第四章的习题答案

合集下载

第四章习题

第四章习题

第四章第二节习题:一、判断题:1、资本成本通常用相对数表示,即用资本占用成本与资本取得成本之和除以筹资总额。

()2、通常将资本成本视为投资项目的“最低收益率”,只要预期报酬率大于资本成本,投资项目就具有经济上的可行性。

()3、一般而言,债券成本要高于长期借款成本。

()4、综合资本成本是指企业全部长期资本成本中的各个个别资本成本的平均数。

()二、单选:1、下列筹资方式中,一般情况下资本成本最高的是()A普通股 B长期借款 C长期债券 D留存收益2、用于追加筹资决策的资本成本是()A个别资本成本 B综合资本成本 C边际资本成本 D加权资本成本3、某公司债券票面利率为9%,每年付息一次,发行费率为1%,所得税率为33%,则该债券的资金成本()A.6%B.6.09%C.9%D.9.09%4、某笔银行借款,年利息率为6%,筹资费用率为1%,所得税率为33%,则该笔银行借款的资金成本()A.4.06%B.4.10%C.9.05%D.12.53%5、某公司普通股发行价为20元,筹资费率为5%,第一年发放现金股利1元,以后每年增长2%。

假定所得税率为33%,则该股票成本为()A.5.53%B.7.26%C.7.36%D.12.53%三、多项选择题:1、能够在所得税前列支的费用有()A长期借款利息 B优先股股利 C普通股股利D债券利息 E资本取得成本2、决定综合资本成本高低的因素有()A个别资本的数量 B个别资本的权重 C个别资本成本D总资本的数量 E个别资本的种类3、下列项目中,计入债券资金成本的筹资费用是()A.债券利息B.发行印刷费C.发行手续费D.债券注册费4、决定加权平均资金成本的因素是()A.个别资金成本B.边际资金成本C.资金筹资渠道D.各种资金所占的权重四、计算题:1、F公司的贝他系数β为1.45,无风险利率为10%,股票市场平均报酬率为16%,求该公司普通股的资本成本率。

2、公司现有优先股:面值100元,股息率10%,每季付息的永久性优先股。

(完整版)线性代数练习册第四章习题及答案

(完整版)线性代数练习册第四章习题及答案

第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。

当0D ≠时,非齐次线性方程组只有唯一解;B 。

当0D ≠时,非齐次线性方程组有无穷多解;C 。

若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。

2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。

中国近代史纲要第四章习题参考答案

中国近代史纲要第四章习题参考答案

第四章习题参考答案第四章开天辟地的大事变一、单项选择题1.C2.B3.C4.D5.D6.C7.B8.A9.B 10.B11.B 12.C 13.A 14.C 15.C16.D 17.A 18.A 19.D 20.B21.B 22.C 23. A 24.D 25.D26.D 27.B 28.A 29.D 30.B31.C 32.C 33.D 34.D 35.A36.B 37.A 38.C二、多项选择题1.ABCD2.ABC3.AD4.CD5.ACD6.ABD7.ABCD8.ABCD9.ABC 10.ABCD11.ACD 12.ABD 13.ABCD 14.ABCD 15.ACD16.BCD 17.ABC三、简答题1.简析五四运动爆发的原因五四运动是中国近现代史上的一个划时代的事件,它是在新的时代条件和社会历史条件下发生的。

第一,中国资产阶级和工人阶级的成长、壮大,为运动的爆发准备了新的社会力量。

第二,新文化运动掀起的思想解放的潮流。

受到这个潮流影响的年轻一代知识界,尤其是那些具有初步共产主义思想的知识分子,为五四运动准备了最初的群众队伍和骨干力量。

第三,俄国十月革命对中国的影响。

第四,巴黎和会上中国外交的失败,激起了各阶层人民的强烈愤慨,成为五四运动的直接导火索。

巴黎和平上,中国政府代表提出废除外国在华势力范围、撤退外国在华驻军等七项希望和取消日本强加的“二十一条”及换文的陈述书,遭到拒绝。

和会竟规定德国应将在中国山东获得的一切特权转交给日本。

消息传到国内,激起了各阶层人民的强烈愤怒。

五四运动由此爆发。

2.试比较五四运动与辛亥革命的不同之处第一,从领导力量来看,辛亥革命是资产阶级革命派领导的,由于中国资产阶级的软弱性和妥协性,不可能提出彻底的反帝反封建的革命纲领,他们对帝国主义抱有幻想。

五四爱国运动是由具有初步共产主义思想的知识分子领导的,工人阶级以独立的政治力量登上历史舞台,显示了伟大力量,他们强烈地反对帝国主义分赃的巴黎和会,反对军阀政府卖国。

中国近现代史第四章习题及答案

中国近现代史第四章习题及答案

第四章练习题开天辟地的大事变一、单项选择题1 .新文化运动兴起的标志是()。

A.严复翻译《天演论》B.孙中山创立《民报》B.C.陈独秀在上海创办《青年杂志》D.李大钊发表《庶民的胜利》2 .初期新文化运动的实质是()。

A.新文学运动B.民主、民权运动C.反封建礼教的运动D.资产阶级民主主义运动3 .在中国大地上率先举起马克思主义旗帜的是()。

A.李大钊B.陈独秀C.鲁迅D.蔡元培4 .下列各项最能说明五四运动标志着新民主主义革命开始的是()。

A.在十月革命的影响下爆发B.提出反帝反封建的革命口号C.具有初步共产主义思想的知识分子起了领导作用D.无产阶级成为运动的主力军5 .五四运动的直接导火线是()。

A. “二十一条”的签订B.巴黎和会的召开C.巴黎和会上中国外交的失败D.北洋政府的镇压6 .中国人真正了解马克思主义是从()开始的。

A.新文化运动后B.五四运动后C.辛亥革命后D.俄国十月革命后7 .中国共产党历史上有“南陈北李,相约建党”的说法,其中“陈”、“李”分别指()。

A. 陈独秀、李大钊B. 陈潭秋、李大钊C. 陈独秀、李达D . 陈潭秋、李达8 .“中国现存的各政党,只有国民党是比较革命的民主派,比较是真的民主派”这一论断的主要依据是()。

A.孙中山领导的国民党进行了不屈不挠的反封建斗争B.孙中山代表各阶级、各阶层的利益C.国民党在广东建立了革命根据地和军队D.国民党代表民族资产阶级和小资产阶级的利益9 .第一次国共合作的正式形成的标志是()。

A.共产党一大的成功召开B.共产党二大的成功召开B.C.共产党三大的成功召开D.国民党一大的成功召开10 .下列观点中,不属于新文化运动倡导者的观点的是()。

A .孔学并不等于全部国学B.中国的全部传统文化应该否定C.“孔学优点,仆未尝不服膺”D.封建礼教是“吃人的礼教,”其流毒不“减于洪水猛兽”。

11 .北伐战争迅速发展的最主要原因是()。

A.工农群众的大力支持B.北伐将士的英勇善战C.直奉联合战线的瓦解D.国共两党团结合作和正确的北伐方针12. 1920年8月公开出版的马克思原著是由陈望道翻译的()。

第四章练习题及答案 管理会计

第四章练习题及答案  管理会计

第四章练习题及答案一、单项选择题:1、预测方法分为两大类,是指定量分析法和()。

A、平均法B、定性分析法C、回归分析法D、指数平滑法2、已知上年利润为100000元,下一年的经营杠杆系数为1.4,销售量变动率为15%,则下一年的利润预测额为()。

A、140000元B、150000元C、121000元D、125000元3、经营杠杆系数等于1,说明()。

A、固定成本等于0B、固定成本大于0C、固定成本小于0D、与固定成本无关4、假设平滑指数=0.6, 9月份实际销售量为600千克,原来预测9月份销售量为630千克,则预测10月份的销售量为()。

A、618千克B、600千克C、612千克D、630千克5、已知上年利润为200000元,下一年的经营杠杆系数为1.8,预计销售量变动率为20%,则下一年利润预测额为()。

A、200000元B、240000元C、272000元D、360000元6、预测分析的内容不包括()。

A、销售预测B、利润预测C、资金预测D、所得税预测7、下列适用于销售业务略有波动的产品的预测方法是()。

A、加权平均法B、移动平均法C、趋势平均法D、平滑指数法答案:1、B 2、C 3、A 4、C 5、C 6、D 7、B二、多项选择题:1、定量分析法包括()。

A、判断分析法B、集合意见法C、非数量分析法D、趋势外推分析法E、因果预测分析法2、当预测销售量较为平稳的产品销量时,较好的预测方法为()。

A、算术平均法B、移动平均法C、修正的时间序列回归法D、因果预测分析法E、判断分析法3、经营杠杆系数通过以下公式计算:()。

A、利润变动率/业务量变动率B、业务量变动率/利润变动率C、基期贡献边际/基期利润D、基期利润/基期贡献边际E、销售量的利润灵敏度×1004、较大的平滑指数可用于()情况的销量预测。

A、近期B、远期C、波动较大D、波动较小E、长期5、属于趋势外推分析法的是()。

A、移动平均法B、平滑指数法C、回归分析法D、调查分析法E、移动平均法6、平滑指数法实质上属于()。

西方经济学课后答案--第四-十章

西方经济学课后答案--第四-十章

第四章课后习题答案一、名词解释1.边际报酬递减:是指在生产技术不变的条件下,若其他投入不变,只是不断增加某一种要素投入,则该种投入要素的边际产量最终会逐渐减少.2.等产量线:也叫等生产线,是表示生产技术不变时生产同一产量某种产品的不同的投入组合的轨迹。

3.边际技术替代率:是指在维持产量水平不变的条件下,增加一单位某种生产要素投入量时所减少的另一种要素的投入数量.4.等成本线:是指在既定的成本预算和生产要素价格条件下,生产者可以购买到的两种生产要素不同数量组合的轨迹.5.生产者均衡:是指在既定的成本条件下的最大产量或既定产量条件下的最小成本。

6.扩展线:是表示生产技术和要素价格不变的条件下,生产者在不同的生产规模上将采用的最佳投入组合的轨迹。

7.规模经济:由于产出水平的提高,或者说因为生产规模的扩大而引起的单位成本下降。

规模不经济:由于产出水平的提高,或者说因为生产规模的扩大而引起的单位成本下上升。

8.外在经济:是指由于厂商的生产活动所依赖的外部环境得到改善从而引起的平均成本下降。

外在不经济:由于厂商生产活动所依赖的外部环境恶化而引起的单位成本上升.9.机会成本:是指由于使用特定资源而放弃的该资源其他用途所能获得的最高收益。

会计成本:是指需要现实的货币支付,会在厂商的会计账目上记录和反映出来的成本。

沉没成本:是指已经发生和支付且无法收回的成本.显性成本:是指厂商支付给各要素所有者的报酬而形成的成本.隐性成本:是指应该计算为成本但却未在形式上进行货币支付的厂商本身所拥有的生产要素的报酬.10.短期:是指生产者来不及调整全部生产要素投入数量,至少有一种生产要素投入数量是固定不变的时间周期。

长期:是指生产者可以调整全部生产要素投入数量的时间周期。

正常利润:是指厂商自有生产资源应该获得的正常报酬。

经济利润:是厂商销售收益扣减经济成本的余额.11.短期总成本:是厂商在一定时期内生产一定数量产品的全部成本.短期内它由固定成本和可变成本之和构成。

第四章的课后习题答案

第四章的课后习题答案

第四章各节答案第一节 牛顿第一定律基础训练1.D 2.C 3.CD 4.C 5.C 6.D 7.D8.他忽略了车子还要受到摩擦力,当停止用力时,车由于受到摩擦力就会停下来。

如果没有摩擦力车子就会永远运动下去,力不是维持运动的原因。

能力提高1.CD 2.B 3.ABC 4.AB 5.AD 6.A 7.D8.(1)车做匀速直线运动,(2)向右做匀加速运动或向左做匀减速运动,(3)向左做匀加速运动或向右做匀减速运动9.可靠的实验事实、原来的速度作匀速直线 ②③①④ ② ①③④ 力来维持 伽利略 理想实验法10.小球落下后保持原来的速度,因车做减速运动,所以小球落在O 点的前方。

答案为 g a 2第二节 实验:探究加速度与力、质量的关系基础训练1. 物体的质量。

2.作用力。

3.C. 4.正比。

5、B.6、a 1=mg/2m=g/2,a 2=mg/m=g∴a 2=2 a 1,故C正确。

7、ABD8、解析:本题设计原理是利用滑块在斜面做匀加速运动时,其加速度为a=gsin θ-μgcos θ得出μ=tanθ-a/gcos θ则需要求出L d h t,∴μ=h/d-2l2/gt2d,为减小误差应多测量几次取平均值。

能力提高1. C2.(1)图略 (2)图像可以看出,加速度与力成正比,与质量的倒数成反比。

(3)在图像上取一点求得斜率就得到物体的质量为0.35kg,(4)在图像上取一点求得斜率就得到作用力为4.02N .3.(1)a =4.00m/s 2。

(2)小车质量m ;斜面上沿下滑方向任意两点间的距离l 及这两点的高度差h 。

4.(1)探究加速度与力、质量的关系的原理是利用控制变量法,则有:①当作用力不变时,加速度与质量的倒数成正比;②当物体的质量不变时,加速度与作用力成正比。

(2) 到的仪器还有C D F .5.D 6.11.0==ga μ 7.由图可知,当拉力从0增到F0的过程中,物体的加速度为零,说明小车处于静止状态,因此必然存在一个力与拉力大小相等方向相反,这个里一定是小车受到的摩擦力。

教育学第四章习题含答案

教育学第四章习题含答案

第四章教师与学生练习题一、选择题1、我国首次以法律形式明确规定“国家实行教师资格制度”的文件是(D )A、《教师资格条例》B、《教师资格认定的过渡办法》C、《教师资格条例》实施办法D、《中华人民共和国教师法》2、“以身立教”、“为人师表”体现了教师劳动的( A )特点。

A、示范性B、复杂性C、创造性D、劳动方式个体性3、教师的工作目的和使命是(C )A、热爱教育事业B、热爱学生C、教书育人D、创新开拓4、陶行知先生的“捧着一颗心来,不带半根草去”的教育信条体现了教师的( B )素养。

A、教育理论知识B、崇高的职业道德C、文化学科知识D、具备相应的专业知识5、教师的地位一般是指教师的( A )A、社会地位B、经济地位C、文化地位D、政治地位6、“道之所存,师之所存也”体现了教师职业的( C )A、示范者角色B、授业解惑者角色C、传道者角色D、研究者角色7、具有先进的教学理念属于教师的( C )A、职业首先素养B、能力素养C、教育专业素养D、心理素养8、在课程改革过程中,教师成为学生学习的合作者,由教学中的主角转向( B )A、知识的传授者B、平等中的首席C、教学的组织者D、行为的示范者9、现代师生关系的核心是( C )A、以诚相待B、互助互惠C、民主平等D、和谐亲密10、下面哪种表现说明罗森塔尔效应( B )A、老师让背书,学生们认真地背书B、老师对学生说:“你很聪明,只要认真学习,成绩一定会提高。

”结果这个学生成绩提高了C、学生犯了错误,老师批评了他D、老师穿的很漂亮,结果学生们在课堂上积极地配合老师11、学生具有发展的可能性和( D )A、潜在性B、现实性C、特殊性D、可塑性12、“师者,所以传道、授业、解惑也”出自( B )A、《学记》B、《师说》C、《论语》D、《春秋》13、人们常说:“教学有法、而无定法”,这句话反映了教师应具备的素养是( C )A、良好的语言表达能力B、较强的组织能力C、创造能力D、观察能力二、判断题1、从狭义来看,教师指学校的专职工作人员,是一种专门的职业。

电磁学第四章答案全

电磁学第四章答案全

第四章 习题2、平行板电容器(面积为S,间距为d )中间两层的厚度各为d 1和d 2(d 1+d 2=d ),介电常数各为1ε和2ε的电介质。

试求:(1)电容C ;(2)当金属板上带电密度为0σ±时,两层介质的分界面上的极化电荷密度'σ;(3)极板间电势差U;(4)两层介质中的电位移D ; 解:(1)这个电容器可看成是厚度为d 1和d 2的两个电容器的串联:12210212121d d SC C C C C εεεεε+=+=(2)分界处第一层介质的极化电荷面密度(设与d 1接触的金属板带正电)1111011111εσεεεσ)(E )(P '-=-=-=⋅=分界处第二层介质的极化电荷面密度:21222022211εσεεεσ)(E )(P n P '--=--=-=⋅=所以, 21021211εεσεεσσσ+-=+=)('''若与d 1接触的金属板带负电,则21021211εεσεεσσσ+--=+=)('''(3)2101221202010102211εεσεεεεσεεσ)d d (d d d E d E U +=+=+= (4)01101σεε==E D ,02202σεε==E D4、平行板电容器两极板相距3.Ocm ,其间放有一层02.=ε的介电质,位置与厚度如图所示,已知极板上面电荷密度为21101098m /c .-⨯=σ,略去边缘效应,求: (1)极板间各处的P 、E 和D 的值;(2)极板间各处的电势(设正极板处00=U ); (3)画出E-x ,D-x ,U-x 曲线;解:(1)由高斯定理利用对称性,可给出二极板内:2111098m /c .D e -⨯==σ(各区域均相同),在0与1之间01==P ,r ε,m /V DE 20101⨯==ε在1与2之间210000010454112m /c .D)(E )(P ,r r r -⨯=-=-==εεεεεεε,m /V D E r500==εε 在2与3之间,01==P ,r ε,m /V DE 20101⨯==ε(2)0=A V :0-1区:,x dx E V xD 100=⋅=⎰1-2区:),x x (dx E V xx 1501-=⋅=⎰)x x x ,.x x )x x (V 2111505010050≤≤+=+-=2-3区:),x x (dx E V xx 2100021-==⎰∆)x x x (,.x ).x (,x x x x x )x x (V 3212221501000050100505010010010050≤≤-=-=+-=-++=题4图6、一平行板电容器两极板相距为d,其间充满了两种介质,介电常数为1ε的介质所占的面积为S 1, 介电常数为2ε的介质所占的面积为S 2。

生理学第四章 血液循环 习题及答案

生理学第四章 血液循环 习题及答案

低于血浆胶体渗透压,而使肺部
组织液的压力为
压的缘故。
136.脑血管接受
纤维和
纤维的支配。在正常情况下,影响脑血流量
的主要因素是

137.当平均动脉压在
mmHg 的范围内变动时,脑血管可通过
的机制使
脑血流量保持恒定。
三、选择题 A 型题
138.以下关于心动周期的论述,哪项是错误的? A.心房开始收缩,作为一个心动周期的开始 B.通常心动周期是指心室的活动周期而言 C.心房和心室的收缩期都短于其舒张期 D.房室有共同收缩的时期 E.心动周期持续的时间与心率有关
不应期特别长,一直延续到机械反应的
期开始之后。
72.心肌细胞中,属于快反应细胞的是
细胞、
细胞和
细胞,
属于慢反应细胞的是
细胞。
73.心肌的自动节律性,以
细胞的自律性最高,而
的自律性最低。
74.窦房结细胞的最大复极电位为
mV,阈电位为
mV。
75.If通道的开放时期为
,最大激活电位为
mV左右。
76.浦肯野细胞动作电位的 4 期不稳定,逐渐增强的内向电流为
100.平均动脉压=


101.
的高低主要反映每搏输出量的大小;
的高低主要反映外周阻力
的大小。
102 . 当 搏 出 量 增 加 而 外 周 阻 力 和 心 率 变 化 不 大 时 , 动 脉 血 压 的 升 高 主 要 表 现 为
压的升高,
压升高不多,脉压

103.影响动脉血压的因素有


、主动脉和大动脉的弹性

之间能保持平衡。
59. 心率除受神经-体液因素的影响外,体温每升高 1℃,心率每分钟可增加

第四章习题答案

第四章习题答案

一、填空题1.几何公差的形状公差有6项,它们的名称和代号分别是(直线度)、(平面度)、(圆度)、(圆柱度)、(线轮廓度)和(面轮廓度)。

2.几何量公差的跳动公差有2项,它们的名称和代号分别为(圆跳动)和(全跳动)。

3.端面对轴线的垂直度(小)于端面圆跳动。

4.某轴尺寸为Φ10-0.018-0.028 mm ,轴线对基准A 的垂直度公差为Φ0.01 mm ,被测要素给定的尺寸公差和几何公差采用最大实体要求,则垂直度公差是被测要素在(最大实体状态)时给定的。

当轴实际尺寸为(Φ9.972)mm 时,允许的垂直度误差达最大,可达(0.02)mm 。

5.独立原则是指图样上给定的(尺寸)公差与(几何)公差各自独立,分别满足要求的公差原则。

6.包容要求采用(最大实体)边界,最大实体要求采用(最大实体实效)边界。

7.某孔尺寸为Φ40+0.119 +0.030○E mm ,实测得其尺寸为Φ40.09mm ,则其允许的几何误差数值是(Φ0.06)mm ,当孔的尺寸是(Φ40.119)mm 时,允许达到的几何误差数值为最大。

8.某孔尺寸为Φ40+0.119+0.030mm ,轴线直线度公差为 Φ0.005 mm ,实测得其局部实际尺寸为Φ40.09mm ,轴线直线度误差为Φ0.003mm ,则孔的最大实体尺寸是(Φ40.030)mm ,最小实体尺寸是(Φ40.119)mm ,体外作用尺寸是(Φ40.087)mm 。

9.若某轴标注为则该零件的MMS 为(φ30mm ),又称为该零件的(最大)极限尺寸;其LMS 为(φ29.979mm ),又称为该零件的(最小)极限尺寸;零件采用的公差要求为(最大实体要求),若加工后测得某孔的实际尺寸为φ29.98mm ,直线度误差为0.015mm ,则该零件(是)(是、否)合格。

10.若某孔的尺寸标注为,则该零件采用的公差原则为(最大实体要求),其MMS 为(Φ20mm ),此时的几何公差值为(Φ0.02)mm ;其LMS 为(Φ20.05mm )mm ,此时的形位公差值为(Φ0.07)mm ;其MMVS 为(Φ19.98)mm 。

化工原理第四章习题及答案

化工原理第四章习题及答案

第四章传热一、名词解释1、导热若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导(导热)。

2、对流传热热对流是指流体各部分之间发生相对位移、冷热流体质点相互掺混所引起的热量传递。

热对流仅发生在流体之中, 而且必然伴随有导热现象。

3、辐射传热任何物体, 只要其绝对温度不为零度(0K), 都会不停地以电磁波的形式向外界辐射能量, 同时又不断地吸收来自外界物体的辐射能, 当物体向外界辐射的能量与其从外界吸收的辐射能不相等时, 该物体就与外界产生热量的传递。

这种传热方式称为热辐射。

4、传热速率单位时间通过单位传热面积所传递的热量(W/m2)5、等温面温度场中将温度相同的点连起来,形成等温面。

等温面不相交。

二、单选择题1、判断下面的说法哪一种是错误的()。

BA 在一定的温度下,辐射能力越大的物体,其黑度越大;B 在同一温度下,物体吸收率A与黑度ε在数值上相等,因此A与ε的物理意义相同;C 黑度越大的物体吸收热辐射的能力越强;D 黑度反映了实际物体接近黑体的程度。

2、在房间中利用火炉进行取暖时,其传热方式为_______ 。

CA 传导和对流B 传导和辐射C 对流和辐射3、沸腾传热的壁面与沸腾流体温度增大,其给热系数_________。

CA 增大B 减小C 只在某范围变大D 沸腾传热系数与过热度无关4、在温度T时,已知耐火砖辐射能力大于磨光铜的辐射能力,耐火砖的黑度是下列三数值之一,其黑度为_______。

AA 0.85B 0.03C 15、已知当温度为T时,耐火砖的辐射能力大于铝板的辐射能力,则铝的黑度______耐火砖的黑度。

DA 大于B 等于C 不能确定是否大于D 小于6、多层间壁传热时,各层的温度降与各相应层的热阻_____。

AA 成正比B 成反比C 没关系7、在列管换热器中,用饱和蒸汽加热空气,下面两项判断是否正确: A甲、传热管的壁温将接近加热蒸汽温度;乙、换热器总传热系数K将接近空气侧的对流给热系数。

高等数学 线性代数 习题答案第四章

高等数学 线性代数 习题答案第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()ln sin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x = 即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -= () f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20ex f x x '==得 0x =,即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2 上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)()f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导.又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2.3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理 ()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f ff x x -'=+==-则x =,取ξ=,即存在(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x 在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=. 即 ()()0e e f f ξξξξ'+= 而0e ξ≠ 故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++= 有一个正根x 0,证明方程12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根. 证: 令1011()…nn n f x a x a xa x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++= 的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ)= 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x →+-,(a >0); (5) 0ln lim cot x xx+→; (6) 0lim sin ln x x x +→; (7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--; (9) 10lim(1sin )xx x →+; (10) 2lim (arctan )πx x x →+∞(11) c s c 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) lim )x x →+∞; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦.解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x x x xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x xxxx x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]200021()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x ++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x →+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++0002cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========221lim12lim(1)arctan (1)arctan πeeex x x xx xx→+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====2221111220000221()(12)lim lim lim lim 11()e e ee x xx x x x x x x x x x→→→→'⋅====∞'202211ln(1)1ln(1)1limlim lim 0(13)lim )lim1111lim31(14)lim (1) eeee x x x x x x x x xx xxx x x x x →→→+∞→+∞+-+-→=++===⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设 21lim 1x x mx nx →++-=5,求常数m ,n 的值.解: 1lim(1)0, x x →-= 而21lim 51x x mx n x →++=-21lim()0 x x mx n →∴++= 且21()lim 5(1)x x mx n x →'++='-即 10m n ++= 且 1l i m (2)5x x m →+= 即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin lim lim(1cos )x x x xx x→∞→∞+=+因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''=5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x '-''==当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) … n n n n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++ (01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+- 而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限:(1) 30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-; (3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '< ∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时, ()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x = 在()0,1上,()0f x '<;在()1,+∞上,()0f x '> ∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3)()()0f x f x ''=≠ 但当2x =时,()f x '不存在, 在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<, ∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x xx f x x xx ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x = 在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '< ∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-. 2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x x >0; (2)2ln(1)(0)2 x x x x x -<+<>.证: (1) 令 1()12f x x =+则1()(12f x '=, 当 0x >时1,()0f x '<>即()f x 单调递增,从而()(0)0f x f >=,故112x +>. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =.又()2sin 3sin 3,()03πf x x x f ''''=--=<故函数在3πx =处取得极大值,极大值为()3πf =习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润.2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=- 令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯= 2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小,由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量70*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次)(3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=,34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα==, 所以,当2πα=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rtrtA t k k -=⋅=令()0rt r A t k ⎫'-==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q k v = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f = 所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2l n (1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x = 当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞ ;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x x y e x x x ey e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点. 2. 利用函数的凸性证明下列不等式:(1) e e 2x y +>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e x f x =,则()e x f x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠.(2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而232,62y a x b x y a x b'''=+=+ 所以 620a b += 又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2)y =22x -; (3) y = 23xx -; (4) y = 221x x -.解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又2lim 0x x x y x -→∞→∞== ,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线. (3) 221limlim 0331x x xxx x →∞→∞==--,所以有水平渐近线0y =,又函数23x y x ==-有两个间断点x x ==,且22,,3x x x xx x=∞=∞--所以有两条垂直渐近线x =x =又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim 21x x x y x →∞→∞==∞- ,所以没有水平渐近线,又 函数221x y x =-有间断点12x =,且212lim 21x x x →=∞-,所以有垂直渐近线12x =. 又 1limlim 212x x y x x x →∞→∞==- 2111l i m ()l i m ()l i m 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形: (1) f (x ) =21xx+; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=- ,故曲线关于原点对称.(ii) 21lim limlim 012x x x x y x x→∞→∞→∞===+ ,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,x =.图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x = .(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3。

第四章 消化系统习题及答案

第四章 消化系统习题及答案
2.消化、呼吸、泌尿、生殖
3.消化管、消化腺
4.口腔、咽、食管、胃、小肠、大肠
5.脐与右髂前上棘连线的中、外1/3
6.贲门部、胃底、胃体、幽门部、贲门、幽门
7.盲肠、结肠、直肠、肛管
8. 十二指肠、空肠、回肠
二、选择题(单项或多项选择)
1.C 2.D 3.D 4.B 5.C 6.AB 7.BC 8.BD 9.ABCD 10.BCD 11.ACD 12.BCD
6.消化系统由口、咽、食管、胃、小肠、大肠构成。( )
7.咽是消化和呼吸系统共同的通道。( )
四.名词解析
1.内脏
2.肝门
3.肝外胆道系统
五.问答题
1、试论与小肠强大的消化吸收功能相适应的解剖结构有哪些?
第四章 消化系统习题答案一.填空题
1.胸腔,腹腔,盆腔,管道,消化系统,泌尿系统,生殖系统,呼吸系统
一、填空题
1.内脏是指主要位于( )、( )、和( )内,并有( )管道直接或间接与外界相同的器官。它包括( )、( )、( )和 ( )四大系统。
2.( )系统、( )系统、( )系统和( )系统合称为内脏。
3.消化系统包括( )和( )。
4.消化管包括( )、( )、( )、( )、( )和( )等器官。
三.判断题
1. × 2. √ 3. × 4. × 5. √ 6. × 7. √
四、名词解释
1.主要指位于胸腔、腹腔和盆腔内并有管道直接或间接与外界相通的器官,包括消化系统、呼吸系统、泌尿系统和生殖系统。
2.位于肝膈面中间的横沟处,是门静脉、肝动脉、肝管、淋巴管和神经出入肝的门户。
3.包括肝左管、肝右管、肝总管、胆囊、胆囊管和胆总管。胆汁出肝后,经肝外胆道系统运输至十二指肠。

第四章习题参考答案

第四章习题参考答案

4-1题答:金属电阻应变片与半导体应变片的区别:工作原理不同:金属电阻应变片是基于金属的电阻应变效应,即金属丝在外力作用下产生机械变形时,其电阻阻值发生变化。

半导体应变片是基于晶体的压阻效应,即单晶体材料在沿某一方向受到外力作用时,电阻率发生相应变化而引起电阻阻值变化。

各自优缺点:金属电阻应变片灵敏度一般在1.7-4.0之间,但温度稳定性较好,用于测量精度要求较高场合;具有机械滞后性、蠕变等缺点。

半导体应变片的灵敏度比金属电阻应变片的高50-70倍,横向效应和机械滞后小、体积小,但温度温度性差,在较大应变下,灵敏度的非线性误差大。

如何选用:在温度变化较大,要求精度较高且应变变形相对较大的场合选用金属电阻应变片;在温度变化较小,应变变形较小的情况下优选半导体应变片。

4-2题 解:62120100010024.R K R KR R-∆=ε⇒∆=ε=⨯⨯⨯=Ω (1)1500125125120...U I A mA R ==== (2)15001247512475120024....U I A mA R R ====+∆+ (3)125124750025...I mA ∆=-=(4)示值差异太小,无法区分。

4-3题答:差动传感器的优点:测量精度高、线性范围大、稳定性好和使用方便等优点。

原理:将两个结构相同的传感器正反相连组成一个差动传感器,当活动端(如衔铁)处于中间位置时,位移为零,输出电压为零(处于平衡态)。

当活动端向一个方向偏移时,其中一个传感器感受正偏移,另一个传感器感受等值的负偏移,由于两个传感器是反向串接,则实际输出量是由一个传感器感受变化的两倍,且将由外界引起的等值偏差抵消掉,起到补偿作用,因而精度较高、线性范围大、稳定性好。

4-4题 解:312222221088510449403C A r PF --∆δ∆δ±∆=-ε=-⨯⨯π⨯⨯=-π⨯⨯=δδ... 4-5题答:压电效应:某些材料,当沿着一定方向受到作用力时,不但产生机械变形,而且内部极化,表面有电荷出现,当外力去掉后,又重新恢复到不带电状态的现象。

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。

第四章习题及答案(审计学)

第四章习题及答案(审计学)

4.2.1填空题1.审计准则是人们在长期的审计实践中摸索、总结出来的,它既是一个,又是一个。

2.审计准则是专业审计人员在实施审计工作时必须恪守的最高,它是____的权威性判断标准。

3.审计准则既对____提出要求,也对社会提供——保证。

4.在西方国家,审计准则是20世纪____才开始出现的,美国在就开始研究和制定审计准则。

5.西方国家的审计准则,大多是以____为蓝本加以补充、修正而成的;国际组织制定的审计准则,以国际会计师联合会的____最具代表性。

6.美国的民间审计准则称为____,它主要适用于民间审计所从事的____。

7.国际性组织制定的国际审计准则,目前已取得的主要成果有____和____。

8.中国注册会计师执业准则是由____颁发,并适用于____。

9.我国注册会计师执业准则建设过程主要包括____、____、____和____。

10.我国注册会计师执业准则主要有____和____。

11.审计依据是____、____的客观标准。

12.____解决如何进行审计问题,是审计人员行动的指南和规范;___ _则解决审计人员根据什么标准提出这样或那样的审计意见。

13.审计依据按其来源分类,可分为____制定的审计依据和____制定的审计依据。

14.从法规和规章制度的制定过程来看,的法规、制度不能违反___ _的法规、制度。

15.运用审计依据的具体问题具体分析的原则时,应坚持____、____和国家法规与地方法规发生矛盾时要慎重处理等原则。

4.2.2 判断题(正确的剡“√”,错误的划“×”)1.审计准则是审计理论的重要组成部分,但对审计人员并无制约作用。

( )2.审计准则是通过审计人员执行审计程序体现出来的。

( )3.民间审计人员有了会计准则,对其审计工作提供了方便,因而就不需要审计准则了。

( )4.审计准则的实施使审计人员在从事审计工作时有了规范和指南,便于考核审计工作质量,推动了审计事业的发展。

第四章 习题及参考答案

第四章 习题及参考答案

第四章抽样与抽样估计一、单项选择题1、实际工作中,小样本是指()A、样本容量大于30的样本B、样本容量小于30的样本C、样本容量等于30的样本D、样本容量小于等于30的样本2、从5个字母中随机抽取2个字母作为样本,采用重复抽样,考虑顺序,则可能的样本个数为()A、10个B、20个C、25个D、30个3、当总体方差未知,且样本容量小于30时,进行正态总体均值的区间估计应采用的临界值为()A、F值B、Z值C、t值D、2x值4、当总体方差已知,无论样本容量n的大小如何,进行正态总体均值的区间估计应采用的临界值为()A、F值B、Z值C、t值D、2x值5、在总体内部情况复杂、且各单位之间差异程度大、单位数又多的情况下,宜采用()A、等距抽样B、整群抽样C、简单随机抽样D、类型抽样6、根据重复抽样的资料,甲单位工人工资方差为25,乙单位为100,乙单位抽的人数比甲单位多3倍,则抽样平均误差()A、甲单位较大B、甲单位较大C、无法判断D、甲、乙单位相同7、某学校在全校学生中随机重复抽取100人调查身高,计算出抽样平均误差为5cm。

如果改用不重复抽样方法,在其他条件不变时,其抽样平均误差将会()A、大于5cmB、小于5cmC、等于5cmD、不确定8、纯随机重复抽样条件下,样本容量扩大为原来的9倍,其它条件不变,则()A、抽样允许误差不变B、抽样允许误差缩小为原来的九分之一C、抽样允许误差缩小为原来的三分之一D、抽样允许误差增大为原来的九倍二、多项选择题1、影响抽样平均误差的因素主要有()A、总体方差或标准差B、样本容量C、抽样方法D、抽样组织方式E、抽样的对象2、下列说法中错误的有()A、抽样误差是不可避免的B、抽样误差是可以避免的C、抽样误差可以计算但不能加以控制机D、抽样误差是由于抽样的随机性而产生的样本估计量与总体参数之间的代表性误差 E、抽样误差是指登记性误差3、评价估计量的优劣常用下列三个标准()A、一致性B、有效性C、合理性D、代表性E、无偏性4、抽样推断过程包括相互联系的三项内容()A、随机抽样B、统计估计C、假设检验D、抽样精度E、置信度5、下列说法正确的有()A、总体参数是唯一的、确定的,但又是未知的B、总体参数是随机变量C、样本统计量是随机变量D、样本统计量是唯一的、确定的E、样本所包含的总体单位个数称为样本容量6、概率抽样最基本的组织方式有()A、简单随机抽样B、分层抽样C、等距抽样D、整群抽样E、配额抽样7、抽样估计中的抽样误差()A、无法避免B、可以控制C、只能在估计结束才能知道D、可以计算E、不可控制8、抽样平均误差是指()A、所有可能样本的样本指标与总体指标的平均离差B、所有可能样本的样本指标对总体指标的标准差C、已抽出样本的标准差D、等价于极限误差E、已抽出样本的平均差三、填空题1、概率抽样也叫随机抽样,是指按照原则抽取样本。

解析几何版第四章《柱面、锥面、旋转曲面与二次曲面》课后习题答案

解析几何版第四章《柱面、锥面、旋转曲面与二次曲面》课后习题答案

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于轴;(2)母线平行于直线,试求这些柱面的方程。

x c z y x ==,解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去,得到:x 25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点,过且平行于直线的直线方程为:),,(0000z y x M 0M ⎩⎨⎧==c z yx ⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000而在准线上,所以0M ⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去后得到:t 02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。

2、设柱面的准线为,母线垂直于准线所在的平面,求这柱面的方程。

⎩⎨⎧=+=zx z y x 222解:由题意知:母线平行于矢量{}2,0,1-任取准线上一点,过的母线方程为:),,(0000z y x M 0M ⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z y y tx x tz z y y t x x 2200000而在准线上,所以:0M ⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去,得到:t 010*******22=--+++z x xz z y x 此即为所求的方程。

3、求过三条平行直线的圆柱面方程。

211,11,-=+=--==+==z y x z y x z y x 与解:过原点且垂直于已知三直线的平面为:它与已知直线的交点为0=++z y x ,这三点所定的在平面上的圆的圆心为())34,31,31(),1,0,1(,0,0,0--0=++z y x ,圆的方程为:1513,1511,152(0--M ⎪⎩⎪⎨⎧=++=-++++075981513(1511(152(222z y x z y x 此即为欲求的圆柱面的准线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章的习题答案 4.1.1分析:晶体管工作于放大状态时,基极电位居中;与其基极电位相差0.6~0.8V (硅管)或0.2~0.3V (锗管)的那个电极是发射极;余下的管脚为集电极;集电极电位最高的是NPN 型,集电极电位最低的是PNP 型。

也可以由V BE 的极性来判断是NPN 型还是PNP 型:V BE >0的管子为NPN 型,V BE <0的管子为PNP 型。

解:V C 居中,电极C 为基极;V B 与V C 相差0.2V ,电极B 为发射极;余下的电极A 为集电极;因为V BE = - 0.2V ,所以该管为PNP 型锗管。

4.1.2分析:NPN 型晶体管的i C 和i B 流向性同,均流入管子,而i E 从管子流出;PNP 型晶体管的i C 和i B 流向性同,均从管子流出,而i E 流入管子。

由于i E =i C +i B ,所以在三个电极的电流中,i E 最大,i B 远远小于i E 和i C 。

解:电极C 的电流I C 值最大,是发射极;电极B 的电流I B 值最小,是基极;余下的电极A 为集电极。

因为发射极电流为“+”,表示其实际流向与图中的规定正方向相同,从管子流出,所以是NPN 管。

当管子的I CBO 可以忽略时,管子的直流放大系数5004.02===BC I I β4.2.1解:图(a ):无放大作用。

因为T 是一个NPN 型BJT ,电路中V CC 正极接地,使管子的发射结反偏,而基极接在V CC 的负极,使管子的集电结零偏,管子的工作状态属于“倒置状态”的一种,即把管子的发射结当作集电结、把集电结当作发射结。

这种偏置使管子的β很小,发射结耐压一般较低容易因反偏而击穿,现又因作发射结使用的集电结零偏,信号被短路,故无放大作用。

图(b ):电路正确,只要参数合适,就有放大作用。

图(c ):无放大作用。

因为R b 的下端错接在C b1的左侧,使I B =0,管子工作在截止状态。

图(d ):无放大作用。

因为V CC 极性接反。

4.2.3分析:放大区:发射结正偏,集电结反偏 饱和区:发射结正偏,集电结正偏 截止区:发射结反偏,集电结反偏解:(a )(b )放大区;(c )(d )饱和区;(d )虽然BJT 的集电结反偏、发射结正偏,但V BE =V B ﹣V E =0.4V ,小于硅管的死区电压,所以管子工作于死区,仍属截止状态。

4.3.1由BJT 的输出特性可见,相邻两条输出特性对应的△i B =10μA 、△i C =2mA ,故200101023=⨯=∆∆=-BC i i β由BJT 的输出特性可见,当i C =10mA 时,V CES ≈0.4V ;当i C =20mA 时,V CES ≈0.8V 。

4.3.2解:由图题4.3.1所示的输出特性可见,当i B =20μA 、I CQ =4mA , V R I V V C CQ CC CEQ 95.1415=⨯-=-= 4.3.5解:(1)固定偏流放大电路的直流负载线(斜率绝对值比交流负载线小)与横轴的交点对应的νCE 值就是V CC ,故由图题4.3.5(b )可得V CC =6V ,由Q 点坐标得:V V mA I A I CEQ CQ BQ 3120===、、μ。

(2)由图题4.3.5(b )可得I S =2mA (直流负载线与纵轴的交点),故Ω===K I V R sCC c 326Ω=⨯=≈-=-K I V I V V R BQCC BQBECC b 300102066(3)固定偏流放大电路的输出电压最大不失真幅度等于(V CE-V CES )与I C R L ′中偏小的那个值。

其中(V CE -V CES )=3-0.7=2.3V ;又从图题4.3.5可见,交流负载线与横轴交点对应的νCE 值为4.5V ,故I C R L ′=4.5-3=1.5V 。

所以该电路输出电压最大不失真幅度等于1.5V 。

(4)由于Q 点在交流负载线中点的下方,故基极正弦电流的最大幅值I bm =I BQ =20µA 。

4.3.8解:小信号等效电路如解图4.3.8所示(a)(b)(C)(d)4.3.9解:(1)mA R V R V V I bCC bBECC BQ 04.030012==≈-=mA I I BQ CQ 204.050=⨯==β V R I V V c CQ CC CEQ 44212=⨯-=-= (2)小信号等小电路如解图4.3.9所示:解图4.3.9 (3)Ω=⨯+=++=86322651200)1('EQ T bb be I V r r β(4)9.11510863)4//4(50)//(3-=⨯⨯-=-=-beL c v r R R A βΩ=≈=863//be be b i r r R R4.73)9.115(863500863-=-⨯+=+=⋅==vis i si io so vs A R R R v v v v v v A4.3.11分析:放大电路输出波形产生非线性失真时,其类型与管子类型也有关系。

共射极放大电路的输出波形出现削底时,对于NPN 管,是输入正半周信号使管子c i 增大,工作点进入饱和区产生的饱和失真;对于PNP 管,是输入正半周信号使管子c i 减小,工作点进入截止区产生的截止失真。

解:(1)mA R V V I bBECC BQ 038.0300)7.0(12-≈---=-=mA I I BQ CQ 8.3)038.0(100-=-⨯==β V R I V V c CQ CC CEQ 4.42)8.3(12-=⨯---=-= (2)小信号等效电路如解图4.3.11所示:解图4.3.11其中Ω≈⨯+=++=K I mV r EQ be 89.08.326101200||26)1(200β(3)8.14989.0)4//2(100)//(-=⨯-=-=beL c v r R R A βΩ=≈=K r r R R be be b i 89.0// Ω=≈K R R c o 2(4)产生的是截止失真,克服截止失真的方法有减小b R 、增大c R 或换用β大的管子。

4.3.12解:(1)1)(R V V I I BE CC BQ CQ -==ββ)(32R R I V V CQ CC CEQ +-=(2) beL v r R R A )//(2β-=其中 ||26)1(200EQ be I mV r β++=be be i r r R R ≈=//1 2R R o ≈ (3)当电容C 3开路时 beL v r R R R A ]//)[(32+-=β,电压增益的模增大32R R R o +=也增大。

4.4.3解:(1)V V R R R V CC b b b BQ 416206020212=⨯+=+=mA R V V I I e BEBQ EQ CQ 65.127.04=-=-=≈A mA I I CQBQ μβ28028.06065.1=≈==V R R I V V e c CQ CC CEQ 75.7)23(65.116)(=+⨯-=+-= (2)Ω=⨯+=++=K I mV r EQ be 161.165.12661200||26)1(200β(3) 10316.1)6//3(60)//(-≈⨯-=-=beL c v r R R A β(4)当V V CE Q 4=时 mA R R V V I ec CEQ CC EQ 4.223416=+-=+-≈V R I V V V V e EQ BEQ EQ BEQ BQ 5.524.27.0=⨯+=+=+=21b BQ b BQ CC R V R V V ⋅=-Ω=⋅-=⋅-=K R V V V R b BQBQCC b 2.38205.55.516214.4.4(1)小信号等效电路如解图4.4.4所示解图4.4.479.210103312-=⨯+-=BQ VmA R V V I eBEQBQ EQ 39.12.03.1)7.0(79.2-=+---=-=(2)Ω≈⨯++=++=115439.126)501(200||26)1(200EQ be I mV r βΩ≈++=K R r R R R e be b b i 6.4])1(//[//121β Ω==K R R c o 3.3(3)81.8200)501(115410)1.5//3.3(50)1()//(1≈⨯+=⨯⨯-=++-==e be L c io v R r R R v v A ββ8.7)81.8(6.06.46.4-≈-⨯+=+=⋅==v si i si io so vs A R R R v v v v v v A输出电压 mV v A v s vs o 117=⨯=4.5.2解:(1)按惯例设以流入管子的电流方向为CQ I 、BQ I 的假定正方向,对于PNP 型管,CQ I 、BQ I 的实际流向与假定正方向相反,它们的值为负。

A R R V I eb EEBQ μβ231.55126012)1(-=⨯+-=++-=mA I I BQ CQ 15.1)1023(503-=⨯-⨯==-βV R I V V e CQ EE CEQ 14.6)1.515.112()(-=⨯--=--=(2) Ω≈++=K I mV r EQ be 35.126)1(200β 99.0)1.5//1.5(5135.1)1.5//1.5(51)//)(1()//)(1(≈⨯+⨯=+++=L e be L e v R R r R R A ββΩ≈⨯+=++=K R R r R R L e be b i 3.87)]1.5//1.5(5135.1//[260)]//)(1(//[β Ω≈+=++=365135.1)260//5.0(//1.51)//(//βbeb s e o r R R R R(3)mV R R R v A v A v is i s v i v o 1973.875.03.8720099.0≈+⨯⨯=+==4.6.1解:(1)静态工作点计算mA I I CQ CQ .1021≈≈ V V CQ 3.57.061=-= V V V EQ 7.07.001-=-= 所以 V V V V EQ CQ CEQ 6)7.0(3.5111=--=-=V R I V V C CQ CC CQ 2.10102.1047015322=⨯⨯-=-=- V V V V CQ CQ CEQ 9.43.52.10122=-=-= (2)电压增益 Ω=⨯+=++==45.4572.102610120026)1(20021EQbe be I mV r r β这是一个共射-共基组合放大电路,则有 21v v v A A A = 1)1(21211-≈+-=ββbe be v r r A7.10245.4574701002222≈⨯==be C v r R A β7.1027.102121-=⨯-==v v v A A A Ω=≈54.4571be i r R Ω=≈4702C o R R 4.6.2解:本题为共射-共集电路分析 (1)静态工作点计算 V V R R R V CC b b b BQ 8.215185.0155.7335.72121≈⨯=⨯+=+=mA R V I I e EQ EQ CQ 05.11027.08.27.031111=⨯-=-=≈A I I EQ BQ μβ5.1010005.111==≈V I R R V V EQ e c CC CEQ 55.71005.1101.715)(331111=⨯⨯⨯-=+-=-V I R V V CQ c CC BQ 65.91005.1101.5153312=⨯⨯⨯-=-=-mA R V V I I e be BQ EQ CQ 7.2103.37.065.932222=⨯-=-=≈ V R I V V e EQ CC CEQ 09.6107.2103.31533222=⨯⨯⨯-=-=-(2)电压增益计算 21v v v A A A =Ω=⨯+=++=270005.12610120026)1(20011EQ be I mV r β Ω=+=++=11737.22610120026)1(20021EQ be I mVr β)//)(1()//)(1()]//)(1(//[[222122121L e be L e be e L be c v v v R R r R R r R R r R A A A ββββ+++⋅++-== 183-≈ Ω≈=K R R r R b b be i 88.1////211 Ω=++=611//2212βbe c e o r R R R。

相关文档
最新文档