高中数学公式及知识点速记(高考复习好帮手)
高三数学公式必背知识点大全
高三数学公式必背知识点大全在高中数学学习过程中,数学公式是我们必备的知识点之一。
掌握了数学公式,可以帮助我们解决各种数学题目,提高解题效率。
本文将为大家总结整理高三数学公式的必背知识点,希望对同学们的学习有所帮助。
一、函数与方程1. 一次函数:y = kx + b一次函数是指次数为1的函数,其图像为一条直线。
k表示直线的斜率,b表示直线在y轴上的截距。
2. 二次函数:y = ax² + bx + c二次函数是指次数为2的函数,其图像为一条抛物线。
a表示抛物线的开口方向和开口大小,b和c表示抛物线在x轴和y轴上的截距。
3. 三角函数的基本关系式:sin²θ + cos²θ = 1tanθ = sinθ / cosθ4. 指数函数的性质:a⁰ = 1a¹ = aaᵐ* aⁿ = aᵐ⁺ⁿa⁻ⁿ = 1 / aⁿ(aᵐ)ⁿ = aᵐⁿ5. 对数函数的性质:logₐ(1) = 0logₐ(a) = 1logₐ(m * n) = logₐ(m) + logₐ(n)logₐ(m / n) = logₐ(m) - logₐ(n)logₐ(mⁿ) = n * logₐ(m)6. 二次方程的求根公式:对于二次方程ax² + bx + c = 0,它的解为 x = (-b ± √(b² - 4ac)) / (2a)其中,b² - 4ac被称为判别式,它可以判断二次方程的根的性质。
二、解析几何1. 直线的斜率公式:直线的斜率k = (y₂ - y₁) / (x₂ - x₁)其中,(x₁, y₁)和(x₂, y₂)为直线上的两个点的坐标。
2. 两点间距离公式:两点间的距离d = √((x₂ - x₁)² + (y₂ - y₁)²)其中,(x₁, y₁)和(x₂, y₂)为两个点的坐标。
3. 平面向量:平面向量的模长|a| = √(a₁² + a₂²)平面向量的数量积a · b = a₁b₁ + a₂b₂平面向量的向量积|a × b| = |a| * |b| * sinθ,其中θ为a和b之间的夹角。
高中数学公式及知识点归纳(内含速解策略)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数。
(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数。
2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
灵犀一指:若奇函数在0=x 处有定义,则有0)(=x f 。
3、对数的性质及运算公式:①x b b a a x=⇔=log ②1log a 0=,xa a log =x ;③b a b a =log ;④N M MN a a a log log log +=,N M NMa a a log log log -=;⑤n ab m log =b mna log ;⑥ab a b bc c a lg lg log log log ==。
4、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-。
5、几种常见函数的导数 ①'C 0=;②1')(-=n n nxx ;③x x c o s )(s i n '=;④x x s i n )(c o s '-=;⑤a a a xx ln )('=;⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=。
高中必背的数学公式(完整归纳)
高中必背的数学公式(完整归纳)高中必背的数学公式(一)两角和公式1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB3、tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(二)倍角公式1、cos2A=cos2A-sin2A=2cos2A-1=1-2sin2A2、tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgA(三)半角公式1、sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))4、ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))(四)和差化积公式1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB5、ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(五)几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)(六)椭圆公式1、椭圆周长公式:l=2πb+4(a-b)2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差3、椭圆面积公式:s=πab4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积如何提高高中数学成绩1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
高三数学必背公式知识点
高三数学必背公式知识点在高三数学学习中,公式是必不可少的一部分。
掌握并理解这些公式不仅能够帮助我们解决各种数学问题,还能提高我们的数学思维和解题能力。
本文将为大家整理并介绍高三数学中必须要背诵的公式知识点,以便帮助大家高效备考。
一、代数知识1. 二次方程的解法公式:对于二次方程ax^2 + bx + c = 0,其解可以通过以下公式求得:x1,2 = (-b ± √(b^2 - 4ac)) / 2a其中±表示可以取正负号。
2. 三角函数公式:正弦函数公式:sin(A±B) = sinAcosB ± cosAsinB余弦函数公式:cos(A±B) = cosAcosB ∓ sinAsinB正切函数公式:tan(A±B) = (tanA ± tanB) / (1 ∓ tanAtanB) 3. 平方差公式:a^2 - b^2 = (a + b)(a - b)二、几何知识1. 相似三角形的性质:相似三角形对应角相等,对应边成比例。
2. 重要的勾股定理:在右三角形中,两直角边的平方和等于斜边的平方。
c^2 = a^2 + b^23. 圆的周长和面积公式:圆周长公式:C = 2πr圆面积公式:S = πr^2三、概率与统计知识1. 排列组合公式:从n个不同元素中,取出m个元素按照一定的顺序排列时,排列数为:A(n,m) = n! / (n-m)!从n个不同元素中,取出m个元素按照任意顺序排列时,组合数为:C(n,m) = n! / (m!(n-m)!)2. 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n)b^n其中C(n,m)表示从n个元素中选出m个元素的组合数。
3. 正态分布的标准差公式:正态分布的标准差公式为:σ = √(1/n ∑(xᵢ-µ)²)其中xᵢ表示第 i 个观测值,µ表示平均值,n表示总观测数。
高三数学必背公式大全
高三数学必背公式大全高三数学是一门考验学生记忆和理解能力的学科,其中公式的掌握是非常重要的。
下面是一份高三数学必背公式大全的相关参考内容:1. 代数与函数- 平方差公式:$a^2 - b^2 = (a+b)(a-b)$- 二次项完全平方公式:$a^2 + 2ab + b^2 = (a+b)^2$- 一元二次方程求根公式:对于$ax^2 + bx + c = 0$,其根的公式为$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$- 比例公式:$\frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$- 平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$2. 三角函数- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理:$a^2 = b^2 + c^2 - 2bc\cos A$- 正弦和余弦的和差化积公式:$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$,$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$- 二倍角公式:$\sin 2A = 2\sin A \cos A$,$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$3. 解析几何- 点到直线的距离公式:设直线方程为$Ax + By + C = 0$,点$P(x_0, y_0)$到直线的距离为$\frac{|Ax_0 + By_0 +C|}{\sqrt{A^2 + B^2}}$- 两点间距公式:两点$A(x_1, y_1)$和$B(x_2, y_2)$间的距离为$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$- 直线的斜率公式:设直线过点$A(x_1, y_1)$和$B(x_2, y_2)$,斜率为$m = \frac{y_2 - y_1}{x_2 - x_1}$- 直线的点斜式公式:设直线过点$P(x_0, y_0)$,斜率为$m$,直线方程为$y - y_0 = m(x - x_0)$4. 微积分- 导数定义:函数$f(x)$在$x_0$处的导数定义为$f'(x) =\lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$- 导函数公式:- 常数函数导数为0:$(k)' = 0$- 幂函数导数:$(x^n)' = nx^{n-1}$- 指数函数导数:$(a^x)' = a^x \ln a$- 对数函数导数:$(\log_a x)' = \frac{1}{x \ln a}$- 三角函数导数:$(\sin x)' = \cos x$,$(\cos x)' = -\sin x$,$(\tan x)' = \sec^2 x$- 反函数的导数公式:设函数$f^{-1}(x)$是函数$f(x)$的反函数,则$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$以上仅列举了高三数学中的一些重要公式,这些公式在解题过程中非常有用。
高三知识点总结数学公式
高三知识点总结数学公式数学在高三阶段是一个非常重要的学科,而掌握数学公式是解决问题的关键。
下面是高三数学知识点总结的数学公式:一、代数公式1. 平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 - 2ab + b^2$2. 二次方程求根公式:对于二次方程 $ax^2 + bx + c = 0$,它的解为$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$3. 因式分解公式:已知 $a,b,c$ 为实数,且 $ac > 0$,则$ax^2 + bx + c = a(x - \alpha)(x - \beta)$其中,$\alpha$ 和 $\beta$ 是二次方程的两个根4. 比例公式:若 $a : b = c : d$,则有$\frac{a}{b} = \frac{c}{d}$5. 三角函数正弦定理:在任意三角形 $ABC$ 中,设 $a,b,c$ 分别为三角形的三边,$\alpha,\beta,\gamma$ 分别为对应的内角,则$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} =\frac{c}{\sin(\gamma)}$6. 三角函数余弦定理:在任意三角形 $ABC$ 中,设 $a,b,c$ 分别为三角形的三边,$\alpha,\beta,\gamma$ 分别为对应的内角,则$c^2 = a^2 + b^2 - 2ab\cos(\gamma)$二、几何公式1. 面积公式:长方形的面积公式为 $A = l \times w$,其中 $l$ 和 $w$ 分别代表矩形的长度和宽度2. 直角三角形斜边公式:在一个直角三角形中,斜边的长度可以通过勾股定理计算,即$c = \sqrt{a^2 + b^2}$,其中 $a$ 和 $b$ 分别代表直角三角形的两个直角边的长度3. 圆的面积公式:圆的面积可以通过半径计算,公式为 $A = \pi r^2$,其中$r$ 代表圆的半径4. 角度和公式:一个多边形的内角和可以通过公式计算,公式为 $180° \times (n-2)$,其中 $n$ 代表多边形的边数5. 正多边形内角公式:一个正 $n$ 边形的内角可以通过公式计算,公式为 $(n-2)\times 180° / n$,其中 $n$ 代表正多边形的边数三、微积分公式1. 导数规则:* 常数导数:$d/dx (c) = 0$,其中 $c$ 为常数* 幂函数导数:$d/dx (x^n) = n \cdot x^{n-1}$,其中 $n$ 为常数* 和差法则:$d/dx (f(x) \pm g(x)) = f'(x) \pm g'(x)$,其中$f(x)$ 和 $g(x)$ 为函数* 乘法法则:$d/dx (f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$,其中 $f(x)$ 和 $g(x)$ 为函数* 除法法则:$d/dx (\frac{f(x)}{g(x)}) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$,其中 $f(x)$ 和 $g(x)$ 为函数2. 积分规则:* 定积分:$\int_{a}^{b} f(x) dx$,表示从 $a$ 到 $b$ 的函数$f(x)$ 的面积* 不定积分:$\int f(x) dx$,表示函数 $f(x)$ 的原函数通过掌握这些数学公式,高三的学生们可以更加熟练地解题,提高数学能力。
高三数学必背公式和知识点
高三数学必背公式和知识点数学是高中阶段学习中重要的一门学科,对于高三学生来说,熟悉并掌握数学的基本公式和知识点是提高学习效率和成绩的关键。
下面将介绍高三数学必背的一些公式和知识点。
一、导数与微分1. 基本导数公式- 若$f(x)=k$,则$f'(x)=0$;- 若$f(x)=x^n$,则$f'(x)=nx^{n-1}$;- 若$f(x)=e^x$,则$f'(x)=e^x$;- 若$f(x)=\ln{x}$,则$f'(x)=\frac{1}{x}$;- 若$f(x)=\sin{x}$,则$f'(x)=\cos{x}$。
2. 常用导数公式- $(a^x)'=a^x\ln{a}$;- $(\log_a{x})'=\frac{1}{x\ln{a}}$;- $(\sin{x})'=\cos{x}$;- $(\cos{x})'=-\sin{x}$;- $(\tan{x})'=\sec^2{x}$。
3. 高阶导数公式- $(x^n)'=nx^{n-1}$;- $(\sin{x})^{(n)}=\sin{(x+n\pi/2)}$;- $(\cos{x})^{(n)}=\cos{(x+n\pi/2)}$。
4. 微分- 若$y=f(x)$,则$dy=f'(x)dx$;- 微分的四则运算法则:$(u\pm v)'=u'+v'$,$(uv)'=u'v+uv'$。
二、积分与定积分1. 基本积分公式- $\int kdx=kx$;- $\int x^ndx=\frac{1}{n+1}x^{n+1}+C, (n\neq -1)$;- $\int \frac{1}{x}dx=\ln{|x|}+C$。
2. 常用积分公式- $\int e^xdx=e^x+C$;- $\int \sin{xdx}=-\cos{x}+C$;- $\int \cos{xdx}=\sin{x}+C$;- $\int \frac{1}{1+x^2}dx=\arctan{x}+C$;- $\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin{x}+C$。
高三常用数学公式知识点
高三常用数学公式知识点在高中数学中,掌握常用的数学公式是非常重要的,这些公式包含了各个数学学科的基础知识点。
在高三这个关键的学习阶段,更是需要熟练掌握这些公式,以便能够灵活运用解题。
以下是高三常用数学公式的知识点:一、代数公式1. 一次方程的解法:- ax + b =0,求解:x = -b/a- ax - c = 0,求解:x = c/a2. 二次方程的解法:- ax² + bx + c = 0,求解:x = (-b ± √(b² - 4ac)) / (2a)3. 三次方程的解法:- ax³ + bx² + cx + d = 0,求解:利用数学软件或图解法求解4. 平方差公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²5. 二次完全平方公式:- a² ± 2ab + b² = (a ± b)²6. 因式分解公式:- a² - b² = (a + b)(a - b)- a³ + b³ = (a + b)(a² - ab + b²) - a³ - b³ = (a - b)(a² + ab + b²)7. 二次根式公式:- √(a ± b) = √a ± √b8. 比例公式:- a : b = c : d ,则 a/b = c/d 9. 百分数转化为小数:- 百分数除以100即可得到小数形式10. 分数基本变形:- 分子分母乘、除相同数值,分数值不变; - 分子分母约去,分数值不变。
二、几何公式1. 长方形的面积公式:- 长方形面积 = 长 ×宽2. 正方形的面积公式:- 正方形面积 = 边长 ×边长3. 三角形的面积公式:- 三角形面积 = 底 ×高 / 2- 海伦公式:已知三边求三角形面积- 正弦定理:a/sinA = b/sinB = c/sinC = 2R4. 圆的面积公式:- 圆的面积= πr²5. 球的表面积和体积公式:- 球的表面积= 4πr²- 球的体积= (4/3)πr³6. 直角三角形的勾股定理:- 直角三角形斜边的平方 = 两直角边的平方和7. 正多边形内角和公式:- 正多边形内角和 = (n - 2) × 180°8. 相似三角形的性质:- 两个三角形的对应角相等,对应边成比例三、概率公式1. 事件发生的概率:- 事件发生的概率 = 该事件发生的次数 / 总的可能次数2. 互斥事件的概率:- 互斥事件的概率 = 事件A的概率 + 事件B的概率3. 独立事件的概率:- 独立事件的概率 = 事件A的概率 ×事件B的概率四、数列与数列极限公式1. 等差数列的通项公式:- aₙ = a₁ + (n - 1)d2. 等比数列的通项公式:- aₙ = a₁ × q^(n - 1)3. 等差数列前n项和公式:- Sₙ = (a₁ + aₙ) × n / 24. 等比数列前n项和公式:- Sₙ = a₁ × (1 - qⁿ) / (1 - q)5. 等差数列极限公式:- 当n趋向于无穷大时,数列的极限为公差d6. 等比数列极限公式:- 当|q| < 1时,数列的极限存在,极限为0通过掌握以上的数学公式,可以有效地解决各类数学题目,提高数学解题的速度和准确性。
高考速记数学公式
高考速记数学公式高考数学中常见的一些重要公式如下:1.二次方程的解公式:对于方程ax^2 + bx + c = 0,其解为: x= (-b ±√(b^2 - 4ac)) / (2a)2.三角函数的基本关系: sin^2θ + cos^2θ = 1 tanθ = sinθ /cosθ secθ = 1 / cosθ cotθ = 1 / tanθ3.平方差公式: (a + b)(a - b) = a^2 - b^24.三角函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ cos(α± β) = cosαcosβ ∓sinαsinβtan(α± β) = (tanα± tanβ) / (1 ∓tanαtanβ)5.对数的性质:log(ab) = loga + logb log(a/b) = loga - logbloga(m^n) = nloga(m)6.三角函数的倍角公式: sin2θ = 2sinθcosθ cos2θ = cos^2θ- sin^2θ tan2θ = 2tanθ / (1 - tan^2θ)7.二项定理:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n, n-1)ab^(n-1) + C(n, n)b^n8.勾股定理:在直角三角形中,设a、b、c分别表示斜边、直角边和直角边,满足以下关系式: a^2 = b^2 + c^29.三角函数的倒数关系: secθ = 1 / cosθ cscθ = 1 / sinθ cotθ = 1 / tanθ10.高斯消元法:高斯消元法用于求解线性方程组,通过矩阵的初等行变换将系数矩阵转化为上三角矩阵,从而求得方程组的解。
11.求根公式:对于一元n次多项式,其通解可以通过求根公式得到。
高三数学公式必背知识点总结
高三数学公式必背知识点总结数学是一门需要严谨性和逻辑思维的学科,而公式则是数学中最基础也最重要的一部分。
在高三数学的备考中,熟练掌握并背诵数学公式是必不可少的。
下面将对高三数学公式的必背知识点进行总结和归纳,以供复习备考之用。
一、代数公式1. 二次方程求根公式:对于一元二次方程ax²+bx+c=0,其根可由以下公式求得:x₁=[-b+√(b²-4ac)]/2ax₂=[-b-√(b²-4ac)]/2a2. 二项式定理:对于任意实数a和b,以及正整数n,有以下展开式:(a+b)ⁿ = C(n,0)·aⁿ + C(n,1)·aⁿ⁻¹·b + C(n,2)·aⁿ⁻²·b² + ... +C(n,k)·aⁿ⁻ᵏ·bᵏ+ ... + C(n,n)·bⁿ其中,C(n,k)表示从n个元素中选取k个元素的组合数。
3. 分式的运算公式:(1) 两个分数相加:a/b + c/d = (ad+bc)/bd(2) 两个分数相减:a/b - c/d = (ad-bc)/bd(3) 两个分数相乘:(a/b)·(c/d) = (ac)/(bd)(4) 两个分数相除:(a/b)÷(c/d) = (a/b)·(d/c) = (ad)/(bc)二、几何公式1. 直角三角形相关公式:(1) 勾股定理:c² = a²+b²(2) 正弦定理:a/sinA = b/sinB = c/sinC(3) 余弦定理:c² = a²+b²-2ab·cosC2. 平面图形相关公式:(1) 长方形的面积:S = 长×宽(2) 正方形的面积:S = 边长²(3) 圆的面积:S = πr²(4) 圆的周长:C = 2πr(5) 圆内接四边形对角线的乘积等于两对角线所夹扇形面积之和三、概率公式1. 事件概率:对于一个试验,其样本空间为S,事件A为S的子集,定义事件A发生的概率为:P(A) = n(A)/n(S)其中,n(A)表示事件A包含的样本点个数,n(S)表示样本空间中样本点的总个数。
高中数学公式及知识点速记
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设x1,x2∈[a,b],x1<x2,那么在[a,b]上是增函数:在[a,b]上是减函数。
(2)设函数y= f(x)在某个区间内可导,若f′(x)>0,则f(x)为增函数;若f′(x)<0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(-x)=-f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y=f(x)在点x。
处的导数的几何意义函数y= f(x)在点x处的导数是曲线y=f(x)在P(x0,f(x0))处的切线的斜率f′(xo),相应的切线方程是y-y0=f′(x0)(x-x0).4、几种常见函数的导数①C′=0;②(x n)′=nx n-1;③(sinx)′=cosx:④(cosx)′=-sinx;⑤(a x)′=a x lna;⑥(e x)′=e x;x)′=1/xlna:⑧(lnx)′=1/x;⑦loga5、导数的运算法则(1)(u+v)′=u′+v′(2)(u-v)′=u′-v′(3)(uv)′=u′v+uv′.(4)(u/v) ′=(u′v-uv′)/v^2(v≠0)6、会用导数求单调区间、极值、最值7、求函数y=f(x)的极值的方法是:解方程f′(x)=0,当f'(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x)是极小值。
二、三角函数、三角変換、解三角形、平面向量8、同角三角函数的基本美系式+=1,tana=sina/cosa9、正弦、余弦的诱导公式k∏+(-)a的正弦、余弦,等于a的同名函数,前面加上把a看成锐角吋该函数的符号;(k∏+∏/2) +(-)a的正弦、余弦,等于a的余名函数,前面加上把a看成锐角吋该函数的符号。
高考数学必背公式整理(衡水中学高中数学组)
高考数学必背公式整理一、平面几何公式1. 直线方程- 一般式:Ax + By + C = 0- 斜截式:y = kx + b- 截距式:x/a + y/b = 1- 两点式:(y-y₁)/(x-x₁) = (y₂-y₁)/(x₂-x₁)2. 圆的方程- 标准方程:(x-a)² + (y-b)² = r²- 一般方程:x² + y² + Dx + Ey + F = 0 - 中心半径方程:(x-h)² + (y-k)² = r²3. 直角三角形- 勾股定理:a² + b² = c²- 正弦定理:a/sinA = b/sinB = c/sinC - 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = b/a4. 圆锥曲线- 椭圆:x²/a² + y²/b² = 1- 双曲线:x²/a² - y²/b² = 1- 抛物线:y² = 2px二、空间几何公式1. 空间中的直线- 参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct - 对称式:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n2. 空间中的平面- 一般方程:Ax + By + Cz + D = 0- 点法式:A(x-x₁) + B(y-y₁) + C(z-z₁) = 0- 三点式:[ABCD] = 03. 空间中的球面- 标准方程:(x-a)² + (y-b)² + (z-c)² = r²- 一般方程:x² + y² + z² + Dx + Ey + Fz + G = 0 - 中心半径方程:(x-h)² + (y-k)² + (z-l)² = r²4. 空间向量- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn- 混合积:[a,b,c] = a·(b×c)三、解析几何公式1. 直线和平面- 平面方程:Ax + By + Cz + D = 0- 直线方程:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n- 点到直线距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²) - 点到平面距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²)2. 点、向量和运算- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn3. 曲线和曲面- 曲线斜率:y‘ = f'(x) = dy/dx- 曲面切面:z = f(x, y)- 曲线弧长:L = ∫√(1 + (dy/dx)²)dx四、数列与级数公式1. 数列- 等差数列通项公式:aₙ = a₁ + (n-1)d- 等比数列通项公式:aₙ = a₁qⁿ⁻¹- 通项公式求和:Sₙ = (a₁+aₙ)n/22. 级数- 等差级数求和:Sₙ = n(a₁+aₙ)/2- 等比级数求和:Sₙ = a₁(1-qⁿ)/(1-q)3. 数学归纳法- 数学归纳法证明- 数学归纳法应用五、概率统计公式1. 概率- 事件概率:P(A) = n(A)/n(Ω)- 加法公式:P(A∪B) = P(A) + P(B) - 条件概率:P(A|B) = P(A∩B)/P(B)2. 统计- 样本均值:μ = Σxᵢ/n- 样本方差:σ²= Σ(xᵢ-μ)²/n- 标准差:σ = √σ²3. 随机变量- 期望:E(X) = ΣxᵢP(X=xᵢ)- 方差:Var(X) = E(X²) - [E(X)]²- 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))六、函数与导数公式1. 基本函数- 幂函数:f(x) = xⁿ- 指数函数:f(x) = aⁿ- 对数函数:f(x) = logₐx- 三角函数:f(x) = sinx, cosx, tanx2. 函数性质- 奇函数和偶函数- 单调性和极值- 函数图像和性态3. 导数与微分- 导数定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h - 函数求导:(xⁿ)’ = nxⁿ⁻¹- 链式法则:(f(g(x)))’ = f’(g(x))·g’(x)- 微分运算:dy = f’(x)dx七、积分公式1. 不定积分- 基本积分公式 - 定积分计算 - 变限积分求导2. 定积分- 定积分性质 - 定积分应用 - 变限积分求导3. 微分方程- 微分方程定解 - 微分方程解法 - 微分方程应用八、高等代数公式1. 行列式- 二阶行列式 - 三阶行列式 - 克拉默法则2. 矩阵运算- 矩阵相加- 矩阵相乘- 矩阵转置3. 线性方程组- 高斯消元法- 矩阵法解方程组- 克拉默法则以上是高考数学必背公式的整理,希望同学们能够认真学习并灵活运用这些公式,提高数学应用能力,取得优异的成绩。
高考数学公式总结大全
高考数学公式总结大全数学在高考中占据着非常重要的地位,而数学公式更是考试中必不可少的部分。
掌握好数学公式,对于高考取得好成绩至关重要。
因此,我将在这里为大家总结一些高考数学中常用的公式,希望能够帮助大家更好地备战高考。
一、代数部分。
1. 二次函数的顶点坐标公式:对于二次函数y=ax^2+bx+c,其顶点坐标为,(-b/2a, -Δ/4a),其中Δ=b^2-4ac。
2. 二次方程求根公式:对于一元二次方程ax^2+bx+c=0,其根的公式为,x1,2=(-b±√Δ)/2a,其中Δ=b^2-4ac。
3. 等差数列前n项和公式:对于等差数列an=a1+(n-1)d,其前n项和Sn=(a1+an)n/2。
4. 等比数列前n项和公式:对于等比数列an=a1q^(n-1),其前n项和Sn=a1(1-q^n)/(1-q)。
5. 二项式定理:(a+b)^n = C0n a^n + C1n a^(n-1)b + C2n a^(n-2)b^2 + ... + Cnn b^n。
二、几何部分。
1. 直角三角形斜边长公式:对于直角三角形,斜边长c的计算公式为,c=√(a^2+b^2)。
2. 圆的面积和周长公式:圆的面积公式为,S=πr^2,周长公式为,C=2πr。
3. 三角形面积公式:对于三角形,其面积S可以通过海伦公式计算,S=√[p(p-a)(p-b)(p-c)],其中p为半周长,a、b、c为三边长。
4. 直线斜率公式:直线斜率的计算公式为,k=(y2-y1)/(x2-x1)。
5. 圆锥、圆柱、圆球体积公式:圆锥体积V=1/3πr^2h,圆柱体积V=πr^2h,圆球体积V=4/3πr^3。
三、概率与统计部分。
1. 事件的概率公式:对于事件A发生的概率P(A)的计算公式为,P(A)=n/N,其中n为A发生的次数,N为总次数。
2. 期望值公式:对于随机变量X的期望值E(X)的计算公式为,E(X)=∑(xP(x)),即所有可能取值的乘积再求和。
高中数学公式及知识点速记
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
高中数学公式与知识点归纳(内含速解策略)
用心教学生,用心做教育高中数学公式及知识点速记一、函数、导数1、函数的单调性(1) 设x1、x [a ,b], x x 那么 f ( x1) f (x2 ) 0 f ( x)在[a, b] 上是增函数;2 1 2f (x1 ) f ( x2 ) 0 f (x)在[ a,b]上是减函数。
(2) 设函数y f ( x) 在某个区间内可导,若f (x) 0 ,则 f (x) 为增函数;若 f (x) 0,则f (x) 为减函数。
2、函数的奇偶性对于定义域内任意的x,都有f ( x) f (x) ,则 f (x) 是偶函数;对于定义域内任意的x,都有 f ( x) f ( x) ,则 f (x) 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
灵犀一指:若奇函数在x 0处有定义,则有 f (x) 0。
x log ②log 13、对数的性质及运算公式:① a b b xaa 0 ,xlog = x;③a alog = x;③a log a bM;④MN M Nb log a log log ,log a log M log N ;⑤a a a aNnnlog a b = log b ;⑥mamlog b lg bclog b 。
a lglog a ac4、函数y f (x) 在点x 处的导数的几何意义函数y f (x) 在点x 处的导数是曲线y f ( x) 在P( x0, f ( x0 )) 处的切线的斜率 f (x0) ,相应0的切线方程是( )( )y y0 f x x x 。
0 05、几种常见函数的导数①'C 0 ;②n ' nx n '1(x ) ;③( s n i x) c o s x';④c(o s x) s n ixx )' x;⑤(a a⑥x e x'(e ) ;⑦(log1'x)a lnxa;⑧(ln x) '1x。
高中数学公式及知识点总结大全
高中数学公式及知识点总结大全高中数学是一门基础性强的科目,学好高中数学对于通识科学和深入学习其他专业课程都有很大帮助。
下面将为大家总结高中数学中的常用公式和知识点。
一、函数1、基本函数公式:①y=kx:直线函数,其中k为斜率,x为自变量,y为因变量。
②y=x²:二次函数,开口朝上,开口为a。
③y=-x²:二次函数,开口朝下,开口为-a。
④y=√x:开口朝上的平方根函数,变化率最大的点为(0,0)。
⑤y=-√x:开口朝下的平方根函数,没有定义域对应值为负数。
⑥y=a⁽ˣ⁾:指数函数,a>0且a≠1,a>1开口朝上,0<a<1开口朝下,变化率最大的点为(0,1)。
⑦y=logₐx:对数函数,a>0且a≠1,其中a称为底数,x称为实参,y称为虚参,定义域为x>0,变化速率最大的点为(1,0)。
2、函数的性质:①奇偶性:对于函数f(x),若f(-x)=f(x),则称f(x)为偶函数;若f(-x)=-f(x),则称f(x)为奇函数。
二次函数和正弦、余弦函数平移后仍为自身即线对称的,即偶函数。
②单调性:单调递增指自变量增大时,因变量也增大,反之为单调递减。
③最值点:函数图像上最高点和最低点,即最大值和最小值,由函数的导数为0时得到。
④零点:函数值为0的点。
⑤导数:函数在一点的切线斜率,表示为y=Δy/Δx,y'=f⁽x⁾表示x变化一单位,函数值变化的速率。
二、三角函数1、基本定义:弧度制:弧长等于半径的一部分。
三角函数:正弦、余弦、正切、余切、正割、余割2、基本公式:①正弦函数:y=Asin(Bx+C)+D②余弦函数:y=Acos(Bx+C)+D③正切函数:y=Atan(Bx+C)+D3、三角函数的运算:①和差化积公式:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb-正bsinasinb②积化和差公式:sinacosb=1/2[cos(a-b)+cos(a+b)],sinasinb=1/2[cos(a-b)-cos(a+b)],cosacosb=1/2[cos(a+b)+cos(a-b)],sinacosb=1/2[sin(a+b)+sin(a-b)]4、三角函数的图像:正弦函数的图像为一条周期为$2π$的连续的曲线,最大值为1,最小值为-1;余弦函数也是周期为$2π$的连续曲线,最大值为1,最小值为-1;正切函数为无界函数,当$x=kπ-1/2π(k∈Z)$时,函数值不存在。
高中数学必背公式大全高考必考数学公式
高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。
5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。
7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。
高中数学公式及知识点速记
高中数学公式及知识点速记WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .9、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式及知识点速记1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B == .3.包含关系A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M N f x +--<⇔()0()f x N M f x ->-⇔11()f x NM N>--.8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于0)()(21<k f k f ,或0)(1=k f 且22211k k ab k +<-<,或0)(2=k f 且22122k abk k <-<+.9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在ab x 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p ab x ,2∈-=,则{}m in m a x m ax ()(),()(),()2bf xf f xf p f q a=-=;[]q p ab x ,2∉-=,{}max max ()(),()f x f p f q =,{}min min()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}m i n()m i n (),()f x fp f q =,若[]q p ab x ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩;(2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n >⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩;(3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q p m ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是m in (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()m an f x t x L ≤∉.(3)0)(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或2040a b ac <⎧⎨-<⎩.12.13.14.四种命题的相互关系15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系a b fb a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x fk y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数.28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)mn a =(0,,a m n N *>∈,且1n >). (2)1m nmnaa -=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log mna a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a M N M N =+; (2) log log log aa a M M N N=-; (3)log log ()na a Mn M n R =∈.36.设函数)0)((log )(2≠++=a c bx axx f m,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数. ,(2)当a b <时,在1(0,)a和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ). 40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.41.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为 11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为 1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111nn nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩ 47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-. sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ=).48.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos 34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A≠0,ω>0)的周期T πω=.51.正弦定理2sin sin sin a b c R ABC===.52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-. 53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)O A B S ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈.特别地,有sin sin (1)()kk k Z αβαπβ=⇔=+-∈.s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈.cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈.cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈. tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=. 53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos x x y y θ+=(a =11(,)x y ,b =22(,)x y ). 64.平面两点间的距离公式,A B d=||AB ==(A 11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12P P PP λ=,则 121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121O P O P O P λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+).67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++.68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''O P O P P P ⇔=+ . 注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=. (5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件设O 为A B C ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为A B C ∆的外心222O A O B O C ⇔== .(2)O 为A B C ∆的重心0OA OB OC ⇔++=.(3)O 为A B C ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅.(4)O 为A B C∆的内心0aOA bOB cOC ⇔++=.(5)O 为A B C ∆的A ∠的旁心aOA bOB cOC ⇔=+.71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>> (4)柯西不等式 22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s .推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+ (1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)a x b x c ++><或2(0,40)a ba c ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式当a> 0时,有22x a x aa x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x aaf xg x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aaf xg x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离||Ax By C d ++=(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下. 若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0a x b y c ++=是直线A B 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA CBb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±92.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 93.椭圆22221(0)x y a b ab +=>>焦半径公式 )(21cax e PF +=,)(22x c ae PF -=.94.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. (2)点00(,)P x y 在椭圆22221(0)x y a b ab+=>>的外部22221x y a b ⇔+>.95. 椭圆的切线方程 (1)椭圆22221(0)x y a b ab+=>>上一点00(,)P x y 处的切线方程是00221x x y y ab+=.(2)过椭圆22221(0)x y a b ab+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab+=.(3)椭圆22221(0)x y a b ab+=>>与直线0A x B y C ++=相切的条件是2222Aa B bc+=. 96.双曲线22221(0,0)x y a b ab-=>>的焦半径公式21|()|aPF e x c =+,22|()|aPF e x c=-.97.双曲线的内外部 (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)xya b a b -=>>的外部22221x y a b⇔-<. 98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-by ax ⇒渐近线方程:22220x y ab-=⇔x ab y ±=.(2)若渐近线方程为x ab y ±=⇔0=±by a x ⇒双曲线可设为λ=-2222by ax .(3)若双曲线与12222=-bya x有公共渐近线,可设为λ=-2222by ax (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).99. 双曲线的切线方程(1)双曲线22221(0,0)x y a b ab-=>>上一点00(,)P x y 处的切线方程是00221x x y y ab-=.(2)过双曲线22221(0,0)x y a b ab-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y ab-=.(3)双曲线22221(0,0)x y a b ab-=>>与直线0A x B y C ++=相切的条件是2222A aB b c -=.100. 抛物线px y 22=的焦半径公式 抛物线22(0)y px p =>焦半径02p C F x =+.过焦点弦长p x x p x p x CD ++=+++=212122.101.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中22y px = .102.二次函数2224()24b ac b y ax bx c a x aa -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b aa--;(2)焦点的坐标为241(,)24b ac b aa-+-;(3)准线方程是2414ac b y a--=.103.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>. 点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>. (2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->. 104. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+. (3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.105.两个常见的曲线系方程(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221xya kb k+=--,其中22max{,}k a b <.当22m in{,}k a b >时,表示椭圆; 当2222m in{,}m ax{,}a b k a b <<时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 AB =或1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线A B 的倾斜角,k 为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A BA B++++--=++.108.“四线”一方程对于一般的二次曲线220Ax Bxy C y D x Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y 即得方程0000000222x y xy x x y y A x x B C y y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB = ⇔(1)O P t O A tO B =-+.||AB CD ⇔AB、CD 共线且A B C D 、不共线⇔AB tCD = 且A B C D 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使M P x M A y M B =+,或对空间任一定点O ,有序实数对,x y ,使O P O M x M A y M B =++.119.对空间任一点O 和不共线的三点A 、B 、C ,满足O P x O A y O B z O C=++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD 与AB、A C 共面⇔A D x A B y A C =+ ⇔(1)O D x y O A xO B yO C =--++(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使O P xO A y O B z O C =++.121.射影公式已知向量AB=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B点在l 上的射影'B ,则''||cos A B AB =〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R);(4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 124.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则 a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. 126. 四面体的对棱所成的角四面体A B C D 中, A C 与B D 所成的角为θ,则 2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r分别表示异面直线a b ,的方向向量)128.直线A B 与平面所成角sin ||||AB m arc AB m β⋅=(m为平面α的法向量). 129.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边A C ,B C 与平面α成的角分别是1θ、2θ,A B 、为A B C ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=时,有22212sin sin sin θθθ+=.130.若A B C ∆所在平面若β与过若A B 的平面α成的角θ,另两边A C ,B C 与平面α成的角分别是1θ、2θ,''A B 、为A B O ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+(当且仅当90θ=时等号成立).134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB ==.135.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA,向量b =P Q ).136.异面直线间的距离||||C D n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||A B n d n ⋅=(n 为平面α的法向量,A B 是经过面α的一条斜线,A α∈).138.异面直线上两点距离公式d =.d =d ='E AAF ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,A F n =,E F d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos SS θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E m V =.146.球的半径是R ,则 其体积343V R π=,其表面积24S R π=. 147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a 12,4.148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高). 13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).149.分类计数原理(加法原理) 12n N m m m =+++ . 150.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯ . 151.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.152.排列恒等式(1)1(1)m m n n A n m A -=-+; (2)1m mn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5)11m m m n n n A A m A -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+- . 153.组合数公式m nC=mn m mA A=mm n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).154.组合数的两个性质(1)m n C =m n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C . 155.组合恒等式 (1)11mm n nn m C C m --+=;(2)1m mn n nC C n m -=-;(3)11m m nn n C C m--=; (4)∑=nr r n C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C . (6)nn n r n n n n C C C C C 2210=++++++ .(7)14205312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n n n n n n n nC C C C .(9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)nn n n n n n C C C C C 22222120)()()()(=++++ .156.排列数与组合数的关系mmn n A m C =⋅! .157.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)。