全球电子产品模块电子封装的发展技术
微电子封装技术的未来发展方向是什么?
微电子封装技术的未来发展方向是什么?在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。
而微电子封装技术作为微电子技术的重要组成部分,其发展方向更是备受关注。
微电子封装技术,简单来说,就是将芯片等微电子元件进行保护、连接、散热等处理,以实现其在电子产品中的可靠应用。
随着电子产品的日益小型化、高性能化和多功能化,对微电子封装技术也提出了更高的要求。
未来,高性能、高密度和微型化将是微电子封装技术的重要发展方向。
在高性能方面,封装技术需要更好地解决信号传输的完整性和电源分配的稳定性问题。
为了实现这一目标,先进的封装材料和结构设计至关重要。
例如,采用低介电常数和低损耗的材料来减少信号延迟和衰减,以及优化电源网络的布局以降低电源噪声。
高密度封装则是为了满足电子产品集成度不断提高的需求。
通过三维封装技术,如芯片堆叠和硅通孔(TSV)技术,可以在有限的空间内集成更多的芯片,从而大大提高系统的性能和功能。
此外,扇出型晶圆级封装(Fanout WLP)技术也是实现高密度封装的重要手段,它能够将芯片的引脚扩展到更大的区域,增加引脚数量和布线密度。
微型化是微电子封装技术永恒的追求。
随着移动设备、可穿戴设备等的普及,对电子产品的尺寸和重量有着极为苛刻的要求。
因此,封装技术需要不断减小封装尺寸,同时提高封装的集成度和性能。
例如,采用更薄的封装基板、更小的封装引脚间距和更精细的封装工艺等。
绿色环保也是微电子封装技术未来发展的一个重要趋势。
随着环保意识的不断增强,电子产品的生产和使用过程中对环境的影响越来越受到关注。
在封装材料方面,将更多地采用无铅、无卤等环保材料,以减少对环境的污染。
同时,封装工艺也将朝着节能、减排的方向发展,提高生产过程的资源利用率和降低废弃物的排放。
此外,异质集成将成为微电子封装技术的一个重要发展方向。
随着各种新型器件和材料的不断涌现,如化合物半导体、MEMS 器件、传感器等,如何将这些不同性质的器件集成在一个封装体内,实现更复杂的系统功能,是未来封装技术面临的挑战之一。
微电子封装技术的发展趋势
微电子封装技术的发展趋势本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。
1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。
微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。
第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。
比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。
PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。
第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。
2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。
BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列,因此对于同样面积,引脚数更高。
电子组装技术的发展与现状
电子组装技术的发展与现状XX XXXXXXXXX摘要:随着电子产品小型化、高集成度的发展趋势, 电子产品的封装技术正逐步迈入微电子封装时代。
从SMT 设备、元器件和工艺材料等几个方面浅谈电子组装技术的发展趋势。
关键词:电子组装技术、逆序电子组装、SMT、表面组装一.电子组装技术的产生及国内外发展情况电子管的问世,宣告了一个新兴行业的诞生,它引领人类进入了全新的发展阶段,电子技术的快速发展由此展开,世界从此进入了电子时代。
开始,电子管在应用中安装在电子管座上,而电子管座安装在金属底板上,组装时采用分立引线进行器件和电子管座的连接,通过对各连接线的扎线和配线,保证整体走线整齐。
其中,电子管的高电压工作要求,使得我们对强电和信号的走线,以及生产中对人身安全等给予了更多关注和考虑。
国内封装产业随半导体市场规模快速增长,与此同时,IC设计、芯片制造和封装测试三业的格局也正不断优化,形成了三业并举、协调发展的格局。
作为半导体产业的重要部分,封装产业及技术在近年来稳定而高速地发展,特别是随着国内本土封装企业的快速成长和国外半导体公司向国内转移封装测试业务,其重要性有增无减,仍是IC产业强项。
境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,近年来,飞思卡尔、英特尔、意法半导体、英飞凌、瑞萨、东芝、三星、日月光、快捷、国家半导体等众多国际大型半导体企业在上海、无锡、苏州、深圳、成都、西安等地建立封测基地,全球前20大半导体厂商中已有14家在中国建立了封测企业,长三角、珠三角地区仍然是封测业者最看好的地区,拉动了封装产业规模的迅速扩大。
二.电子封装的分类一般来说微电子封装可以分为几个层次: 零级封装、一级封装、二级封装和三级封装( 如图1 所示) 。
零级封装指芯片级的连接; 一级封装指单芯片或多芯片组件或元件的封装; 二级封装指印制电路板级的封装; 三级封装指整机的组装。
一般将0 级芯片级和1级元器件级封装形式称为“封装技术”, 而将2 级印制板级和3 级整机级封装形式称为“组装技术”。
电子元器件的封装技术和特点
电子元器件的封装技术和特点现代电子元器件的封装技术得到了快速的发展,为电子行业的发展带来了极大的便利。
电子元器件的封装技术主要是指将电子元器件通过一定方式进行封装的技术手段。
在电子产品的研发与生产过程中,所采用的封装技术有直接焊接、间接焊接、贴片等多种方式,每种方式各有特点,以下将分别进行介绍。
直接焊接封装是比较古老的一种封装技术,使用范围较为广泛。
直接焊接封装通常采用套管封装,可根据元器件结构和排列形式进行封装。
其主要特点是可靠性高、成本低、使用范围广、组装容易,但没有隔离功能,因此不适合用于高电压工作。
间接焊接封装是一种在直接焊接封装的基础上发展而来的封装技术。
在元器件的引脚与电路板接触处增加了焊锡球,通过热处理加熔于焊垫和引脚之间实现连接。
间接焊接封装可分为球、碰和毛细三种形式。
该技术具有较好的自动化性和可靠性,适用于高集成度芯片的封装。
其特点是封装体积小,重量轻,散热性能好,防腐能力强,但也存在一些缺点,如容易引起元器件排列混乱,制造成本相对较高等。
贴片封装是在间接焊接封装的基础上进一步发展而来的封装技术,是一种目前比较流行的封装方式。
该技术有三种封装方式:SMT、CSP和BGA。
其中,SMT封装是表面粘贴技术,将小型的电子元器件按照一定的排列方式贴在电路板表面上,其特点是封装体积小、重量轻、节省材料和空间,适用于小型高密度电路的封装;CSP封装是直接与芯片级成品焊接封装,用于高集成度芯片的封装,具有超薄、高度灵活以及可降低元器件排列面积等优点;BGA封装是球形网格阵列封装技术,具有连接密度高,信号传输能力强,抗震性能好等特点。
但是,贴片封装的技术相对复杂,制造成本较高,故不适用于大批量生产的需求。
总的来说,电子元器件的封装技术在现代电子行业中具有重要的意义。
随着信息技术的不断提高和电子产品的不断普及,封装技术也不断发展,向更加高效、便捷和智能化的方向发展。
开发新的封装技术并应用到实际生产中,对于满足产业的需求、促进产业的发展势在必行。
2023年电子封装技术专业特色简介
2023年电子封装技术专业特色简介电子封装技术是现代电子工程领域的重要分支之一,它涵盖了电子器件封装设计与制造、可靠性测试、材料与工艺研究等一系列内容,是电子工程中不可或缺的重要环节。
近年来,随着制造业的进一步转型升级和市场需求的变化,电子封装技术也面临着新的挑战和机遇。
在传统的电子封装技术领域,其主要关注点是封装设计和可靠性评估,虽然已经涵盖了 semiconductor 和 packaging 的关键领域,但其研究的限制在于缺乏深刻理解的材料和物理学机制。
随着新型材料、新型构型的出现和封装工艺的不断创新,电子封装技术已经发展出了一些新的特色和趋势,以下是其中的几个方面:一、三维封装随着微电子技术的不断升级,芯片的功能越来越强大,但体积却越来越小,这就需要三维封装技术的应用。
三维封装技术是将多个芯片和电路元件垂直叠加封装在一起,以实现更高性能和更小尺寸的电子产品。
它可以在不增加产品尺寸的前提下,提高产品的功耗和速度等性能指标。
三维封装技术相较于传统封装技术,需要更复杂的细节处理,并且需要考虑解决热分布不均、压力不均等新的问题,在封装工艺、材料选用、设计等方面都需要更高的技术水平和更火的设计思想。
二、可靠性设计可靠性是一个电子封装技术永恒的话题,是产品质量、性能、寿命等方面的重要指标。
在电子封装技术中,优化设计并加强可靠性评估是不可避免的趋势。
基于工业 4.0 的思想,电子封装技术的可靠性设计已经开始由受试者系统单纯的验风险转移为预测性的质量保证体系,并且需集成物理测试、仿真、分析为一体的方法,来提高开发周期与成功率。
这些方法包括可靠性分析(如强化测试、衰减测试等)、可靠性预测(如使用MATLAB或其它仿真软件实现电子产品在正常使用的生命周期内,研究产品可靠性与失效机制)和机器学习技术来帮助预测封装失效风险。
三、多功能封装电子封装技术逐渐向多功能封装方向发展,这也是近年来的一个重要的趋势。
多功能封装是在保证器件基本功能的前提下增加多样化的特性,如在传输和处理信号的同时实现电源管理,这样除了提高性能和可靠性外还能够减小产品体积,降低成本。
电子封装技术的未来发展趋势研究
电子封装技术的未来发展趋势研究电子封装技术,这玩意儿听起来好像有点高大上,有点遥不可及,但实际上它就在我们身边,而且对我们的生活影响越来越大。
先来说说我之前遇到的一件事儿吧。
我有个朋友,他特别喜欢捣鼓电子产品,有一次他自己组装了一台电脑。
在这个过程中,我亲眼看到了那些小小的芯片、电路板,还有各种复杂的接口。
他跟我抱怨说,要是电子封装技术能更厉害一点,他组装电脑就不用这么费劲了,也不用担心某个零件因为封装不好而出现故障。
这让我一下子就对电子封装技术产生了浓厚的兴趣。
那到底啥是电子封装技术呢?简单来说,就是把电子元器件,比如芯片、电阻、电容等等,包起来,保护它们,让它们能更好地工作,就像是给这些小家伙们穿上一层“防护服”。
随着科技的飞速发展,电子封装技术的未来发展趋势那可是相当值得期待的。
首先,小型化是必然的。
你想想,现在的手机越来越薄,电脑越来越轻巧,这可都离不开电子封装技术的不断进步。
以后啊,说不定我们的手机能像一张纸一样薄,电脑能装进口袋里。
微型化的同时,高性能也不能落下。
就好比运动员,不仅要身材小巧灵活,还得实力超强。
未来的电子封装技术会让电子设备的运行速度更快,处理能力更强。
比如说,玩大型游戏的时候再也不会卡顿,看高清电影能瞬间加载。
散热问题也会得到更好的解决。
大家都知道,电子设备用久了会发热,有时候热得能当暖手宝。
未来的封装技术会让这些设备像自带了空调一样,时刻保持“冷静”,就算长时间使用,也不会因为过热而影响性能。
还有啊,绿色环保也是未来的一个重要方向。
现在大家都讲究环保,电子封装材料也不例外。
以后会有更多可回收、无污染的材料被用在封装上,既保护了环境,又能让我们放心使用电子产品。
再说说智能化吧。
未来的电子封装可能不再是单纯的“包装”,而是能智能感知设备的工作状态,自动调整和优化性能。
比如说,当设备检测到你在进行高强度的工作时,它会自动提升性能,保证你的工作顺利进行。
另外,多芯片封装技术也会越来越成熟。
集成电路封装技术的发展方向
集成电路封装技术的发展方向随着科技的不断进步和人们对高性能电子器件的需求不断增长,集成电路封装技术也在不断地发展和改进。
本文将分析集成电路封装技术的现状和发展趋势。
一、集成电路封装技术的现状随着电子产品使用场景的不断扩大,对封装技术的要求也越来越高。
尤其是随着人工智能、大数据、云计算等高性能电子器件的出现,集成电路封装技术变得更加重要。
现代封装技术面临着一系列新的挑战,包括:1. 高密度封装随着电路尺寸的缩小,半导体晶体管的密度和数量的增加,同样面积的集成电路上需要容纳更多的电路和元器件。
因此,封装技术的发展需要满足更高的密度要求。
2. 多功能封装电子产品产品不断发展,用户对产品的功能要求也越来越高。
因此,一个封装器件要满足多种功能,如散热、脱焊、防水等。
3. 可重用封装传统的封装技术是一次性的,因此难以适应快速迭代的电子产品市场的需求,造成浪费和效益低下。
二、集成电路封装技术的未来发展为了应对上述挑战,并提供更多的解决方案,集成电路封装技术需要进一步发展。
1. 引入新的材料新材料的引入是提高封装性能和开发高级封装的关键。
例如,硅酸盐玻璃可以制成高质量的二层封装,以改善散热和崩裂问题;有机基板通过提高介电常数,提高信号速度和抑制互相干扰效果。
2. 工艺的优化工艺的优化可以很好的解决集成电路封装过程中遇到的问题。
例如,薄膜制程、金属ELP等制程的应用可以提高封装公差、拼接和可重用性。
3. 创新的封装结构创新的封装结构能够为集成电路提供更多的功能和易于纳入微小装置的能力。
例如,球网阵列封装结构能够实现紧凑型、轻量化、低成本和高可靠性的优势。
4. 智能化封装智能化封装是未来集成电路封装的趋势。
通过智能化设计,可以实现更高的产品精度、智能化质检功能以及让封装适应更多的场景。
结语本文从集成电路封装技术的现状和发展趋势两个方面对集成电路封装技术进行了分析。
未来集成电路封装技术的不断发展,必将为自动驾驶、5G通信和人工智能等领域的发展带来更加稳定的基础条件。
2024年集成电路封装市场发展现状
2024年集成电路封装市场发展现状引言集成电路封装是集成电路产业链中不可忽视的一环。
封装技术的发展对电子产品的性能、功耗和可靠性等方面起着重要作用。
本文将介绍当前集成电路封装市场的发展现状,并对未来的趋势进行展望。
市场规模及趋势近年来,全球集成电路封装市场持续保持快速增长。
据统计,2019年全球集成电路封装市场规模约为600亿美元,预计到2025年将达到1000亿美元。
集成电路封装行业市场规模的快速增长主要得益于以下几个方面的因素:1.移动智能终端需求的增加:智能手机、平板电脑等移动智能终端的广泛普及,带动了集成电路封装市场的需求增长。
这些移动设备对封装技术提出了更高的性能、小型化和低功耗要求。
2.物联网的兴起:物联网的快速发展推动了物联网芯片市场的增长,进而带动了集成电路封装市场的需求增加。
物联网芯片对封装技术的要求主要包括高集成度、低成本和高可靠性。
3.人工智能的普及:人工智能技术的广泛应用也对集成电路封装市场带来了新的机遇。
人工智能芯片具有较高的计算能力和能耗要求,对封装技术的创新提出了更高的要求。
市场趋势方面,未来集成电路封装市场将呈现以下几个特点:1.高性能封装需求增加:随着电子产品性能的不断提升,对高性能封装的需求也在不断增加。
高性能封装主要体现在高速传输、低延迟、抗干扰等方面。
2.三维封装技术的应用增多:三维封装技术可以提高集成度,减小封装尺寸,降低功耗。
未来随着三维封装技术的成熟,其在集成电路封装市场中的应用将更加广泛。
3.低功耗封装技术的发展:低功耗封装技术是当前集成电路封装市场的热点之一。
随着电子产品对功耗要求的提高,低功耗封装技术将成为未来的发展方向。
技术创新和挑战集成电路封装市场的发展不仅依赖于市场需求的推动,也离不开技术创新的推动。
目前,集成电路封装市场面临着以下技术创新和挑战:1.新型封装材料的研发:封装材料是集成电路封装中的关键因素之一。
如何研发出性能更好、成本更低的封装材料是当前的研究热点。
电子元器件的封装与封装技术进展
电子元器件的封装与封装技术进展随着电子科技的不断发展,电子元器件在现代社会中起着关键的作用。
而电子元器件的封装和封装技术则是保证其正常运行和长期可靠性的重要环节。
本文将介绍电子元器件封装的概念、封装技术的发展以及未来的趋势。
一、电子元器件封装的概念电子元器件封装是指将裸露的电子器件(如芯片、晶体管等)进行包装,并加入保护层,以充分保护元器件的性能、提高连接可靠性,并便于安装和维护。
合理的封装设计能够保护电子器件不受外界环境的影响,同时提高电子器件在电磁环境中的工作稳定性。
二、封装技术的进展随着电子技术的不断创新和发展,电子元器件的封装技术也在不断进步。
以下是一些主要的封装技术进展:1. 芯片封装技术芯片封装技术是将芯片包装在塑料、陶瓷或金属封装中。
近年来,微型封装技术的发展使得芯片的封装更加紧凑,能够将更多的功能集成在一个芯片中,从而提高了元器件的性能和可靠性。
2. 表面贴装技术(SMT)表面贴装技术是指将元器件直接通过焊接或贴合等方式固定在印刷电路板表面的技术。
与传统的插针连接方式相比,SMT可以提高元器件的连接可靠性,同时减小了电路板的尺寸。
3. 多芯片封装(MCP)多芯片封装是将多个芯片封装在同一个封装体中。
通过这种方式,可以将不同功能的芯片集成在一个封装中,同时减少了电路板上元器件的数量,提高了整体系统的紧凑性和可靠性。
4. 三维封装技术三维封装技术是将多个芯片层叠在一起,并通过微连接技术进行连接。
这种封装方式大大提高了元器件的集成度和性能,同时减小了系统的体积。
三、未来的趋势随着电子技术的不断发展,电子元器件封装技术也将朝着以下几个方向发展:1. 进一步集成化未来的电子元器件封装技术将会更加注重集成化,将更多的功能集成在一个封装中。
这样可以提高整体系统的紧凑性,减小系统的体积,并提供更高性能的元器件。
2. 更高的可靠性和稳定性未来的封装技术将注重提高元器件的可靠性和稳定性。
通过采用先进的封装材料和工艺,可以提高元器件在极端环境下的工作性能,如高温、高湿等。
电子封装材料的技术现状与发展趋势
MCM-D 多层基板的层间介电层膜;TFT-LCD 的平坦化(Planarization)和 分割(Isolation);芯片表面的凸点、信号分配等。 由于low k 材料的需求近 年来不断攀升,预计 BCB 树脂的市场需求将增长很快。 Dow Chemical 是目 前 BCB 树脂的主要供应商,产品牌号包括 CycloteneTM3000 系列、4000 系 列。 环氧光敏树脂具有高纵横比和优良的光敏性;典型代表为化学增幅型环氧酚 醛树脂类光刻胶,采用特殊的环氧酚醛树脂作为成膜树脂、溶剂显影和化学 增幅。由于采用环氧酚醛树脂作成膜材料,故具有优良的粘附性能,对电子 束、近紫外线及 350-400nm 紫外线敏感。环氧光敏树脂对紫外线具有低光光 学吸收的特性,即使膜厚高达 1000um,所得图形边缘仍近乎垂直,纵横比可 高达 20:1。 经热固化后,固化膜具有良好的抗蚀性,热稳定性大于 200oC, 可在高温、腐蚀性工艺中使用。 为了适应微电子封装技术第三次革命性变革的快速发展,需要系统研究其代 表性封装形式,球型阵列封装(Ball Gray Array, BGA)和芯片尺寸级封装( Chip Scale Packaging, CSP), 所需的关键性封装材料-聚合物光敏树脂,包 括聚酰亚胺光敏树脂、BCB 光敏树脂和环氧光敏树脂等。
我国 EMC 的研究始于20世纪 70 年代末,生产始于 80 年代初。从 90 年代初
到现在进入了快速发展阶段, 高性能EMC质量水平有了较大进步。但是,国产 EMC 产品在质量稳定性、粘附性、吸潮性、杂质含量、放射粒子量、以及电 性能、力学性能、耐热性能等方面还需要进一步改善,
环氧塑封料的技术发展呈现下述趋势:
3)为适应无铅焊料、绿色环保的要求,向着高耐热、无溴阻燃化方向快速发 展。
芯片设计中的封装技术有哪些发展趋势
芯片设计中的封装技术有哪些发展趋势在当今科技飞速发展的时代,芯片作为各类电子设备的核心组件,其性能和功能的提升至关重要。
而芯片封装技术在其中扮演着不可或缺的角色,它不仅为芯片提供保护和连接,还对芯片的性能、散热、尺寸等方面产生着重要影响。
随着芯片制造工艺的不断进步以及市场对芯片性能需求的持续增长,芯片封装技术也呈现出一系列令人瞩目的发展趋势。
首先,小型化和薄型化是芯片封装技术的一个重要发展方向。
随着电子产品越来越轻薄便携,如智能手机、平板电脑等,对芯片的尺寸和厚度提出了更高的要求。
封装技术需要不断减小封装尺寸,以适应电子设备内部有限的空间。
这就促使封装工艺朝着更精细的方向发展,例如采用更小的封装引脚间距、更薄的封装材料等。
同时,晶圆级封装(WLP)技术的应用也越来越广泛,它能够直接在晶圆上完成封装,减少了芯片切割和封装的步骤,从而有效地减小了封装尺寸。
其次,高性能和高可靠性也是芯片封装技术发展的关键目标。
在一些高性能计算、通信和数据中心等应用场景中,芯片需要具备极高的运算速度和数据传输速率,同时要保证在恶劣环境下长时间稳定运行。
为了实现这一目标,封装技术在材料选择、结构设计和工艺优化等方面不断创新。
例如,采用低介电常数和低损耗的封装材料来降低信号传输损耗;采用多层封装结构来增加引脚数量和提高信号传输带宽;采用先进的散热技术来有效降低芯片工作温度,提高芯片的可靠性和稳定性。
再者,异质集成封装技术正逐渐成为主流。
随着芯片功能的日益复杂,单一芯片往往难以满足系统的需求。
异质集成封装技术将不同工艺、不同功能的芯片集成在一个封装体内,实现了系统的高度集成化。
例如,将逻辑芯片、存储芯片、传感器芯片等通过硅通孔(TSV)、微凸点等技术进行三维集成,不仅减小了系统的尺寸和重量,还提高了系统的性能和功能。
这种技术的发展使得芯片能够在更小的空间内实现更多的功能,为电子产品的创新提供了强大的支持。
另外,先进的散热技术在芯片封装中变得越来越重要。
微电子封装技术的发展与应用
微电子封装技术的发展与应用目录:一、引言二、微电子封装技术的基本概念三、微电子封装技术的发展历程1. 初期封装技术的应用2. 现代封装技术的创新四、微电子封装技术在电子产品中的广泛应用1. 通信设备领域2. 汽车电子领域3. 智能家居领域五、微电子封装技术的未来发展趋势六、总结一、引言微电子封装技术是当今电子行业中的重要领域之一,随着科技的不断进步和市场的需求多样化,微电子封装技术得到了广泛的应用和发展。
本文将从微电子封装技术的基本概念、发展历程、应用领域以及未来发展趋势等方面进行介绍与分析。
二、微电子封装技术的基本概念微电子封装技术是指将电子芯片等微电子器件封装到适当的介质中,保护器件免受环境的干扰和损坏的一种技术。
它起到了连接电子器件和外部电路、防护器件和传导热量等多种功能。
目前常见的微电子封装技术有DIP(Dual In-line Package)、SIP(Single In-line Package)、QFP(Quad Flat Package)和BGA (Ball Grid Array)等。
这些封装技术在形状、引脚布局和焊接方式上有所不同,适用于不同类型的电子器件。
三、微电子封装技术的发展历程1. 初期封装技术的应用早期的微电子封装技术主要采用DIP和SIP等传统封装方式。
这些封装方式简单、可靠,但体积较大、重量较重,不适用于如今追求小型化、轻便化的电子产品。
随着科技的发展,人们对电子产品的要求也越来越高,进一步推动了封装技术的创新。
2. 现代封装技术的创新为了满足电子产品小型化、轻便化的需求,现代封装技术不断创新。
QFP和BGA等新型封装技术应运而生,它们具有体积小、重量轻、引脚布局合理等优点,在电子产品中得到了广泛应用。
同时,新材料的应用以及制造工艺的改进也促进了封装技术的发展。
四、微电子封装技术在电子产品中的广泛应用1. 通信设备领域在通信设备领域,微电子封装技术的应用尤为广泛。
微电子制造和封装技术发展研究
微电子制造和封装技术发展研究【摘要】微电子制造和封装技术在现代社会发展中扮演着重要的角色,为各行各业提供了各种智能设备和解决方案。
本文从现状分析、技术趋势、关键技术探讨、制约因素分析和案例分析等方面对微电子制造和封装技术的发展进行了深入研究。
通过对市场需求和技术创新的分析,揭示了微电子制造和封装技术面临的挑战和机遇。
在本文展望了微电子制造和封装技术的未来发展方向,提出了相关产业发展建议,并展示了未来研究的重点和方向,为推动微电子制造和封装技术的进步和发展提供了有益的参考。
(字数:163)【关键词】微电子制造、封装技术、发展研究、现状分析、技术趋势、关键技术、制约因素、案例分析、未来展望、产业发展、建议、研究方向。
1. 引言1.1 微电子制造和封装技术发展研究微电子制造和封装技术随着科学技术的不断发展,已经逐渐成为现代社会中不可或缺的重要组成部分。
微电子制造技术是现代电子设备制造的基础,它涉及到微小尺寸的器件制造、集成电路设计和制造工艺等方面。
而封装技术则是将制造好的芯片封装在外壳中,以便保护芯片并方便其与外部设备连接和交互。
随着电子产品的不断普及和更新换代,微电子制造和封装技术也在不断进行着技术创新和发展。
现代的微电子制造技术不仅在器件尺寸和性能方面有了重大突破,还在工艺和制造效率上取得了显著进步。
封装技术方面,随着电子设备越来越小型化和智能化,新型的封装材料和技术不断涌现,以满足市场对于功能更强大、体积更小的电子产品的需求。
本文将着重探讨微电子制造和封装技术的发展现状、技术趋势、关键技术探讨、制约因素分析和案例分析,希望通过对这些方面的深入研究,为未来微电子制造和封装技术的发展提供一定的参考和建议。
2. 正文2.1 现状分析微电子制造和封装技术在当今社会发挥着至关重要的作用。
随着信息技术的飞速发展,微电子制造和封装技术也在不断创新和进步。
目前,全球微电子制造和封装技术的发展呈现以下几个主要特点:一、制造工艺不断精细化和集成化。
电子封装技术
电子封装技术电子封装技术是指将电子元器件、集成电路、电子设备等放入保护性封装材料中,并采用相应的封装工艺,以保护元器件免受环境湿气、机械损伤、静电等因素的影响,同时还能提供电气连接和机械支撑的一种技术。
电子封装技术是电子产品制造中的重要环节,对于保护电子元器件的稳定性、可靠性和可重复性具有重要意义。
在电子封装技术中,常见的封装形式包括晶圆级封装、芯片级封装、封装级封装等。
晶圆级封装是在半导体晶圆制造的过程中对芯片进行封装,常见的方法有焊线连接、球栅阵列、无线结合等。
芯片级封装是将芯片进一步封装到更小的尺寸中,以适应更小型、轻便的电子设备。
常见的封装形式有BGA、QFN等。
封装级封装是将封装好的芯片进行二次封装,以实现更高级别的功能,如显示模块、摄像头模块等。
电子封装技术的发展与电子行业的快速发展密不可分。
随着电子产品的小型化、轻便化和多功能化趋势,对封装技术的要求也越来越高。
首先,封装材料需要具有良好的电性能,以确保电子设备的正常工作。
其次,封装材料需要具有良好的机械性能,以抵抗外界的机械振动和冲击。
此外,封装材料还需要具有良好的耐高温性能,以适应电子设备的高温工作环境。
目前,电子封装技术的主要发展方向包括以下几个方面:首先,封装材料的研发方向主要是以有机高分子材料、陶瓷材料和复合材料为基础,不断提高材料的绝缘性能和导热性能,以满足电子设备对封装材料的高要求。
其次,封装工艺的研发方向主要是以超声波焊接、激光焊接、无铅焊接等为基础,不断提高封装工艺的自动化程度和生产效率,以满足电子设备对封装工艺的高要求。
再次,封装技术的研发方向主要是以MEMS技术、微纳电子技术和光电子技术为基础,不断提高封装技术的集成度和可靠性,以满足电子设备对封装技术的高要求。
总之,电子封装技术在现代电子产业中具有重要地位和作用。
随着电子产业的不断发展和进步,电子封装技术也将不断迭代和创新,以满足电子产品对封装材料、工艺和技术的不断提高的需求。
电子封装专业的发展前景如何
电子封装专业的发展前景如何电子封装是电子工程中的一项重要技术,它主要负责将电子元器件封装到塑料包装或金属外壳中,以提供保护、连接和散热等功能。
作为电子产业的关键环节,电子封装专业在科技发展和市场需求的推动下有着广阔的发展前景。
本文将分析电子封装专业的发展态势,并探讨其未来的前景。
首先,随着科技的不断进步和更新,电子产品的功能日益强大,体积不断减小,因此对电子封装的要求也越来越高。
电子封装技术不仅需要具备良好的可靠性和稳定性,还需具备高密度和高性能的特点。
因此,电子封装专业需要不断研究和创新,以适应电子工业的发展需求。
其次,随着智能化和物联网的不断兴起,电子封装技术在各行各业中的应用将日益广泛。
从智能手机和平板电脑到智能家电、智能车辆以及可穿戴设备等,这些产品都离不开电子封装技术的支持。
未来,随着人工智能、机器学习等技术的快速发展,电子封装将在更多领域中得到应用和推广,为各行各业的智能化发展提供技术支持。
再者,电子封装专业在可持续发展方面具有重要意义。
随着环保意识的不断增强,电子产品的环境友好型封装成为电子产业关注的焦点。
电子封装专业需要致力于开发绿色环保的封装材料和工艺,降低电子废弃物的排放,提高电子产品的可回收性和可持续性。
这对于建立可持续发展的社会和经济环境至关重要。
此外,随着5G通信技术的推广和应用,电子封装专业将面临新的挑战和机遇。
5G通信的高速传输和大容量需求将要求电子封装在高频和高速传输时具备较好的性能和稳定性。
这将进一步推动电子封装技术的创新和发展,例如在封装材料和布线方面的新技术的研究和应用,以满足5G通信的要求。
然而,电子封装专业的发展也面临一些挑战。
首先,电子封装技术的进步往往与新材料、新工艺和新设备的研发密不可分,这需要专业人才具备较高的科研能力和创新精神。
此外,电子封装产业链的长和复杂,涉及到封装设计、封装材料、封装设备等多个环节,这要求专业人才具备较为全面的技术素质和协作能力。
电子行业电子封装材料、封
电工材料及封装技术一、介绍随着电子行业的快速发展,电子封装材料和封装技术日益成为电子产品设计与制造过程中至关重要的一部分。
本文将重点介绍电子行业中常用的电子封装材料以及封装技术,并探讨它们在电子产品制造中的作用和发展趋势。
二、电子封装材料1. 导电粘合剂导电粘合剂是一种导电性很强的胶粘剂,用于连接电路板上的电子组件。
它在电子产品封装过程中起着连接电子器件和导电线路的作用。
导电粘合剂通常由导电粉末和粘合树脂组成,具有优异的导电性能和粘结强度。
2. 绝缘材料绝缘材料在电子封装过程中主要用于隔离导电元件和非导电元件,以防止电路短路和漏电的发生。
常见的绝缘材料包括绝缘胶带、绝缘漆、绝缘膜等。
它们具有抗电磁干扰、高温耐受和耐化学腐蚀等特性。
3. 封装胶囊封装胶囊是一种用于保护电子元器件的外层材料,它能够提供机械强度、隔离性能和防尘、防潮等功能。
封装胶囊通常由硅胶、EPDM(乙丙橡胶)、PET(聚对苯二甲酸乙二醇酯)等材料制成。
4. 散热材料散热材料在电子封装中起着散热传导的作用,用于提高电子器件的散热效果,保证其正常工作温度。
常用的散热材料包括导热胶、散热片、散热膏等。
它们具有导热性能优良、耐高温等特点。
三、电子封装技术1. 表面贴装技术(SMT)表面贴装技术是一种将电子元器件直接焊接在电路板表面的封装技术。
相比传统的插装技术,SMT技术具有焊接速度快、工艺自动化程度高、元器件密度大等优点。
随着电子产品小型化趋势的发展,SMT技术得到了广泛应用。
2. 焊接技术在电子封装过程中,焊接技术是不可或缺的环节。
常用的焊接技术包括手工焊接、波峰焊接和回流焊接等。
这些技术可根据电子元器件和电路板的封装要求选择合适的焊接方式。
3. 封装测试技术封装测试技术用于检测电子封装过程中的质量问题和性能指标。
常用的封装测试技术包括可靠性测试、功能测试、外观检验等。
这些测试技术能够确保电子产品符合相关的质量标准和规范要求。
四、发展趋势随着电子产品设计和制造技术的不断创新和进步,电子封装材料和封装技术也在不断发展和完善。
SMT新技术介绍与发展动态PPT课件
SMT与IC、SMT与高密度封装技术相结合的产物
IPD ( 集成无源元件) MCM(多芯片模块) 无源与有源的集成混合元件 SIP(系统级封装) 三维晶圆级堆叠的立体组件 ……
模块化、系统化推动SMT向更简单、更优化、低成本、高速 度、高可靠方向发展。
新工艺技术介绍
• 通孔元件再流焊工艺 • 三种选择性波峰焊工艺
• (4)Flip Chip在美国IBM、日本SONY公司等都已经应用了倒装芯片技术
• (5) MCM多芯片模块——由于SMC/SMD已经不能再小了,MCM功能组件是进一步小型化 的方向。
日本松下为了应对高密度贴装 开发了APC系统
APC系统(Advanced Process Contrl)——通过测定 上一个工序的品质结果,来控制后一个工序的技术。
• 高密度贴装时,把印刷焊膏偏移量的信息传输给贴装机,贴装 元件时对位中心是焊膏图形,而不是焊盘。
• 贴装0402(公制)工艺中采用APC系统后,明显的减少了元件 浮起和立碑现象。
传统贴装
应用APC贴装
PBGA结构
CSP结构
• 片基(载体)形式 • 载带形式
Chip 元件的发展动态
SOIC 发展动态
我国SMT起步于二十世纪80年代初期,目前正处于快速发展 阶段,并已成为SMT世界加工基地之一,设备已经与国际 接轨,但设计、制造、工艺、管理技术等方面与国际还有 差距。应加强基础理论和工艺研究,提高工艺水平和管理 能力。努力使我国真正成为SMT制造大国、制造强国。
SMT发展总趋势:电子产品功能越来越强、体积越来越小、 元器件越来越小、组装密度越来越高。组装难度也越来越大
新型元器件
LLP(Leadless Leadframe package ) 新微型封装
电子封装技术
电子封装技术电子封装技术是指将电子元器件封装在特定的包装材料中,以保护和固定电子元器件,并为连接和插入电子元器件提供方便。
随着电子技术的不断发展,电子封装技术也得到了迅猛的发展,为电子产品的功能提升和体积缩小提供了重要支撑。
电子封装技术的发展可以追溯到早期的电子元器件封装,最早采用的是管腔封装、金属类型封装等技术,这些封装技术主要用于对真空管、晶体管等元器件进行封装。
随着半导体技术的发展,电子封装技术也得到了极大的改进和创新,如无引脚封装、多引脚封装等。
这些封装技术大大提高了电子元器件的密度和可靠性。
当前主流的电子封装技术有多种,下面将介绍几种较为常见的封装技术。
首先是表面贴装技术(SMT),这是一种将电子元器件直接粘贴在电路板表面的封装技术。
它的主要特点是尺寸小、重量轻、结构简单,适用于大规模集成电路和薄型电子产品。
SMT可以提高电路板的密度,减小电子产品的体积,同时还可以提高工作频率和信号传输效果。
其次是双面贴装技术,该技术是在电路板的两面都进行电子元器件的粘贴。
双面贴装技术可以进一步提高电路板的密度,实现更复杂的电路设计。
它适用于高要求的电子产品,如通信设备、电脑主板等。
第三种是多层板封装技术,该技术是将多个单层电路板通过通过铜箔、导电胶水等材料叠加在一起形成。
多层板封装技术可以增加电路板的层数,提高电路板的密度和性能。
它广泛应用于高端电子产品,如手机、平板电脑等。
另外,还有球栅阵列封装技术(BGA)、无引脚封装技术(QFN)、模块封装技术等,这些封装技术都有各自的特点和应用领域。
总的来说,电子封装技术是现代电子工业中不可或缺的一部分。
它不仅为电子产品的设计和制造提供了关键支撑,还极大地推动了电子技术的进步和应用。
随着电子技术的不断发展,电子封装技术也将不断创新和完善,为电子产品的性能提升和体积缩小提供更多可能性。
(本文字数:324)-----------------------------------电子封装技术是现代电子工业中不可或缺的一部分。
电子封装技术发展现状及趋势
ha r a a k tp tnt la d de e o s ag e tm r e o e i n v lpm e ti h a o c m e Ad a c d pa k g n e hn l g r a n n t e d yst o . v n e c a igtc oo yae
po n e u u r ntsausa n e eo m e tte d o a ka i g tc n l g I h e e ty a s n l s i td o tc re t t d d v l p n r n fp c g n e h o o y n t e r c n e r ,e d e s
hih ra s m b ed nst , o e sr ng f au e , et rp ro a c , m al ssz ,lw e w e o s mp in, g e s e l e i m r to e t r s b te e f r n e s l ie o rpo rc n u to y m e f se p e ,s alrd ly o tr d c in,t . s a c e n o e so a k g n a n tb g o e I a trs e d m le ea ,c s e u to ec Re e r h sa d pr c s fp c a i g c n o e i n r d t
第 1卷 ,第 1 2 期
V o1 . N o. .1 2 1
பைடு நூலகம்
电
子
与
封
装
总 第 15 0 期
2 0l 2年 1 月
ELECTRONI CS& PACKAGI NG
产 蟊 摩 甩 0与 瘴 j
电子封装技术的发展现状及趋势
电子封装技术的发展现状及趋势近年来,我国电子封装技术发展迅速,且为电子产品与电子系统的微小型化发展提供了重要的外部技术保证。
为了进一步加强对电子封装技术的认识与了解,文章则主要对当前国内外电子封装技术的发展现状进行总结和说明,在此基础上,对电子封装技术在未来的发展趋势展开了深入研究。
标签:电子封装技术;MIS倒装封装;3D封装前言自发明集成电路产业的迅速发展对电子封装技术提出了更高的要求,而电子封装技术也承担起越来越多的多元化以及集成化和规模化的芯片封装功能。
在此背景下,加强对国内外电子封装技术发展现状的研究和分析,并准确把握电子封装技术未来的发展趋势,已成为电子封装领域适应IC产业发展需要着重开展的关键工作。
1 电子封装技术现状1.1 国内电子封装技术现状经过了国内相关企业的长期不懈的努力,结合国实际情况借鉴国外先进电子封装技术,通过多年的技术沉淀和开发,我国封装产业在近年来出现了较多的半导体创新技术以及相应产品,而以技术创新为代表的本土封装企业的快速发展也成为了提高我国电子封装技术和产业国际竞争力的关键。
2012年,由国内25家电子封装产业链相关单位组建形成的“集成电路封测产业链技术创新联盟”标志着我国拥有了自己的电子封装技术研究团队,通过建立高密度的IC封装技术工程实验室,以封测产业量广面大、对进口技术具有较强依赖或是被国外发达国家垄断的封装技术创新等作为主要项目,加快推动项目的组织实施和研究、管理工作,使得封测应用工程对整个电子封装产业链的辐射作用得以有效发挥[1]。
根据品牌化战略与国际化战略的发展方针,CSP以及MCP和BGA等新型封装技术已在部分电子封装的生产线应用,而SPFN以及FBP和MIS等自主知识产权的获得也为提高我国电子封装技术的国际竞争力水平奠定了良好基础。
例如,TSV硅片通道、SiP射频以及圆片级三维的再布线封装与50um及以下超薄芯片的三维堆叠封装技术等被广泛应用到电子封装的实际工作中,有效带动了电子封装产业及相关产业的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全球模块电源发展技术 20世纪90年代初,国际电力电子专家会议曾预测了2000年DC/DC模块的技术经济指标.归结起来,最主要的有以下四个方面:一是模块电源效率达到90%;二是模块电源的功率密度提高一倍;三是平均无故障时间提高一倍;四是价格降低一半。
---本次DC/DC模块电源及相关技术研讨会交流情况表明,随着场控器件性能的提高、中间总线架构方案的提出、电路拓扑和控制方案的合理以及测试技术和制造工艺水平的提高,21世纪初DC/DC电源模块的技术经济指标可以达到当时国际电力电子专家会议所预计的目标,而且有了新的发展。
怀格公司的模块电源的功率密度实测证实,达到了每立方英寸800W以上,这是技术上的一个重大突破。
利用热成像技术对电源模块内部的热场分布进行科学测定,从而为模块电源可靠性的进一步提高奠定了坚实的基础。
---21世纪对为高速处理芯片供电的模块电源的动态性能提出了苛刻的要求。
适应这种要求而研制的可以量测1000A/μs的测试设备,为这种高动态性能的模块电源的性能和质量保证提供了强有力的支持,从而加速了这种高动态性能模块电源的量产化工作的进程。
---在本次研讨会上所展示的上述技术亮点及相关问题得到了充分的讨论,给人以启示,受益匪浅。
对于我国电力电子产业而言,创新体制的建立、加速创新人才的培养、加强基础技术创新、提高电子产品设计能力和制造工艺水平是重中之重。
---模块电源及相关技术研讨会已经是第三届了,每次会议都有新的内容和重点。
这次会议继续对模块电源、供电架构和电源管理进行了详细的研讨。
由用户负载向低电压、大电流发展的特点,采用中间总线架构的供电方式已被广泛接受。
有实力的公司以最快的速度推出了适用中间总线架构供电方式的开放式DC/DC模块电源,较大幅度地提高了单个模块的功率密度和效率,同时电源体积明显减小,引发了一次模块电源发展的飞跃。
VICOR公司结合它开发的V1晶片提出了分比式供电架构的概念,其关键是VI晶片的开发。
Tyco电子、TI、IR及国半等公司相应提供了最新的电源控制和序列或跟踪的IC,这些内容和概况基本上与国际同步。
从研讨分析,对用户面言,不论传统、中间总线还是其他供电架构均没有绝对的优势,只能依据供电要求,从安装面积、功耗和价格等因素综合评定,这是比较科学的选择。
---用户负载的低压大电流对模块电源输出纹波和负载瞬态响应等指标要求更高了,因此测量手段必须不断改进才能获得精确测试,不少报告介绍了测试方法和设备,包括快速响应的电子负载机,这些对正确评价电源的性能是很重要的。
除此之外,IR公司详细介绍了高加速温度和湿度应力测试(HAST),对电路设计和应用工程师很有帮助和借鉴。
---从模块电源的发展进程可以清楚地知道电路技术和器件进步起到的关键推动作用,这些今天仍旧很重要,特别需要指出的是,一个好的模块电源其技术设计和工艺也一定是优秀的,如电路元件布局、多层板设计和高频变压器结构设计等,它将会直接影响性能。
在某一个发展阶段,可能主要依靠技术设计和工艺改进求得进步。
美国电源制造商协会Alderman先生讲道:“模块电源是个装配技术”,这说明了工艺设计和新电路、新器件应用同样重要。
本届模块电源研讨会的内容比较广泛,工艺技术也是其中一个重要内容。
希望通过各方努力和参与,把今后的研讨会办得更好,服务广大模块电源设计和应用工程师。
艾默生:以太网供电呼唤高功率密度DC/DC模块---艾默生网络能源有限公司二次电源开发部总工李卫东先生在研讨会上介绍了POE(Power Over Ethernet)电源的应用和艾默生的新电子产品。
---他首先介绍了以太网技术和标准的演进。
早在1973年,施乐公司就提出并实现了电脑互连的以太网技术,当时的传输速率达到3Mbps,之后在施乐Xerox、Digital、Intel的共同努力下于1980年推出了10Mbps DIX以太网标准。
1983年,以太网技术(802.3)、令牌总线(802.4)、令牌环(802.5)共同成为局域网领域的三大标准。
此后,以太网技术的应用获得了长足的发展,全双工以太网、百兆位以太网技术相继出现。
1999年,IEEE组织开始制定关于以太网供电的标准,发起人为3Com、Intel、PowerDsine、Nortel、Mitel和National Semiconductor。
2003年6月,IEEE完成标准制定,正式命名为IEEE 802.3af。
---所谓以太网供电技术,简单地说就是直接通过以太网网线给低端设备供电。
以太网供电的传输是通过标准的CAT5以太网线(包含四对电线)实现的。
标准的10BASE-T和100BASE-T只使用了其中的两对进行数据传输,IEEE 802.3af标准允许两种方式传输功率。
一种是功率通过空闲线传输的“中跨”技术,另一种是功率通过数据线传输的“端跨”技术。
其电源传输规格包括:输出电压44~57V;输入电压36~57V;输出功率15.4W min;输入功率0.37~12.95W;输出电流350mA max;输入电流350mA max;设备必须具有检测是否符合802.3af标准供电的功能,同时只有具有“Power over LAN”标志终端设备才能接受电源。
---目前以太网设备采用的是“星”型布局网线只传输信号(没有传输电源)。
为了实现以太网供电,近期以太网设备将以“中跨”供电方案为主,未来将走向“端跨”供电方案。
---李先生认为,以太网供电技术的最大特点是方便——通过整合电源和以太网系统的基础架构,可以降低成本,无需电源布线;可利用现有数据电缆提供电源有利于对现有设备进行任意扩展;尤其方便了无线局域网接入点设备的配置。
第二个特点是可靠——把远端设备的电源监控和管理交给IT管理员;低端设备不需要额外的AC/DC Adapter,安全性提高;通过对高端设备配置UPS,提高整个系统的可靠性。
第三个特点在于电源——低端设备的AC/DC电源和小容量UPS减少甚至为零;高端设备的UPS容量、AC/DC系统电源容量增加,产生48V转48V的DC/DC新需求。
---标准的PSE设备内部的功率远供板方案是背板总线48V;每板有4×12输出端口,每口15W;端口输出电压53.5V;每半砖模块为12端口供电;半砖功率200W;输入/输出隔离2250Vdc。
这就产生了对48V转55V的半砖200W模块新的需求;为降低功率远供板成本的另一种POE方案是降低PSE的输出功率到每口10W(低于IEEE802.3af标准要求的15.4W),每板有4×24输出端口,每口10W;每半砖模块供电24口;半砖功率250W。
这些模块电源必须适用于符合IEEE 802.3af标准的以太网交换机,如标准半砖尺寸,输入38~55V,输出250W/53.5V。
在实际应用中还必须满足用户的一些特殊要求:如模块加定制散热器后总高度0.55英寸;四个模块并联均流;70℃环境温度,额定输入输出,1m/s风速,加散热器输出满载等。
这些约束条件都增加了电子产品设计的难度。
---艾默生公司通过近一年的努力,配合客户做了大量的试验和探索,解决了电子产品在高温应用下保持94%的高效率问题。
推出的新电子产品AVE250半砖单路250W电源模块同时具有标准BMP电子产品的常见功能,如过温保护、输出过流和过压保护、输入欠压保护;遥控,正、负逻辑可选;输出电压调节;输出电压SENSE等功能。
它是无线功放和POE应用的理想选择。
意法半导体:成功实施多元化战略---意法半导体两位年轻的本地工程师为听众做了两场报告,题目分别是高效率低待机功耗开关电源和VD8双向耐压功率开关。
两位工程师的精彩演讲不但拉近了与听众的距离,也让人看到了意法半导体在国际化和本地化方面的进展。
---作为世界领先的半导体公司,同时也是欧洲最大的半导体供应商,意法半导体为1500多家客户提供3000多种主要电子产品,推出的电子产品组合几乎覆盖所有的半导体器件领域:专用IC、微处理器和半定制电子产品、存储器、标准IC和分立器件等,应用领域涵盖计算机系统、多媒体电子产品、电话网、消费类电子产品、工业控制系统、汽车和医用设备,甚至在太空中都有其电子产品。
意法半导体目前是模拟集成电路和MPEG-2解码器集成电路的全球主要供应商,全球ASIC第二大供应商,也是所有NOR闪存的第四大供应商、非易失性存储器的世界第三大供应商。
在应用领域,意法半导体则是目前全球机顶盒集成电路最大的供应商,智能卡和和硬盘驱动集成电路的第二大供应商,汽车集成电路的第三大供应商;同时在电信集成电路方面排名第四。
---从身处困境到位居前列,意法半导体的前进之路并不平坦,选择正确的策略和方向是公司成功的基石。
公司成立之初,为了避开计算机CPU等业已形成白热化竞争的市场,意法半导体前瞻性地将业务重点瞄准了当时尚未形成气候,但发展潜力巨大的五大领域——“无线通信和网络、数字消费电子、计算机外设、智能卡及汽车电子”,并针对这五个细分市场形成了多元化电子产品格局。
伴随近年来这五大领域市场的迅速崛起,意法半导体也一举奠定了在全球半导体行业中的领先优势。
技术创新是半导体行业发展的动力,意法半导体也同样将持续的技术创新作为公司发展的重要战略,这些先进的技术包括双极、CMOS、BICMOS、混合信号和功率技术。
最近推出的BCD技术使设计师在同一芯片上把模拟、数字、功率和非易失性存贮功能相结合,从而首次实现了真正的单芯片系统。
除了加大在技术研发方面的资金投入之外,意法半导体的创新战略的最大的成功之处,是紧紧围绕市场需求进行创新。
意法半导体在全球取得成功的另一个主要原因与客户建立了联盟关系,许多成功的电子产品都是与客户密切合作设计而成的,而且越来越多的专用集成电路现在是在亚太区设计的,而且是用在亚太区的客户和市场。
---意法半导体不但拥有强大的技术、营销与制造实力,而且始终不渝地致力于完善和加强全面品质与环境管理,从而赢得世界各地的荣誉奖项。
自1991年以来,公司各地机构已经获得七十余项奖项,其中超过40项是环境保护奖。
更多信息请访问。
Chroma:提供最新处理器电源装置测试方案---台湾致茂电子股份有限公司量测仪器事业部市场企划处专案主管叶思辛的演讲题目是提供最新处理器电源装置测试方案--可达1000A/μs电子负载。
叶思辛指出,现在处理器的主频已经突破3GHz,相应地需要具有低电压、大电流、优异的动态性能和完善的保护功能的强大稳定的电源,为高性能处理器提供充足动力,而对电源设计工程师的挑战就是如何在设计过程中模拟处理器的所有运行状况。
电源厂商在设计初期就需要进行仔细规划,根据英特尔最新的VRM 10.0标准对电脑主板的电源进行全面测试,必须借助模拟电源才可以完成这个工作。