解一元一次不等式组3
专题03 解一元一次不等式(组)及参数问题八种模型(学生版)
专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册
解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
一元一次不等式(组)及其解法
一.一元一次不等式的定义
只含有一个未知数, 只含有一个未知数,并且未知数的次数是一次的 不等式叫一元一次不等式. 不等式叫一元一次不等式.
二.形式: 形如 形式: 形如ax>b(a≠0)
如何解不等式ax>b(a ≠0)? 如何解不等式
b 分类讨论:a>0时,x> 分类讨论 时 a
1 − 3x 练习: (1)解不等式 − 7 ≤ <2 2 (2)解不等式组 : 4 + 2x > 7 x + 3 3x + 6 > 4 x + 5 2 x − 3 < 3x − 5
x+y=3 例8.方程组 8.方程组 的解满足 x-2y=-3+a 2y=-
x>0 ,求a的取值范围. 的取值范围. y>0
x
b a b a
x
b a<0时,x< 时 a
三.一元一次不等式的解法: 一元一次不等式的解法:
4 − 2x x −3 例1.解不等式 < 1− 3 4
去分母 去括号 移项b的形式 或 化成 的形式
练习:求不等式21 − 4 x > 5的非负整数解 1. 1 2 2.k取什么值时, 代数式 (1 − 5k ) − k的值为非负数. 2 3
2 3 x + 25 例2.关于x的方程 − ( x + m) = + 1的解是正数, 3 3 那么m的取值范围是什么?
四.一元一次不等式组
假设a>b 假设
x>a
(1)
x>b x>a
x>a
x<a
一元一次不等式(组)知识总结及经典例题分析
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
一元一次不等式组的三种求解方法
数学篇数苑纵横解一元一次不等式组的方法是:先求出每一个不等式的解集,再找出它们的公共部分.怎样找公共部分是同学们求不等式组解集的一个难点.突破这一难点的方法有三种:数轴法、图象法、口诀法.下面结合例题进行分析.同学们在做题时可以灵活选择不同的解答方法.一、数轴法数轴在解一元一次不等式组中有着重要的作用.利用数轴法求解不等式组的解集时,首先确定出每一个不等式的解集,然后在数轴上分别表示出来.每个一元一次不等式的解集在数轴上的表示都是一条射线,这些射线都通过的部分就是这些不等式的解集的公共部分.如果公共部分不存在,那么不等式组就无解.例1已知m为任意实数,求不等式组{1-x<3,x<m-2,的解集.解析:由不等式1-x<3化简得x>2,先在数轴上表示,如图1所示,接着,在数轴上表示出解集x<m-2.借助数轴可直观地发现,当表示数m-2的点在表示2的点的右边,即m-2>2,解得m>4时,该不等式组的解集为2<x<m-2;当表示数m-2的点在表示2的点的左边,或与2重合,即m-2≤2,解得m≤4时,该不等式组无解.ìíîx>2,x<5,x<m-2,的解集.解析:和例1相比较,该不等式组中不等式的个数增加到3个,需求出这3个不等式解集的公共部分,此时借助数轴更能起到化抽象为直观的作用.先在数轴上表示出第一、二个不等式解集的公共部分,如图2,再借助数轴可直观地发现,当表示数m-2的点在表示2的点上边或左边,即m-2≤2,m≤4时,3个不等式的解集没有公共部分,原不等式组无解;当表示数m-2的点在2和5之间,即2<m-2<5,4<m<7时,原不等式组的解集为2<x<m-2;当表示数m-2的点在表示5的点上边或右边,即m-2≥5,m≥7时,原不等式组的解集为2<x<5.图2说明:利用数轴来确定解集时,要特别注意两个端点处是空心还是实心.同时要牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈.二、图象法一元一次不等式与一次函数之间存在着密切联系,因此,可根据一次函数图象确定不等式组的解集,具体步骤如下:(1)在同一直角坐标系中,把每个不等式的解集所确定的一元一次不等式组的三种求解方法山西太原吴雨桐数学篇数苑纵横各解集的交集所确定的区间;(3)写出不等式组的解集.例3如图3,观察图象,可以得出不等式组ìíî3x +1>0,0.5x -1<0,的解集是().A .x <13B .-13<x <0C .0<x <3D .-13<x <2解析:由图象知,函数y =3x +1与x 轴交于点(-13,0),即当x >13时,函数值y 的范围是y >0;因而当y >0时,x 的取值范围是x >-13;函数y =-0.5x +1与x 轴交于点(2,0),即当x <2时,-0.5x +1>0,即0.5x -1<0;因而当y >0时,x 的取值范围是x <2;所以,原不等式组的解集是-13<x <2.故选:D 项.例4已知,函数y =kx +m 和y =ax +b 的图象交于点P ,则根据图象可得不等式组{kx +m >0,ax +b >kx +m ,的解集为_____________.图4解析:由图象知,当kx +m >0时,x >-2.当ax +b >kx +m 时,x <-1.∴不等式组的解集为:-2<x <-1.说明:利用图象法求解不等式组的解集,关键就要在图象上找到对应的部分,再由图象确定对应的x 的取值范围,即为不等式(组)的解集.三、口诀法由两个一元一次不等式所组成的一元一次不等式组,变换为标准形式后,可分为以下表格所列出的四种基本类型,求不等式的解集即确定它们的公共部分.这时可利用口诀法,根据“同大取大,同小取小;大小小大中间找,大大小小解没了”这四句口诀,快速确定不等式组的解集.例5解不等式组ìíîïïx -32+3≥x ,①1-3(x -1)<8-x ,②解析:解不等式①,得x ≤3;解不等式②,得x >-2.两个不等式一个含有大于号,一个含有小于或等于号,并且是x大于两个数中较小的数-2,小于等于较大的数3.根据“大小小大中间找”,这个不等式组的解集是-2<x ≤3.例6解不等式组ìíî1-2x >4-x ,①3x -4>3,②解析:解不等式①,得x <-3;解不等式②,得x >73.两个不等式的不等号方向相反,并且x 是大于两个数中的较大的数,同时小于较小的数.根据“大大小小解没了”,所以这个不等式组无解.说明:在填空题、选择题中运用口诀法可以提高解题速度;在计算题等大题中口诀法可以起检验的作用.所以,掌握好口诀法对同学们解答一元一次不等式组有着重要作用.图322。
一元一次不等式组的解法步骤例题
一元一次不等式组的解法步骤一元一次不等式组是数学中常见的一类问题,它可以通过一定的方法和步骤得到解决。
在本文中,我们将针对一元一次不等式组的解法步骤进行全面评估,并提供例题来帮助读者更深入理解。
解法步骤:1. 确定不等式组的条件:我们需要明确所给出不等式组的条件。
不等式组通常包括多个不等式,我们需要确保每个不等式都满足一元一次不等式的标准形式,即ax+b>c或ax+b<c。
2. 求出每个不等式的解集:针对每个不等式,我们需要求出其解集。
这一步骤需要运用代数式的加减乘除法,并结合不等式的性质来确定不等式的解集。
3. 得出整体的解集:在求出每个不等式的解集之后,我们需要将这些解集合并起来,求得整体的解集。
在合并解集的过程中,需要注意考虑每个不等式的关系,以确保得出正确的整体解集。
下面我们通过一个具体的例题来展示以上的解法步骤:例题:求解不等式组 {2x+1>5, 3x-2<7}解法步骤:1. 确定不等式组的条件:给出的不等式组已经满足一元一次不等式的标准形式,因此不需要进行进一步的调整。
2. 求出每个不等式的解集:分别对每个不等式进行求解,得到2x>4和3x<9。
通过简单的代数运算,我们可以得到x>2和x<3。
3. 得出整体的解集:通过整合每个不等式的解集,我们可以得到最终的解集为2<x<3。
个人观点和理解:从上面的例题中可以看出,解决一元一次不等式组主要是通过逐步求解各个不等式,然后再将它们的解集合并起来,得到最终的整体解集。
在这个过程中,需要注意准确地运用代数运算,同时也要考虑不等式之间的关系,确保最终的解集是正确的。
总结回顾:通过本文的讲解和例题,我们对一元一次不等式组的解法步骤有了更深入的了解。
从确定条件、求解各个不等式到得出整体的解集,这些步骤是解决一元一次不等式组问题的关键。
我们也注意到在解题的过程中,需要不断地练习和总结,才能更熟练地应对各种类型的不等式组问题。
一元一次不等式组的解法经典例题透析
经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
一元一次方程不等式解法
一元一次方程不等式解法一元一次方程不等式是数学中比较基础的知识,对于初学者来说,理解并掌握它是非常重要的。
本文将为大家介绍一元一次方程不等式的概念、解法以及常见的问题和注意事项。
一、什么是一元一次方程不等式?一元一次方程不等式是指一个只有一个未知数x的不等式,其形式一般为ax + b > 0或ax + b < 0,其中a和b为已知数且a ≠ 0。
二、一元一次方程不等式的解法1. 移项法将不等式中的常数项b移到一边,未知数项ax移到另一边,然后将方程两边同除以系数a。
例如,对于ax + b > 0,我们可将b移到另一边,得到ax > -b,再将两边同除以a,即可得到x > -b/a的解。
2. 加减法一元一次方程不等式的加减法是指将不等式两边同时加上或减去同一量,从而改变不等式符号后比较大小。
例如,对于ax + b < 0,我们可将b移到另一边,得到ax < -b,再将两边同时减去b/a,即可得到x < -b/a的解。
三、一元一次方程不等式的常见问题和注意事项1. 一元一次方程不等式的解可能是整数、有理数或无理数。
2. 当a为正数时,不等式ax + b > 0的解集为x > -b/a,不等式ax + b < 0的解集为x < -b/a。
3. 当a为负数时,不等式ax + b > 0的解集为x < -b/a,不等式ax + b < 0的解集为x > -b/a。
4. 在解一元一次方程不等式时,最好画出数轴,从而更直观地判断解的区间。
5. 如果在方程中遇到分母为0的情况,就必须将其排除在方程的解的范围之外。
综上所述,理解一元一次方程不等式的概念和解法,以及注意事项,有助于我们更好地学习数学,提高解题能力。
希望本文能为大家提供一些参考和帮助。
(完整版)一元一次不等式组的三种求解方法
一元一次不等式组的三种求解方法一元一次不等式及不等式组的解法是初中数学中的一个重要内容,具体可利用图象、数轴以及口诀解答有关题目.下面结合实例进行讲解,同学们在解题时可以灵活选择解题方法。
一、利用图象解一元一次不等式(组)1.求解一元一次不等式kx+b>0或kx+b0或y〈0;当一次函数y=kx+b 的图象在x轴上方或下方时,求横坐标x的取值范围。
2。
求解一元一次不等式k1x+b1〉k2x+b2或k1x+b1〈k2x+b2(其中k、b为常数,且k≠0)可以转化为:求当x取何值时,一次函数y1=k1x +b1的值大于或小于一次函数y2=k2x+b2的值;当一次函数y1=k1x+b1的图象在一次函数y2= k2x+b2图象上方或下方时,求横坐标x的取值范围。
例1 用图象的方法解不等式2x+1>3x+4.解析:把原不等式的两边看作两个一次函数,在同一坐标系中画出直线y=2x+1与y= 3x+4(图1),从图象上可以看出它们的交点的横坐标是x=-3,因此当x3x+4,因此不等式的解集是x〈-3.图1例2 已知函数y=kx+m和y=ax+b的图象如图2交于点p,则根据图象可得不等式组kx+m>0ax+b>kx+m的解集为_____________.图2解析:当kx+m>0时,x〉—2。
ax+b>kx+m时,x〈-1。
∴不等式组的解集为:—2〈x〈—1。
数轴在解一元一次不等式中有着重要作用,不等式的解集在数轴上的表示如下:(1)x〉a:数轴上表示a的点画成空心圆圈,表示a的点的右边部分来表示,表示a不在解集内;(2)x (3)x≥a:数轴上表示a的点画成实心圆点,表示a的点及a的点的右边部分来表示,表示a在这个解集内;(4)x≤a:数轴上表示a的点画成实心圆点,表示a的点及a的点的左边部分来表示,表示a在这个解集内.例3 已知m为任意实数,求不等式组1-x〈3x〈m—2的解集.解析:由不等式1-x2,先在数轴上表示,如图1.接着,在上面的数轴上表示出解集x2,m>4时,该不等式组的解集为2<x〈m—2;当表示数m —2的点在表示2的点的左边或和与2重合即m—2≤2,m≤4时,该不等式组无解。
解一元一次不等式组
解一元一次不等式组1.一元一次不等式组的定义:由几个一元一次不等式构成的不等式组叫做一元一次不等式组.2.一元一次不等式组的解集的定义:一般地,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集.3.解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即可求出这个不等式组的解集.注意:①利用数轴表示不等式的解集时,需要注意表示数的点的位置上是空心圆圈,还是实心圆点;②若不等式组中各个不等式的解集没有公共部分,则这个不等式组无解.4.由两个一元一次不等式组成的不等式组的解集的情况有如下四种:不等式组()大小,小大中间找例1.解不等式组,并把它的解集表示在数轴上.例2.解不等式:.例3.解不等式组.例4.求不等式组的整数解.例5.解不等式:.例6.解不等式组:.例7.如果、、这三个实数在数轴上所对应的点从左到右依次排列,求的取值范围.一元一次不等式组的运用例1.韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆例2.苏州地处太湖之滨,有丰富的水产养殖资源,•水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投入4kg蟹苗和20kg虾苗;③每千克蟹苗的价格为75元,其饲养费用为525元,当年可获1 400元收益;④每千克虾苗的价格为15元,其饲养费用为85元,当年可获160元收益.(1)若租用水面n亩,则年租金共需_________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本).例3.某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.6℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为0m).例4.某公司经营甲、乙两种商品,每件甲种商品进价12万元,•售价14.5万元.每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.•现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用(2)中所求得的最大利润再次进货,•请直接写出获得最大利润的进货方案.例5.某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案一:若直接给本厂设在某市门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2400元;方案二:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为xkg.(1)你若是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销量总量.一元一次不等式组的易错题例1.当满足条件时,由,可得.例2.若,则在与之间.例3.已知关于的方程的解是正数,的取值范围是.例4.若关于的不等式组解是,则= .例5.若、、是三角形三边长,则代数式的值()(A)>0 (B)<0 (C)(D)例6.的最小值为.例7.共有竞赛题25题,做对得4分,不做或做错倒扣2分,若不低于60分,则至少对了题.例8.已知,若,则的取值范围是.例9.若不等式组的整数解仅为1,2,3,符合这个不等式组的整数和的有序实数对共有多少对?例10.当,求取值范围.例11.已知关于的不等式组的整数解共有5个,求的范围.例12.关于的不等式的正整数解为1、2、3,则的取值范围是多少?例13.一半学生学数学,学音乐,学外语,剩下的不足6位踢球,共有多少学生?课堂反思1.一元一次不等式组是代数运算的重点与必考点,要求学生熟练地掌握.2.一元一次不等式组的解法是基础基础的题型,按照规范步骤解题即可.3.利用一元一次不等式组解决实际问题类似于利用二元一次方程组解决实际问题,关键是根据题意列出不等式组.课后练习1.已知为正整数,且不等式只有3个正整数解,求的值.2.若不等式组有解,则的取值范围是()A.B.C.D.3.已知关于x的不等式组只有4个整数解,则实数的取值范围是.4.已知两数,,试比较与的大小关系.5.把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?6.一个工程队原定10天内至少要挖掘600m3的土方,在前两天共完成了120m3后,又要求提前2天完成挖掘土方任务,问以后几天内,平均每天至少要挖掘多少土方?(列出算式,不要求求解)根据列表分析可列出不等式为__________________≥600.7.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:计划购进电视机和洗衣机共100台,商店最多可筹集资金161800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)8.某园林的门票每张10,一次使用.考虑到人们的不同需求,也为了吸收更多的少游客,该园林除保留原有的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者是入该园林时,无需再购买门票;B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果您只选择一种购买门票的方式,并且您计划在一年中花80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.。
一元一次不等式组
初中七年级数学下册第九章:不等式与不等式组——9.3:一元一次不等式组一:知识点讲解知识点一:一元一次不等式组及其解法一元一次不等式组:把含有相同未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的三个条件:✧ (1)不等式组中所有不等式都是一元一次不等式✧ (2)不等式组中的所有一元一次不等式都含有同一个未知数 ✧ (3)不等式组中的一元一次不等式的个数至少是两个 注意:不等式组一定要用大括号联立,大括号表示“且”的意思。
1. 例1:下列不等式组中,是一元一次不等式组的是( )A.B.C.D.一元一次不等式组解法✧ 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。
✧ 解一元一次不等式组:求一元一次不等式组的解集的过程叫做解一元一次不等式组。
解法:先分别求不等式组中每个不等式的解集,然后找出它们解集的公共部分。
不等式组:b a <✧ ⎩⎨⎧>>bx ax :同大取大。
✧ ⎩⎨⎧<<b x ax :同小取小。
⎩⎨⎧-<>32x x ⎩⎨⎧<-<+0201y x ()()⎩⎨⎧>+-<-032023x x x ⎪⎩⎪⎨⎧>+>-x x x 11023✧ ⎩⎨⎧<>bx ax :大小小大中间找。
✧ ⎩⎨⎧><b x ax :大大小小无处找。
例1:不等式组⎩⎨⎧≤-<-0262x x 的解集在数轴上表示正确的是( )A.B.C.D.知识点二:列一元一次不等式组解决实际问题列不等式组解决实际问题:✧ “审”:分清题目中的已知量和未知量,找出已知量和未知量之间的所有的不等关系; ✧ “设”:设出适当的未知数;✧ “列”:依据各个不等关系分别列出相应的不等式,从而组成不等式组; ✧ “解”:求不等式组的解集;✧ “答”:检验解集是否符合实际情况,作答。
一元一次不等式组的应用第三课时
练一练:
1、将若干只鸡放入若干个笼,若每个笼里放4只, 、将若干只鸡放入若干个笼,若每个笼里放 只 则有一只鸡无笼可放;若每个笼里放5只 则有一只鸡无笼可放;若每个笼里放 只,则有一 笼无鸡可放。那么至少有多少只鸡?多少个笼? 笼无鸡可放。那么至少有多少只鸡?多少个笼? 2、某宾馆底楼客层比二楼少5间,某旅游团有 人, 、某宾馆底楼客层比二楼少 间 某旅游团有48人 若全部安排底楼,每间住4人 房间不够;每间住5人 若全部安排底楼,每间住 人、房间不够;每间住 人、 有的房间没住满。又若全部安排二楼,每间住3人 有的房间没住满。又若全部安排二楼,每间住 人、 房间不够;每间住4人 有的房间没住满4人 房间不够;每间住 人,有的房间没住满 人。 该宾馆底楼客层有多少间客房? 问:该宾馆底楼客层有多少间客房?
5 , 23 或 6 , 26
思考题:
某自行车厂今年生产销售一种新型自行车,现向你提供 某自行车厂今年生产销售一种新型自行车 现向你提供 以下有关信息: 以下有关信息 (1)该厂去年已备有自行车车轮 该厂去年已备有自行车车轮10000只,车轮车间今年平均 只 车轮车间今年平均 该厂去年已备有自行车车轮 每月可生产车轮1500只,每辆自行车需装配 只车轮 每辆自行车需装配2只车轮 每月可生产车轮 只 每辆自行车需装配 只车轮; (2)该厂装配车间 自行车最后一道工序的生产车间)每月至少 该厂装配车间(自行车最后一道工序的生产车间 每月至少 该厂装配车间 自行车最后一道工序的生产车间 可装配这种自行车1000辆,但不超过 但不超过1200辆; 可装配这种自行车 辆 但不超过 辆 (3)该厂已收到各地客户今年订购这种自行车共 该厂已收到各地客户今年订购这种自行车共14500辆的订 辆的订 该厂已收到各地客户今年订购这种自行车共 单; (4)这种自行车出厂销售单价为 这种自行车出厂销售单价为500元/辆. 元辆 这种自行车出厂销售单价为 设该厂今年这种自行车销售金额为a万元 请根据以上信息 设该厂今年这种自行车销售金额为 万元,请根据以上信息 判 万元 请根据以上信息,判 断a的取值范围是 的取值范围是 .
第3讲 一元一次不等式(组)
D.m≤- 7 5
【答案】A
变
5.若关于
x
的一元一次不等式组
ìïí ïî
2 x-m≤0 -x<4
有解,则
m
的取值范围是(
)
A.m≥-8
B.m≤-8
C.m>-8
D.m<-8
【答案】C
考点四 整数解问题
例
5.关于
x
的不等式组
ìïí ïî
x-a>0 3-3x>0
的整数解共有
6
个,则
a
的取值范围是(
)
A.-6<a<-5 B.-6≤a<-5 C.-6<a≤-5 D.-6≤a≤-5
(2)化简|4a+5|-|a-x x
y y
5a 3a
1 9
得:
x y
4a 5 a 4
,
∵方程组的解为正数,
∴
4a a
5 4
0 0
,解得:-
5 4
<a<4;
(2)当- 5 <a<4 时,|4a+5|-|a-4|=4a+5-(4-a)=5a+1. 4
变
5.不等式组
ìïïïíïïïî
x - 3≥0 x <3 2
的所有整数解之和是(
)
A.9
B.12
C.13
【答案】B
D.15
变 6.如点 P(3x+9, 1 x-2)在平面直角坐标系的第四象限内,那么 x 的取值范围在数 2
轴上可表示为( )
A. -3 4
B. -3 4
C. -3 4 【答案】C
D. -3 4
例
3.若不等式组
人教版数学七年级下册一元一次不等式第三课时一元一次不等式的应用课件
答:加工乙种零件的同学至少为13人.
知识点 利用一元一次不等式解决比较复杂的实际问题
9.2 一元一次不等式 A.12
B.13
1.请你谈谈解一元一次不等式的一般方法和步骤是哪些.
另据估计,从2020年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.
根据题意,得(6 000-x)90%+95%x≥93%×6 000,
胸无大志,枉活一世。
天才是由于对事业的热爱感而发展起来的,简直可以说天才。
根据题意,得24×4x+16×5×(20-x)≥1 800, 人生不得行胸怀,虽寿百岁犹为无也。
对没志气的人,路程显得远;对没有银钱的人,城镇显得远。
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
解这个不等式,得x≥12.5. 雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
燕雀安知鸿鹄之志哉。
不低于1 志正则众邪不生。
心志要坚,意趣要乐。
800元,加工乙种零件的同学至少为几人?
男儿不展同云志,空负天生八尺躯。
少年心事当拿云。
解:设加工乙种零件的同学为x 以天下为己任。
远大的希望造就伟大的人物。
人
,
则
这
天
可
加
工
乙
种
零
件
4x个
,
岂能尽如人意,但求无愧我心.
甲种零件有5(20-x)个. 人之所以异于禽者,唯志而已矣!
第九章 不等式与不等式组
第3课时 一元一次不等式的应用(2) 8若天人14少天另根雄1若另解 因若6另根因根 4千.....要才生千才据据鹰小据:为要据据为据米 请 小 某 某 小保 是 不 米 是 估 题 必 区 估 设x使 估 题 x题.你明次林明是是证由得才由计意须的计加 这计意意已谈家数场家正正绿于行能于,,比总,工 批,,,知谈离学计离整整色对胸不对从得鸟占从乙 树从得得他解火竞划火数数草事怀误事2(飞地2种 苗2((222步一车0赛0购0车,,111地业,当业2得面2零 的2666行元站0共0买0站所所×××面的虽次的高积件 成年年年的一有甲11以以999积热寿火热,为的 活0初初初0000速次、2xxkk%%%不爱百车爱因同率起01起起最最mm度不乙道4+++低感岁?感为学 不,,,小小,,0为等两选xxx0于而犹而它为 低该该该值值某某)))0式种9×择××规发为发的于0市m市x市是是天天的树米9题99人2定展无展猎此0此9此001111,一苗/%,3%%,3300分要起也起物后后%后..点点小+++般共评则,,求来。来就每每每11区xxx方分6这00跑且≤≤≤,的的是年年年分分0内222法办天0步购333则,,鸟报报报小小0每111和法可棵的买...最简简。废废废明明幢步:加,速树多直直的 的 的离 离楼骤答工甲度苗只可可汽汽汽家家房是对乙种为的能以以车车车赶赶的哪一种树2总建说说数数数111建11些题零苗0费点点造天天量量量米筑.得件每用整整多才才是是是面/54分棵最的的少。。上上上分x积个,5低火火幢年年年,元为,若,车车住底底底答,5甲他6应去去宅汽汽汽错乙0种要最某某楼车车车或m种零在2多地地?拥拥拥不树;件1选,,有有有答5苗有分购他他量量量一每5钟乙先先的的的题(棵2内种0以以1扣118-000到元树33%2%%x分达kk,苗...)个mm.乙相多//.hh参地关的的少赛,资速速棵学至料度度?生少表走走至需明了了少要:55 答跑mm甲ii对步nn、到到多乙达达少两汽汽道种车车题树站站成苗,,绩的然然才成后后能活乘乘不率公公低分共共于别汽汽(6为0车车分9去去0)%火火和车车95站站%... 请请问问::公公共共汽汽车车每每( 小小时时)至至少少走走多多
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计:张永妮 七 数 导学案 下 册 班级: 组名: 姓名: 时间:
65-9.3.3解一元一次不等式组(3)
★学习目标:
1、使学生熟练掌握一元一次不等式组的解法;
2、掌握一元一次不等式组的灵活运用。
★学习重难点:
重点:熟练掌握一元一次不等式组的解法。
难点:掌握一元一次不等式组的灵活运用。
★学法指导:
探究、归纳与练习相结合
★学习流程
【自主学习】
解下列不等式组
1、 232063-<+->-x x x
2、 233242->-<-x x x
3、 2432
21≥--≥-x x x 4、 23126
3->-≥-x x x
设计:张永妮
七 数 导学案 下 册 【合作探究】
专题学习
1、关于x 的不等式组⎩
⎨⎧-〉-≥-1230x a x 的正整数共有5个,则a 的取值范围是 。
2、若不等式组⎩⎨⎧〉-〉+b
x a x 12的解集为-1<x <2,则a = ,b = 。
3、不等式组⎩
⎨⎧-〉+〉423a x a x 的解集为x >3a +2,则a 的取值范围是 。
4、若不等式组⎩⎨⎧≤≥-m
x x 032无解,则m 的取值范围是 。
5、已知关于x 的不等式组⎩⎨⎧--0
10x >a >x 的整数解共有3个,则a 的取值范围为 。
6、若不等式组⎩
⎨⎧--3212b >x a <x 的解集为-1<x <1,那么代数式)1)(1(-+b a 的值为 。
【当堂达标】
1、不等式组⎩⎨⎧≤->+0
201x x 的解集是________,整数解有________.
2、不等式组⎩
⎨⎧+≤-->+-94754)1(2x x x 的解集是________. 3、根据图1,用不等式表示公共部分x 的范围______. 4、若不等式组121x m x m +⎧⎨>-⎩
≤无解,则m 的取值范围是________. 【课后反思】
自我评价: 对子评价: 教师评价:
图1 -3 -2 -1 0 1 2 b
b。