必修1第二章基本初等函数练习题及答案解析12
高中数学一轮复习:第二章 函数的概念与基本初等函数(必修1)课后跟踪训练12
课后跟踪训练(十二)基础巩固练一、选择题1.若函数f (x )在区间[-2,2]上的图象是连续不断的曲线,且f (x )在(-2,2)内有一个零点,则f (-2)·f (2)的值( )A .大于0B .小于0C .等于0D .不能确定[解析] 若函数f (x )在(-2,2)内有一个零点,且该零点是变号零点,则f (-2)·f (2)<0,否则, f (-2)·f (2)>0,故选D.[答案] D2.(2019·湖北襄阳四校联考)函数f (x )=3x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3[解析] 由题意知f (x )单调递增,且f (0)=1+0-2=-1<0,f (1)=3+1-2=2>0,即f (0)·f (1)<0且函数f (x )在(0,1)内连续不断,所以f (x )在区间(0,1)内有一个零点.故选B.[答案] B3.(2018·吉林省实验中学段考)若函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C.⎣⎢⎡⎭⎪⎫2,52D.⎣⎢⎡⎭⎪⎫2,103[解析] 解法一:当f ⎝ ⎛⎭⎪⎫12·f (3)<0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有且仅有一个零点,即⎝ ⎛⎭⎪⎫54-a 2(10-3a )<0, 解得52<a <103;当⎩⎪⎨⎪⎧12<a2<3,Δ=a 2-4≥0,f ⎝ ⎛⎭⎪⎫12>0,f (3)>0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有一个或两个零点,解得2≤a <52; 当a =52时,函数的零点为12和2,符合题意; 当a =103时,函数的零点为13或3,不符合题意. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.故选D.解法二:令f (x )=0,则a =x 2+1x .令g (x )=x 2+1x , 而g ′(x )=1-1x 2.当x ∈⎝ ⎛⎭⎪⎫12,1时,g ′(x )<0;当x ∈(1,3)时,g ′(x )>0,∴g (x )在⎝ ⎛⎭⎪⎫12,1上单调递减,在(1,3)上单调递增,∴g (x )的值域为⎣⎢⎡⎭⎪⎫2,103.∴a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.故选D. [答案] D[解析] g (x )=f (x )-m 有三个不同的零点等价于f (x )=m 有三个不同的根,等价于函数y =f (x )与y =m 的图象有三个不同的公共点.在同一直角坐标系中画出函数y =f (x ),y =m 的图象(如图所示),观察其交点个数,显然当-14<m <0时,两个函数图象有三个不同的公共点.故选C.[答案] C5.(2018·安徽安庆二模)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点个数为( )A .3B .2C .1D .0[解析] 由f (x +1)=f (x -1),知f (x )的周期是2,画出函数f (x )和g (x )的部分图象,如图所示,由图象可知f (x )与g (x )的图象有2个交点,故F (x )有2个零点.故选B.[答案] B 二、填空题6.函数f (x )=ln(2x )-1的零点为________. [解析] 由ln(2x )-1=0,得2x =e ,所以x =e2. 故f (x )=ln(2x )-1的零点为e2. [答案] e27.(2019·四川绵阳模拟)函数f (x )=2x-2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.[解析] 由题意,知函数f (x )在(1,2)上单调递增,又函数一个零点在区间(1,2)内,所以⎩⎨⎧f (1)<0,f (2)>0,即⎩⎨⎧-a <0,4-1-a >0,解得0<a <3,故填(0,3).[答案] (0,3)8.(2019·山东济宁高三期末)设x 1,x 2是方程ln|x -2|=m (m 为实常数)的两根,则x 1+x 2的值为________.[解析] 方程ln|x -2|=m 的根即函数y =ln|x -2|的图象与直线y =m 的交点的横坐标,因为函数y =ln|x -2|的图象关于x =2对称,且在x =2两侧单调,值域为R ,所以对任意的实数m ,函数y =ln|x -2|的图象与直线y =m 必有两交点,且两交点关于直线x =2对称,故x 1+x 2=4.[答案] 4 三、解答题9.(2019·烟台模拟)已知二次函数f (x )=x 2+(2a -1)x +1-2a , (1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围.[解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧ f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为{a ⎪⎪⎪⎭⎬⎫12<a <34.10.(2019·贵州调研)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. [解] (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2. (3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.能力提升练11.(2019·云南昆明一模)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若函数f (x ),g (x )的零点分别为a ,b ,则有( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0[解析] 易知函数f (x ),g (x )在定义域上都是单调递增函数,且f (0)=-1<0,f (1)=e -1>0,g (1)=-2<0,g (2)=ln2+1>0,所以a ,b 存在且唯一,且a ∈(0,1),b ∈(1,2),从而f (1)<f (b )<f (2),g (0)<g (a )<g (1),于是f (b )>0,g (a )<0,即g (a )<0<f (b ).[答案] A12.(2019·昆明市高三质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5][解析] 解法一:当x ≥1时,由ln x +1=2,得x =e ,由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.解法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象,如图,由图象知,要使f (x )=2有两个解.则a -3<2,得a <5,故选C.[答案] C13.(2019·河南名校联考)已知函数f (x )=x 2-m cos x +m 2+3m -8有唯一的零点,则实数m 的值为________.[解析] 由题意,函数f (x )为偶函数,在x =0处有定义且存在唯一零点,所以唯一零点为0,则02-m cos0+m 2+3m -8=0,解得m =-4或m =2.将m =-4代入解析式,得f (x )=x 2+4cos x -4,分离得两个函数y =-x 2+4,y =4cos x ,如图知f (x )存在3个零点,不符合题意,仅m =2时f (x )存在唯一零点.[答案] 214.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.[解] (1)作出g (x )=x +e 2x (x >0)的大致图象如图(1).图(1)可知若使y =g (x )-m 有零点,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象如图(2).图(2)∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).拓展延伸练15.(2019·山西质量检测)已知f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6[答案] C16.已知函数f (x )=⎩⎨⎧|log 2(x -1)|,1<x ≤3,12x 2-92x +10,x >3,若方程f (x )=m 有四个不同的实根x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则⎝ ⎛⎭⎪⎫m x 1+m x 2(x 3+x 4)的取值范围为________.[解析] 方程f (x )=m 有四个不同的实数根x 1,x 2,x 3,x 4可转化为函数f (x )的图象与直线y =m 有四个不同的交点,且交点的横坐标分别为x 1,x 2,x 3,x 4,作出函数f (x )的大致图象如图所示,结合图象得0<m <1,且f (x 1)=f (x 2)=f (x 3)=f (x 4).由f (x 1)=f (x 2)可得,|log 2(x 1-1)|=|log 2(x 2-1)|,又1<x 1<2<x 2,所以log 2(x 1-1)+log 2(x 2-1)=0,得(x 1-1)(x 2-1)=1,整理得x 1x 2=x 1+x 2,所以1x 1+1x 2=1. 由f (x 3)=f (x 4)及二次函数图象的对称性,得x 3+x 4=9,所以⎝ ⎛⎭⎪⎫m x 1+m x 2(x 3+x 4)=m ⎝ ⎛⎭⎪⎫1x 1+1x 2(x 3+x 4)=9m ∈(0,9).[答案](0,9)。
高中人教A版数学必修1单元测试:第二章 基本初等函数(二)及解析
为幂函数,得 m2-m-
A
1=1,解得 m=2 或 m=-1.当 m=2 时,m2-2m-3=-3,y=x-3 在
(0,+∞)上为减函数;当 m=-1 时,m2-2m-3=0,y=x0=1(x≠0)
在(0,+∞)上为常数函数(舍去),所以 m=2,故选 A. 7.D 解析:当 x≤1 时,由 21-x≤2 知,x≥0,即 0≤x≤1;
18.(本小题满分 12 分)
1 2
已知函数 f(x)=-2x . (1)求 f(x)的定义域; (2)证明:f(x)在定义域内是减函数.
19.(本小题满分 12 分)
3
xx
已知-3≤log0.5x≤-2,求函数 f(x)=log22·log24的最大值和最小
值.
20.(本小题满分 12 分)
2-x,x∈(-∞,1], 设 f(x)= x x
16.设函数 f(x)是定义在 R 上的奇函数,若当 x∈(0,+∞)时,f(x)
=lg x,则满足 f(x)>0 的 x 的取值范围是________. 三、解答题(本大题共 6 个小题,共 70 分,解答时应写出必要的文
字说明、证明过程或演算步骤) 17.(本小题满分 10 分) 计算下列各题:
1 13. 2,4] 解析:由题意知,2≤log2x≤2,即 log2 2≤log2x≤log24, ∴ 2≤x≤4.
1 14.24 解析:∵log23<4, ∴f(log23)=f(log23+1)=f(log23+3)=f(log224), ∵log224>4,∴f(log224)=12log224=214. 15. 3 3 解析:由图象过点(-2,0),(0,2),知
1 当 x>1 时,由 1-log2x≤2 知 x≥2,即 x>1.
高中数学必修1第二章课后习题解答
新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lglg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞U ; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB :.4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3x y =,0.1xy =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。
高中数学必修一第二章基本初等函数单元测试题(含答案)
第二章综合测试题一、选择题1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43+y ;④3-5=6(-5)2.其中正确的个数是 ( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是 ( )A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B = ( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x =3y ,则xy = ( )A.lg2lg3B.lg3lg2 C .lg 23D .lg 325.函数f (x )=x ln|x |的图象大致是 ( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则 ( ) A .f (x )与g (x )均为偶函数B .f (x )为奇函数,g (x )为偶函数C .f (x )与g (x )均为奇函数D .f (x )为偶函数,g (x )为奇函数 7.函数y =(m 2+2m -2)x 1m -1是幂函数,则m = ( )A .1B .-3C .-3或1D .28.下列各函数中,值域为(0,+∞)的是 ( ) A .y =2-x 2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x-1;④y =x 12;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是 ( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)= ( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,(12)x -1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 ( )A .(-∞,2)B .(-∞,138]C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为 ( )A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题 共90分)二、填空题 三、13.已知a 12=49(a >0),则log 23a =________. 14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________.15.若函数y =log 12(3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22x ,y =x 12,y =(22)x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.四、解答题17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax ,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),(1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围. 参考答案: 1.[答案] B[解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2,∴log 215<20.1<20.2,选A.3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e<0,从而排除B ,故选A.6.[答案] D[解析] 因为f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x =-g (x ),所以f (x )是偶函数,g (x )为奇函数,故选D.7.[答案] B[解析] 因为函数y =(m 2+2m -2)x 1m -1是幂函数,所以m 2+2m -2=1且m ≠1,解得m =-3.8.[答案] A [解析] A ,y =2-x 2=(22)x的值域为(0,+∞). B ,因为1-2x ≥0,所以2x ≤1,x ≤0, y =1-2x 的定义域是(-∞,0], 所以0<2x ≤1,所以0≤1-2x <1, 所以y =1-2x 的值域是[0,1).C ,y =x 2+x +1=(x +12)2+34的值域是[34,+∞),D ,因为1x +1∈(-∞,0)∪(0,+∞),所以y =31x +1的值域是(0,1)∪(1,+∞).9.[答案] D[解析] 根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析] f (-2)=1+log 2(2-(-2))=3,f (log 212)=2log 212-1=2log 26=6, ∴f (-2)+f (log 212)=9,故选C. 11.[答案] B[解析] 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B.12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C. 13.[答案] 4[解析]∵a 12=49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4,∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2.则f (14)<0,∴f (f (14))=3-2=19.15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a 6,依题意,有⎩⎪⎨⎪⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8. ∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22x 的图象上,所以2=log 22x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12的图象上,所以2=x B 12,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14,所以点D 的坐标为(12,14).17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35=2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a =2,解得a =1.(2)由(1)知f (x )=(12)x ,又g (x )=f (x ),则4-x -2=(12)x ,即(14)x -(12)x -2=0,即[(12)x ]2-(12)x -2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1.19.[解析] (1)当a =2时,f (x )=log 2(1+x ),在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2,∴原不等式化为a 8-x 2>a-2x.当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数, ∴8-x 2<-2x ,解得x <-2或x >4. 故当a >1时,x 的集合是{x |-2<x <4}; 当0<a <1时,x 的集合是{x |x <-2或x >4}. 21.[解析] (1)∵f (x )=2x , ∴g (x )=f (2x )-f (x +2)=22x -2x +2.因为f (x )的定义域是[0,3],所以0≤2x ≤3,0≤x +2≤3,解得0≤x ≤1.于是g (x )的定义域为{x |0≤x ≤1}.(2)设g (x )=(2x )2-4×2x =(2x -2)2-4. ∵x ∈[0,1],∴2x ∈[1,2],∴当2x =2,即x =1时,g (x )取得最小值-4; 当2x =1,即x =0时,g (x )取得最大值-3. 22.[解析] (1)令log a x =t (t ∈R ),则x =a t , ∴f (t )=a a 2-1(a t -a -t ). ∴f (x )=a a 2-1(a x -a -x )(x ∈R ).∵f (-x )=a a 2-1(a -x -a x )=-a a 2-1(a x -a -x )=-f (x ),∴f (x )为奇函数.当a >1时,y =a x为增函数,y =-a -x为增函数,且a 2a 2-1>0,∴f (x )为增函数.当0<a <1时,y =a x为减函数,y =-a -x为减函数,且a 2a 2-1<0,∴f (x )为增函数. ∴f (x )在R 上为增函数.(2)∵f (x )是R 上的增函数,∴y =f (x )-4也是R 上的增函数. 由x <2,得f (x )<f (2),要使f (x )-4在(-∞,2)上恒为负数, 只需f (2)-4≤0,即aa 2-1(a 2-a -2)≤4. ∴a a 2-1(a 4-1a2)≤4, ∴a 2+1≤4a ,∴a 2-4a +1≤0, ∴2-3≤a ≤2+ 3.又a ≠1,∴a 的取值范围为[2-3,1)∪(1,2+3].。
高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高中数学必修1第二章基本初等函数单元测试题(含参考答案)高一数学训练题(二)一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m nm na a+= B .11mmaa =C .loglog log ()aa a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( )A .122lg xx x>> B .122lg xx x>> C .122lg x xx>>D .12lg 2xx x>>5.函数(2)log (5)x y x -=-的定义域是 ( )A .(3,4)B .(2,5)C .(2,3)(3,5)UD .(,2)(5,)-∞+∞U6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减 7.若1005,102a b ==,则2a b +=( )A .0B .1C .2D .3 8.函数()lg(101)2x x f x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分) 11.计算:459log27log 8log 625⨯⨯=.12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f =. 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -=.14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数: ①log x y a =,②2log ay x =, ③31(log)ay x = ④121(log)ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分)16.(12分)计算下列各式的值:(Ⅰ)设集合}21|{<<-=x x A ,}31|{<<=x x B ,求B A ⋂, ()RA B ⋂ð, ()()RRA B ⋃痧..17. (本小题满分15分)已知函数⎩⎨⎧<≥+-=0,,0,4222x x x x x y , (1)画出函数的图像;(2)求函数的单调区间;(3)求函数在区间[]3,2-上的最大值与最小值.18. (本小题满分15分)(1)如果定义在区间(1,0)-的函数3()log (1)af x x =+满足()0f x <,求a 的取值范围; (2)解方程:3log (323)2xx +•=19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21. 某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数⎪⎩⎪⎨⎧>≤≤-=400,100000,4000,21400)(2x x x x x g .其中x 是仪器的月产量(单位:台).(1)将利润表示为月产量x 的函数)(x f ;(2)当月产量x 为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本﹢利润)参考答案一.选择题二.填空题.11. 9 . 12. 12. 13. 1-. 14.4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯. 17.(1)解:ln(x-1)<lne}1|{11-<∈∴+<∴<-∴e x x x e x ex}2log 1|{2log 12log 1)31()31(2)31()2(3131312log 1x 131+<∈∴+<∴>-∴<∴<--x x x x x x 解:1212,101212,11)3(212212<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a a xx x x 时当时当解:.18.解:(Ⅰ)原不等式可化为:212x xaa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-I , (2,3]S T =-U .19.解:(Ⅰ)11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222xx f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log,log 4][2,2]4=-. (Ⅱ)记22()(log2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()424f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==. 21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014b f b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> . ∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数, ∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-. }0|{函数的定义域为,时10当}0|x {函数的定义域为,时1当1a 01(1)a :解22x x <<<>>∴>∴>-x x a x a .)0,()(,10;),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a。
(完整word版)高中数学必修一第二章基本初等函数(Ⅰ)单元测试题(含答案)
第二章综合测试题本试卷分第Ⅰ卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分.满分 150分.考试时间 120 分钟.第Ⅰ卷 (选择题共 60 分 )一、选择题 (本大题共12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:①na n= a;②若 a∈ R,则 ( a2-a+ 1)0= 1;③343- 5x4+ y3= x3+ y;④=6- 5 2.此中正确的个数是()A . 0B. 1C.2D. 32.三个数 log 21, 20.1,20.2的大小关系是()511A . log 25<20.1<20.2B. log25<20.2<20.111C.20.1<20.2<log 25D. 20.1<log25<20.23. (2016 山·东理, 2)设会合 A={ y|y= 2x, x∈ R} , B= { x|x2- 1<0} ,则 A∪ B= () A . (- 1,1)B. (0,1)C.( -1,+∞ )D. (0,+∞ )4.已知 2x= 3y,则x= ()ylg2lg3A.lg3B.lg223C.lg 3D. lg25.函数 f(x)= xln|x|的图象大概是()6.若函数f( x)= 3x+ 3-x与 g(x)= 3x-3-x的定义域均为R ,则 ()A . f(x)与 g(x)均为偶函数B.f(x)为奇函数, g(x)为偶函数C.f(x)与 g(x)均为奇函数D. f(x)为偶函数, g(x)为奇函数17.函数 y= (m2+ 2m- 2)xm-1是幂函数,则m= ()A . 1C .- 3 或1B .- 3D . 28.以下各函数中,值域为(0,+∞)的是( )xA . y = 2-2B . y = 1- 2xC .y = x 2+ x + 11D . y = 3x+119.已知函数:① y = 2x ;② y = log 2 x ;③ y = x -1 ;④ y = x 2;则以下函数图象 (第一象限部分 )从左到右挨次与函数序号的对应次序是()A .②①③④B .②③①④C .④①③②D .④③①②10.设函数 f(x)=1+ log 2 2- xx<1,则 f(- 2)+ f(log 212) = ()-1xx ≥ 12A . 3B . 6C .9D . 12a - 2 x , x ≥ 2, x 1≠ x 2 都有f x 1 -f x 2< 0 成11.已知函数 f( x)=1 x -1, x <2 知足对随意的实数x - x21 2立,则实数 a 的取值范围为()13A . (-∞, 2)B . (-∞, 8 ]C .( -∞, 2]13, 2)D . [ 812. (2016 汉·中高一检测 )假如一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下边的五个点M (1,1), N(1,2), P(2,1), Q(2,2), G(2, 1)中,2 能够是“好点”的个数为()A . 0 个B . 1 个C .2 个D . 3 个第Ⅱ卷 (非选择题共 90 分)二、填空题 (本大题共4 个小题,每题5 分,共 20 分,把正确答案填在题中横线上)1413.已知 a 2(a > 0),则 log 2 a = ________.=9314.已知函数 f(x)=log 2x , x > 0, 1则 f(f( ))= ________.3x , x ≤ 0,415.若函数y = log 1 (3x 2- ax + 5)在 [ - 1,+∞ )上是减函数,则实数a 的取值范围是2________.16.(2016 ·阳高一检测邵 )如图,矩形 ABCD 的三个极点 A ,B ,C 分别在函数y = log 221x ,y = x 2,y = ( 2)x 的图象上,且矩形的边分别平行于两坐标轴.若点 A 的纵坐标为 2,则2点 D 的坐标为 ________.三、解答题 (本大题共 6 个小题, 共 70 分,解答应写出文字说明,证明过程或演算步骤 )1 + ( 1 1lg32- lg9 + 1- lg 1+ 810.5log 35.17. (本小题满分 10 分 )计算:)-3 +0.25 27318. (本小题满分 12 分 )已知函数 f(x)= (12)ax , a 为常数,且函数的图象过点(- 1,2).(1) 求 a 的值;(2)若 g(x)=4 -x - 2,且 g(x)= f(x),求知足条件的 x 的值. 19. (本小题满分 12 分 )已知函数 f(x)= log a (1+ x), g(x)= log a (1- x),(a >0, a ≠ 1).(1)设 a = 2,函数 f(x)的定义域为 [3,63],求 f( x)的最值;(2)求使 f(x)- g(x)> 0 的 x 的取值范围.20. (本小题满分 12 分 )求使不等式 (1)x 2-8>a -2x 建立的 x 的会合 (此中 a>0,且 a ≠ 1).a21. (本小题满分 12 分 )(2016 雅·安高一检测 )已知函数 f(x)= 2x 的定义域是 [0,3] ,设 g(x)= f (2x)- f(x + 2),(1)求 g(x)的分析式及定义域;(2)求函数 g(x)的最大值和最小值.a122. (本小题满分 12 分 )若函数 f(x)知足 f(log a x)=a2-1·(x-x)(此中 a> 0且 a≠1).(1)求函数 f(x)的分析式,并判断其奇偶性和单一性;(2)当 x∈ (-∞, 2) 时, f( x)- 4 的值恒为负数,求 a 的取值范围.参照答案:1.[ 答案 ]B[分析 ]① na n=|a|, n 为偶数, (n>1,且 n ∈ N * ),故①不正确.a , n 为奇数② a 2- a + 1= (a -12)2+ 34>0 ,所以 (a 2- a + 1)0= 1 建立.③ 3 x 4+ y 3没法化简.④ 3 - 5<0 , 6-5 2>0,故不相等.所以选 B.2.[答案 ] A[分析 ]1 0.1<20.2,∵ log 2 <0,0<25∴ log 21<20.1<2 0.2,选A. 53.[答案 ]C[分析 ]A ={ y|y = 2x , x ∈ R} = { y|y>0} .B = { x|x 2- 1<0} = { x|- 1<x<1} ,∴ A ∪ B = { x|x>0} ∪ { x|- 1< x<1} = { x|x>- 1} ,应选 C.4.[答案 ]B[分析 ]由 2x = 3y 得 lg2x = lg3y ,∴ xlg2 = ylg3,x lg3∴ y=lg2.5.[答案 ] A[分析 ] 由 f(- x)=- xln|- x|=- xln|x|=- f(x) 知,函数 f(x)是奇函数,故清除C ,D ,11又 f(e )=- e <0,进而清除 B ,应选 A.6.[答案 ] D[分析 ]- xx= f( x),g( -x)= 3 -xx=- g(x),所以 f(x)是偶函数, g( x)由于 f(- x)= 3 + 3 - 3 为奇函数,应选 D.7.[答案 ]B1[分析 ]由于函数 y = (m 2+2m -2)xm-1是幂函数,所以m 2+ 2m - 2= 1 且 m ≠ 1,解得m =- 3.8.[答案 ] A[分析 ]A , y = 2x- 2 = ( 2)x 的值域为 (0,+ ∞ ). 2B ,由于 1- 2x ≥ 0,所以 2x ≤ 1, x ≤ 0,y = 1- 2x 的定义域是 (-∞ , 0],所以 0< 2x ≤ 1,所以 0≤1- 2x < 1, 所以 y = 1- 2x 的值域是 [0,1) .C ,y = x 2+ x + 1= (x + 1) 2+ 3的值域是 [ 3,+ ∞ ),2441∈ (- ∞ , 0)∪ (0,+ ∞ ),D ,由于 x + 11所以 y =3x+1的值域是 (0,1)∪ (1,+ ∞ ).9.[答案 ] D[分析 ]依据幂函数、指数函数、对数函数的图象可知选D.10.[答案 ] C[分析 ]2212)=2 log 212-1= 2log 26= 6,f( -2)= 1+ log (2 - (- 2))= 3, f(log∴ f(- 2)+ f(log 212)= 9,应选 C. 11.[答案 ] Ba - 2<0,[分析 ]由题意知函数 f(x) 是 R 上的减函数,于是有1由此解得2- 1,a - 2 × 2≤ 213,即实数 a 的取值范围是 (-∞ ,13a ≤ 88 ],选 B.12.[答案 ] C[分析 ]设指数函数为 y = a x(a>0, a ≠ 1),明显可是点 M 、 P ,若设对数函数为 y = log b x(b>0, b ≠ 1),明显可是 N 点,选 C.13.[答案 ] 414[分析 ]∵ a 2= (a > 0),9∴ (a 1)2= [( 2) 2] 2,即 a = (2)4,233∴ log 2 a = log 2 (23)4= 4.33114.[答案 ]9[分析 ]∵1> 0,∴ f(1)= log 21=- 2.4 4 4则 f(1) <0,∴ f(f(1))= 3-2=1.44915.[答案 ] (- 8,- 6]a[ 分析 ] 令 g(x) = 3x 2- ax + 5,其对称轴为直线x = a,依题意,有6≤ - 1, ,即6g - 1 > 0a ≤ - 6, a >- 8.∴ a ∈ (- 8,- 6].16.[答案 ]( 1,1)24[分析 ] 由图象可知,点 A(x2)在函数 y = log 2 x 的图象上,A,2所以 2= log2 x A ,x A = (2 1 )2= .2221点 B(x B,2)在函数 y = x 2的图象上,1所以 2= x B 2, x B = 4.点 C(4, y C )在函数 y = ( 2)x的图象上,2所以 y C =( 2)4= 1.2 4又 x D A1, y DC1,= x =2=y = 4所以点 D 的坐标为 (1,1).241117.[分析 ]原式= + (3-1)-3 + lg3- 1 2 - lg3-1+ (34)0.5log 350.5= 2+ 3+ (1- lg3) + lg3 + 32log 35= 6+ 3log 325= 6+ 25= 31.18.[分析 ]1 - a = 2,解得 a = 1.(1) 由已知得 ( )2(2)由 (1) 知 f(x)= (1)x,又 g( x)= f(x),2则 4-x-2= (12)x,即 (14)x -( 12)x- 2= 0,即 [(1)x ]2 -(1)x- 2= 0,22令 (12)x= t ,则 t 2- t - 2= 0,即 (t -2)( t + 1)= 0,又 t>0 ,故 t = 2,即 (1)x= 2,解得 x =-1. 2 19.[分析 ] (1) 当 a =2 时, f(x)= log 2(1+ x),在 [3,63] 上为增函数,所以当 x =3 时, f(x) 最小值为 2.当 x = 63 时 f(x)最大值为 6.(2)f(x)- g(x)> 0 即 f(x) >g(x)当 a >1 时, log a (1+ x)> log a (1- x)1+ x > 1- x知足 1+ x > 0∴ 0<x < 11- x > 0当 0<a < 1 时, log a (1+ x)> log a (1- x)知足1+ x < 1- x1+ x > 01- x > 0∴- 1<x < 0综上 a > 1 时,解集为 { x|0< x < 1}0< a <1 时解集为 { x|- 1<x < 0} .20.[分析 ]∵(1a ) x 2-8=a 8-x 2,∴原不等式化为 a 8 -x 2>a -2x .当 a>1 时,函数 y = a x 是增函数,∴ 8- x 2>-2x ,解得- 2<x<4;当 0<a<1 时,函数 y = a x 是减函数, ∴ 8- x 2<-2x ,解得 x<- 2 或 x>4.故当 a>1 时, x 的会合是 { x|- 2< x<4} ;当 0<a<1 时, x 的会合是 { x|x<- 2 或 x>4} .21.[分析 ](1) ∵ f(x)=2x ,∴ g(x)= f(2x)- f(x + 2)=22x - 2x +2.由于 f(x)的定义域是 [0,3] ,所以 0≤ 2x ≤3,0≤ x + 2≤3,解得 0≤ x ≤1.于是 g(x)的定义域为 { x|0≤ x ≤1} .(2)设 g(x)=(2 x )2- 4× 2x =(2x - 2)2- 4.∵ x ∈ [0,1] ,∴ 2x ∈ [1,2] ,∴当 2x = 2,即 x = 1 时, g(x)获得最小值- 4; 当 2x = 1,即 x = 0 时, g(x)获得最大值- 3. 22.[分析 ] (1) 令 log a x = t(t ∈ R),则 x =a t ,∴ f(t)= 2a(a t -a -t ). a- 1∴ f(x)= 2-a1(a x - a -x )(x ∈ R).a∵ f(- x)= 2 a - xx ax-a - x)=- f(x),∴ f(x)为奇函数.(a- a )=-2(aa - 1a - 1-a 2当 a >1 时, y = a x 为增函数, y =- a x 为增函数,且 a 2- 1>0,∴ f(x)为增函数.当 0<a < 1 时, y = a x 为减函数, y =- a -x 为减函数,且 a 2 < 0,a 2- 1∴ f(x)为增函数.∴ f(x)在 R 上为增函数.(2)∵ f(x)是 R 上的增函数,∴ y = f( x)- 4 也是 R 上的增函数.由 x < 2,得 f(x)< f(2),要使 f(x)- 4 在 (- ∞, 2)上恒为负数,只要 f(2) - 4≤ 0,即 2 a(a 2- a-2)≤ 4.a - 1aa 4- 1∴a 2-1(a2)≤ 4,∴ a 2+ 1≤ 4a ,∴ a 2- 4a + 1≤ 0, ∴ 2- 3≤ a ≤ 2+ 3.又 a ≠1,∴ a 的取值范围为 [2- 3, 1)∪ (1,2+ 3].。
(word完整版)高中数学必修1第二章基本初等函数单元测试题(含参考答案)
必修
一.选择题.
1.若m0,
(每小题
0,
班级姓名
5分,共50分)
a0且a1,则下列等式中正确的是
序号
得分
m、n
A-(a)
C. logam logan loga(m n)
3>4
D. ■.m
-4 n
4
(mn)3
2.函数y
loga(3x 2)2的图象必过定点
A.(1,2)
B.(2,2)
C.(2,3)
A.减少1.99%
10%,
后两年每年降低
10%,则四年后的价格与原来价格比较, (
B.增加
1.99%
C.减少4%
D.不增不减
7.若100a5,
10b2,则
2a
8.函数f (x)
A.奇函数
B.1
lg(10x1)x是
2
B.偶函数
C.既奇且偶函数
D.非奇非偶函数
2
9.函数y loga(x 2x) (0 a
3.已知幕函f⑷
的值为
D.8
4.右
x(0,1),
则下列结论正确的是
x
2lgx
1 1
x"B.2xx2
lg x
C.
1
x2
2x
lg x
lg x
2x
5.函数y log(x 2)(5x)的定义域是
A.(3,4)
B.(2,5)
(2,3) U(3,5)
(,2) U (5,
6.某商品价格前两年每年提高 变化的情况是
11.计算:log427log58log9625
a 1)在区间[a,2a]上的最大值是最小值的3倍,则a=
高中数学必修一第二章 基本初等函数 2-1 指数函数课时提升作业及解析
a>0 且 a≠1.
(1)求 a 的值.
(2)求函数 y=f (x≥0)的值域.
【解析】(1)函数图象经过点
,所以 a2-1= ,则 a= .
,其中
(2)由(1)知函数为 f(x)=
(x≥0),由 x≥0,得 x-1≥-1.于是 0<
≤
=2,所以函数的值域为(0,2].
(20 分钟 40 分) 一、选择题(每小题 5 分,共 10 分) 1.(2015·南昌高一检测)函数 f(x)=ax-b 的图象如图所示,其中 a,b 均为常数,则 下列结论正确的是 ( )
【解题指南】从直线位置得出 b 与 1 的大小及 a 的正负,从而判断 y=bax 的增减性. 【解析】选 A.选项 A 中,由直线位置可知 a>0,0<b<1,所以 y=bax 为减函数,故 A 正确.选项 B 中 a>0,b>1,所以 y=bax 为增函数,故 B 项不正确.选项 C 中,a<0,b>1,
2.(2015·昆明高一检测)化简[
的结果为 ( )
A.5
B.
C.-
D.-5
【解析】选 B.[
=(
= == .
【补偿训练】计算[(- )2 的结果是 ( )
A.
B.-
C.
D.-
【解析】选 C.[(- )2 =(
=( )-1= = ,故选 C.
3.
+(-1)-1÷0.75-2+
=( )
A.
B.
C.-
D.-
所以
= =.
的值.
课时提升作业(2)
指数幂及运算
(15 分钟 30 分) 一、选择题(每小题 4 分,共 12 分)
高中数学必修1第二章《基本初等函数》测试题(含答案)
高中数学必修1第二章《基本初等函数》测试题(含答案)一、选择题:(本题共10小题,每小题4分,共40分) 1、已知log 92a =-,则a 的值为( ) A .3-B .13-C .3D .132、函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4)3、函数12log (32)y x =-的定义域是:( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1]4、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( )(A ) (B ) 2 (C ) 3 (D ) 5、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 7、计算()()22lg 2lg52lg 2lg5++⋅等于 ( )A 、0B 、1C 、2D 、38、设1a >,实数,x y 满足()xf x a =,则函数()f x 的图象形状大致是 ( )9、设集合2{|3,},{|1,}xS y y x R T y y x x R ==∈==-∈,则ST 是 ( )A 、∅B 、TC 、SD 、有限集10、若21025x=,则10x -等于 ( )A 、 15B 、15-C 、150D 、1625二、填空题:(每小题4分,共20分)11、[]643log log (log 81)的值为 .12、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________. 2131O 1 xyDO 1xy AO 1xy BO 1 xy Cx13、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 . 14、函数y =a x在[1,2]上的最大值与最小值的和为12,则a 的值是 . 15、已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________. 三、解答题:(本题共5小题,共40分,解答应写出文字说明,解题过程.) 16、(6分)计算:1220.5312+22 (0.01)54--⎛⎫⎛⎫⋅- ⎪ ⎪⎝⎭⎝⎭.17、(8分)计算:21 239483(log 2log 2)(log 3log 3)log 3ln e lg1⎛⎫+⋅+++- ⎪⎝⎭.18、(8分)已知,2[]3x ∈-,求11()142xx f x =-+的最小值与最大值.19、(8分)已知函数22x xy b a ++=(a ,b 是常数,且0a >,1a ≠)在区间3,02⎡⎤-⎢⎥⎣⎦上有max 3y =,min 52y =,试求a 和b 的值.20、(10分)已知函数f (x )=log ax +1x -1(a >0且a ≠1), (1)求f (x )的定义域;(2)判断函数的奇偶性和单调性.参考答案一、 选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案DDDCCCBACA二、填空题:11、0 12、1213、12y x = 14、3 15、(4,-1)三、解答题:16、解:原式1211116114310061015⎛⎫⎛⎫+⋅ ⎪ ⎪⎝⎭⎝⎭=-=+-=. 17、解:原式lg3lg3113lg 25lg3353·022lg 23lg 2422lg36lg 24lg 2lg 2lg3234g 4l ⎛⎫⎛⎫+-⋅ ⎪ ⎪⎝⎭⎝+⎭=++=+=+=. 18、解:设12x t =,即12xt ⎛⎫= ⎪⎝⎭,∵,2[]3x ∈-,∴184t ≤≤.∴2213()124f t t t t ⎛⎫=-+=-+ ⎪⎝⎭.又∵184t ≤≤,∴当12t =,即1x =时,()f x 有最小值34;当8t =,即3x =-时,()f x 有最大值57. 19、解:令22(211)u x x x ++-==,3,02x ⎡⎤∈-⎢⎥⎣⎦,所以,当1x =-时,min 1u =-;当0x =时,max 0u =. 当01a <<时,满足10352a b a b -⎧+=⎪⎨+=⎪⎩,即2332a b ⎧=⎪⎪⎨⎪=⎪⎩, 当1a >时,满足10523a b a b -⎧+=⎪⎨⎪+=⎩,即22a b =⎧⎨=⎩, 综上:23a =,32b =,或2a =,2b =. 20、解: (1)要使此函数有意义,则有⎩⎪⎨⎪⎧x +1>0x -1>0或⎩⎪⎨⎪⎧x +1<0x -1<0,解得x >1或x <-1,此函数的定义域为(-∞,-1)∪(1,+∞),关于原点对称.(2)f (-x )=log a -x +1-x -1=log a x -1x +1=-log a x +1x -1=-f (x ).∴f (x )为奇函数.f (x )=log a x +1x -1=log a (1+2x -1),函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减.所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上递减; 当0<a <1时,f (x )=log ax +1x -1在(-∞,-1),(1,+∞)上递增.。
第2章 函数概念与基本初等函数单元检测(苏教版必修1)(有答案,含部分试题解析)
第2章函数概念与基本初等函数Ⅰ单元测验(本卷满分160分)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.(2012•诸城市)已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是_________.2.(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=_________.3.已知图象变换:①关于y轴对称;②关于x轴对称;③右移1个单位;④左移一个单位;⑤右移个单位;⑥左移个单位;⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=e x的图象经过上述某些变换可得y=e1﹣2x 的图象,这些变换可以依次是_________(请填上变换的序号).4.(2010•天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是_________.5.已知函数f(x)=x2,x∈[﹣1,2],g(x)=ax+2,x∈[﹣1,2],若对任意x1∈[﹣1,2],总存在x2∈[﹣1,2],使f(x1)=g(x2)成立,则a的取值范围是_________.6.设定义域为R的函数f(x),若关于x的方程2f2(x)+2bf(x)+1=0有8个不同的实数根,则b的取值范围是_________.7.设函数f(x)=x3+x,若时,f(mcosθ)+f(1﹣m)>0恒成立,则m取值范围是_________.8.若不等式对于一切实数x∈(0,2)都成立,则实数λ的取值范围是_________.9.(2010•天津)设函数f(x)=x2﹣1,对任意,恒成立,则实数m的取值范围是_________.10.已知函数,,设F (x )=f (x+3)•g (x ﹣3),且函数F (x )的零点均在区间[a ,b](a <b ,a ,b ∈Z )内,则b ﹣a 的最小值为 _________ .11.不等式a >2x ﹣1对于x ∈[1,2恒成立,则实数的取值范围是 _________ .12.若函数y=f (x )存在反函数y=f ﹣1(x ),且函数y=2x ﹣f (x )的图象过点(2,1),则函数y=f ﹣1(x )﹣2x 的图象一定过点 _________ .13.定义在R 上的函数满足f (0)=0,f (x )+f (1﹣x )=1,,且当0≤x 1<x 2≤1时,f (x 1)≤f (x 2),则= _________ .14.(2010•福建)已知定义域为(0,+∞)的函数f (x )满足: (1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立; (2)当x ∈(1,2]时f (x )=2﹣x 给出结论如下:①任意m ∈Z ,有f (2m)=0; ②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n+1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k ﹣1).其中所有正确结论的序号是 _________二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.16.(本小题满分14分)已知函数()21f x x =-,2,0()1,0x x g x x ⎧≥=⎨-<⎩,求[()]f g x 和[()]g f x 的解析式.17.(本小题满分14分)设函数.)2(,2)2(,2)(2⎩⎨⎧>≤+=x x x x x f(1)求)9(f 的值; (2)若8)(0=x f ,求.0x18. (本题满分16分)已知函数32)(2-+-=mx x x f 为)3,5(n +--上的偶函数, (1)求实数n m ,的值; (2)证明:)(x f 在]0,5(-上是单调增函数19. (本题满分16分)(2012年高考(江苏))如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.20.(本小题满分16分)已知函数()log (1)log (3)a a f x x x =-++,其中01a <<,记函数)(x f 的定义域为D . (1)求函数)(x f 的定义域D ;(2)若函数()f x 的最小值为4-,求a 的值;(3)若对于D 内的任意实数x ,不等式2222x mx m m -+-+<1恒成立,求实数m 的取值范围.第2章函数概念与基本初等函数Ⅰ单元测验参考答案与试题解析一、填空题(共14小题)(除非特别说明,请填准确值)1.(2012•诸城市)已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是(13,49).﹣1)的图象关于点(1,0)对称,)的图象关于点(0,0)对称,)为奇函数,则f(﹣x)=﹣f(x),)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣)<﹣f(y2﹣8y)=f(8y﹣y2)恒成立,y2,4)2<4恒成立,,则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意d=表示区域内的点和原点的距离.,2.(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=1.3.已知图象变换:①关于y轴对称;②关于x轴对称;③右移1个单位;④左移一个单位;⑤右移个单位;⑥左移个单位;⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=e x的图象经过上述某些变换可得y=e1﹣2x 的图象,这些变换可以依次是①⑧⑤或①③⑧或⑧①⑤或⑧⑥①或④⑧①或④①⑧(请填上变换的序号).的图象与函数y=e的图象,均在x轴上方,关于x轴对称变换,但观察到两个解析式,底数相同,指数部分含x项符号相反,故一定要进行)若第一步进行对称变换,第二步进行伸缩变换,第三步进行平移变换,平移变换为:右移个单位,即①⑧⑤;)若第一步进行对称变换,第二步进行平移变换,第三步进行伸缩变换,1个单位,即①③⑧;)若第一步进行伸缩变换,第二步进行对称变换,第三步进行平移变换,则平移变换为:右移个单位,即⑧①⑤;则平移变换为:左移个单位,即4.(2010•天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是m<﹣1.时,有1+5.已知函数f(x)=x2,x∈[﹣1,2],g(x)=ax+2,x∈[﹣1,2],若对任意x1∈[﹣1,2],总存在x2∈[﹣1,2],使f(x1)=g(x2)成立,则a的取值范围是(﹣∞,﹣2]∪[2,+∞).,解得6.设定义域为R的函数f(x),若关于x的方程2f2(x)+2bf(x)+1=0有8个不同的实数根,则b的取值范围是﹣1.5<b<﹣.)∈(0,1)时,有四个不同的x与f(x)对应.再结合题中+1=0有8个不同实数解“,可以分解为形如关于有两个不同的实数根K1、K2,且K1和K2均为大于0且小于列式如下:,即<﹣<﹣7.设函数f(x)=x3+x,若时,f(mcosθ)+f(1﹣m)>0恒成立,则m取值范围是(﹣∞,1).时,,解得:8.若不等式对于一切实数x∈(0,2)都成立,则实数λ的取值范围是[4,+∞).+8)(8﹣x),y1=f(x),y2=λ(x+1).利用导数工具得出)单调增,原不等式对于一切实数x∈(0,2)都成立转化为:y1<f(x)都成立,从而得出实数λ的取值范围.x2+8)(8﹣x),y1=f(x),y2=λ(x+1(x)=24x2﹣4x3+64﹣16x>0.)时,f(x)单调增,=12 9.(2010•天津)设函数f(x)=x2﹣1,对任意,恒成立,则实数m的取值范围是.依据题意得上恒定成立,即在立,求出函数函数的最小值即可求出解:依据题意得在时,函数取得最小值,所以解得,﹣[,10.已知函数,,设F(x)=f(x+3)•g(x﹣3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为9.﹣﹣,=+…11.不等式a>2x﹣1对于x∈[1,2恒成立,则实数的取值范围是a≥3.12.若函数y=f(x)存在反函数y=f﹣1(x),且函数y=2x﹣f(x)的图象过点(2,1),则函数y=f﹣1(x)﹣2x的图象一定过点(3,﹣4).13.定义在R上的函数满足f(0)=0,f(x)+f(1﹣x)=1,,且当0≤x1<x2≤1时,f(x1)≤f(x2),则=.求出一些特值,),(,再利用条件将逐步转化到内,代入求解即可.)的图象关于中令),=可得因为所以所以故答案为:14.(2010•福建)已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时f(x)=2﹣x给出结论如下:①任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k﹣1).其中所有正确结论的序号是①②④,则)﹣((,﹣17. 解:(1)因为29>,所以1892)9(=⨯=f(2) ⅰ)若8220=+x ,则620=x ,即660-=或x ,而20≤x ,所以0x 的值不存在;ⅱ)若2,24,82000=>==x x x 所以则 综上得20=x 18. 解:(1)8,0==n m(2)由(1)知,32)(2--=x x f设215x x <<-,22212122)()(x x x f x f +-=- =))((22112x x x x +- 因为215x x <<-,所以0,02112<+>-x x x x所以0)()(21<-x f x f ,即)(x f 在]0,5(-上是单调增函数. 19. 解:(1)在221(1)(0)20y kx k x k =-+>中,令0y =,得221(1)=020kx k x -+.由实际意义和题设条件知00x>k >,. ∴2202020===10112k x k k k≤++,当且仅当=1k 时取等号. ∴炮的最大射程是10千米.(2)∵0a >,∴炮弹可以击中目标等价于存在0k >,使221(1)=3.220ka k a -+成立, 即关于k 的方程2222064=0a k ak a -++有正根. 由()()222=204640a a a ∆--+≥得6a ≤.此时,0k (不考虑另一根).∴当a 不超过6千米时,炮弹可以击中目标.20. 解:(1)要使函数有意义:则有1030x x ->⎧⎨+>⎩,解得13<<-x∴ 函数的定义域D 为)1,3(- ………………………………………2分(2)22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦13<<-x 201)44x ++≤∴<-(10<<a ,2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴,即min ()log 4a f x =, ……5分由log 44a =-,得44a-=,1424a -==∴. ………………………7分 (注:14242a -==∴不化简为14242a -==∴扣1分)(3)由题知-x 2+2mx -m 2+2m <1在x ∈)1,3(-上恒成立,2x ⇔-2mx +m 2-2m +1>0在x ∈)1,3(-上恒成立, ……………………9分令g (x )=x 2-2mx+m 2-2m+1,x ∈)1,3(-,配方得g (x )=(x -m )2-2m +1,其对称轴为x =m , ①当m ≤-3时, g (x )在)1,3(-为增函数,∴g (-3)= (-3-m )2-2m +1= m 2+4m +10≥0, 而m 2+4m +10≥0对任意实数m 恒成立,∴m ≤-3. ………………11分 ②当-3<m <1时,函数g (x )在(-3,-1)为减函数,在(-1, 1)为增函数, ∴g (m )=-2m +1>0,解得m <.21 ∴-3<m <21…………13分 ③当m ≥1时,函数g (x )在)1,3(-为减函数,∴g (1)= (1-m )2-2m +1= m 2-4m+2≥0, 解得m ≥2m ≤2 ∴-3<m <21………………15分 综上可得,实数m 的取值范围是 (-∞,21)∪[2+∞) ……………16分。
人教版高中数学必修一《基本初等函数》同步变式练习及解析
新课标人教版数学•必修高一(上)同步变式练习第二章基本初等函数(I)变式练习1一、选择题1. y= f (x)(x€ R)是奇函数,则它的图象必经过点( )A •(—a,—f(—a)) B.( a,— f (a))C.( a, f (丄)) D •(—a,—f (a)) 答案:Da2•设定义在R上的函数f (x)=| x I,则f (x)( )A •既是奇函数,又是增函数B.既是偶函数,又是增函数C.既是奇函数,又是减函数D.既是偶函数,又是减函数解析:本题可以作出函数图象,由图象可知该函数为偶函数,又是R上的增函数.答案:B3•设f (x)是R上的偶函数,且在(0,+^)上是减函数,若x i v 0且x i + x2 >0,贝U( )A • f ( —x i)> f (—x2) B. f ( —X1)= f ( —X2)C. f ( —X1)v f ( —x2)D. f ( —X i)与f ( —x2)大小不确疋解析:x2> —x i> 0, f (X)是R 上的偶函数,••• f ( —x i)= f (x i).又f (x) 在(0,+x)上是减函数,• f ( —X2)= f (X2)V f ( —x i).答案:A二、填空题4. ______________________________________________________ 已知f(x)= x5+ ax3+ bx—8, f ( —2)= i0,贝U f (2): __________________ .解析:f ( —2) = ( —2) 5+ a ( —2) 3—2b —8= i0, •(—2) 5+ a ( —2) 3—2b= i8, f (2)= 25+ 23a+ 2b —8=—i8—8= —26.答案:-265. 若f (x)是偶函数,其定义域为R且在[0, +^)上是减函数,贝U f (—3)与f (a2—a+ i)的大小关系是43解析:a2—a+ 1 > ,:f (x)在[0,+x ]上是减函数,4••• f (a2—a+ 1)< f ( - ) •又f (x)是偶函数,.f (— - )= f (-).4 4 4••• f (a2—a+ 1)< f (—-).4答案:f (a2一a+1 )< f ( 3)4三、解答题6. 已知函数f (x)= x+三,且f (1)= 2.(1)求m;(2)判断f (x)的奇偶性;(3)函数f (幻在(1,+x)上是增函数还是减函数?并证明.解:(1) f (1): 1 + m= 2, m= 1.1 1(2) f (x)= x+ —, f ( —x)二一x—— = —f (x),A f (x)是奇函数.x x(3)设X1、X2是(1,+x)上的任意两个实数,且X1V X2,贝U11 1 1f ( X1 ) —f ( X2)= X1 + —( x2+ )= X1 —X2+( —一——)x1X2X1x2、,X1—*2、、X1X2—1=X1 —X2 —=( X1 —X2)X1X2X1X2当1v X1V X2 时,X1X2> 1 , X1X2 —1> 0,从而 f ( X1)— f ( X2)V 0, 即 f (X1)V f ( X2).1•••函数f (x)=丄+ X在(1,+x)上为增函数.X变式练习2一、选择题1.如果函数f (x) = ( a2—1) x在R上是减函数,那么实数a的取值范围是( )A. | a |> 1B.| a |v2C.| a |>3D. 1v| a |v • 2a2- 1v 1,解得1v| a |v 2 .答案:D2. 函数y= a x-2+ 1 (a>0, a^ 1)的图象必经过点()A. (0, 1)B.(1, 1)C.(2, 0)D.(2, 2)解析:由于函数y= a x经过定点(0, 1),所以函数y= a x-2经过定点(2, 1),于是函数y= a x-2+ 1经过定点(2, 2).答案:D3. 函数y= a x在]0, 1]上的最大值与最小值和为3,则函数y= 3ax- 1在[0, 1]上的最大值是()3A. 6B. 1C. 3D.-2解析:由于函数y= a x在]0, 1]上是单调的,因此最大值与最小值都在端点处取到,故有a0+ a1二3,解得a = 2,因此函数y= 3a x-1在]0, 1]上是单调递增函数,最大值当x= 1时取到,即为3.答案:C4. 设f (x)=, x€ R,那么f (乂)是()A. 奇函数且在(0,+x)上是增函数B. 偶函数且在(0,+^)上是增函数C. 函数且在(0,+^)上是减函数D. 偶函数且在(0,+^)上是减函数解析: 因为函数f (x)/ 1\X /(2)(x0)图象如下图.由图象可知答案显然是D . 答案:D5.下列函数中值域为正实数的是()B. y =(1)1X答案是B .答案:B 6. 函数y = 2—x +1+ 2的图象可以由函数y =( 1) x 的图象经过怎样的平移2得到()答案:C解析:本题是一个图形分析型综合题,重在寻找突破口,因为 y =( -) xa是一指数函数,故有b >0,即a 、b 同号,于是二次函数y = ax 2 + bx 的对称轴xa1y = 52 xC . y =D . y = . 1— 2X解析: A 中指数取不到零,因此值域为(一0, i )U( 1,+^); B 的指数可以取到所有实数,故值域是正实数;C 和D 的值域都是]0,+^).因此A .先向左平移 i 个单位, 再向上平移 2个单位B .先向左平移 i 个单位, 再向下平移 2个单位C .先向右平移 i 个单位, 再向上平移 2个单位D .先向右平移 再向下平移 解析:函数y = 2—x +1+ 2可变形为y =( 1)2i 个单位, 2个单位 x —1+ 2.7.在图中,二次函数y = ax 2+ bx 与指数函数 y = ( —)x 的图象只可为( )—v0,故B、D均错;又由指数函数的图象,得0v b v 1,则0>—— >2a a 2a1 1—1 2,即二次函数的顶点横坐标在区间(一 丄,0)内,显然C 错.因此答案为 2 2A .答案:A8.若一1v x v 0,则不等式中成立的是()A . 5—x v 5X v 0.5XB . 5X v 0.5X v 5—xC . 5X v 5 — x v 0.5XD . 0.5X v 5—x v 5X解析:根据指数函数图象可观察答案是 B . 答案:B 二、填空题9 .函数尸一2—x 的图象一定过 _______ 象限.解析:y = — 2—X =—( 1) x ,它可以看作是指数函数y =( - ) x 的图象作22 关于x 轴对称的图象,因此一定过第三象限和第四象限.答案:三、四10. ___________________________________________________________ 函数f(x ) = a x —1 + 3的图象一定过定点P,则P 点的坐标是 ________________ .解析:f (x )=a X —1 + 3的图象可以看作把f (x )=a X 的图象向右平移一个单位再向上平移3个单位而得到,且f (x )二a x 一定过点(0, 1),则f (x )二a x —1+ 3 应过点(1, 4).答案:(1, 4)11. ______________________ 函数y =3—x 与 的图象关于y 轴对称. 解析:图象与y =3—x 关于y 轴对称的函数为y =3X .答案:y = 3X1212. _______________________________________已知函数f (x )=(丄)山x ,其定义域是 __________________3[—1,1],由 0W 1—x 2 < 1 及函数 y = Q)的单调性可知(新 <(》1 ” <(2)。
高中数学基本初等函数课后练习题(含答案)-精选教育文档
高中数学基本初等函数课后练习题(含答案)人教必修一第二章基本初等函数课后练习题(含答案)2.1 指数函数2.1.1 根式与分数指数幂1.27的平方根与立方根分别是()A.3 3,3 B.3 3,3C.3 3,3 D.3 3,32. 的运算结果是()A.2 B.-2C.2 D.不确定3.若a2-2a+1=a-1,则实数a的取值范围是() A.[1,+) B.(-,1)C.(1,+) D.(-,1]4.下列式子中,正确的是()A. =2B. =-4C. =-3D.=25.下列根式与分数指数幂的互化中,正确的是()A.-x= (x0)B. = (y0)C.= (x0)D.=- (x0)6.设a,bR,下列各式总能成立的是()A.( - )3=a-bB. =a2+b2C. -=a-bD. =a+b7.计算:+ (a0,n1,nN*).8.化简:6+4 2+6-4 2=__________.9.化简:++=()A.1 B.-1 C.3 D.-310.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求a-ba+b的值.2.1.2 指数幂的运算1.化简的结果是()A.35B.53C.3 D.52.计算[(-2)2] 的值为()A.2 B.-2C.22 D.-223.若(1-2x) 有意义,则x的取值范围是()A.xR B.xR,且x12C.x D.x124.设a0,计算( )2( )2的结果是()A.a8 B.a4C.a2 D.a5.的值为()A.103 B.3C.-13 D.66.计算:(-1.8)0+(1.5)-2 +=________.7.化简: .8.化简:ab3 ba3 a2b=__________.9.若x0,则(2x +3 )(2x -3 )-4x (x-x )=__________. 10.已知f(x)=ex-e-x,g(x)=ex+e-x(e=2.718…).(1)求[f(x)]2-[g(x)]2的值;(2)设f(x)f(y)=4,g(x)g(y)=8,求gx+ygx-y的值.2.1.3 指数函数及其图象1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=x(1)C.y=-4x D.y=ax+2(a0,且a1)2.y=2x+2-x的奇偶性为()A.奇函数B.偶函数C.既是偶函数又是奇函数D.既不是奇函数也不是偶函数3.函数f(x)=1-2x的定义域是()A.(-,0] B.[0,+)C.(-,0) D.(-,+)4.已知0<a<1,b<-1,则函数f(x)=ax+b的图象不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限5.如图K21所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,yR,A={x|y=2x-x2},B={y|y=3x(x0)},则A#B为()图K21A.{x|02}B.{x|12}C.{x|01或x2}D.{x|01或x2}6.函数y=a|x|(a1)的图象是()A B C D7.求函数y=16-4x的值域.8.已知f(x)是偶函数,且当x0时,f(x)=10x,则当x0时,f(x)=()A.10x B.10-xC.-10x D.-10-x9.对于函数f(x)定义域中任意的x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)f(x2);②f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1-1x10);⑤f(-x1)=1fx1.当f(x)=12x时,上述结论中,正确结论的序号是____________.10.(1)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围;(2)对于任意实数a,函数y=ax-3+3的图象恒过哪一点?2.1.4 指数函数的性质及其应用1.13 ,34,13-2的大小关系是()A.13 13-2B.13 -132C.13-234D.13-2132.若122a+1123-2a,则实数a的取值范围为() A.(1,+) B.12,+C.(-,1) D.-,123.下列选项中,函数y=|2x-2|的图象是()4.函数y=ax在[0,1]上的最大值与最小值之和为3,则函数y=3ax-1在[0,1]上的最大值为()A.6 B.1 C.3 D.325.(2019年四川泸州二模)已知在同一直角坐标系中,指数函数y=ax和y=bx的图象如图K22,则下列关系中正确的是()图K22A.a<b<1 B.b<a<1C.a>b>1 D.b>a>16.下列函数中,既是偶函数,又在(0,+)上单调递增的函数是()A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|7.已知函数f(x)=12xx4,fx+1 x<4,求f(3)的值.8.设函数f(x)=2-x, x-,1,x2,x[1,+.若f(x)4,则x的取值范围是________________.9.函数f(x)=的值域为__________.10.已知f(x)=10x-10-x10x+10-x.(1)判断函数f(x)的奇偶性;(2)证明f(x)是定义域内的增函数;(3)求f(x)的值域.2.2 对数函数2.2.1 对数与对数运算1.下列各组指数式与对数式互化,不正确的是()A.23=8与log28=3B.=13与log2713=-13C.(-2)5=-32与log-2(-32)=5D.100=1与lg1=02.已知函数f(x)=log2(x+1),若f(a)=1,则a=() A.0 B.1C.2 D.33.以下四个命题:①若logx3=3,则x=9;②若log4x=12,则x=2;③若=0,则x=3;④若=-3,则x=125.其中是真命题的个数是()A.1个 B.2个C.3个 D.4个4.方程=14的解是()A.x=19 B.x=33C.x=3 D.x=95.若f(ex)=x,则f(e)=()A.1 B.eeC.2e D.06.设集合P={3,log2a},Q={a,b},若PQ={0},则PQ =()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}7.求下列各式中x的取值范围:(1)log(x-1)(x+2);(2)log(x+3)(x+3).8.设f(x)=lgx,x0,10x,x0,则f[f(-2)]=__________. 9.已知=49(a0) ,则=__________.10.(1)若f(log2x)=x,求f12的值;(2)若log2[log3(log4x)]=0,log3[log4(log2y)]=0,求x+y的值.2.2.2 对数的性质及其应用1.计算log23log32的结果为()A.1 B.-1C.2 D.-22.(2019年陕西)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.logablogcb=logcaB.logablogca=logcbC.logabc=logablogacD.loga(b+c)=logab+logac3.(2019年四川泸州一模)2lg2-lg125的值为()A.1 B.2C.3 D.44.lg12.5-lg58+lg0.5=()A.-1 B.1C.2 D.-25.若log513log36log6x=2,则x=()A.9 B.19C.25 D.1256.设2a=5b=m,且1a+1b=2,则m=()A.10 B.10C.20 D.1007.计算:lg2lg52+lg0.2lg40.8.已知lg2=a,lg3=b,用a,b表示log1245=______________.9.已知log83=p,log35=q,以含p,q的式子表示lg2. 10.已知lga和lgb是关于x的方程x2-x+m=0的两个根,而关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根.求实数a,b和m的值.2.2.3 对数函数及其性质(1)1.若log2a<0,12b>1,则()A.a>1,b>0 B.a>1,b<0C.0<a<1, b>0 D.0<a<1, b<02.(2019年广东揭阳一模)已知集合A={x|y=lg(x+3)},B={x|x2},则下列结论正确的是()A.-3A B.3BC.AB=B D.AB=B3.函数y=log2x与y=log x的图象关于()A.x轴对称 B.y轴对称B.原点对称 D.直线y=x对称4.函数y=1log0.54x-3的定义域为()A.34,1B.34,+C.(1,+)D.34,1(1,+)5.若函数f(x)=loga(x+1)(a0,a1)的定义域和值域都是[0,1],则a=()A.13B.2C.22 D.26.已知a0,且a1,函数y=ax与y=loga(-x)的图象只能是图中的()7.若函数y=loga(x+b)(a0,a1)的图象过点(-1,0)和(0,1),求a,b的值.8.已知A={x|2},定义在A上的函数y=logax(a>0,且a1)的最大值比最小值大1,则底数a的值为()A.2B.2C.-2 D.2或29.设a=log54,b=(log53)2,c=log45,则()A.ab B.baC.ac D.bc10.已知函数f(x)=lnkx-1x-1(k0).(1)求函数f(x)的定义域;(2)若函数f(x)在区间[10,+)上是增函数,求实数k的取值范围.2.2.4 对数函数及其性质(2)1.已知函数y=ax与y=logax(a>0,且a1),下列说法不正确的是()A.两者的图象都关于直线y=x对称B.前者的定义域、值域分别是后者的值域、定义域C.两函数在各自的定义域内的增减性相同D.y=ax的图象经过平移可得到y=logax的图象2.若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()A.(1,1) B.(1,5)C.(5,1) D.(5,5)3.点(4,16)在函数y=logax的反函数的图象上,则a=() A.2 B.4C.8 D.164.已知a=log23.6,b=log43.2,c=log43.6,则() A.ac B.abC.bc D.cb5.若0y1,则()A.3y B.logx3logy3C.log4xlog4y D.14x14y6.设loga23<1,则实数a的取值范围是()A.0<a<23 B.23<a<1C.0<a<23或a>1 D.a>237.在下面函数中,与函数f(x)=lg1+x1-x有相同奇偶性的是()A.y=x3+1B.y=e0-1e0+1C.y=|2x+1|+|2x-1|D.y=x+1x8.函数y=ln(4+3x-x2)的单调递增区间是___________.9.对于函数f(x)定义域中的任意x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)② f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1+x22fx1+fx22.当f(x)=lgx时,上述结论中,正确结论的序号是____________.10.设f(x)=log 1-axx-1为奇函数,a为常数,(1)求a的值;(2)证明f(x)在(1,+)上单调递增;(3)若对于[3,4]上的每一个x值,不等式f(x)>12x+m恒成立,求实数m的取值范围.2.2.5 对数函数及其性质(3)1.设a=log 2,b=log 3,c=120.3,则()A.ac B.abC.ba D.bc2.将函数y=3x-2的图象向左平移2个单位,再将所得图象关于直线y=x对称后,所得图象的函数解析式为() A.y=4+log3x B.y=log3(x-4)C.y=log3x D.y=2+log3x3.方程log2x=x2-2的实根有()A.3个 B.2个C.1个 D.0个4.设函数f(x)=loga(x+b)(a0,a1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b=()A.3 B.4C.5 D.65.如图K21,给出函数y=ax,y=logax,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=ax,y=logax,y=log(a +1)x,y=(a-1)x2依次对应的图象是()图K21A.①②③④ B.①③②④C.②③①④ D.①④③②6.函数y=e|lnx|-|x-1|的图象大致是()7.已知函数f(x)=loga(2x+b-1)(a0,a1)的图象如图K22,则a,b满足的关系是()图K22A.0a-11B.0a-11C.0b-11D.0a-1b-118.下列函数的图象中,经过平移或翻折后不能与函数y=log2x的图象重合的函数是()A.y=2x B.y=log xC.y=4x2 D.y=log21x+19.若函数f(x)=loga(x+x2+2a2)是奇函数,求a的值.10.已知函数f(x)=loga(1-x)+loga(x+3)(01).(1)求函数f(x)的定义域;(2)求方程f(x)=0的解;(3)若函数f(x)的最小值为-4,求a的值.2.3 幂函数1.所有幂函数的图象都经过的定点的坐标是()A.(0,0) B.(0,1)C.(1,1) D.(-1,-1)2.下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.y=x是增函数,也是偶函数D.y=x0不是偶函数3.已知幂函数f(x)的图象经过点2,22,则f(4)的值为() A.16 B.116C.12 D.24.下列函数中,既是偶函数,又是在区间(0,+)上单调递减的函数为()A.y=x-2 B.y=x-1C.y=x2 D.y=x5.当x(1,+)时,下列函数的图象全在直线y=x下方的偶函数是()A.y=x B.y=x-2C.y=x2 D.y=x-16.设a=0.7 ,b=0.8 ,c=log30.7,则()A.ca B.cbC.ac D.bc7.若幂函数y=(m2-3m+3)x 的图象不经过坐标原点,求实数m的取值范围.8.给出函数的一组解析式如下:①y=;②y=;③y=;④y=;⑤y=;⑥y=;⑦y=;⑧y=x3;⑨y=x-3;⑩y= .回答下列问题:(1)图象关于y轴对称的函数有__________;(2)图象关于原点对称的函数有__________.9.请把相应的幂函数图象代号填入表格.①y=;②y=x-2;③y=;④y=x-1;⑤y=;⑥y=;⑦y=;⑧y= .函数代号① ② ③ ④ ⑤ ⑥ ⑦ ⑧图象代号10.已知函数f(x)=(m2-m-1)x-5m-3,当m为何值时,f(x)是:(1)幂函数;(2)幂函数,且是(0,+)上的增函数;(3)正比例函数;(4)反比例函数;(5)二次函数.第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 根式与分数指数幂1.B 2.A 3.A4.B 解析:A错,=2;C错,=|-3|=3;D错,( )5=-2.5.C 解析:A错,-x=-x (x0);B错,=(-y) (y0);D错,x = (x0).6.B7.解:当n为奇数时,原式=a-b+a+b=2a;当n为偶数时,原式=b-a-a-b=-2a.8.4 解析:原式=22+222+22+22-222+22=2+22+2-22=2+2+2-2=4.9.B 解析:∵3.1410,=-3.143.14-=-1,=10--10=-1,而=1.故原式=-1+1-1=-1.10.解:∵a,b是方程x2-6x+4=0的两根,a+b=6,ab=4.∵a>b>0,a-ba+b2=a+b2-4aba+b+2ab=2019=2.a-ba+b=2.2.1.2 指数幂的运算1.B2.C 解析:[(-2)2] =(2) =(2)-1=22.3.D4.C 解析:原式==a2.5.A 解析:原式=310 =103.6.29 解析:原式=1+23232 +=1+1+27=29. 7.解:原式=== .8. 解析:原式=ab3 ba3 a2b=a b ba3 a2b =a b b a a2b=a b a b =a b=a0b = .9.-23 解析:(2x +3 )(2x -3 )-4x (x-x )=4x -33-4x +4=-23.10.解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]=2ex(-2e-x)=-4e0=-4.(2)f(x)f(y)=(ex-e-x)(ey-e-y)=ex+y+e-(x+y)-ex-y-e-(x-y)=g(x+y)-g(x-y)=4,①同法可得g(x)g(y)=g(x+y)+g(x-y)=8. ②由①②解方程组gx+y-gx-y=4,gx+y+gx-y=8.解得g(x+y)=6,g(x-y)=2,gx+ygx-y=62=3.2.1.3 指数函数及其图象1.B 2.B 3.A4.A 解析:g(x)=ax的图象经过一、二象限,f(x)=ax+b是将g(x)=ax的图象向下平移|b|(b<-1)个单位而得,因而图象不经过第一象限.5.D 解析:A={x|y=2x-x2}={x|2x-x20}={x|02},B ={y|y=3x(x0)}={y|y1},则AB={x|x0},AB={x|12},根据新运算,得A#B=AB(AB)={x|01或x2}.故选D. 6.B 解析:函数关于y轴对称.7.解:∵4x0,016-4x16,016-4x4.8.B 解析:设x0,则-x0,f(-x)=10-x,∵f(x)为偶函数.f(x)=f(-x)=10-x.9.①③④⑤解析:因为f(x)=12x,f(x1+x2)===f(x1)f(x2),所以①成立,②不成立;显然函数f(x)=12x单调递减,即fx1-fx2x1-x20,故③成立;当x10时,f(x1)1,fx1-1x10,当x10时,0f(x1)1,fx1-1x10,故④成立;f(-x1)=12 ==1fx1,故⑤成立.10.解:(1)∵当x>0时,f(x)=(a2-1)x的值总大于1,a2-1>1.a2>2.a>2或a<-2.(2)∵函数y=ax-3的图象恒过定点(3,1),函数y=ax-3+3的图象恒过定点(3,4).2.1.4 指数函数的性质及其应用1.A 2.B3.B 解析:由y=|2x-2|=2x-2, x1,-2x+2, x1,分两部分:一部分为y1=2x-2(x1),只须将y=2x的图象沿y轴的负半轴平移2个单位即可,另一部分为y2=-2x+2(x1),只须将y=2x的图象对称于x轴的图象y=-2x,然后再沿y轴的正半轴平移2个单位,即可得到y=-2x+2的图象.故选B.4.C 解析:由于函数y=ax在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=3ax-1在[0,1]上是单调递增函数,最大值当x =1时取到,即为3.5.C 解析:很显然a,b均大于1;且y=bx函数图象比y =ax变化趋势小,故b<a,综上所述,a>b>1.6.B7.解:f(3)=f(3+1)=f(4)=124=116.8.(-,-2)(2,+)9.(0,3] 解析:设y=13u,u=x2-2x,∵函数y=13u是单调减函数,函数y=f(x)与u=x2-2x增减性相反.∵u有最小值-1,无最大值,y有最大值13-1=3,无最小值.又由指数函数值域y0知所求函数的值域为(0,3].10.(1)解:∵f(x)的定义域是R,且f(-x)=10-x-10x10-x+10x=-f(x),f(x)是奇函数.(2)证法一:f(x)=10x-10-x10x+10-x=102x-1102x+1=1-2102x+1.令x2>x1,则f(x2)-f(x1)=-∵y=10x为增函数,当x2>x1时,->0.又∵ +1>0, +1>0,故当x2>x1时,f(x2)-f(x1)>0,即f(x2)>f(x1).f(x)是增函数.证法二:考虑复合函数的增减性.由f(x)=10x-10-x10x+10-x=1-2102x+1.∵y=10x为增函数,y=102x+1为增函数,y=2102x+1为减函数,y=-2102x+1为增函数,y=1-2102x+1为增函数.f(x)=10x-10-x10x+10-x在定义域内是增函数.(3)解:令y=f(x).由y=102x-1102x+1,解得102x=1+y1-y.∵102x>0,1+y1-y>0,解得-1<y<1.即f(x)的值域为(-1,1).2.2 对数函数2.2.1 对数与对数运算1.C 2.B 3.B 4.A5.A 解析:令ex=t,则x=lnt,f(t)=lnt.f(e)=lne =1.6.B 解析:log2a=0,a=1.从而b=0,PQ={3,0,1}.7.解:(1)由题意知x+20,x-10,x-11,解得x1,且x2. 故x的取值范围为(1,2)(2,+).(2)由题意知x+30,x+31,解得x-3,且x-2.故x的取值范围为(-3,-2)(-2,+).8.-2 解析:∵x=-20,f(-2)=10-2=11000,f(10-2)=lg10-2=-2,即f[f(-2)]=-2.9.3 解析:(a ) =232 a=233log a=log 233=3. 10.解:(1)令log2x=t,则2t=x.因为f(log2x)=x,所以f(t)=2t.所以f12=2 =2.(2)因为log2[log3(log4x)]=0,所以log3(log4x)=1.所以log4x=3,所以x=43=64.又因为log3[log4(log2y)]=0.所以log4(log2y)=1.所以log2y=4.所以y=24=16.所以x+y=64+16=80.2.2.2 对数的性质及其应用1.A 2.B 3.B4.B 解析:方法一:原式=lg10023-lg1024+lg12=lg100-lg23-lg10+lg24+lg1-lg2=lg102-3lg2-1+4lg2-lg2=2-1=1.方法二:原式=lg12.51258=lg10=1.5.D6.A 解析:∵1a+1b=logm2+logm5=logm10=2,m2=10.又∵m0,m=10.7.解:原式=lg2lg1022+lg210lg(2210)=lg2(1-2lg2)+(lg2-1)(2lg2+1)=lg2-2(lg2)2+2(lg2)2-2lg2+lg2-1=-1.8.2b+1-a2a+b 解析:log1245=lg45lg12=2lg3+lg52lg2+lg3=2b+1-a2a+b.9.解:由log83=p,得lg3lg8=p,即lg3=3lg2p.①由log35=q,得lg5lg3=q,即1-lg2=lg3q.②①代入②中,得1-lg2=3lg2pq.(3pq+1)lg2=1.∵3pq+10,lg2=13pq+1.10.解:∵lga和lgb是关于x的方程x2-x+m=0的两个根,lga+lgb=1,①lgalgb=m. ②∵关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根,=(lga)2+4(1+lga)=0.lga=-2,即a=1100.将lga=-2代入①,得lgb=3.b=1000.再将lga=-2,lgb=3代入②,得m=-6.综上所述,a=1100,b=1000,m=-6.2.2.3 对数函数及其性质(1)1.D 解析:由log2a0,得01.由12b1,得b0.故选D. 2.D3.A 解析:y=log x=-log2x.4.A 解析:由log0.54x-30,4x-30,解得341.5.D6.B 解析:y=loga(-x)与y=logax关于y轴对称.7.a=2,b=28.D9.D 解析:∵log45log54log531,(log53)2log54log45.bc.故选D.10.解:(1)由kx-1x-10,得(kx-1)(x-1)0.又∵k0,x-1k(x-1)0.当k=1时,函数f(x)的定义域为{x|x1};由01时,函数f(x)的定义域为xx1或x1k,当k1时,函数f(x)的定义域为xx1k或x1.(2)f(x)=lnkx-1+k-1x-1=lnk+k-1x-1,∵函数f(x)在区间[10,+)上是增函数,k-10,即k1.又由10k-110-10,得k110.综上所述,实数k的取值范围为1101.2.2.4 对数函数及其性质(2)1.D 2.C 3.A4.B 解析:∵a=log23.6log22=1.又∵y=log4x,x(0,+)为单调递增函数,log43.2log43.6log44=1,ba.5.C6.C 解析:由loga23<1=logaa,得(1)当0<a<1时,由y=logax是减函数,得0<a<23;(2)当a>1时,由y=logax是增函数,得a>23,a>1.综合(1)(2),得0<a<23或a>1.7.D 解析:f(x)的定义域为(-1,1),且对定义域内任意x,f(-x)=lg1-x1+x=lg1+x1-x-1=-lg1+x1-x=-f(x);又可以验证f-12f12,因此,f(x)是奇函数但不是偶函数.用同样的方法可有:y=x3+1既不是奇函数又不是偶函数;y=e0-1e0+1=0(xR)既是奇函数又是偶函数;y=|2x+1|+|2x-1|是偶函数而不是奇函数,只有y=12x-1+12是奇函数但不是偶函数.故选D.8.-1,32 解析:令u(x)=4+3x-x2,又∵4+3x-x2>0x2-3x-4<0,解得-1<x<4.又u(x)=-x2+3x+4=-x-322+254,对称轴为x=32,开口向下的抛物线;u(x)在-1, 32上是增函数,在32,4上是减函数,又y=lnu(x)是定义域上的增函数,根据复合函数的单调性,y=ln(4+3x-x2)在-1, 32上是增函数.9.②③10.(1)解:∵f(x)是奇函数,f(-x)=-f(x).log 1+ax-x-1=-log 1-axx-11+ax-x-1=x-11-ax>01-a2x2=1-x2a=1.检验a=1(舍),a=-1.(2)证明:任取x1>x2>1,x1-1>x2-1>0.0<2x1-1<2x2-10<1+2x1-1<1+2x2-10<x1+1x1-1<x2+1x2-1log x1+1x1-1>log x2+1x2-1,即f(x1)>f(x2).f(x)在(1,+)内单调递增.(3)解:f(x)-12x>m恒成立.令g(x)=f(x)-12x.只需g(x)min>m,用定义可以证g(x)在[3,4]上是增函数,g(x)min=g(3)=-98.当m<-98时原式恒成立.2.2.5 对数函数及其性质(3)1.D 解析:c=120.30,a=log 20,b=log 30,并且log 2log 3,所以cb.2.C 解析:y=3x-2的图象向左平移2个单位得到y=3x 的图象,其反函数为y=log3x.3.B 4.B 5.B 6.D 7.A8.C 解析:将A项函数沿着直线y=x对折即可得到函数y =log2x.将B沿着x轴对折,将D向下平移1个单位再沿x 轴对折即可.9.22 提示:利用奇函数的定义或f(0)=0.10.解:(1)要使函数有意义,则有1-x0,x+30,解得-31.所以函数f(x)的定义域为(-3,1).(2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3),由f(x)=0,得-x2-2x+3=1,即x2+2x-2=0,x=-13.∵-13(-3,1),方程f(x)=0的解为-13.(3)函数可化为f(x)=loga(-x2-2x+3)=loga[-(x+1)2+4],∵-31,0-(x+1)2+44.∵01,loga[-(x+1)2+4]loga4,即f(x)min=loga4.由loga4=-4,得a-4=4.a=4-14=22.2.3 幂函数1.C 2.A3.C 解析:设f(x)=x,则有2=22,解得=-12,即f(x)=x ,所以f(4)=4 =12.4.A 5.B 6.B7.解:m2-3m+3=1,m2-m-20,解得m=1或m=2. 8.(1)②④(2)①⑤⑧⑨9.依次是E,C,A,G,B,D,H,F10.解:(1)若f(x)是幂函数,故m2-m-1=1,即m2-m-2=0.解得m=2或m=-1.(2)若f(x)是幂函数且又是(0,+)上的增函数,则m2-m-1=1,-5m-30.所以m=-1.(3)若f(x)是正比例函数,则-5m-3=1,解得m=-45.此时m2-m-10,故m=-45.(4)若f(x)是反比例函数,则-5m-3=-1,则m=-25,此时m2-m-10,故m=-25.(5)若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m-10,故m=-1.综上所述,当m=2或m=-1时,f(x)是幂函数;当m=-1时,f(x)既是幂函数,又是(0,+)上的增函数;当m=-45时,f(x)是正比例函数;当m=-25时,f(x)是反比例函数;当m=-1时,f(x)是二次函数.。
基本初等函数练习题与答案
5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.
x
|
x
1
,y
|
y
0,
且y
1
2x
1
0,
x
1
;
y
1
8 2 x 1
0, 且y
1
2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3
2log2 3
log2
1 8
2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)
log a
(1
1 a
)
②
log a
(1
a)
log a
(1
1 a
)
③ a1a
必修1第二章_基本初等函数练习题
必修1第二章_基本初等函数练习题§2.1.1 指数与指数幂的运算(1)1. 44(3)-的值是( ).A. 3B. -3C. ±3D. 81 2. 625的4次方根是( ).A. 5B. -5C. ±5D. 25 3. 化简22()b -是( ).A. b -B. bC. b ±D. 1b4. 化简66()a b -= .5. 计算:33(5)-= ;243 . 做一做1. 计算:(1)510a ; (2) 397.2. 计算34a a -⨯和3(8)a +-,它们之间有什么关系? 你能得到什么结论?3. 对比()nnnab a b =与()n nna a bb=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. mmnn a a a ÷= B. m n mn a a a ⋅=C. ()nm m n a a += D. 01n n a a -÷=2. 化简3225的结果是( ).A. 5B. 15C. 25D. 125 3. 计算()1222--⎡⎤-⎢⎥⎣⎦的结果是( ).A .2B .2- C.22D .22-4. 化简2327-= .5. 若102,104mn==,则3210m n-= .做一做1. 化简下列各式: (1)3236()49; (2)233aba b ab.2. 计算:34333324381224a abb a a ab a⎛⎫-÷- ⎪ ⎪++⎝⎭. §2.1.1 指数与指数幂的运算(练习)1. 329的值为( ).A. 3B. 33C. 3D. 729 2.354aa a(a >0)的值是( ).A. 1B. aC. 15aD. 1710a3. 下列各式中成立的是( ).A .1777()nn m m= B .4312(3)3-=-C .33344()x y x y +=+ D .3393=4. 化简3225()4-= .5. 化简2115113366221()(3)()3a b a b a b -÷= .做一做1. 已知32x a b --=+, 求42362x a x a ---+的值.2. 探究:()2n n n n a a a +=时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)1. 函数2(33)xy a a a =-+是指数函数,则a 的值为( ). A. 1 B. 2 C. 1或2 D. 任意值 2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1) B. (0,2) C. (2,1) D. (2,2) 3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是().4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 .做一做 1. 求函数y =1151xx --的定义域2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x(b >0,b ≠1)的图象关于y 轴对称,则有( ). A. a >b B. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x-1的定义域、值域分别是( ). A. R , R B. R ,(0,)+∞ C. R ,(1,)-+∞ D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a2>a21-,则a >1 D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-();0.7633()0.753-().5. 在同一坐标系下,函数y =a x , y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 . 做一做1. 已知函数f (x )=a -221x+(a ∈R),求证:对任何a R∈, f (x )为增函数.2. 求函数2121xxy -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)1. 若2log 3x =,则x =( ). A. 4 B. 6 C. 8 D. 92. (1)log (1)n n n n +-++= ( ).A. 1B. -1C. 2D. -23. 对数式2lo g (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5) 4. 计算:21log(322)++= .5. 若log (21)1x +=-,则x =________,若2l og 8y =,则y =___________.做一做1. 将下列指数式化成对数式,对数式化成指数式. (1)53243=; (2)51232-=; (3)430a=(4)1() 1.032m=; (5)12log 164=-;(6)2log 1287=; (7)3log 27a =. 2. 计算:(1)9log 27; (2)3log 243; (3)43log 81;(3)(23)log (23)+-; (4)345log 625.§§2.2.1 对数与对数运算(2)1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=- B .222log (10)2log (10)-=- C .222log (35)log 3log 5+= D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ). A .x =a +3b -c B .35ab x c=C .35ab x c=D .x =a +b 3-c 33. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x = 4. 计算:(1)99log 3log 27+= ; (2)2121log log 22+=.5. 计算:315lg lg523+=.做一做 1. 计算: (1)lg27lg 83lg 10lg 1.2+-;(2)2lg 2lg 2lg 5lg 5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 25log ()5a -(a ≠0)化简得结果是( ). A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ). A. 3 B. 23 C. 22 D. 32 3. 已知35a b m ==,且112a b +=,则m 之值为( ).A .15B .15C .±15D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg 20.3010=,lg1.07180.0301=,则lg 2.5= ;1102= .做一做 1. 化简: (1)222lg 5lg 8lg 5lg 20(lg 2)3+++;(2)()()24525log 5+log 0.2log 2+log 0.5. 2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是().2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是().A. (2,)+∞B. (0,2) B. 1(,)2+∞ D. 1(0,)24. 比大小: (1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8.5. 函数(-1)log (3-)x y x =的定义域是 . 做一做1. 已知下列不等式,比较正数m 、n 的大小: (1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域: (1)2log (35)y x =-;(2)0.5log 43y x =-.§2.2.2 对数函数及其性质(2)1. 函数0.5log y x =的反函数是( ).A.0.5log y x =-B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2x y =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减 3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x =>C. (0)y x x =->D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x=,4log a y x =的图象,则底数之间的关系为 .做一做1. 现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg 30.477,lg 20.301==). 2. 探究:求(0)ax b y ac cx d +=≠+的反函数,并求出两个函数的定义域与值域,通过对定义域与值域的比较,你能得出一些什么结论? §2.2 对数函数(练习) 1. 下列函数与y x =有相同图象的一个函数是( ) A. 2y x= B. 2xy x=C. log (01)a xy aa a =>≠且 D. log xa y a =2. 函数12log (32)y x =-的定义域是( ). A. [1,)+∞ B. 2(,)3+∞ C. 2[,1]3D. 2(,1]33. 若(ln )34f x x =+,则()f x 的表达式为( ) A. 3ln x B. 3ln 4x + C. 3x e D. 34x e +4.函数2()lg (8)f x x =+的定义域为 ,值域为 .5. 将20.3,2log 0.5,0.5log 1.5由小到大排列的顺序是 . 做一做1. 若定义在区间(1,0)-内的函数2()lo g (1)a f x x =+满足()0f x >,则实数a 的取值范围.2. 已知函数211()log 1x f x x x+=--,求函数()f x 的定义域,并讨论它的奇偶性和单调性.§2.3 幂函数1. 若幂函数()f x x α=在(0,)+∞上是增函数,则( ).A .α>0 B .α<0 C .α=0 D .不能确定2. 函数43y x =的图象是().A. B. C. D.3. 若11221.1,0.9a b -==,那么下列不等式成立的是( ).A .a <l<bB .1<a <bC .b <l<aD .1<b <a4. 比大小:(1)11221.3_____1.5;(2)225.1______5.09--.5. 已知幂函数()y f x =的图象过点(2,2),则它的解析式为 . 做一做1. 已知幂函数f (x )=13222pp x -++(p ∈Z )在(0,)+∞上是增函数,且在其定义域内是偶函数,求p 的值,并写出相应的函数f (x ). 2. 在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比. (1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率. 第二章 基本初等函数复习 1. 函数2322x x y --+=的单调递增区间为( ).A. 3(,)2-∞ B. 3(,)2+∞ C. 3(,)2-∞- D. 3(,)2-+∞2. 设2(log )2(0)xf x x =>,则(3)f 的值是( ).A. 128B. 256C. 512D. 8 3. 函数22log (1)y x x =++的奇偶性为( ).A .奇函数而非偶函数B .偶函数而非奇函数C .非奇非偶函数D .既奇且偶函数4. 函数2y x -=在区间1[,2]2上的最大值是 .5. 若函数12(lo g )x y a =为减函数,则a 的取值范围是 .做一做1. 按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)? 2. 某公司经过市场调查,某种商品在最初上市的几个月内销路很好,几乎能将所生产的产品全部销售出去. 为了追求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后设法将该商品的生产量翻两番,求平均每月生产量的增长率.课堂练习 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( ) A .41B .21C .2D .42.下列函数是幂函数的是( )A、22y x = B 、3y x x =+ C 、3xy = D 、12y x = 3.计算331log 12log 22-=( )A. 3B. 23C.21 D.34.在区间),0(+∞上不是增函数的是( ) A.2xy = B x y log2=C.xy 2=D.122++=x x y5.方程lg lg(3)1x x +-=的解为 ( ) A 、5或-2 B 、5 C 、-2 D 、无解 6.函数)1(log )(++=x a x f a x在]1,0[上的最大值与最小值之和为a ,则a 的值为 ( )A. 41B. 21C. 2D. 47函数22()log (2)x f x x =-的定义域是 .8.若lg2=a ,lg3=b ,则log 512=_____.9.已知函数)]91(f [f ,)0x (20)(x x log )x (f x3则,,⎩⎨⎧≤>=的值为10.函数(2)x y a =-在定义域内是减函数,则a 的取值范围是 11.计算:4160.2503432162322428200549-⨯+--⨯--()()()()12.设函数421()log 1x x f x x x -⎧<=⎨>⎩, 求满足()f x =41的x 的值. 13.已知()2x f x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.14.画出函数|13|-=x y 的图象,并利用图象回答:k 为何值时,方程|3x -1|=k 无解?有一解?有两解?15.已知定义域为R 的函数12()22xx b f x +-+=+是奇函数。
必修1第二章基本初等函数练习题和答案解析
双基限时练(十六)1.若a 2=N (a >0,且a ≠1),则有( ) A .log 2N =a B .log 2a =N C .log N a =2 D .log a N =2答案 D2.若f (10x )=x ,则f (3)等于( ) A. log 310 B. lg3 C. 103D. 310解析 令10x =3,则x =lg3. 答案 B3.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5,或a <2 B .2<a <5 C .2<a <3,或3<a <5 D .3<a <4解析 由⎩⎪⎨⎪⎧ 5-a >0,a -2>0,a -2≠1,⇒⎩⎪⎨⎪⎧a <5,a >2,a ≠3,∴2<a <3,或3<a <5.答案 C5.下列指数式与对数式的互化中,不正确的一组是( ) A .100=1与lg1=0 B .27-13=13与log 2713=-13 C .log 39=2与912=3 D .log 55=1与51=54.已知lg a =2.31,lg b =1.31,则ba 等于( )A.1100B.110 C .10D .100解析 因为lg a =2.31,lg b =1.31, 所以a =102.31,b =101.31, 所以b a =101.31102.31=110. 答案 B5.下列各式中正确的个数是( )①lg(lg 10)=0;②lg(ln e)=0;③若10=lg x ,x =10;④若log 25x =12,得x =±5.A .1个B .2个C .3个D .4个解析 底的对数为1,1的对数为0,故①②正确,0和负数没有对数,故④错误,③中10=lg x ,应该有x =1010,所以,只有①②正确.答案 B6.若log a 3=m ,log a 5=n ,则a 2m +n 的值是( ) A .15 B .75 C .45D .225解析 由log a 3=m ,得a m =3,由log a 5=n ,得a n =5, ∴a 2m +n =(a m )2·a n =32×5=45. 答案 C7.已知log 3[log 3(log 2x )]=0,则x =________.解析 log 3[log 3(log 2x )]=0⇒log 3(log 2x )=1⇒log 2x =3⇒x =23⇒x =8.答案 88.(1)若log 3⎝⎛⎭⎪⎫1-2x 9=1,则x =________; (2)若log 2014(x 2-1)=0,则x =________.解析 (1)由已知1-2x9=3,解得x =-13.验证知适合题意. (2)由1的对数等于0,得x 2-1=1,x 2=2,x =±2.验证知适合题意.答案 (1)-13 (2)±29.若log x (5-2)=-1,则x 的值为________. 解析 x -1=5-2,∴x =15-2=5+2. 答案5+210.求下列各式的值. (1)log 381; (2)log 21024; (3)log 0.110; (4)log 2+3(2-3);(5)10lg 3-10log 41+2log 26; (6)22+log 23+32-log 39. 解 (1)∵34=81,∴log 381=4.(2)∵210=1024,∴log21024=10.(3)∵0.1-1=10,∴log0.110=-1.(4)∵(2+3)-1=12+3=2-3,∴log2+3(2-3)=-1.(5)10lg3-10log41+2log26=3-0+6=9.(6)22+log23+32-log39=22×2log23+323log39=4×3+99=12+1=13.11.已知x2+y2-4x-2y+5=0,求log x y x的值.解由x2+y2-4x-2y+5=0,得(x-2)2+(y-1)2=0,∴x=2,y=1.∴log x y x=log212=log21=0.12.若集合{x,xy,lg(xy)}={0,|x|,y},求log2(x2+y2)的值.解根据集合中元素的互异性,在第一个集合中,x≠0,第二个集合中,知道y≠0,∴第一个集合中的元素xy≠0,只有lg(xy)=0,可得xy=1.①然后,还有两种可能,x=y,②或xy=y③由①②联立,解得x=y=1,或x=y=-1,若x=y=1,xy=1,与集合中元素的互异性矛盾;若x=y=-1,则xy=|x|=1,从而两集合中的元素相同.∴x=-1,y=-1,符合集合相等的条件.因此,log2(x2+y2)=log22=1.新课标第一网系列资料。
高中数学必修一第二章基本初等函数练习题及答案汇编
高中数学必修一第二章基本初等函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B中(1)(2)(3)(4)的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,ab ,总有()()0f a f b a b->-成立,则必有( )A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
第2章函数与基本初等函数练习(苏教版必修1)
第二编 函数与基本初等函数Ⅰ§2.1 函数及其表示基础自测1.与函数f(x)=|x|是相同函数的有 (写出一个你认为正确的即可). 答案2x y =2.设M={x|0≤x ≤2},N={y|0≤y ≤3},给出下列四个图形(如图所示),其中能表示从集合M 到集合N 的函数关系的是 .(填序号).答案 ②③3.若对应关系f:A →B 是从集合A 到集合B 的一个映射,则下面说法正确的是 (填序号). ①A 中的每一个元素在集合B 中都有对应元素②A 中两个元素在B 中的对应元素必定不同③B 中两个元素若在A 中有对应元素,则它们必定不同④B 中的元素在A 中可能没有对应元素答案 ①③④4.如图所示,①②③三个图象各表示两个变量x,y 的对应关系,则能表示y 是x 的函数的图象是 (填序号).答案 ②③ 5.已知f (x 1)=x 2+5x,则f(x)= .答案 251xx +(x ≠0)例1给出下列两个条件:(1)f(x +1)=x+2x ;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,则f (x +2)-f (x )=4ax +4a +2b =4x +2. ∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3.例2(1)求函数f(x)=229)2(1xx x g --的定义域;(2)已知函数f(2x)的定义域是[-1,1],求f(log 2x)的定义域.解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x)的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤2.∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤4.故函数f (log 2x )的定义域为[2,4]例3(14分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x<1),则出厂价相应提高的比例为0.75x, 同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?解 (1)依题意,本年度每辆摩托车的成本为1+x (万元),而出厂价为1.2×(1+0.75x ) (万元), 销售量为1 000×(1+0.6x )(辆).故利润y =[1.2×(1+0.75x )-(1+x )]×1 000×(1+0.6x ), 5分 整理得y =-60x 2+20x +200 (0<x <1). 7分(2)要保证本年度利润比上一年有所增加,则y -(1.2-1)×1 000>0, 10分即-60x 2+20x +200-200>0,即3x 2-x <0. 12分解得0<x <31,适合0<x <1.故为保证本年度利润比上年有所增加,投入成本增加的比例x 的取值范围是0<x <31. 13分答 (1)函数关系式为y =-60x 2+20x +200 (0<x <1). (2)投入成本增加的比例x 的范围是(0,31). 14分例4 已知函数f(x)=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x (1)画出函数的图象;(2)求f(1),f(-1),f [f(-1)]的值.解 (1)分别作出f (x )在x >0,x =0, x <0段上的图象,如图所示,作法略. (2)f (1)=12=1,f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lgx ,求f (x );(2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); (3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t , ∴f (t )=lg 12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞).(2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (x 1)=3x , ① 把①中的x 换成x 1,得2f (x 1)+f (x )=x3②①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1.2. 求下列函数的定义域: (1)y=2)3(log 2+-x x +(2x-3)0;(2)y=log (2x+1)(32-4x).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠+>+>-021,251120120432x ,x x ,x x x 得∴定义域为(-21,0)∪(0,25).3.等腰梯形ABCD 的两底分别为AD=2a ,BC=a ,∠BAD=45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM=x,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.解 作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足,依题意,则有AH =2a ,AG =23a .(1) 当M 位于点H 的左侧时, N ∈AB ,由于AM =x ,∠BAD =45°. ∴MN =x . ∴y =S △AMN =21x 2(0≤x ≤2a ).(2)当M 位于HG 之间时,由于AM =x ,∴MN =2a ,BN =x -2a.∴y =S 直角梯形AMNB=2·21a [x +(x -2a )]=21ax -).232(82a x a a ≤<(3)当M 位于点G 的右侧时,由于AM =x ,MN =MD =2a -x .∴y =S 梯形ABCD -S △MDN=).223(45221)44(2143)2(21)2(2·21222222a x a a ax x x ax a a x a a a a ≤<-+-=+--=--+ 综上:y =⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-+-⎥⎦⎤ ⎝⎛∈-⎢⎣⎡⎥⎦⎤∈a a x a ax x a a x a ax a x x 2,2345221.23,28212,02122224.如右图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x=t(0≤t ≤2)截这个三角形可得位于此直线左方的图形的面积为f(t),则函数y=f(t)的图象(如下图所示)大致是 (填序号).答案④一、填空题1.设函数f 1(x)=x 21,f 2(x)=x -1,f 3(x)=x 2,则[]))0072((123f f f = .答案007212.(2008·安徽文,13)函数f(x)=)1(log 1|21|2---x 的定义域为 .答案[)+∞,33.若f(x)=⎩⎨⎧≥<+)6(log )6()3(2x xx x f ,则f(-1)的值为 .答案 34.已知f(2211)11x x x x +-=+-,则f(x)的解析式为 .答案 f(x)=212x x +5.函数f(x)=xx -132 +lg(3x+1)的定义域是 .答案 (-31,1) 6.(2008·陕西理,11)定义在R 上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y ∈R ),f(1)=2,则f(-3)= . 答案 67.已知函数f(x),g(x)分别由下表给出x 1 2 3 f(x) 131则f [g(1)]的值为 ,满足f [g(x)]>g [f(x)]的x 的值是 . 答案 1 2x1 2 3 g(x)3218.已知函数ϕ(x)=f(x)+g(x),其中f(x)是x 的正比例函数,g(x)是x 的反比例函数,且ϕ(31)=16, ϕ (1)=8,则 ϕ(x)= .答案 3x+x5二、解答题 9.求函数f(x)=21)|lg(|xx x --的定义域.解 由,110010||2⎩⎨⎧<<-<⎩⎨⎧>->-x x x x x ,得 ∴-1<x <0. ∴函数f (x )=21)|lg(|xx x --的定义域为(-1,0).10.(1)设f(x)是定义在实数集R 上的函数,满足f(0)=1,且对任意实数a 、b,有f(a-b)=f(a)-b(2a-b+1),求f(x); (2)函数f(x) (x ∈(-1,1))满足2f(x)-f(-x)=lg(x+1),求f(x). 解 (1)依题意令a =b =x ,则f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有2f (-x )-f (x )=lg(1-x ) ① 又2f (x )-f (-x )=lg(1+x ) ②两式联立消去f (-x )得3f (x )=lg(1-x )+2lg(1+x ), ∴f (x )=31lg(1+x -x 2-x 3)(-1<x <1).11.如图所示,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,且上底CD 的端点在圆周上,写出梯形周长y 关于腰长x 的函数关系式,并求出它的定义域.解 AB =2R ,C 、D 在⊙O 的半圆周上,设腰长AD =BC =x ,作DE ⊥AB ,垂足为E ,连接BD ,那么∠ADB 是直角, 由此Rt △ADE ∽Rt △ABD.∴AD 2=AE ×AB ,即AE =Rx 22,∴CD =AB -2AE =2R -R x 2,所以y =2R +2x +(2R -Rx 2),即y =-Rx 2+2x +4R.再由⎪⎪⎪⎩⎪⎪⎪⎨⎧>->>0202022R x R R x x ,解得0<x <2R .所以y =-Rx 2+2x +4R ,定义域为(0,2R ).12.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解 (1)当每辆车的月租金定为3 600元时,未租出的车辆数为5000036003-=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=(100-500003)150)(500003----x x x ×50. 整理得f (x )=-502x +162x -21 000=-501(x -4 050)2+307 050.所以,当x =4 050时,f (x )最大,最大值为f (4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.§2.2函数的单调性与最大(小)值基础自测1.已知函数y=f(x)是定义在R 上的增函数,则下列对f(x)=0的根说法不正确的是 (填序号). ①有且只有一个 ②有2个 ③至多有一个 ④没有根答案 ①②2.已知f (x )是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 函数(用“增”、“减”填空). 答案 减3.若函数f(x)=x 2+(a 2-4a+1)x+2在区间(-∞,1]上是减函数,则a 的取值范围是 .答案 [1,3]4.(2009·徐州六县一区联考)若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)<2f(4)的解集为 . 答案 (0,2)5.已知函数f(x)=x 2-2x+3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 . 答案 [1,2]例1 已知函数f(x)=a x+12+-x x (a>1). 证明:函数f(x)在(-1,+∞)上为增函数.证明 方法一 任取x 1,x 2∈(-1,+∞), 不妨设x 1<x 2,则x 2-x 1>0,12x x a ->1且a1x >0,∴a,0)1(12112>-=--x x x x x a a a 又∵x 1+1>0,x 2+1>0,∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0,于是f (x 2)-f (x 1)=a12x x a -+12121122+--+-x x x x >0,故函数f (x )在(-1,+∞)上为增函数. 方法二 f (x )=a x+1-13+x (a >1),求导数得f ′(x )=a xln a +2)1(3+x ,∵a >1,∴当x >-1时,a xln a >0,2)1(3+x >0,f ′(x )>0在(-1,+∞)上恒成立,则f (x )在(-1,+∞)上为增函数. 方法三 ∵a >1,∴y =a x为增函数,又y =13112+-+=+-x x x ,在(-1,+∞)上也是增函数.∴y =a x+12+-x x 在(-1,+∞)上为增函数.例2 判断函数f(x)=12-x 在定义域上的单调性.解 函数的定义域为{x |x ≤-1或x ≥1}, 则f (x )=12-x ,可分解成两个简单函数. f (x )=)(,)(x u x u =x 2-1的形式.当x ≥1时,u (x )为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x )为减函数,)(x u 为减函数,∴f (x )=12-x 在(-∞,-1]上为减函数.例3 求下列函数的最值与值域:(1)y=4-223x x -+;(2)y=2x-x 21-;(3)y=x+x4;(4)y=4)2(122+-++x x .解 (1)由3+2x -x 2≥0得函数定义域为[-1,3],又t =3+2x -x 2=4-(x -1)2.∴t ∈[0,4],t∈[0,2],从而,当x =1时,y min =2,当x =-1或x =3时,y max =4.故值域为[2,4].(2) 方法一 令x 21-=t (t ≥0),则x =212t -.∴y =1-t 2-t =-(t +)212+45.∵二次函数对称轴为t =-21,∴在[0,+∞)上y =-(t +)212+45是减函数, 故y max =-(0+)212+45=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二 ∵y =2x 与y=-x 21-均为定义域上的增函数,∴y =2x -x 21-是定义域为{x |x ≤21}上的增函数, 故y max =2×212121⨯--=1,无最小值.故函数的值域为(-∞,1].(3)方法一 函数y =x +x4是定义域为{x |x ≠0}上的奇函数,故其图象关于原点对称,故只讨论x >0时,即可知x <0时的最值.∴当x >0时,y =x +x4≥2x x 4⋅=4,等号当且仅当x =2时取得.当x <0时,y ≤-4,等号当且仅当x =-2时取得.综上函数的值域为(-∞,-4]∪[4,+∞),无最值. 方法二 任取x 1,x 2,且x 1<x 2, 因为f (x 1)-f (x 2)=x 1+14x -(x 2+24x )=,)4)((212121x x x x x x --所以当x ≤-2或x ≥2时,f (x )递增,当-2<x <0或0<x <2时,f (x )递减. 故x =-2时,f (x )最大值=f (-2)=-4,x =2时,f (x )最小值=f (2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值. (4)将函数式变形为y =2222)20()2()10()0(++-+-+-x x ,可视为动点M (x ,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点. y min =|AB |=13)21()20(22=++-,可求得x=32时,y min=13.显然无最大值.故值域为[13,+∞).例4 (14分)函数f(x)对任意的a 、b ∈R ,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R 上的增函数;(2)若f(4)=5,解不等式f(3m 2-m-2)<3. 解 (1)设x 1,x 2∈R ,且x 1<x 2, 则x 2-x 1>0,∴f (x 2-x 1)>1. 2分 f(x 2)-f(x 1)=f ((x 2-x 1)+x 1)-f(x 1)=f(x 2-x 1)+f(x 1)-1-f(x 1)=f(x 2-x 1)-1>0. 5分∴f (x 2)>f(x 1).即f (x )是R 上的增函数. 7分 (2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,∴f (2)=3, 10分∴原不等式可化为f(3m 2-m-2)<f(2),∵f(x)是R 上的增函数,∴3m 2-m-2<2, 12分 解得-1<m<34,故解集为(-1, 34). 14分1.讨论函数f (x )=x+xa(a>0)的单调性.解 方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性,设x 1>x 2>0,则f (x 1)-f (x 2) =(x 1+1x a )-(x 2+2x a )=(x 1-x 2)·(1-21x x a).∴当0<x 2<x 1≤a 时,21x x a >1,则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在(0,a ]上是减函数.当x 1>x 2≥a 时,0<21x x a <1,则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在[a ,+∞)上是增函数.∵f (x )是奇函数,∴f (x )分别在(-∞,-a ]、[a ,+∞)上为增函数;f (x )分别在[-a ,0)、(0,a ]上为减函数.方法二 由f ′(x )=1-2x a =0可得x =±a当x >a 时或x <-a 时,f ′(x )>0,∴f (x )分别在[a ,+∞)、(-∞,-a ]上是增函数.同理0<x <a 或-a <x <0时,f ′(x )<0即f (x )分别在(0,a ]、[-a ,0)上是减函数.2.求函数y=21log (4x-x 2)的单调区间.解 由4x -x 2>0,得函数的定义域是(0,4).令t =4x -x 2,则y = 21log t .∵t =4x -x 2=-(x -2)2+4,∴t =4x -x 2的单调减区间是[2,4),增区间是(0,2]. 又y =21log t 在(0,+∞)上是减函数,∴函数y =21log (4x -x 2)的单调减区间是(0,2],单调增区间是[2,4).3.在经济学中,函数f(x)的边际函数Mf(x)定义为Mf (x )=f (x+1)-f (x ).某公司每月最多生产100台报警系统装置,生产x (x>0)台的收入函数为R (x )=3 000x-20x 2(单位:元),其成本函数为C (x )=500x+4 000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x );(2)利润函数P (x )与边际利润函数MP (x )是否具有相同的最大值?解 (1)P (x )=R (x )-C (x )=(3 000x -20x 2)-(500x +4 000) =-20x 2+2 500x -4 000(x ∈[1,100]且x ∈N ).MP (x )=P (x +1)-P (x )=-20(x +1)2+2 500(x +1)-4 000-(-20x 2+2 500x -4 000) =2 480-40x (x ∈[1,100]且x ∈N ). (2)P (x )=-20(x -)21252+74 125,当x =62或63时,P (x )max =74 120(元).因为MP (x )=2 480-40x 是减函数,所以当x =1时,MP (x )max =2 440(元). 因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值. 4.已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x>1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2. 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1,由于当x >1时,f (x )<0, 所以f )(21x x <0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (21x x )=f (x 1)-f (x 2)得f ()39=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.一、填空题1.函数f(x)=ln(4+3x-x 2)的单调递减区间是 .答案 [23,4) 2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号).①至少有一实根 ②至多有一实根 ③没有实根 ④必有惟一的实根 答案 ①②③3.函数y=lg(x 2+2x+m)的值域是R ,则m 的取值范围是 . 答案 m ≤14.函数f(x)(x ∈R )的图象如下图所示,则函数g(x)=f(log a x) (0<a<1)的单调减区间是 . 答案 [a ,1]5.已知f(x)=⎩⎨⎧≥<+-)1(log )1(4)13(x x x ax a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 .答案 [71,31) 6.若函数f (x )=(m -1)x 2+mx +3 (x ∈R )是偶函数,则f (x )的单调减区间是 . 答案 [0,+∞)7.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则m 的取值范围是 . 答案 (-)32,21 8.已知下列四个命题:①若f(x)为减函数,则-f(x)为增函数;②若f(x)为增函数,则函数g(x)=)(1x f 在其定义域内为减函数;③若f(x)与g(x)均为(a,b)上的增函数,则f(x)·g(x)也是区间(a,b )上的增函数;④若f(x)与g(x)在(a,b)上分别是递增与递减函数,且g(x)≠0,则)()(x g x f 在(a,b)上是递增函数.其中命题正确的是 (填序号) 答案 ① 二、解答题9.已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2. 解 根据题意,由f (3)=1,得f (9)=f (3)+f (3)=2. 又f (x )+f (x -8)=f [x (x -8)],故f [x (x -8)]≤f (9).∵f (x )在定义域(0,+∞)上为增函数,∴⎪⎩⎪⎨⎧≤->->,9)8(080x x x x ,,解得8<x ≤9.10.函数f(x)对任意的实数m 、n 有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0. (1)求证:f(x)在(-∞,+∞)上为增函数;(2)若f(1)=1,解不等式f [log 2(x 2-x-2)]<2. (1)证明 设x 2>x 1,则x 2-x 1>0.∵f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)>0, ∴f (x 2)>f (x 1),f (x )在(-∞,+∞)上为增函数. (2)解 ∵f (1)=1,∴2=1+1=f (1)+f (1)=f (2). 又f [log 2(x 2-x -2)]<2,∴f [log 2(x 2-x -2)]<f (2).∴log 2(x 2-x -2)<2,于是⎪⎩⎪⎨⎧<-->--.060222x x x x ,∴⎩⎨⎧<<->-<,32,21x x x 或即-2<x <-1或2<x <3.∴原不等式的解集为{x |-2<x <-1或2<x <3}. 11.已知f(x)=ax x-(x ≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)内单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f(x 2)=.)2)(2()(22221212211++-=+-+x x x x x x x x∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f(x 1)<f(x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=.))(()(21122211a x a x x x a a x x a x x ---=---∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, ∴a ≤1.综上所述知0<a ≤1.12.已知函数y=f(x)对任意x,y ∈R 均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-32.(1)判断并证明f(x)在R 上的单调性; (2)求f(x)在[-3,3]上的最值. 解 (1)f (x )在R 上是单调递减函数证明如下:令x =y =0,f (0)=0,令x =-y 可得:f (-x )=-f (x ),在R 上任取x 1<x 2,则x 2-x 1>0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1).又∵x >0时,f (x )<0,∴f (x 2-x 1)<0,即f (x 2)<f (x 1).由定义可知f (x )在R 上为单调递减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数.∴f (-3)最大,f (3)最小.f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3×(-)32=-2.∴f (-3)=-f (3)=2.即f (x )在[-3,3]上最大值为2,最小值为-2.§2.3 函数的奇偶性基础自测1.(2008·福建理,4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 .答案02.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为 . 答案03.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1) f (b +2)(用“≤”,“≥”,“<”,“>”填空).答案>4.已知f (x )=122)12(+-+xx a 是奇函数,则实数a 的值为 . 答案15.函数f (x ),g (x )在区间[-a ,a ] (a >0)上都是奇函数,则下列结论:①f (x )-g (x )在[-a ,a ]上是奇函数;②f (x )+g (x )在[-a ,a ]上是奇函数;③f (x )·g (x )在[-a ,a ]上是偶函数;④f (0)+ g (0)=0,则其中正确结论的个数是 . 答案 4例1判断下列函数的奇偶性. (1)f(x)=2211x x -⋅-;(2)f(x)=log 2(x+12+x ) (x ∈R );(3)f(x)=lg|x-2|.解 (1)∵x 2-1≥0且1-x 2≥0,∴x =±1,即f (x )的定义域是{-1,1}. ∵f (1)=0,f (-1)=0,∴f (1)=f (-1),f (-1)=-f (1), 故f (x )既是奇函数又是偶函数.(2)方法一 易知f (x )的定义域为R , 又∵f (-x )=log 2[-x +1)(2+-x ]=log2112++x x =-log 2(x +12+x )=-f (x ),∴f (x )是奇函数.方法二 易知f (x )的定义域为R ,又∵f (-x )+f (x )=log 2[-x +1)(2+-x ]+log 2(x +12+x )=log 21=0,即f (-x )=-f (x ),∴f (x )为奇函数. (3)由|x -2|>0,得x ≠2.∴f (x )的定义域{x |x ≠2}关于原点不对称,故f (x )为非奇非偶函数.例2已知函数f(x),当x,y ∈R 时,恒有f(x+y)=f(x)+f(y). (1)求证:f(x)是奇函数;(2)如果x ∈R +,f (x )<0,并且f(1)=-21,试求f(x)在区间[-2,6]上的最值.(1)证明∵函数定义域为R ,其定义域关于原点对称,∵f (x +y )=f (x )+f (y ),令y =-x,∴f (0)=f (x )+f (-x ).令x =y =0, ∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ), ∴f (x )为奇函数.(2)解 方法一 设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0, ∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值. ∵f (1)=-21,∴f (-2)=-f (2)=-2f (1)=1, f(6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 方法二 设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减. ∴f (-2)为最大值,f (6)为最小值.∵f (1)=-21,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3. ∴所求f(x )在区间[-2,6]上的最大值为1,最小值为-3. 例3(16分)已知函数f(x)的定义域为R ,且满足f(x+2)=-f(x). (1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x ≤1时,f(x)=21x,求使f(x)=-21在[0,2 009]上的所有x 的个数.(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), 2分 ∴f (x )是以4为周期的周期函数, 4分(2)解 当0≤x ≤1时,f (x )=21x ,设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=21(-x )=-21x .∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-21x ,即f (x )=21x . 7分 故f (x )=21x (-1≤x ≤1) 8分又设1<x <3,则-1<x -2<1, ∴f (x -2)=21(x -2), 10分 又∵f (x -2)=-f (2-x )=-f ((-x )+2)=-[-f (-x )]=-f (x ),∴-f (x )=21(x -2), ∴f (x )=-21(x -2)(1<x <3). 11分∴f (x )=⎪⎪⎩⎪⎪⎨⎧<<--≤≤-)31()2(21)11(21x x x x 12分由f (x )=-21,解得x =-1.∵f (x )是以4为周期的周期函数.∴f (x )=-21的所有x =4n -1 (n ∈Z ). 14分令0≤4n -1≤2 009,则41≤n ≤20051,又∵n ∈Z ,∴1≤n ≤502 (n ∈Z ), ∴在[0,2 009]上共有502个x 使f (x )=-21. 16分1.判断下列各函数的奇偶性:(1)f (x )=(x-2)xx -+22;(2)f (x )=2|2|)1lg(22---x x ;(3)f (x )=⎪⎩⎪⎨⎧>+-≤-<+.1(2),1|(|0),1(2)x x x x x解 (1)由xx-+22≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数.(2)由⎪⎩⎪⎨⎧≠-->-.02|2|0122x x ,得定义域为(-1,0)∪(0,1).这时f (x )=2222)1lg(2)2()1lg(x x x x --=----.∵f (-x )=-[]),()1lg()()(1lg 2222x f xx x x =--=---∴f (x )为偶函数.(3)x <-1时,f (x )=x +2,-x >1, ∴f (-x )=-(-x )+2=x +2=f (x ). x >1时,f (x )=-x +2,-x <-1,f (-x )=x +2=f (x ).-1≤x ≤1时,f (x )=0,-1≤-x ≤1, f (-x )=0=f (x ).∴对定义域内的每个x 都有f (-x )=f (x ). 因此f (x )是偶函数.2.已知函数y=f(x)的定义域为R ,且对任意a,b ∈R ,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3. (1)证明:函数y=f(x)是R 上的减函数; (2)证明:函数y=f(x)是奇函数;(3)试求函数y=f(x)在[m,n ](m,n ∈Z )上的值域.(1)证明 设∀x 1,x 2∈R ,且x 1<x 2,f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1). ∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)=f (x 1)+f (x 2-x 1)<f (x 1). 故f (x )是R 上的减函数.(2)证明 ∵f (a +b )=f (a )+f (b )恒成立,∴可令a =-b =x ,则有f (x )+f (-x )=f (0),又令a =b =0,则有f (0)=f (0)+f (0),∴f (0)=0.从而∀x ∈R ,f (x )+f (-x )=0,∴f (-x )=-f (x ).故y =f (x )是奇函数. (3)解 由于y =f (x )是R 上的单调递减函数,∴y =f (x )在[m ,n ]上也是减函数,故f (x )在[m ,n ]上的最大值f (x )max =f (m ),最小值f (x )min =f (n ). 由于f (n )=f (1+(n -1))=f (1)+f (n -1)=…=nf (1),同理f (m )=mf (1). 又f (3)=3f (1)=-3,∴f (1)=-1,∴f (m )=-m ,f (n )=-n . ∴函数y =f (x )在[m ,n ]上的值域为[-n ,-m ].3.设f (x )是定义在R 上的偶函数,其图象关于直线x=1对称,对任意x 1、x 2∈[0,21]都有f (x 1+x 2) =f (x 1)·f (x 2),且f(1)=a>0. (1)求f(21)及f(41) (2)证明:f (x )是周期函数;(3)记a n =f(2n+)21n,求a n.(1)解 ∵对x 1、x 2∈⎥⎦⎤⎢⎣⎡21,0, 都有f (x 1+x 2)=f (x 1)·f (x 2),∴f (x )=f ()2()2()22xf x f x x ⋅=+≥0,x ∈[0,1].∴f (1)=f (,)21()21()21()21212⎥⎦⎤⎢⎣⎡=⋅=+f f ff (2)41()41()41()4141()21⎥⎦⎤⎢⎣⎡=⋅=+=f f f f .∵f (1)=a >0, ∴f (.)41(,)214121a f a ==(2)证明 ∵y =f (x )的图象关于直线x =1对称, ∴f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知,f (-x )=f (x ),x ∈R ,∴f (-x )=f (2-x ),x ∈R .将上式中-x 用x 代换,得f (x )=f (x +2),x ∈R . 这表明f (x )是R 上的周期函数,且2是它的一个周期. (3)解 由(1)知f (x )≥0,x ∈[0,1]. ∵f (⎥⎦⎤⎢⎣⎡⋅-+=⋅=n n nf nn f 21)1(21)21()21=f (=⎥⎦⎤⎢⎣⎡⋅-⋅n n f n 21)1()21…=f (⋅⋅)21()21n f n …·f (.)21()21nn f n ⎥⎦⎤⎢⎣⎡=又f (.2121)21(,)21n a n f a =∴=∵f (x )的一个周期是2,∴a n=f (2n +n 21)=f (n21),∴a n=a n 21.一、填空题1.f(x),g(x)是定义在R 上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的 条件.答案 充分不必要2.设函数f(x)=(x+1)(x+a)为偶函数,则a= . 答案 -13.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x-1),若f (0)=2,则f (2 008)的值为 .答案 24.已知函数y=f(x)是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号). ①y=f(|x|);②y=f(-x);③y=x ·f(x);④y=f(x)+x. 答案 ②④5.(2009·徐州六县一区联考)设f(x)是定义在R 上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)= .答案 -16.已知y=f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=x 2-2x ,则在R 上f(x)的表达式为 .答案 f(x)=x(|x|-2)7.已知函数f(x)=g(x)+2,x ∈[-3,3],且g(x)满足g(-x)=-g(x),若f(x)的最大值、最小值分别为M 、N ,则M+N= . 答案 48.f(x)、g(x)都是定义在R 上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)= . 答案 -b+4二、解答题9.已知f(x)是实数集R 上的函数,且对任意x ∈R ,f(x)=f(x+1)+f(x-1)恒成立. (1)求证:f(x)是周期函数. (2)已知f(3)=2,求f(2 004).(1)证明 ∵f(x)=f(x+1)+f(x-1),∴f(x+1)=f(x)-f(x-1),则f(x+2)=f []).1()()1()()()1(1)1(--=---=-+=++x f x f x f x f x f x f x∴f(x+3)=f [][]).(1)1(2)1(x f x f x -=-+-=++ ∴f(x+6)=f[]).()3(3)3(x f x f x =+-=++∴f(x)是周期函数且6是它的一个周期. (2)解 f(2 004)=f(334×6)=f(0)=-f(3)=-2.10.已知f(x)是R 上的奇函数,且当x ∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式. 解 ∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg (2+x ), 即f (x )=-x lg (2+x )(x >0).∴f (x )=⎩⎨⎧≥+-<--).0()2lg(),0()2lg(x x x x x x即f (x )=-x lg(2+|x |) (x ∈R ). 11.已知函数f(x)=x 2+|x-a|+1,a ∈R . (1)试判断f(x)的奇偶性; (2)若-21≤a ≤21,求f(x)的最小值. 解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x ) 为非奇非偶函数. (2)当x ≤a 时,f (x )=x 2-x +a +1=(x -21)2+a +43, ∵a ≤21,故函数f (x )在(-∞,a ]上单调递减,从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1. 当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43,∵a ≥-21,故函数f (x )在[a ,+∞)上单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1.综上得,当-21≤a ≤21时,函数f (x )的最小值为a 2+1.12.设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0. (1)试判断函数y=f (x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论. 解 (1)由),10()()14()4()14()()4()()7()7()2()2(+=⇒-=-⇒⎩⎨⎧-=-=⇒⎩⎨⎧+=-+=-x f x f x f x f x f x f x f x f x f x f x f x f从而知函数y =f (x )的周期为T =10.又f (3)=f (1)=0,而f (7)≠0,故f (-3)≠0. 故函数y =f (x )是非奇非偶函数. (2)由(1)知y =f (x )的周期为10.又f (3)=f (1)=0,f (11)=f (13)=f (-7)=f (-9)=0,故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2 005]上有402个解,在[-2 005, 0]上有400个解,所以函数y =f (x )在[-2 005,2 005]上有802个解.§2.4指数与指数函数基础自测 1.已知a<41,则化简42)14(-a 的结果是 .答案a 41-2.设指数函数f(x)=a x(a>0且a ≠1),则下列等式正确的有 (填序号). ①f(x+y)=f(x)·f(y) ②f((xy)n)=f n(x)·f n(y) ③f(x-y)=)()(y f x f ④f(nx)=f n(x) 答案 ①③④3.函数f(x)=a x-b的图象如图所示,其中a 、b 为常数,则下列结论不正确的有 (填序号). ①a>1,b<0 ②a>1,b>0 ③0<a<1,b>0 ④0<a<1,b<0 答案①②③4.关于函数f(x)=2x-2-x(x ∈R ),有下列三个结论:①f(x)的值域为R ; ②f(x)是R 上的增函数;③对任意x ∈R ,有f(-x)+f(x)=0成立. 其中正确结论的序号是 .答案 ①②③ 5.已知集合M={}⎭⎬⎫⎩⎨⎧∈<<=-+Z x x N x ,4221|,1,11,则M N = . 答案 {}1-例1已知a=91,b=9.求: (1);315383327a a a a⋅÷--(2)111)(---+ab b a .数学试卷及试题71 31(8 )1151解 (1)原式= a 2 3 . a 2 3 ÷[a 3 2 · a 3 2 ]7 1 (4 5 ) 1= a 6 2 3 2 =a 2 .1∵a= ,∴原式=3.9(2)方法一 化去负指数后解.a 1 b1 (ab) 11 a 11 babab 1a b. ∵a=1 ,b 9 9, ∴a+b= 82 . 9ab ab方法二 利用运算性质解.a 1 b1 (ab) 1a 1 a 1b1b 1 a 1b11 b 11 a 1 b a.∵a= 1 ,b 9, ∴a+b= 82 .99例 2 函数 f(x)=x2-bx+c 满足 f(1+x)=f(1-x)且 f(0)=3,则 f(bx)答案 ≤例 3 求下列函数的定义域、值域及其单调区间:f(cx).(用“≤”,“≥”,“<”,“>”填空)(1)f(x)= 3 x2 5x 4 ;(2)g(x)=-( 1 ) x 4( 1 ) x 5 .42解 (1)依题意 x2-5x+4≥0,解得 x≥4 或 x≤1,∴f(x)的定义域是(-∞,1]∪[4,+∞).令 u= x 2 5x 4 (x 5 )2 9 , ∵x∈(-∞,1]∪[4,+∞), 24∴u≥0,即 x2 5x 4 ≥0,而 f(x)= 3 x2 5x 4 ≥30=1,∴函数 f(x)的值域是[1,+∞).∵u= (x 5 )2 9 ,∴当 x∈(-∞,1]时,u 是减函数, 24当 x∈[4,+∞)时,u 是增函数.而 3>1,∴由复合函数的单调性可知,f(x)= 3 x2 5x 4 在(-∞,1]上是减函数,在[4,+∞)上是增函数.故 f(x)的增区间是[4,+∞),减区间是(-∞,1].(2)由 g(x)=-( 1)x 4(1)x 5 (1)2x 4(1)x 5,4222∴函数的定义域为 R,令 t=( 1 ) x (t>0),∴g(t)=-t2+4t+5=-(t-2)2+9, 2数学试卷及试题21数学试卷及试题∵t>0,∴g(t)=-(t-2)2+9≤9,等号成立条件是 t=2,即 g(x)≤9,等号成立条件是( 1 ) x =2,即 x=-1,∴g(x)的值域是(-∞,9]. 2由 g(t)=-(t-2)2+9 (t>0),而 t=( 1 ) x 是减函数,∴要求 g(x)的增区间实际上是求 g(t)的减区间, 2求 g(x)的减区间实际上是求 g(t)的增区间.∵g(t)在(0,2]上递增,在[2,+∞)上递减,由 0<t=( 1 ) x ≤2,可得 x≥-1, 由 t=( 1 ) x ≥2,可得 x≤-1.22∴g(x)在[-1,+∞)上递减,在(-∞,-1]上递增,故 g(x)的单调递增区间是(-∞,-1],单调递减区间是[-1,+∞).ex例 4(14 分)设 a>0,f(x)=aa ex是 R 上的偶函数.(1)求 a 的值;(2)求证:f(x)在(0,+∞)上是增函数.(1)解 ∵f(x)是 R 上的偶函数,∴f(-x)=f(x),2分e x∴aa exex aa ex,∴(a-1 )(ex a1 ex)=0对一切x均成立,∴a- 1 =0,而 a>0,∴a=1. a(2)证明 在(0,+∞)上任取 x1、x2,且 x1<x2,则 f(x1)-f(x2)= e x11+e x1- e x2-1 e x2= (ex2 e x1 )1(e x1 x2 1).e ∵x1<x2,∴ x1 e x2 , 有 ex2 ex1 0.4分 6分 8分10 分∵x1>0,x2>0,∴x1+x2>0,∴ e x1x2 >1,12 分1 e x1x2 -1<0.∴f(x1)-f(x2)<0,即 f(x1)<f(x2),故 f(x)在(0,+∞)上是增函数.14 分1.化简下列各式(其中各字母均为正数):(1)2(a 3b1)1 21a21b3;6 a b5数学试卷及试题22(2)51a3 b 2(3a1 2b1)2(4a 31 b3 ) 2.6解1 1 1 1a 3b2 a2b3(1)原式=15111 115 a 3 2 6 b2 3 6 a0 b0 1.a6b6(2)原式=-5a1 6b32 (4a 31 b3 ) 25a1 6b31 3 (a3b 2 )2451a23b 25441 ab35 ab 4ab2.2.已知实数 a、b 满足等式 ( 1 )a (1)b ,下列五个关系式: 23①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的有(填序号).答案 ③④3.求下列函数的单调递增区间:(1)y=( 1 )6x2 x2 ;(2)y=2 x2 x6 . 2解 (1)函数的定义域为 R.令 u=6+x-2x2,则 y=( 1 )u . 2∵二次函数 u=6+x-2x2 的对称轴为 x= 1 , 4在区间[ 1 ,+∞)上,u=6+x-2x2 是减函数, 4又函数 y=( 1 ) u 是减函数, 2∴函数 y=( 1 )6x2x2 在[ 1 ,+∞)上是增函数.24故 y=( 1 )6x2x2 的单调递增区间为[ 1 ,+∞).24(2)令 u=x2-x-6,则 y=2u,∵二次函数 u=x2-x-6 的对称轴是 x= 1 , 2在区间[ 1 ,+∞)上 u=x2-x-6 是增函数. 2又函数 y=2u 为增函数,∴函数 y=2 x2 x6 在区间[ 1 ,+∞)上是增函数. 2故函数 y=2 x2 x6 的单调递增区间是[ 1 ,+∞). 2数学试卷及试题23数学试卷及试题数学试卷及试题2x4.已知定义在 R 上的奇函数 f(x)有最小正周期 2,且当 x∈(0,1)时,f(x)=.4x 1(1)求 f(x)在[-1,1]上的解析式; (2)证明:f(x)在(0,1)上是减函数. (1)解 当 x∈(-1,0)时,-x∈(0,1).∵f(x)是奇函数,∴f(x)=-f(-x)=-2x 4x 12x 4x . 1由 f(0)=f(-0)=-f(0),且 f(1)=-f(-1)=-f(-1+2) =-f(1),得 f(0)=f(1)=f(-1)=0.∴在区间[-1,1]上,有 2x 4x1f(x)= 2x 4x 10x (0,1)x (1,0)x 1,0,1(2)证明当x∈(0,1)时,f(x)=42x x. 1设 0<x1<x2<1,则f(x1)-f(x2)=2 x1 4x1 12 x2 4x2 1(2x2 (4 x12x1 )(2 x1x2 1) 1)(4x2 1),2 2 ∵0<x1<x2<1,∴2 x2 - x1 >0, x1x2 -1>0,∴f(x1)-f(x2)>0,即 f(x1)>f(x2),故 f(x)在(0,1)上单调递减.一、填空题1.21 2,(2)1,31 3的大小顺序为.3答案21 2313(2) 132.若 a<0,则 2a, ( 1 )a , (0.2)a 的大小顺序为.2答案 (0.2)a> ( 1 )a >2a 23.若函数 y=4x-3·2x+3 的定义域为集合 A,值域为[1,7],集合 B=(-∞,0]∪[1,2],则集合 A 与集合 B 的关系为.答案 A=B数学试卷及试题24数学试卷及试题4.若 f(x)=-x2+2ax 与 g(x)=(a+1)1-x 在区间[1,2]上都是减函数,则 a 的取值范围是.答案 (0,1]5.(2009·常州二中期中)当函数 f(x)=2-|x-1|-m 的图象与 x 轴有公共点时,实数 m 的取值范围是.答案 (0,1]6.当 x>0 时,函数 f(x)=(a2-1)x 的值总大于 1,则实数 a 的取值范围是.答案 a> 2 或 a<- 27.若函数 f(x)=ax-1 (a>0,a≠1)的定义域和值域都是[0,2],则实数 a 等于.答案 38.函数 y=ax(a>0,且 a≠1)在[1,2]上的最大值比最小值大 a ,则 a 的值是.213答案 或22二、解答题9.要使函数 y=1+2x+4xa 在 x∈(-∞,1]上 y>0 恒成立,求 a 的取值范围.1 2x解 由题意得 1+2x+4xa>0 在 x∈(-∞,1]上恒成立,即 a>-在 x∈(-∞,1]上恒成立.4x1 2x又∵-4x=-(1)2x 2(1)x 2(1 2)x12 2 1 4,∵x,1,∴(1)x 21 2, .令t=(1)x 2,则f(t)(t1)2 21 4,t1 2,. 1则 f(t)在[ ,+∞)上为减函数,2 f(t)≤f( 1 ) =-( 1 1 )2 1 3 ,2 22 4 4即f(t)∈ ,3 4 .3∵a>f(t),∴a∈(- ,+∞).411310.已知函数 f(x)=( )x .2x 1 2(1)求 f(x)的定义域;(2)判断 f(x)的奇偶性;(3)证明:f(x)>0.(1)解 由 2x-1≠0 x≠0,∴定义域为(-∞,0)∪(0,+∞).(2)解f(x)=(1 2x 11)x3 2可化为 f(x)= 2 x 1 x3 , 2 (2x 1)数学试卷及试题25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双基限时练(十九)
1.已知log 12
b <log 12
a <log 12
c ,则( )
A .2a >2b >2c
B .2b >2a >2c
C .2c >2b >2a
D .2c >2a >2b
解析 由于函数y =log 1
2x <log 12
c 可得b >a >c ,又由于函数y =2x 答案 B
2.函数y =log a x ,y =log b x ,y 示,则a ,b ,c ,d 的大小顺序是(
A .1<d <c <a <b
B .c <d <1<a <b
C .c <d <1<b <a
D .d <c <1<a <b
解析 由对数函数的性质及图象可知,b >a >1,c <d <1.∴b >a >1>d >c ,故选B.
答案 B
3.函数y =log 22-x 2+x
的图象( )
A .关于原点对称
B .关于直线y =-x 对称
C .关于y 轴对称
D .关于直线y =x 对称
解析 ∵f (x )=log 22-x
2+x ,
∴f (-x )=log 22+x 2-x =-log 22-x
2+x
=-f (x ).
∴f (x )为奇函数,其图象关于原点对称. 答案 A
4.下列判断不正确的是( ) A .log 23.4<log 24.3 B .log 67>log 76 C .log 0.23>log 0.33 D .log 3π<log 0.3π
答案 D
( ) B .(0,1] D .[1,+∞)
解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).
答案 D
6.已知函数f (x )=a x +log a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )
A.12
B.14 C .2
D .4
解析 当a >1时,函数y =a x 和y =log a x 在[1,2]都是增函数,所以f (x )=a x +log a x 在[1,2]是增函数,
当0<a <1时,函数y =a x 和y =log a x 在[1,2]都是减函数,所以f (x )=a x +log a x 在[1,2]是减函数,
由题意得f (1)+f (2)=a +a 2+log a 2=6+log a 2, 即a +a 2=6,解得a =2或a =-3(舍去). 答案 C
7.已知f (x )=ln x ,x ∈(e ,e 2],其中e ≈2.718 28…,则f (x )的值
]上是增函数. ≤2, 是奇函数,则a =______. f (0)=0. 即log a 2a 2=0,∴2a 2=1,∴a =22. 答案 2
2
9.已知实数a ,b 满足log 12
a =log 13
b ,下列五个关系式:
①a >b >1,②0<b <a <1,③b >a >1,④0<a <b <1,⑤a =b .其中可能
成立的关系式有________(填序号).
解析当a=b=1;或a=1
2,b=
1
3;或a=2,b=3时,都有log1
2
a=log1
3
b.故②③⑤均可能成立.
答案②③⑤
10.若x∈(e-1,1),a=ln x,b=2ln x,c=(ln x)3,试比较a,b,c 的大小.
解∵1
e<x<1,∴-1<ln x<0.
令t=ln x,则a-b=t-2t=-t>0,∴a>b.
c-a=t3-t=t(t2-1)=t(t+1)(t-1),
∵-1<t<0,∴0<t+1<1,t-1<0.
∴t(t+1)(t-1)>0,即c>a.∴c>a>b.
11.已知函数f(x)=log2(2+x2).
(1)判断f(x)的奇偶性;
(2)求函数f(x)的值域.
解(1)因为2+x2>0对任意x∈R都成立,
所以函数f(x)=log2(2+x2)的定义域是R.
因为f(-x)=log2[2+(-x)2]
=log2(2+x2)=f(x),
所以函数f(x)是偶函数.
(2)由x∈R得2+x2≥2,
∴log2(2+x2)≥log22=1,
即函数y=log2(2+x2)的值域为[1,+∞).
12.已知函数f(x)=log a(1-x)+log a(x+3)其中(0<a<1).(1)求函数f(x)的定义域;
(2)若函数f (x )的最小值为-4,求a 的值. 解 (1)要使函数有意义,
则有⎩
⎪⎨⎪⎧
1-x >0,x +3>0,解之得:-3<x <1,
所以函数的定义域为(-3,1).
(2)函数可化为:f (x )=log a [(1-x )(x +3)]
=log a (-x 2-2x +3) =log a [-(x +1)2+4],
∵-3<x <1,∴0<-(x +1)2+4∵0<a <1,
∴log a [-(x +1)2+4]≥log a 4, 即f (x )min =log a 4;
由log a 4=-4,得a -4
=4,∴a
新课标第一网系列资料 。