=﹣6+1+2=﹣5+2;(2)原式=1﹣a2+a2﹣2a=1﹣2a.【点评】本题考查了平方差公式,实数的运算以及单项式乘多项式.熟记实数运算法则即可解题,属于基础题.18.(8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.19.(8分)为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)【分析】(1)利用样本估计总体,用480乘以样本中选“数学故事”的人数所占的百分比即可估计该校七年级480名学生选“数学故事”的人数;(2)画树状图展示所有6种等可能的结果数,再找出他和小慧被分到同一个班的结果数,然后根据概率公式求解.【解答】解:(1)480×=90,估计该校七年级480名学生选“数学故事”的人数为90人;(2)画树状图为:共有6种等可能的结果数,其中他和小慧被分到同一个班的结果数为2,所以他和小慧被分到同一个班的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.\20.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.【分析】(1)设P(x,y),由题意x+y=2,求出整数解即可解决问题;(2)设P(x,y),由题意x2+42=4(4+y),求出整数解即可解决问题;【解答】解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△PAB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)等,△PAB如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.21.(10分)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB 于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D(1)求证:四边形CDEF是平行四边形;(2)若BC=3,tan∠DEF=2,求BG的值.【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEO=90°,得到EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.【解答】解:(1)连接CE,∵在△ABC中,AC=BC,∠ACB=90°,∴∠B=45°,∴∠COE=2∠B=90°,∵EF是⊙O的切线,∴∠FEO=90°,∴EF∥OC,∵DE∥CF,∴四边形CDEF是平行四边形;(2)过G作GN⊥BC于N,∴△GMB是等腰直角三角形,∴MB=GM,∵四边形CDEF是平行四边形,∴∠FCD=∠FED,∵∠ACD+∠GCB=∠GCB+∠CGM=90°,∴∠CGM=∠ACD,∴∠CGM=∠DEF,∵tan∠DEF=2,∴tan∠CGM==2,∴CM=2GM,∴CM+BM=2GM+GM=3,∴GM=1,∴BG=GM=.【点评】本题考查了切线的性质,平行四边形的判定和性质,等腰直角三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.22.(10分)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.(1)求抛物线的对称轴和点B的坐标;(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;①连结BD,求BD的最小值;②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.【分析】(1)首先确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;【解答】解:(1)由题意A(﹣2,5),对称轴x=﹣=4,∵A、B关于对称轴对称,∴B(10,5).(2)①如图1中,由题意点D在以O为圆心OC为半径的圆上,∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.②如图2中,图2当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,∴DE===3,∴点D的坐标为(4,3).设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,∴x=,∴P(,5),∴直线PD的解析式为y=﹣x+.【点评】本题考查抛物线与X轴的交点、待定系数法、最短问题、勾股定理等知识,解题的关键是熟练掌握二次函数的性质,学会利用辅助圆解决最短问题,属于中考常考题型.23.(12分)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x •(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,又∵300﹣3x>0,综上所述,50<x<100,150<3x<300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.24.(14分)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB 的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴GMD=∠GDM,∴GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.【点评】本题属于圆的综合题,主要考查了等腰三角形的性质,等边三角形的判定与性质,三角形中位线定理,勾股定理,圆周角定理以及解直角三角形的综合应用,解决问题的关键是作辅助线构造直角三角形以及等边三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.。