【最新整理】北师大初中数学中考总复习:圆综合复习--巩固练习(基础)

合集下载

北师大版数学[中考总复习:圆综合复习--知识点整理及重点题型梳理](基础)

北师大版数学[中考总复习:圆综合复习--知识点整理及重点题型梳理](基础)

北师大版数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.②直径:经过圆心的弦叫做直径,如AC是⊙O的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC、BAC都是⊙O中的弧,分别记作BC,BAC.④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC是半圆.⑤劣弧:像BC这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB,∠BOC是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC、∠ACB都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系 如图所示.d 表示点到圆心的距离,r 为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d 与r 的大小关系 点在圆内d <r 点在圆上d =r 点在圆外d >r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算. 360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C ;【解析】连接OB ,∵AB 是⊙O 的一条弦,OC ⊥AB ,∴AD=BD ,即AB=2BD ,∵∠CEB=30°,∴∠COB=60°,∵OD=1, ∴BD=1×tan60°=,∴AB=2,故选C .【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OD=3:5.则AB 的长是()A 、2cmB 、3cmC 、4cmD 、221cm 【答案】 解:连接OA ,∵CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,∴AB=2AM ,∵CD=5cm ,∴OD=OA=12CD=12×5=52cm ,∵OM :OD=3:5,∴OM=35OD=×=,∴在Rt △AOM 中,22OA OM -2253()()22-=2,∴AB=2AM=2×2=4cm.故选C.类型二、与圆有关的位置关系2.如图所示,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AD=2,直径AB=6,求线段BC的长.【思路点拨】要证明DC是⊙O的切线,因为点D在⊙O上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD.∵ AD∥OC,∴∠1=∠3,∠2=∠A,∴ OA=OD,∴∠3=∠A,∴∠1=∠2.∵ OD=OB,OC=OC.∴△COD≌△COB,∴∠CDO=∠CBO=90°,∴ CD是⊙O的切线.(2)解:连接BD,∵ AB是⊙O的直径,∴∠ADB=90°.在△DAB和△BOC中,∵∠ADB=∠OBC,∠A=∠2,∴△DAB∽△BOC,∴AD BD OB BC=,∴OB BD BCAD=.在Rt△DAB中,由勾股定理得22226242 BD AB AD=-=-=.∴342622BC⨯==.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.【答案与解析】证法1:连接OE、DE(如图(1)).∵ CD是⊙O的直径,∴∠AED=∠CED=90°.∵ G是AD的中点,∴ EG=12AD=DG.∴∠1=∠2.∵ OE=OD,∴∠3=∠4.∴∠1+∠3=∠2+∠4,即∠OEG=∠ODG=90°.∴ GE是⊙O的切线.证法2:连接OE、ED(如图(2)).在△ADC中,∠ADC=90°,∴∠A+∠ACD=90°.又∵ CD是⊙O的直径,∴∠AED=∠CED=90°.在△AED中,∠AED=90°,G是AD中点,∴ AG=GE=DG,∴∠A=∠AEG.又∵ OE=OC,∴∠OEC=∠ACD.又∵∠A+∠ACD=90°,∴∠AEG+∠OEC=90°.∴∠OEG=90°,∴ OE⊥EG.∴ GE是⊙O的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n中,.4.如图所示,半圆的直径AB=10,P为AB上一点,点C,D为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积. 【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC 中,以AC 为直径的⊙O 交BC 于D ,过C 作⊙O 的切线,交AB 的延长线于P ,∠PCB=∠BAC .(1)求证:AB=AC ;(2)若sin ∠BAC=35,求tan ∠PCB 的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE∥PC,∴∠PCB=∠CBE,∵sin∠BAC==,∴=,∵AB=AC,∴tan∠CBE===,∴tan∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+. 又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 2 C.1 D.2【答案】选B;解:过B作BB′⊥MN交⊙O于B′,连接AB′交MN于P,此时PA+PB=AB′最小.连AO并延长交⊙O于C,连接CB′,在Rt△ACB′中,AC=2,∠C=190452⨯=°°,∴2sin45222AB AC'==⨯=°.。

北师大初中数学中考总复习:圆综合复习--巩固练习(基础)-精品

北师大初中数学中考总复习:圆综合复习--巩固练习(基础)-精品

中考总复习:圆综合复习—巩固练习(基础)【巩固练习】一、选择题1.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )A.弦AB的长等于圆内接正六边形的边长 B.弦AC的长等于圆内接正十二边形的边长C.AC BC D.∠BAC=30°2.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( ) A.7 B.72 C.82 D.9第1题第2题第3题3.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,则DC的长为( ) A.5 cm B.2.5 cm C.2 cm D.1 cm4.已知:⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为( ) A.17cm B.7cm C.12cm D.17cm或7cm5.(2015?西藏)已知⊙O1与⊙O2相交,且两圆的半径分别为2cm和3cm,则圆心距O1O2可能是()A.1cm B.3cm C.5cm D.7cm6.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A.1 B.34C.12D.13二、填空题7.在⊙O中直径为4,弦AB=23,点C是圆上不同于A,B的点,那么∠ACB度数为________.8.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC上一点,则∠D=________.第8题第9题9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是________度.10.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为________.11.(2015?盐城校级模拟)如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是cm.12.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)三、解答题13.(2014秋?北京期末)如图,AB为⊙O的直径,直线l与⊙O相切于点C,过点A作AD⊥l于点D,交⊙O于点E.(1)求证:∠CAD=∠BAC;(2)若sin∠BAC=,BC=6,求DE的长.14. 如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,3sin5P,求⊙O的直径.15.如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.(1)求证:O2C⊥O1O2;(2)证明:AB·BC=2O2B?BO1;(3)如果AB?BC=12,O2C=4,求AO1的长.16.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:12EH AB;(3)若1B4BHE,求BHCE的值.【答案与解析】一、选择题1.【答案】D ;【解析】∵ OA=AB=OB,∴∠AOB=60°.又∵ CO⊥AB,∴11603022BOC AOB°°.又∠BOC和∠BAC分别是BC对的圆心角和圆周角,∴11301522BAC BOC°°.∴ D错.2.【答案】B ;【解析】连接AD,BD,由AB是⊙O的直径得∠ACB=∠ADB=90°,故∠ACD=∠BCD=45°,BC=8,AD=BD=52.由△ACD∽△OCB,得AC CDCO BC,即CO·CD=6×8=48.由△DOB ∽△DBC ,得CD BD BdOD,即OD ·CD =525250.∴ CO ·CD+OD ·CD =(CO+OD)·CD =CD 2=98.∴9872CD .3.【答案】D ;【解析】连接AO ,由垂径定理知132ADAB ,所以Rt △AOD 中,2222435AO OD AD .所以DC =OC-OD =OA-OD =5-4=1.4.【答案】D ;【解析】如图,在Rt △OAE 中,222213125OE OA AE(cm).在Rt △OCF 中,222213512OF OCCF(cm).∴ EF =OF-OE =12-5=7(cm).同理可求出OG =12(cm).∴ EG =5+12=17(cm).则AB ,CD 的距离为17cm 或7cm .5.【答案】B ;【解析】两圆半径差为1,半径和为5,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,1<O 1O 2<5.符合条件的数只有B .6.【答案】C ;【解析】圆锥底面的周长等于其侧面展开图半圆弧的长度,设圆锥底面圆的半径为r ,则12212r,∴12r.二、填空题7.【答案】120°或60°;【解析】如图,过O 作OD ⊥AB 于D ,在Rt△ODB中,OB=2,12332BD.∴3 sin2BDDOBOB.∴∠DOB=60°,∴∠AOB=60°×2=120°.如图中点C有两种情况:∴1120602ACB°°或1(360120)1202ACB°°°.8.【答案】40°;【解析】∵ AC是⊙O的直径,∴∠ABC=90°,∴∠A=40°,∴∠D=∠A=40°.9.【答案】100;【解析】在△ABC中,∠A=180°-∠B-∠C=180°-60°-70°=50°,∵ OA=OD,∴∠ODA=∠A=50°,∴∠BOD=∠A+∠ODA=100°.10.【答案】3或17;【解析】显然两圆只能内切,设另一圆半径为r,则|r-10|=7,∴ r=3或17.11.【答案】2;【解析】设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm.故答案为2.12.【答案】2;【解析】∠AOB=45°+45°=90°,OA=222222.∴AB 90222 180l.三、解答题13.【答案与解析】(1)证明:连接OC,∵CD为⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO.又∵OC=OA,∴∠ACO=∠OAC,∴∠CAD=∠OAC,即∠CAD=∠BAC.(2)过点B作BF⊥l于点F,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,又AD⊥l于点D,∴∠AEB=∠ADF=∠BFD=90°,∴四边形DEBF是矩形,∴DE=BF.∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCF=90°.∵∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠BCF=∠CAD.∵∠CAD=∠BAC,∴∠BCF=∠BAC.在Rt△BCF中,BC=6,sin∠BCF==sin∠BAC=,∴BF==,∴DE=BF=.14.【答案与解析】(1)证明:∵BD BD,∴∠BCD=∠P.又∵∠1=∠BCD,∴∠1=∠P.∴ CB∥PD.(2)解:连接AC.∵ AB 为⊙O 的直径,∴∠ACB =90°.又∵ CD ⊥AB ,∴BC BD .∴∠A =∠P ,∴ sin A=sin P .在Rt △ABC 中,sin BC AAB ,∵3sin 5P,∴35BC AB.又∵ BC =3,∴ AB =5,即⊙O 的直径为5.15.【答案与解析】(1)证明:∵ AO 1是⊙O 2的切线,∴ O 1A ⊥AO 2,∴∠O 2AB+∠BAO1=90°.又O 2A =O 2C ,O 1A =O 1B ,∴∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1.∴∠O 2CB+∠O 2BC =∠O 2AB+∠BAO 1=90°.∴ O 2C ⊥O 2B ,即O 2C ⊥O 1O 2.(2)证明:延长O 2O 1,交⊙O 1于点D,连接AD .∵ BD 是⊙O 1的直径,∴∠BAD =90°.又由(1)可知∠BO 2C =90°,∴∠BAD =∠BO2C ,又∠ABD =∠O 2BC ,∴2O B BC ABBD.∴ AB ·BC =O 2B ·BD .又BD =2BO 1,∴ AB ·BC =2O2B ·BO 1.(3)解:由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB .又∠AO 2B =∠DO 2A ,∴△AO 2B ∽△DO 2A .∴2222AO O B DO O A ,∴2222AOO BO D .∵22O C O A ,∴2222O CO BO D .①又由(2)AB ·BC =O 2B ·BD .②由①-②得2222O CAB BCO B ,即222412O B .∴ O 2B =2,又O 2B ·BD =AB ·BC =12,∴ BD =6.∴ 2AO 1=BD =6,∴ AO 1=3.16.【答案与解析】 (1)证明:在等腰梯形ABCD 中,AB =DC ,∴∠B =∠C .∵ OE =OC ,∴∠OEC =∠C .∴∠B =∠OEC .∴ OE ∥AB .(2)证明:连接OF ,如图.∵⊙O 与AB 切于点F ,∴ OF ⊥AB .∵ EH ⊥AB ,∴ OF ∥EH .又∵ OE ∥AB ,∴四边形OEHF 为平行四边形.∴ EH =OF .∵1122OFCDAB ,∴12EHAB . (3)解:连接DE ,如图.∵ CD 是直径,∴∠DEC =90°.∴∠DEC =∠EHB .又∵∠B =∠C ,∴△EHB ∽△DEC .∴BHBECECD.∵14BH BE,设BH =k ,∴ BE =4k ,2215EH BEBHk ,∴2215CD EH k.∴421515215BH kCE k.。

北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(基础)

北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第19讲《圆》全章复习与巩固(基础)

《圆》全章复习与巩固—知识讲解(基础)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积;【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的所有点组成的图形.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A L 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)OA=OB=OC定在三角形内部(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的有关概念及性质1.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.;【解析】由已知得BC ∥x 轴,则BC 中垂线为 那么,△ABC 外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为P(1,0) 则【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°,2412x -+==r PA ===求CD 的长.【思路点拨】作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长. 【答案与解析】作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ ,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ ,∴. 在Rt △DFO 中,OF =,OD =OA =3,∴ (cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .32ABOA ==112EF OE ==223OF OE EF =-=322223(3)6DF OD OF =-=-=26N MO C BA【答案】由OM⊥AB,ON⊥AC,得M、N分别为AB、AC的中点(垂径定理),则MN是△ABC的中位线,BC=2MN=6.3.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB = 20°,则∠OCD =.【答案】65°.【解析】连结OD,则∠D OB = 40°,设圆交y轴负半轴于E ,得∠D OE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】(2019•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系yxOA BDC4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2019•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°, ∵OA=OE , ∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【思路点拨】求覆盖棚顶的帆布的面积,就是求以为底面的圆柱的侧面积.根据题意,应先求出所对的圆心角度数以及所在圆的半径,才能求的长. 【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是的中点, ∴EF =2. 设半径为R 米,则OE =(R-2)m .在Rt △AOE 中,由勾股定理,得.解得R =4. ∴ OE =2,,∴ ∠AOE =60°,∴ ∠AOB =120°. »AB »AB »AB »AB »AB »AB 12AE AB ==222(2)R R =-+12OE AO =∴ 的长为(m).∴ 帆布的面积为(m 2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm ,水最深的地方的高度为4cm ,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O 作OC ⊥AB 于D ,交于C ,∵ OC ⊥AB , ∴.由题意可知,CD=4cm. 设半径为x cm ,则. 在Rt △BOD 中,由勾股定理得:∴. ∴ .即这个圆形截面的半径为10cm.»AB 120481803ππ⨯=8601603ππ⨯=《圆》全章复习与巩固—巩固练习(基础)【巩固练习】一、选择题1.对于下列命题:①任意一个三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,并且只有一个外切三角形.其中,正确的有( ).A.1个 B.2个 C.3个 D.4个2.(2019•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30° C.75° D.60°3.秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千时,秋千在最高处踩板离地面2米(左右对称),如图所示,则该秋千所荡过的圆弧长为( ).A.米B.米C.米D.米4.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定5.如图所示,在直角坐标系中,一个圆经过坐标原点O,交坐标轴于E、F,OE=8,OF=6,则圆的直径长为( ).A.12 B.10 C.4 D.156.如图所示,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1)四点,则该圆圆心的坐标为( ). A.(2,-1) B.(2,2) C.(2,1) D.(3,1)7.如图所示,CA为⊙O的切线,切点为A,点B在⊙O上,若∠CAB=55°,则∠AOB等于( ).A.55° B.90° C.110° D.120°8.正多边形的中心角是36°,那么这个正多边形的边数是()A.10 B.8 C.6 D.5二、填空题9.如图,已知直线AB与⊙O相交于A、B两点,∠OAB=30°,半径OA=2,那么弦AB= .10.如图,CD是⊙O的直径,A,B是⊙O上任意两点,设∠BAC=y,∠BOD=x,则y与x之间的函数关系式是__________ .11.如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.12.如图所示,⊙O 的内接四边形ABCD 中,AB=CD ,则图中与∠1相等的角有________________.13.点M 到⊙O 上的最小距离为2cm ,最大距离为10 cm ,那么⊙O 的半径为___ _____. 14.已知半径为R 的半圆O ,过直径AB 上一点C ,作CD ⊥AB 交半圆于点D ,且,则AC 的长 为_____ ___.15.如图所示,⊙O 是△ABC 的外接圆,D 是弧AB 上一点,连接BD ,并延长至E ,连接AD ,若AB =AC ,∠ADE =65°,则∠BOC =___ _____.16.(2019•酒泉)如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为 .三、解答题17.如图,是半圆的直径,过点作弦的垂线交半圆 于点,交于点使.试判断直线与圆的位置关系,并证明你的结论;18.在直径为20cm 的圆中,有一弦长为16cm ,求它所对的弓形的高。

北师大版本初中九年级的数学初中中考总总结复习九:圆的专题辅导

北师大版本初中九年级的数学初中中考总总结复习九:圆的专题辅导

中考总复习九:圆一、基础知识和基本图形1.确立圆的条件:不在同向来线上的三个点确立一个圆.2.圆的相关性质:(1)垂径定理及推论:落实,,组成的直角三角形.(2)圆心角、圆周角、弧、弦及弦心距之间的关系:3.直线与圆:(1)直线与圆的地点关系:设圆的半径为r,圆心到直线的距离为d,则:① 直线和圆订交② 直线和圆相切③ 直线和圆相离d < r ;d = r ;知交点,连半径,证垂直;不知交点,作垂直,证半径。

d > r .(2)切线的性质定理及判断定理、切线长定理.(轴对称)4.圆和圆的地点关系:设圆的半径分别为R 和 r (R > r ) 、圆心距为d,则:两圆外离 d > R+ r;两圆外切 d = R+ r;两圆订交R–r < d< R+ r;两圆内切 d = R– r;两圆内含 d < R 一 r (齐心圆 d = 0 ).5.相关圆的计算(1)扇形弧长和扇形面积.(2)三角形的内切圆.(3)圆锥的侧面睁开.(4)相关暗影面积.(割补法)二、例题1.如图,⊙O 是△ ABC 的外接圆,⊙ O 的半径 R= 2,sinB=,则弦AC的长为______________.剖析:怎样利用好圆的半径,怎样把角径,并结构直径所对的圆周角,这样就把角B 放到一个直角三角形中去运用三角函数值,这就需要作直B 转变到直角三角形中了。

解答:作直径AO ,交圆 O 于 D ,连 CD利用勾股定理求得:AC=32.如图,分别是的切线,为切点,是⊙ O的直径,已知,的度数为().A .B.C.D.剖析:本题利用圆心角与圆周角的关系,以及切线长定理解决解答: D3.如图,梯形中,,,,,以为圆心在梯形内画出一个最大的扇形(图中暗影部分)的面积是_____________.剖析:要求扇形面积,重点是确立半径和圆心角解答:过 A 作 AE ⊥BC 于 E,可求得∠ B 为 60 度, AE= ,因此最大扇形面积为4。

4.在中,,.假如圆的半径为,且经过点,那么线______________剖析:本题应分类议论,考虑圆心O 在 BC 上和在BC 下两种状况解答: 5 或 35.如图,已知:△ABC 是⊙ O 的内接三角形,AD⊥ BC 于D 点,且AC=5, DC=3,AB= ,则⊙ O 的直径等于 ______________.剖析:先解三角形,求得∠ B 为45 度,再结构直径AO解答:作直径AO ,交圆 O 于 E,连 CE可求得∠ E=∠B=45 度,因此直径AE=6.如图,已知大部分圆⊙与小半圆⊙相内切于点B,大部分圆的弦MN 切小半圆于点D,若MN∥AB,当 MN= 4 时,则此图中的暗影部分的面积是_____________.剖析:本题需用到垂径定理和整体带入解答:连结,过作⊥MN于 E暗影面积为 27.已知:如图,△OBC 内接于圆,圆与直角坐标系的 x、y 轴交于 B、A 两点,若∠ BOC=45°,∠OBC=75°,A 点坐标为(0,2).则点 B 点的坐标为 ___________; BC 的长 =__________.解答:连AB 、 AC ,可求得B(), BC=发,以时, BP8.如图,⊙ O 的半径为 3cm, B 为⊙ O 外一点,cm/s 的速度在⊙ O 上按逆时针方向运动一周回到点与⊙ O 相切.OB 交⊙ O 于点 A,AB=OA ,动点 P 从点 A 出A 立刻停止.当点P 运动的时间为 _______s解答:要考虑到两种状况, 5 或19.已知:点 F 在线段AB 上, BF 为⊙ O 的直径,点 D 在⊙ O 上,BC AD 于点C,BD 均分.( 1)求证:AC是⊙ O 的切线;(2)若 AD= ,AF= ,求 CD 的长.解答:( 1)连 OD,证明 OD//BC(2)利用方程和相像,求得 CD=10.如图, AB、CD 是⊙ O 的两条弦,它们订交于点P,连结 AD、BD.已知 AD=BD= 4, PC = 6,求 CD 的长.解答:连 AC,利用∽,求得CD=811.如图,点 I 是△ ABC 的心里,线段 AI 的延伸线交△ABC 的外接圆于点D,交 BC 边于点 E.(1)求证: ID=BD;( 2)设△ ABC 的外接圆的半径为5,ID=6,,,当点A在优弧上运动时,求与的函数关系式,并指出自变量的取值范围.解答:(1)提示:证∠ IBD= ∠BID(2)(6)12.如图,点是半圆的半径上的动点,作于.点是半圆上位于左边的点,连结交线段于,且.(1)求证:是⊙ O的切线.(2)若⊙ O的半径为,,设.①求关于的函数关系式.② 当时,求的值.解答:(1)连 DO,证 OD⊥ DP;(2)①连 PO,;②,提示:在三角形EBC 中求13.二次函数的图象与轴订交于点A、B 两点(点 A 在点B 的左边),与轴交于点C,点M 是它的极点.(1)求证:以 A 为圆心,直径为(2)将( 1)中的⊙ A 的圆心在解答:5 的圆与直线 CM 相离;轴上挪动,平移多少个单位,使⊙ A 与直线CM 相切.(1),(2)个单位.。

北师大版初三数学 圆的总复习

北师大版初三数学 圆的总复习

北师大版初三数学圆的总复习一. 教学内容: 1. 圆锥的侧面积 2. 圆的总复习二. 教学目标:1. 能利用圆锥的侧面积公式计算实际问题2. 灵活运用本章的知识解决综合问题三. 教学重点、难点:1. 能利用圆锥的侧面积公式计算实际问题2. 灵活运用本章的知识解决综合问题四. 课堂教学:知识要点:1. 圆锥的侧面展开图是一个扇形,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为πrl。

2. 圆锥的侧面积与底面积之和称为圆锥的全面积3. 本章的知识机构图【典型例题】例1. 已知圆锥的母线与高的夹角为30°,母线长为4cm,则它的侧面积为 cm2(结果保留π)。

答案:8π例2. 一个扇形的弧长为4π,用它做一个圆锥的侧面,则该圆锥的底面半径为答案:2例3. 如图,矩形ABCD的长与宽分别是2cm和1cm,AB在直线l上。

依次以B、C′、D″为中心将矩形ABCD按顺时针方向旋转90°,这样点A走过的曲线依次为AA′ 、交CD于点P。

A′A″ 、A″A ,其中AA′(1)求矩形A′BC′D′的对角线A′C′的长;(2)求AA′ 的长;(3)求图中的(4)求图中的解:(1)A′′C=部分的面积S;部分的面积T。

2+1=cm×2=πcm(2)AA′ =180。

90π90π()25S==πcm23604(3)。

(4)连接BP,在Rt△BCP中,BC=1,BP=2,∴∠BPC=30°,CP=.∴∠ABP=30°.2∴T=S扇形ABP+S△PBC=30π×2+3=(+3)cm2.例4. 如下图,在矩形ABCD中,AD=8,点E是AB边上的一点,AE=2。

过D、E两点作直线PQ,与BC边所在的直线MN相交于点F。

(1)求tan∠ADE的值;(2)点G是线段AD上的一个动点(不运动至点A、D),GH⊥DE,垂足为H,设DG为x,四边形AEHG的面积为y,请求出y与x之间的函数关系式;(3)如果AE=2EB,点O是直线MN上的一个动点,以O为圆心作圆,使⊙O 与直线PQ相切,同时又与矩形ABCD的某一边相切。

北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第三章 圆(基础)

北师大版初中数学九年级下册知识讲解,巩固练习(教学资料,补习资料):第三章 圆(基础)

第三章圆(基础)圆的有关概念及圆的确定—知识讲解【学习目标】1.知识目标:理解圆的描述概念和圆的集合概念;理解半径、直径、弧、弦、弦心距、圆心角、同心圆、等圆、等弧的概念;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念.2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,进行计算或证明;会过不在同一直线上的三点作圆.3.情感目标:在确定点和圆的三种位置关系的过程中体会用数量关系来确定位置关系的方法,逐步学会用变化的观点及思想去解决问题,养成学生之间发现问题、探讨问题、解决问题的习惯.【要点梳理】要点一、圆的定义1.圆的描述概念如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的集合概念圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.要点二、点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外. 若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么: 点P 在圆内 d < r ; 点P 在圆上 d = r ; 点P 在圆外 d >r.“”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端. 要点诠释:点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念 1. 弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径. 弦心距:圆心到弦的距离叫做弦心距. 要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径. 为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB ≥CD.证明:连结OC 、OD∵AB=AO+OB=CO+OD ≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦. 2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A 、B 为端点的弧记作,读作“圆弧AB ”或“弧AB ”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆; 优弧:大于半圆的弧叫做优弧;⇔⇔⇔⇔劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.4.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5.圆心角顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B能作无数个圆,这些圆的圆心在线段AB的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O是△ABC的外接圆,△ABC是⊙O的内接三角形,点O是△ABC的外心.外心的性质:外心是△ABC三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等. 要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【典型例题】类型一、圆的定义1.(2019秋•邳州市校级月考)如图所示,BD,CE是△ABC的高,求证:E,B,C,D四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可. 【答案与解析】证明:如图所示,取BC 的中点F ,连接DF ,EF . ∵BD ,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF ,EF 分别为Rt △BCD 和Rt △BCE 斜边上的中线, ∴DF=EF=BF=CF .∴E ,B ,C ,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等. 举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A.正方形B.菱形C.矩形D.等腰梯形 【答案】C.2. 爆破时,导火索燃烧的速度是每秒0.9cm ,点导火索的人需要跑到离爆破点120m 以外的安全区域.这个导火索的长度为18cm ,那么点导火索的人每秒钟跑6.5m 是否安全? 【思路点拨】计算在导火索燃烧完的时间内人跑的距离与120m 比较. 【答案与解析】∵导火索燃烧的时间为相同时间内,人跑的路程为20×6.5=130(m ) ∴人跑的路程为130m >120m, ∴点导火索的人安全.【总结升华】爆破时的安全区域是以爆破点为圆心,以120m 为半径的圆的外部,如图所示.18=200.9(s)类型二、圆的有关计算3.已知,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有的⊙O的弦中,弦长为整数的弦的条数为( )A.2B.3C.4D.5【思路点拨】在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.【答案】 C.【解析】作图,过点P作直径AB,过点P作弦,连接OC 则OC=5,CD=2PC,由勾股定理,得,∴CD=2PC=8,又∵AB=10,∴过点P的弦长的取值范围是,弦长的整数解为8,9,10,根据圆的对称性,弦长为9的弦有两条,所以弦长为整数的弦共4 条.故选C.【总结升华】利用垂径定理来确定过点P的弦长的取值范围.根据圆的对称性,弦长为9的弦有两条,容易漏解.举一反三:【变式】平面上的一个点到圆的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cmB.6.5cmC. 2.5cm或6.5cmD. 5cm或13cm【答案】C.类型三、确定圆的条件的有关作图与计算4.已知:不在同一直线上的三点A、B、C,求作:⊙O使它经过点A、B、C.【思路点拨】作圆的关键是找圆心得位置及半径的大小,经过两点的圆的圆心一定在连接这两点的线段的垂直平分线上,进而可以作出经过不在同一直线上的三点的圆.【解析】作法:1、连结AB,作线段AB的垂直平分线MN;2、连接AC,作线段AC的垂直平分线EF,交MN于点O;3、以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.【总结升华】通过这个例题的作图可以作出锐角三角形的外心(图一),直角三角形的外心(图二),钝角三角形的外心(图三).探究各自外心的位置.【变式】(2019•江干区二模)给定下列图形可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点【答案】D.提示:A、已知圆心只能确定圆的位置不能确定圆的大小,故错误;B、C、已知圆的半径和直径只能确定圆的大小并不能确定圆的位置,故错误;D、不在同一直线上的三点确定一个圆,故正确,故选D.5.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP的长的取值范围是 .【思路点拨】求出符合条件的OP的最大值与最小值.【答案】3≤OP≤5.【解析】OP最长边应是半径长,为5;根据垂线段最短,可得到当OP⊥AB时,OP最短.∵直径为10,弦AB=8∴∠OPA=90°,OA=5,由圆的对称性得AP=4,由勾股定理的,∴OP最短为3.∴OP的长的取值范围是3≤OP≤5.【总结升华】关键是知道OP何时最长与最短.举一反三:【变式】已知⊙O的半径为13,弦AB=24,P是弦AB上的一个动点,则OP的取值范围是___ ____.【答案】 OP最大为半径,最小为O到AB的距离.所以5≤OP≤13.圆的有关概念及圆的确定—巩固练习【巩固练习】一、选择题1.(2019春•张掖校级月考)有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2C.3D.42.下列语句中,不正确的个数是()①直径是弦;②弧是半圆;③长度相等的弧是等弧;•④经过圆内一定点可以作无数条直径.A.1个 B.2个 C.3个 D.4个3.如图,⊙O中,点A、O、D以及点B、O、C分别在一条直线上,图中弦的条数有(• )A.2条 B.3条 C.4条 D.5条第3题第4题4.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()3=A.1个 B.2个 C.3个 D.4个5.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出( ).A.5个圆B.8个圆C.10个圆D.12个圆6. 如图,点A 、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>cB.b>c>aC.c>a>bD.a=b=c第6题二、填空题7.如图,P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x、y都是整数,猜想这样的P点一共有 .8.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.9.(2019春•定陶县期末)下列说法正确的是(填序号).①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.10.如图,在半径不等的同心圆中,圆心角∠AOB所对的的长度有__ ___关系;的度数有_ ___关系.11.如图,已知⊙O内一点P,过P点的最短的弦在圆内的位置是__ __;过P点的最长的弦在圆内的位置是__ __;并分别将图画出来.12.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,……(1)10个圆把平面最多分成个部分;(2)n 个圆把平面最多分成 个部分. 三、解答题13.已知⊙O 的半径r =5cm ,圆心O 到直线的距离d =OD =3cm ,在直线上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点与⊙O 位置关系各是怎样的? 14.(2019秋•江宁区校级期中)如图,BD=OD ,∠AOC=114°,求∠AOD 的度数.15.如图所示,AB 是⊙O 的一条弦(不是直径),点C ,D 是直线AB 上的两点,且AC=BD . (1)判断△OCD 的形状,并说明理由.(2)当图中的点C 与点D 在线段AB 上时(即C ,D 在A ,B 两点之间),(1)题的结论还存在吗?【答案与解析】 一、选择题 1.【答案】B ;【解析】①圆确定的条件是确定圆心与半径,是假命题,故此说法错误;②直径是弦,直径是圆内最长的弦,是真命题,故此说法正确; ③弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选:B .2.【答案】C ;【解析】①直径是弦符合弦的定义正确;②弧是半圆,这句话不对,可能是半圆,也可能使优弧或劣弧;③长度相等的弧是等弧,这句话不符合等弧的定义:能够完全重合的弧,故错误;•④经过圆内一定点只能作一条直径.所以原题不正确. 故②③④都不正确.3.【答案】B ;【解析】图中的弦有弦AB 、弦BC 、弦CE 共三条. 4.【答案】C ;ll【解析】在弦AB所在直线的两侧分别有1个和两个点符合要求,故选C;5.【答案】C.【解析】过其中的三点作圆,最多能作出10个,即分别过点ABC、ABD、ABE、ACD、ACE、ADE、BCD、BCE、BDE、CDE的圆.6.【答案】D;【解析】如图,连接OM、OD、OA、根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c.故选D;二、填空题7.【答案】12.【解析】每个象限有2个符合要求的点,坐标轴上有4个点,共12个.即:(3,4)、(4,3)、(3,-4)、(4,-3)、(-3,4)、(-4,3)、(-3,-4)、(-4,-3)、(0,5)、(0,-5)、(5,0)、(-5,0).8.【答案】26cm;9.【答案】④;【解析】①半径不等的圆叫做同心圆,错误;②优弧一定大于劣弧,错误;③不同的圆中不可能有相等的弦,错误;④直径是同一个圆中最长的弦,正确.故答案为:④.10.【答案】;相等;11.【答案】垂直于过p点的直径的弦;过p点的直径. 如图:12.【答案】(1)92;(2)n2-n+2.【解析】(1)9×10+2=92;(2)(n-1)n+2=n2-n+2.三、解答题13.【答案与解析】依题意画出图形(如图所示),计算出P 、Q 、R 三点到圆心的距离与圆的半径比较大小. 连接PO ,QO ,RO .∵ PD =4cm ,OD =3cm ,∴ PO.∴点P 在⊙O 上. ,∴ 点Q 在⊙O 外.,∴点R 在⊙O内.14.【答案与解析】解:设∠B=x ,∵BD=OD ,∴∠DOB=∠B=x ,∴∠ADO=∠DOB+∠B=2x ,∵OA=OD ,∴∠A=∠ADO=2x ,∵∠AOC=∠A+∠B ,∴2x+x=114°,解得x=38°,∴∠AOD=180°﹣∠OAD ﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.15.【答案与解析】(1)△OCD 是等腰三角形.如图(1)所示,过点O 作OM ⊥AB ,垂足为M ,由圆的对称性有MA=MB .又∵AC=BD ,∴AC+MA=BD+MB , 即CM=DM .又OM ⊥CD ,即OM 是CD 的垂直平分线,∴OC=OD ,∴△OCD 为等腰三角形.(1) (2) 5r ===5QO r ==>==5RO r =<==(2)当点C,D在线段AB上时,(1)题的结论还存在.如图(2)所示,同上问,作OM⊥AB,垂足为M,由圆的对称性,得AM=BM.又∵AC=BD,∴CM=AM-AC=BM-BD=DM,∴OC=OD,∴△OCD为等腰三角形.圆的对称性—知识讲解(基础)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1. 弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2019•巴中模拟)如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.【答案与解析】解:∵E为弧AC的中点,∴OE⊥AC,∴AD=AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD中,OA2=OD2+AD2即OA2=(OE﹣2)2+42,又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.【总结升华】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形.举一反三:【变式】如图,⊙O中,弦AB⊥弦CD于E,且AE=3cm,BE=5cm,求圆心O到弦CD 距离。

数学北师大版九年级下册圆的综合复习

数学北师大版九年级下册圆的综合复习

圆的综合复习导学案学习目标:1.能梳理圆整章知识结构,形成完整的知识体系2.能综合运用圆的有关知识解决实际问题.学习重点:能熟练的运用圆的有关知识解决实际问题学习难点:能灵活的运用圆的有关知识解决实际问题导学流程:★.梳理与圆有关的知识要点1、点与圆的位置关系:圆的半径为r,点到圆心的距离为d①点在圆外,d____r ②点在圆上,d____r ③点在圆内,d____r2、直线与圆的位置关系:圆的半径为r,圆心到直线的距离的距离为d①直线和圆相离,d____r ②直线和圆相切,d____r ③直线和圆相交,d____r ★.与圆有关的位置跟踪练习1、⊙O的面积为25π,PO=3,则点P在__________2、⊙O的直径为8,圆心到直线l的距离为5,则直线l与⊙O的位置为_________★.组量定理、圆周角定理及其推论跟踪练习1、在同圆或等圆中,如果________________________________________________中有一组量相等,那么对应的其余各组量分别相等。

2、一条弧所对的圆周角等于它所对的圆心角的______3、同弧或等弧所对的圆周角________4、直径所对的圆周角是________,5、90°圆周角所对的弦的是_________6、圆内接四边形对角________ ★.组量定理、圆周角定理及其推论跟踪练习1.如图,在⊙O中,A,B,C,D为⊙O的四点,∠D=20°,∠E=30°,则∠AOB=________2如图,AB是⊙O的直径,CD是⊙O的弦,AB=6cm, ∠DCB=30°,弦BD的长为__________。

3.如图,四边形ABCD内接于⊙O,∠BAC=120°,BD为⊙O的直径,BD=4cm,则DC=_____★切线的性质与判定知识梳理1.切线的性质⑴、圆的切线 ________ 于过切点的半径⑵、已知切线常见的辅助线:__________________2.切线的判定经过半径的外端,且_______于这条半径的直线是圆的切线3、证明切线的两种思想方法:⑴、确定直线和圆有交点时:_____________________⑵、不确定直线和圆有交点时:_____________________★切线的性质与判定跟踪练习1.如图1,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=8,tanP=________2.如图2,已知AB为⊙O的直径,点D在AB的延长线上,DC切⊙O 于C,若∠A=20°则∠D=_______2.已知:如图,AC是直径,AD平分∠CAM,过D作DE⊥MN于E.求证:DE是⊙O的切线第2题图CE第1题图第3题图第2题图PCA O第1题图★梳理三角形的外接圆和内切圆的知识要点 1、三角形的外接圆和外心⑴、三角形的外心是三条_______________ 的交点,到三角形_____________的距离相等 ⑵、锐角三角形的外心在三角形的_______直角三角形的外心在三角形的_________ 钝角三角形的外心在三角形的___________2、三角形的内切圆和内心⑴、三角形的内心是三条_______________ 的交点,到三角形_____________的距离相等 ⑵、任意三角形的内心都在三角形的_______⑶、三角形的内心和一个顶点的连线_______该顶点处的内角 ★三角形的外接圆和内切圆跟踪练习1.如图,O 为△ABC 的外心,OA=2cm ,则OA+OB+OC=________2.如图,O 为△ABC 的内心,则∠1+∠2+∠3=________3、Rt △ABC 中,∠C=90°,AC=6cm,BC=8cm,它的外接圆半径为_______ ★圆内接正多边形跟踪练习1.如图,圆内接正六边形ABCDEF 的边长为6cm,OG ⊥AB 则该正六边形的半径为________,中心角为__________,边心距为_______面积为__________ ★梳理圆的有关计算的知识要点 1.弧长计算公式:_________________ 2.扇形面积计算公式:__________________ ★圆的有关计算跟踪练习1.半径为4cm,圆心角为120°的扇形的弧长为_________,面积为__________2.一扇形的半径为4cm.周长为10cm,则该扇形的面积为_______3.如图,在半径为5,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB 上,求阴影部分的面积★挑战自我已知:如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC ⊥PQ 于C ,交⊙O 于D . (1)求证:AT 平分∠BAC ; (2)若AD=3cm,TC=2cm,求⊙O 的半径.第2题图第1题图。

北师大初中数学中考总复习:圆综合复习--知识讲解(基础)【推荐】.doc

北师大初中数学中考总复习:圆综合复习--知识讲解(基础)【推荐】.doc

中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. ②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题 1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】连接OB,由垂径定理可知,AB=2BD,由圆周角定理可得,∠COB=60°,在Rt△DOB中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C;【解析】连接OB,∵AB是⊙O的一条弦,OC⊥AB,∴AD=BD,即AB=2BD,∵∠CEB=30°,∴∠COB=60°,∵OD=1,∴BD=1×tan60°=,∴AB=2,故选C.【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是()A、2cmB、3cmC、4cmD、【答案】解:连接OA,∵CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,∴AB=2AM,∵CD=5cm,∴OD=OA=12CD=12×5=52cm,∵OM:OD=3:5,∴OM=35OD=×=,∴在Rt△AOM中,=2,∴AB=2AM=2×2=4cm.故选C.类型二、与圆有关的位置关系2.如图所示,已知AB 为⊙O 的直径,直线BC 与⊙O 相切于点B ,过A 作AD ∥OC 交⊙O 于点D ,连接CD .(1)求证:CD 是⊙O 的切线;(2)若AD =2,直径AB =6,求线段BC 的长.【思路点拨】要证明DC 是⊙O 的切线,因为点D 在⊙O 上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD .∵ AD ∥OC ,∴ ∠1=∠3,∠2=∠A ,∴ OA =OD ,∴ ∠3=∠A ,∴ ∠1=∠2.∵ OD =OB ,OC =OC .∴ △COD ≌△COB ,∴ ∠CDO =∠CBO =90°,∴ CD 是⊙O 的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴ AD BD OB BC,∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得BD ==∴ 32BC ⨯== 【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC 中,∠ADC =90°,∴ ∠A+∠ACD =90°.又∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.在△AED 中,∠AED =90°,G 是AD 中点,∴ AG =GE =DG ,∴ ∠A =∠AEG .又∵ OE =OC ,∴ ∠OEC =∠ACD .又∵ ∠A+∠ACD =90°,∴ ∠AEG+∠OEC =90°.∴ ∠OEG =90°,∴ OE ⊥EG .∴ GE 是⊙O 的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.4.如图所示,半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积. 【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC 中,以AC 为直径的⊙O 交BC 于D ,过C 作⊙O 的切线,交AB 的延长线于P ,∠PCB=∠BAC .(1)求证:AB=AC ;(2)若sin ∠BAC=35,求tan ∠PCB 的值.【思路点拨】(1)连接AD ,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD ,进而求得∠CAD=∠BAD ,然后根据ASA 证得△ADC ≌△ADB ,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE∥PC,∴∠PCB=∠CBE,∵sin∠BAC==,∴=,∵AB=AC,∴tan∠CBE===,∴tan∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【变式】已知:如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状并说明理由;(2)设⊙O的半径为1,且213-=OF,求证△DCE≌△OCB.【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+. 又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( )A. C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小.连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°,∴ sin 4522AB AC '==⨯=°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习:圆综合复习—巩固练习(基础)【巩固练习】一、选择题1.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( ) A.弦AB的长等于圆内接正六边形的边长 B.弦AC的长等于圆内接正十二边形的边长C.»»AC BCD.∠BAC=30°2.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为( ) A.7 B.72 C.82 D.9第1题第2题第3题3.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm,则DC的长为( ) A.5 cm B.2.5 cm C.2 cm D.1 cm4.已知:⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为( ) A.17cm B.7cm C.12cm D.17cm或7cm5.(2015•西藏)已知⊙O1与⊙O2相交,且两圆的半径分别为2cm和3cm,则圆心距O1O2可能是()A.1cm B.3cm C.5cm D.7cm6.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A.1 B.34C.12D.13二、填空题7.在⊙O中直径为4,弦AB=23,点C是圆上不同于A,B的点,那么∠ACB度数为________.8.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是¼BAC上一点,则∠D=________.第8题第9题9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是________度.10.若两圆相切,圆心距是7,其中一圆的半径为10,则另一个圆的半径为________.11.(2015•盐城校级模拟)如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是cm.12.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于________.(结果保留根号及π)三、解答题13.(2014秋•北京期末)如图,AB为⊙O的直径,直线l与⊙O相切于点C,过点A作AD⊥l于点D,交⊙O于点E.(1)求证:∠CAD=∠BAC;(2)若sin∠BAC=,BC=6,求DE的长.14.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,3sin5P ,求⊙O的直径.15.如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连接AB并延长交⊙O2于点C,连接O2C.(1)求证:O2C⊥O1O2;(2)证明:AB·BC=2O2B•BO1;(3)如果AB•BC=12,O2C=4,求AO1的长.16.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:12EH AB=;(3)若1B4BHE=,求BHCE的值.【答案与解析】一、选择题1.【答案】D ;【解析】∵ OA=AB=OB,∴∠AOB=60°.又∵ CO⊥AB,∴11603022BOC AOB∠=∠=⨯=°°.又∠BOC和∠BAC分别是»BC对的圆心角和圆周角,∴11301522BAC BOC∠=∠=⨯=°°.∴ D错.2.【答案】B ;【解析】连接AD,BD,由AB是⊙O的直径得∠ACB=∠ADB=90°,故∠ACD=∠BCD=45°,BC=8,AD=BD=52.由△ACD∽△OCB,得AC CDCO BC=,即CO·CD=6×8=48.由△DOB∽△DBC,得CD BDBd OD=,即OD·CD=525250=.∴ CO ·CD+OD ·CD =(CO+OD)·CD =CD 2=98.∴ 9872CD ==.3.【答案】D ;【解析】连接AO ,由垂径定理知132AD AB ==, 所以Rt △AOD 中,2222435AO OD AD =+=+=.所以DC =OC-OD =OA-OD =5-4=1.4.【答案】D ;【解析】如图,在Rt △OAE 中,222213125OE OA AE =-=-=(cm).在Rt △OCF 中,222213512OF OC CF =-=-=(cm).∴ EF =OF-OE =12-5=7(cm).同理可求出OG =12(cm).∴ EG =5+12=17(cm).则AB ,CD 的距离为17cm 或7cm .5.【答案】B ;【解析】两圆半径差为1,半径和为5,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,1<O 1O 2<5.符合条件的数只有B .6.【答案】C ;【解析】圆锥底面的周长等于其侧面展开图半圆弧的长度,设圆锥底面圆的半径为r ,则12212r ππ=⨯⨯, ∴ 12r =.二、填空题7.【答案】120°或60°;【解析】如图,过O 作OD ⊥AB 于D ,在Rt △ODB 中,OB =2,12332BD =⨯= ∴ 3sin BD DOB OB ∠==.∴ ∠DOB =60°,∴ ∠AOB =60°×2=120°.如图中点C 有两种情况:∴ 1120602ACB ∠=⨯=°°或1(360120)1202ACB ∠=-=°°°. 8.【答案】40°;【解析】∵ AC 是⊙O 的直径,∴ ∠ABC =90°,∴ ∠A =40°,∴ ∠D =∠A =40°.9.【答案】100;【解析】在△ABC 中,∠A =180°-∠B-∠C =180°-60°-70°=50°,∵ OA =OD ,∴ ∠ODA =∠A =50°,∴ ∠BOD =∠A+∠ODA =100°.10.【答案】3或17;【解析】显然两圆只能内切,设另一圆半径为r ,则|r-10|=7,∴ r =3或17.11.【答案】2;【解析】设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm .故答案为2.12.【答案】2π ;【解析】∠AOB =45°+45°=90°,OA =222222+=. ∴ »AB 90222180l ππ⨯==. 三、解答题13.【答案与解析】(1)证明:连接OC ,∵CD 为⊙O 的切线,∴OC ⊥CD ,∵AD ⊥CD ,∴OC ∥AD ,∴∠CAD=∠ACO .又∵OC=OA ,∴∠ACO=∠OAC ,∴∠CAD=∠OAC ,即∠CAD=∠BAC .(2)过点B 作BF ⊥l 于点F ,连接BE ,∵AB为⊙O的直径,∴∠AEB=90°,又AD⊥l于点D,∴∠AEB=∠ADF=∠BFD=90°,∴四边形DEBF是矩形,∴DE=BF.∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCF=90°.∵∠ADC=90°,∴∠ACD+∠CAD=90°,∴∠BCF=∠CAD.∵∠CAD=∠BAC,∴∠BCF=∠BAC.在Rt△BCF中,BC=6,sin∠BCF==sin∠BAC=,∴BF==,∴DE=BF=.14.【答案与解析】(1)证明:∵»»BD BD=,∴∠BCD=∠P.又∵∠1=∠BCD,∴∠1=∠P.∴ CB∥PD.(2)解:连接AC.∵ AB为⊙O的直径,∴∠ACB=90°.又∵ CD⊥AB,∴»»BC BD=.∴∠A=∠P,∴ sin A=sin P.在Rt△ABC中,sinBCAAB =,∵3sin5P=,∴35BCAB=.又∵ BC=3,∴ AB=5,即⊙O的直径为5.15.【答案与解析】(1)证明:∵ AO1是⊙O2的切线,∴ O1A⊥AO2,∴∠O2AB+∠BAO1=90°.又O2A=O2C,O1A=O1B,∴ ∠O 2CB =∠O 2AB ,∠O 2BC =∠ABO 1=∠BAO 1. ∴ ∠O 2CB+∠O 2BC =∠O 2AB+∠BAO 1=90°.∴ O 2C ⊥O 2B ,即O 2C ⊥O 1O 2.(2)证明:延长O 2O 1,交⊙O 1于点D ,连接AD . ∵ BD 是⊙O 1的直径,∴ ∠BAD =90°.又由(1)可知∠BO 2C =90°,∴ ∠BAD =∠BO2C ,又∠ABD =∠O 2BC ,∴ 2OB BC AB BD=. ∴ AB ·BC =O 2B ·BD .又BD =2BO 1,∴ AB ·BC =2O 2B ·BO 1.(3)解:由(2)证可知∠D =∠C =∠O 2AB ,即∠D =∠O 2AB . 又∠AO 2B =∠DO 2A ,∴ △AO 2B ∽△DO 2A .∴ 2222AO O B DO O A=, ∴ 2222AO O B O D =g .∵ 22O C O A =,∴ 2222O C O B O D =g . ①又由(2)AB ·BC =O 2B ·BD . ②由①-②得2222O C AB BC O B -=g ,即222412O B -=.∴ O 2B =2,又O 2B ·BD =AB ·BC =12,∴ BD =6.∴ 2AO 1=BD =6,∴ AO 1=3.16.【答案与解析】(1)证明:在等腰梯形ABCD 中,AB =DC ,∴ ∠B =∠C . ∵ OE =OC ,∴ ∠OEC =∠C .∴ ∠B =∠OEC .∴ OE ∥AB .(2)证明:连接OF ,如图.∵ ⊙O 与AB 切于点F ,∴ OF ⊥AB .∵ EH ⊥AB ,∴ OF ∥EH .又∵ OE ∥AB ,∴ 四边形OEHF 为平行四边形. ∴ EH =OF .∵ 1122OF CD AB ==, ∴ 12EH AB =.(3)解:连接DE ,如图.∵ CD 是直径,∴ ∠DEC =90°. ∴ ∠DEC =∠EHB .又∵ ∠B =∠C ,∴ △EHB ∽△DEC .∴BH BE CE CD=. ∵ 14BH BE =,设BH =k , ∴ BE =4k ,2215EH BE BH =-, ∴ 2215CD EH ==.∴215215BH CE k ==.。

相关文档
最新文档