标准偏差与相对标准偏差
标准差和相对标准偏差意义

标准差和相对标准偏差意义标准差和相对标准偏差是统计学中常用的两个概念,它们在数据分析和比较中起到了重要作用。
本文将对标准差和相对标准偏差的意义进行详细介绍,希望能够帮助读者更好地理解和运用这两个概念。
标准差是衡量一组数据离散程度的指标,它反映了数据的波动程度。
标准差越大,说明数据的离散程度越大,反之则数据的离散程度越小。
标准差的计算公式为,标准差=√(∑(X-μ)²/n),其中X代表每个数据点,μ代表数据的均值,n代表数据的个数。
标准差的意义在于可以帮助我们了解数据的分布情况,从而进行进一步的分析和比较。
相对标准偏差是标准差与均值的比值,它可以用来比较不同数据集的离散程度。
相对标准偏差越大,说明数据的波动相对于均值的比例越大,反之则数据的波动相对于均值的比例越小。
相对标准偏差的计算公式为,相对标准偏差=(标准差/均值)×100%。
相对标准偏差的意义在于可以帮助我们进行跨数据集的比较,从而找出数据的相对波动程度。
标准差和相对标准偏差在实际应用中有着广泛的意义。
首先,在财务分析中,标准差和相对标准偏差可以帮助我们评估投资组合的风险水平,从而进行合理的资产配置。
其次,在生产管理中,标准差和相对标准偏差可以帮助我们评估生产过程的稳定性和一致性,从而进行质量控制和改进。
此外,在市场营销中,标准差和相对标准偏差可以帮助我们评估产品的市场表现和竞争力,从而进行市场定位和策略制定。
总之,标准差和相对标准偏差是重要的统计学概念,它们可以帮助我们更好地理解和分析数据,从而做出科学的决策。
在实际应用中,我们应该根据具体的情况选择合适的指标,并结合其他分析方法进行综合评估,以达到更好的分析效果。
希望本文对读者有所帮助,谢谢阅读!。
标准偏差与相对标准偏差excel

标准偏差与相对标准偏差excel标准偏差与相对标准偏差是在统计学中常用的两个概念,我们可以用Excel进行计算。
标准偏差是衡量一组数据的波动程度的统计量,它表示每个数据值与平均值的偏离程度。
计算标准偏差的公式为:=STDEV.S(A1:A10)其中,A1:A10为数据范围。
Excel中的STDEV.S函数用于计算样本标准偏差,如果要计算总体标准偏差,则需要用STDEV.P函数。
标准偏差的计算结果越小,代表数据的波动程度越小,反之则数据波动程度越大。
标准偏差的单位与数据的单位相同。
相对标准偏差是用标准偏差与平均值作比较,表示标准偏差与平均值之间的比率,用百分数形式表示。
计算相对标准偏差的公式为:=STDEV.S(A1:A10)/AVERAGE(A1:A10)×100%其中,A1:A10为数据范围。
相对标准偏差的计算结果越小,代表数据的精度越高,反之则代表数据的精度不足。
相对标准偏差的单位为百分数。
这里,我们以一个例子来说明如何在Excel中计算标准偏差和相对标准偏差。
例如,假设有一个工厂一周内生产的产品数量如下:100, 120, 110, 130, 115, 105, 125打开Excel表格,将数据依次输入到A列中。
然后,选中B1单元格,输入公式 =AVERAGE(A1:A7)求平均值,得到结果为 114.28。
接着,选中C1单元格,输入公式 =STDEV.S(A1:A7)求标准偏差,得到结果为 9.46。
选中D1单元格,输入公式=C1/B1×100%求相对标准偏差,得到结果为 8.26%。
标准偏差和相对标准偏差是衡量数据精度的常用统计量。
在实际应用中,我们可以用Excel等软件来方便地计算它们,从而更加准确地进行数据分析和判断。
标准偏差与相对标准偏差

标准偏差标准偏差(也称标准离差或均方根差)是反映一组测量数据的。
是指结果在某一个时段内误差上下波动的幅度。
是的重要参数之一。
是测量变动的统计测算法。
它通常不用作独立的指标而与其它指标配合使用。
标准偏差在、、等领域中均得到了广泛的应用。
因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。
然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按计算。
样本标准差的表示公式数学表达式:•S-标准偏差(%)•n-试样总数或测量次数,一般n值不应少于20-30个•i-物料中某成分的各次测量值,1~n;标准偏差的使用方法•在价格变化剧烈时,该指标值通常很高。
•如果价格保持平稳,这个指标值不高。
•在价格发生剧烈的上涨/下降之前,该指标值总是很低。
标准偏差的计算步骤标准偏差的计算步骤是:步骤一、(每个样本数据-全部数据之平均值)2。
步骤二、把步骤一所得的各个数值相加。
步骤三、把步骤二的结果除以(n - 1)(“n”指)。
步骤四、从步骤三所得的数值之平方根就是的标准偏差。
六个计算标准偏差的公式标准偏差的理论计算公式设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。
令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i Xσ2 = l2X……σn = l n X我们定义标准偏差(也称)σ为(1)由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—贝塞尔公式由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值来代表真值。
理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。
于是我们用测得值li与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即设一组等精度测量值为l1、l2、……l n则……通过数学推导可得真差σ与剩余误差V的关系为将上式代入式(1)有(2)式(2)就是着名的贝塞尔公式(Bessel)。
标准偏差与相对标准偏差公式

标准偏差数学表达式:∙S-标准偏差(%)∙n-试样总数或测量次数,一般n值不应少于20-30个∙i-物料中某成分的各次测量值,1~n;标准偏差的使用方法六个计算标准偏差的公式[1]标准偏差的理论计算公式设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。
令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i ? Xσ2 = l2 ? X……σn = l n ? X我们定义标准偏差(也称标准差)σ为(1)由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—贝塞尔公式由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值来代表真值。
理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。
于是我们用测得值li与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即设一组等精度测量值为l1、l2、……l n则……通过数学推导可得真差σ与剩余误差V的关系为将上式代入式(1)有(2)式(2)就是着名的贝塞尔公式(Bessel)。
它用于有限次测量次数时标准偏差的计算。
由于当时,,可见贝塞尔公式与σ的定义式(1)是完全一致的。
应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。
它不是总体标准偏差σ。
因此, 我们称式(2)为标准偏差σ的常用估计。
为了强调这一点, 我们将σ的估计值用“S ” 表示。
于是, 将式(2)改写为(2')在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有于是, 式(2')可写为(2")按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺, 即可。
标准偏差σ的无偏估计数理统计中定义S2为样本方差数学上已经证明S2是总体方差σ2的无偏估计。
即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。
标准偏差与相对标准偏差公式

标准偏差数学表达式:•S-标准偏差(%)•n-试样总数或测量次数,一般n值不应少于20-30个•i-物料中某成分的各次测量值,1~n;标准偏差的使用方法六个计算标准偏差的公式[1]标准偏差的理论计算公式设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。
令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i− Xσ2 = l2− X……σn = l n− X我们定义标准偏差(也称标准差)σ为(1)由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—贝塞尔公式由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值来代表真值。
理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。
于是我们用测得值li与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即设一组等精度测量值为l1、l2、……l n则……通过数学推导可得真差σ与剩余误差V的关系为将上式代入式(1)有(2)式(2)就是著名的贝塞尔公式(Bessel)。
它用于有限次测量次数时标准偏差的计算。
由于当时,,可见贝塞尔公式与σ的定义式(1)是完全一致的。
应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。
它不是总体标准偏差σ。
因此, 我们称式(2)为标准偏差σ的常用估计。
为了强调这一点, 我们将σ的估计值用“S ” 表示。
于是, 将式(2)改写为(2')在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有于是, 式(2')可写为(2")按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺, 即可。
标准偏差σ的无偏估计数理统计中定义S2为样本方差数学上已经证明S2是总体方差σ2的无偏估计。
即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。
标准偏差与相对标准偏差.doc

标准偏差标准偏差(也称标准离差或均方根差)是反映一组测量数据离散程度的统计指标。
是指统计结果在某一个时段内误差上下波动的幅度。
是正态分布的重要参数之一。
是测量变动的统计测算法。
它通常不用作独立的指标而与其它指标配合使用。
标准偏差在误差理论、质量管理、计量型抽样检验等领域中均得到了广泛的应用。
因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。
然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按贝塞尔公式计算。
样本标准差的表示公式数学表达式:•S-标准偏差(%)•n-试样总数或测量次数,一般n值不应少于20-30个•i-物料中某成分的各次测量值,1~n;标准偏差的使用方法z•在价格变化剧烈时,该指标值通常很高。
•如果价格保持平稳,这个指标值不高。
•在价格发生剧烈的上涨/下降之前,该指标值总是很低。
标准偏差的计算步骤标准偏差的计算步骤是:步骤一、(每个样本数据-样本全部数据之平均值)2。
步骤二、把步骤一所得的各个数值相加。
步骤三、把步骤二的结果除以(n - 1)(“n”指样本数目)。
步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。
六个计算标准偏差的公式[1]标准偏差的理论计算公式设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。
令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i− Xσ2 = l2− X……σn = l n− X我们定义标准偏差(也称标准差)σ为(1)由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—贝塞尔公式由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值来代表真值。
理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。
于是我们用测得值li与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即设一组等精度测量值为l1、l2、……l n则……通过数学推导可得真差σ与剩余误差V的关系为将上式代入式(1)有(2)式(2)就是著名的贝塞尔公式(Bessel)。
标准偏差与相对标准偏差公式

标准偏差与相对标准偏差公式数学表达式:S-标准偏差(%) n-试样总数或测量次数,一般n值不应少于20-30个 i-物料中某成分的各次测量值,1~n;标准偏差的使用方法六个计算标准偏差的公式[1]标准偏差的理论计算公式设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……ln。
令测得值l与该量真值X之差为真差占σ, 则有σ1 = li − Xσ2 = l2 − X……σn = ln − X我们定义标准偏差(也称标准差)σ为(1)由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—剩余误差(也叫残差)Vi来代替真差σ , 即设一组等精度测量值为l1、l2、……ln则……通过数学推导可得真差σ与剩余误差V的关系为将上式代入式(1)有(2)式(2)就是著名的贝塞尔公式(Bessel)。
它用于有限次测量次数时标准偏差的计算。
由于当时,,可见贝塞尔公式与σ的定义式(1)是完全一致的。
应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。
它不是总体标准偏差σ。
因此, 我们称式(2)为标准偏差σ的常用估计。
为了强调这一点, 我们将σ的估计值用“S ” 表示。
于是, 将式(2)改写为(2)在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有于是, 式(2)可写为(2")按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺 , 即可。
标准偏差σ的无偏估计数理统计中定义S2为样本方差数学上已经证明S2是总体方差σ2的无偏估计。
即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。
而式(2)在n有限时,S并不是总体标准偏差σ的无偏估计, 也就是说S和σ之间存在系统误差。
概率统计告诉我们, 对于服从正态分布的正态总体, 总体标准偏差σ的无偏估计值为(3)令则即S1和S仅相差一个系数Kσ,Kσ是与样本个数测量次数有关的一个系数, Kσ值见表。
标准差和相对标准偏差公式

标准差和相对标准偏差公式标准差和相对标准偏差是统计学中常用的两个概念,它们可以帮助我们衡量数据的离散程度和波动情况。
在实际应用中,我们经常需要计算数据的标准差和相对标准偏差,以便更好地理解数据的特征和趋势。
本文将介绍标准差和相对标准偏差的计算公式及其应用。
标准差的计算公式如下:$$。
\sigma = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i \bar{x})^2}。
$$。
其中,$\sigma$表示总体标准差,$N$表示样本容量,$x_i$表示第$i$个观测值,$\bar{x}$表示样本均值。
相对标准偏差的计算公式如下:$$。
RSD = \frac{\sigma}{\bar{x}} \times 100\%。
$$。
其中,$RSD$表示相对标准偏差,$\sigma$表示总体标准差,$\bar{x}$表示样本均值。
标准差和相对标准偏差是描述数据分布和离散程度的重要指标。
标准差衡量了数据的离散程度,它的值越大,表示数据的波动越大;相对标准偏差则将标准差与均值进行了比较,可以更好地反映数据的相对波动情况。
在实际应用中,我们可以利用标准差和相对标准偏差来进行数据分析和比较。
例如,在质量控制领域,我们可以利用标准差来衡量产品质量的稳定性,通过监控标准差的变化来及时发现生产过程中的异常情况;在金融领域,我们可以利用相对标准偏差来比较不同投资组合的风险水平,从而做出更合理的投资决策。
除了计算公式外,我们还可以通过统计软件来进行标准差和相对标准偏差的计算。
例如,在Excel中,可以利用STDEV.P和STDEV.S函数来计算总体标准差和样本标准差;在R语言和Python等统计软件中,也提供了丰富的函数和包来进行标准差和相对标准偏差的计算和分析。
总之,标准差和相对标准偏差是统计学中重要的概念,它们可以帮助我们更好地理解数据的特征和波动情况。
通过合理地应用标准差和相对标准偏差,我们可以进行更准确、更深入的数据分析,为决策提供更有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准偏差标准偏差(也称标准离差或均方根差)是反映一组测量数据离散程度的统计指标。
是指统计结果在某一个时段内误差上下波动的幅度。
是正态分布的重要参数之一。
是测量变动的统计测算法。
它通常不用作独立的指标而与其它指标配合使用。
标准偏差在误差理论、质量管理、计量型抽样检验等领域中均得到了广泛的应用。
因此, 标准偏差的计算十分重要, 它的准确与否对器具的不确定度、测量的不确定度以及所接收产品的质量有重要影响。
然而在对标准偏差的计算中, 不少人不论测量次数多少, 均按贝塞尔公式计算。
样本标准差的表示公式数学表达式:S-标准偏差(%)n-试样总数或测量次数,一般n值不应少于20-30个i-物料中某成分的各次测量值,1~n;标准偏差的使用方法z在价格变化剧烈时,该指标值通常很高。
如果价格保持平稳,这个指标值不高。
在价格发生剧烈的上涨/下降之前,该指标值总是很低。
标准偏差的计算步骤标准偏差的计算步骤是:步骤一、(每个样本数据-样本全部数据之平均值)2。
步骤二、把步骤一所得的各个数值相加。
步骤三、把步骤二的结果除以(n - 1)(“n”指样本数目)。
步骤四、从步骤三所得的数值之平方根就是抽样的标准偏差。
六个计算标准偏差的公式[1]标准偏差的理论计算公式设对真值为X的某量进行一组等精度测量, 其测得值为l1、l2、……l n。
令测得值l与该量真值X之差为真差占σ, 则有σ1 = l i− Xσ2 = l2− X……σn = l n− X我们定义标准偏差(也称标准差)σ为(1)由于真值X都是不可知的, 因此真差σ占也就无法求得, 故式只有理论意义而无实用价值。
标准偏差σ的常用估计—贝塞尔公式由于真值是不可知的, 在实际应用中, 我们常用n次测量的算术平均值来代表真值。
理论上也证明, 随着测量次数的增多, 算术平均值最接近真值, 当时, 算术平均值就是真值。
于是我们用测得值l i与算术平均值之差——剩余误差(也叫残差)V i来代替真差σ , 即设一组等精度测量值为l1、l2、……l n则……通过数学推导可得真差σ与剩余误差V的关系为将上式代入式(1)有(2)式(2)就是著名的贝塞尔公式(Bessel)。
它用于有限次测量次数时标准偏差的计算。
由于当时,,可见贝塞尔公式与σ的定义式(1)是完全一致的。
应该指出, 在n有限时, 用贝塞尔公式所得到的是标准偏差σ的一个估计值。
它不是总体标准偏差σ。
因此, 我们称式(2)为标准偏差σ的常用估计。
为了强调这一点, 我们将σ的估计值用“S ” 表示。
于是, 将式(2)改写为(2')在求S时, 为免去求算术平均值的麻烦, 经数学推导(过程从略)有于是, 式(2')可写为(2")按式(2")求S时, 只需求出各测得值的平方和和各测得值之和的平方艺, 即可。
标准偏差σ的无偏估计数理统计中定义S2为样本方差数学上已经证明S2是总体方差σ2的无偏估计。
即在大量重复试验中, S2围绕σ2散布, 它们之间没有系统误差。
而式(2')在n有限时,S并不是总体标准偏差σ的无偏估计, 也就是说S和σ之间存在系统误差。
概率统计告诉我们, 对于服从正态分布的正态总体, 总体标准偏差σ的无偏估计值为(3)令则即S1和S仅相差一个系数Kσ,Kσ是与样本个数测量次数有关的一个系数, Kσ值见表。
计算Kσ时用到Γ(n + 1) = nΓ(n)Γ(1) = 1由表1知, 当n>30时, 。
因此, 当n>30时, 式(3')和式(2')之间的差异可略而不计。
在n=30~50时, 最宜用贝塞尔公式求标准偏差。
当n<10时, 由于Kσ值的影响已不可忽略, 宜用式(3'), 求标准偏差。
这时再用贝塞尔公式显然是不妥的。
标准偏差的最大似然估计将σ的定义式(1)中的真值X用算术平均值代替且当n有限时就得到(4)式(4)适用于n>50时的情况, 当n>50时,n和(n-1)对计算结果的影响就很小了。
标准偏差σ的极差估计由于以上几个标准偏差的计算公式计算量较大, 不宜现场采用, 而极差估计的方法则有运算简便, 计算量小宜于现场采用的特点。
极差用"R"表示。
所谓极差就是从正态总体中随机抽取的n个样本测得值中的最大值与最小值之差。
若对某量作次等精度测量测得l1、,且它们服从正态分布, 则R = l max− l min概率统计告诉我们用极差来估计总体标准偏差的计算公式为(5)S3称为标准偏差σ的无偏极差估计, d2为与样本个数n(测得值个数)有关的无偏极差系数, 其值见表2由表2知, 当n≤15时,, 因此, 标准偏差σ更粗略的估计值为(5')还可以看出, 当200≤n≤1000时,因而又有(5")显然, 不需查表利用式(5')和(5")了即可对标准偏差值作出快速估计, 用以对用贝塞尔公式及其他公式的计算结果进行校核。
应指出,式(5)的准确度比用其他公式的准确度要低, 但当5≤n≤15时,式(5)不仅大大提高了计算速度, 而且还颇为准确。
当n>10时, 由于舍去数据信息较多, 因此误差较大, 为了提高准确度,这时应将测得值分成四个或五个一组, 先求出各组的极差R1、, 再由各组极差求出极差平均值。
极差平均值和总体标准偏差的关系为需指出, 此时d2大小要用每组的数据个数n而不是用数据总数N(=nK)去查表2。
再则, 分组时一定要按测得值的先后顺序排列,不能打乱或颠倒。
标准偏差σ的平均误差估计平均误差的定义为误差理论给出(A)可以证明与的关系为(证明从略)于是(B)由式(A)和式(B)得从而有式(6)就是佩特斯公式。
用该公式估计δ值, 由于\right|V\right|不需平方,故计算较为简便。
但该式的准确度不如贝塞尔公式。
该式使用条件与贝塞尔公式相似。
标准偏差的应用实例[1]对标称值R a= < math> μm< math> 的一块粗糙度样块进行检定, 顺次测得以下15个数据:,,,,,,,,,,,,,和μm, 试求该样块R n的平均值和标准偏差并判断其合格否。
解:1)先求平均值2)再求标准偏差S若用无偏极差估计公式式(5)计算, 首先将测得的, 15个数据按原顺序分为三组, 每组五个, 见表3。
表3组号l_1l_5R123因每组为5个数据, 按n=5由表2查得故若按常用估计即贝塞尔公式式(2') , 则若按无偏估计公式即式(3')计算, 因n=15,由表1查得Kδ = , 则若按最大似然估计公式即式(4')计算, 则= ( < math> μm < math > )若按平均误差估计公式即式(6), 则现在用式(5')对以上计算进行校核可见以上算得的S、S1、S2、S3和S4没有粗大误差。
由以上计算结果可知<<<<即S2 < S < S1 < S4 < S3可见, 最大似然估计值最小, 常用估计值S稍大, 无偏估计值S1又大, 平均误差估计值S4再大, 极差估计值S3最大。
纵观这几个值, 它们相当接近, 最大差值仅为μm。
从理论上讲, 用无偏估计值和常用估计比较合适, 在本例中, 它们仅相差μm。
可以相信, 随着的增大, S、S1、S2、S3和S4之间的差别会越来越小。
就本例而言, 无偏极差估计值S3和无偏估计值S1仅相差μm, 这说明无偏极差估计是既可以保证一定准确度计算又简便的一种好方法。
JJG102-89《表面粗糙度比较样块》规定R a的平均值对其标称值的偏离不应超过+12%~17%, 标准偏差应在标称值的4%~12%之间。
已得本样块二产,产均在规定范围之内, 故该样块合格。
标准偏差与标准差的区别标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。
用σ表示。
因此,标准差也是一种平均数。
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。
这两组的平均数都是70,但A组的标准差为分,B组的标准差为分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准偏差(Std Dev,Standard Deviation) - 统计学名词。
一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。
标准偏差越小,这些值偏离平均值就越少,反之亦然。
标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。
有人经常混用均方根误差(RMSE)与标准差(Standard Deviation),实际上二者并不是一回事。
1.均方根误差均方根误差为了说明样本的离散程度。
均方根误差(root-mean-square error )亦称标准误差,其定义为,i=1,2,3,…n。
在有限测量次数中,均方根误差常用下式表示:,式中,n为测量次数;d i为一组测量值与平均值的偏差。
如果误差统计分布是正态分布,那么随机误差落在土σ以内的概率为68%。
2.标准差标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。
平均数相同的,标准差未必相同。
标准差也被称为标准偏差,或者实验标准差。
均方根值也称作为效值,它的计算方法是先平方、再平均、然后开方。
比如幅度为100V而占空比为的方波信号,如果按平均值计算,它的电压只有50V,而按均方根值计算则有。
这是为什么呢举一个例子,有一组100伏的电池组,每次供电10分钟之后停10分钟,也就是说占空比为一半。
如果这组电池带动的是10Ω电阻,供电的10分钟产生10A的电流和1000W的功率,停电时电流和功率为零。
那么在20分钟的一个周期内其平均功率为500W,这相当于的直流电向10Ω电阻供电所产生的功率。
而50V直流电压向10Ω电阻供电只能产生的250W的功率。
对于电机与变压器而言,只要均方根电流不超过额定电流,即使在一定时间内过载,也不会烧坏。
抽油机电能图测试仪对电流、电压与功率的测试计算都是按有效值进行的,不会因为电流电压波形畸变而测不准。
这一点对于测试变频器拖动的电机特别有用。
均方根误差为了说明样本的离散程度。
对于N1,....Nm,设N=(N1+...+Nm)/m;则均方根误差记作:t=sqrt(((N^2-N1^2)+...+(N^2-Nm^2))/(m(m-1)));比如两组样本:第一组有以下三个样本:3,4,5第二组有一下三个样本:2,4,6这两组的平均值都是4,但是第一组的三个数值相对更靠近平均值,也就是离散程度小,均方差就是表示这个的。