人类染色体与染色体病解读
《医学遗传学》第四章人类染色体与染色体病
DNA fiber-FISH
3 cosmid from MHC locus 35~40 Kb/cosmid
Development
1. High resolution banding chromosome (HRBC) 2. Microcytogenetics 3. Molecular cytogenetics
Banding Pattern
Band: treated with chemical dyes, the chromosome will appear as a series of alternate dark and light striations.
Q-banding:QM G-banding:pancreatin+Giemsa R-banding:treated specimen+Giemsa or Acridine Orange C-banding:Y chromosome, centromere, secondary constriction T-banding:ending of chromosome
Numerical Abnormality
单倍体: 22+X, 22+Y 二倍体: 44+XX, 44+XY
Numerical Abnormality
Variation in chromosome number can take 2 forms:
整倍体: that which involves whole sets (genomes) of chromosomes
Banding pattern(带型):treated with chemical dyes, 24 types of chromosomes appear its unique striations individually.
《医学遗传学》第四章 人类染色体和染色体病
第四章人类染色体和染色体病The human chromosome and chromosome disease第一节人类染色体的基本特征染色质和染色体人类染色体的数目、结构和形态性染色体和性别决定染色体的研究方法真核生物的基因大部分存在于位于细胞核内的染色体上,故染色体是遗传物质的载体,是人类细胞遗传学的主要研究对象。
通过细胞分裂,遗传物质随着染色体的传递而传递。
一个生物物种的染色体数目、结构、形态是恒定的,构成了生物的遗传特性。
一、染色质和染色体染色质与染色体是遗传物质在细胞周期的不同阶段的不同表现形式。
化学组成相同:(一) 染色质(chromatin)染色质是DNA和蛋白质的复合体。
基本结构单位是核小体。
1.根据核蛋白分子的螺旋化程度及功能状态不同,细胞间期染色质分成两类:常染色质:螺旋程度低,结构松散,具转录活性,常位于细胞核中央。
异染色质:螺旋程度高,结构紧密,不具转录活性,常位于细胞核边缘。
2.异染色质:分为两种结构性异染色质(constitutive heterochromatin):在各种细胞中总是处于凝缩状态,一般为高度重复的DNA序列。
如着丝粒区,端粒区,次缢痕区等。
兼性异染色质(facultative heterochromatin):即功能性异染色质,在特定细胞的某一特定发育阶段,由常染色质凝缩转变而成。
如X染色质。
(二) 性染色质性染色质(sex chromatin) 是在间期细胞核中性染色体显示的一种特殊结构。
1. X 染色质(X chromatin)(1)1949年,雌猫神经细胞内凝缩的深染小体―Barr小体。
Barr小体普遍存在于雌性哺乳动物(包括人类)的间期细胞核中,是一条发生遗传学失活的X 染色体,呈异固缩状态(浓染小体),贴于核膜内侧缘。
(2) Mary Lyon 假说uX染色质的失活发生在胚胎早期(人类在胚胎第十六天)vX染色体的失活是随机的―父方或母方。
3 人类染色体与染色体病
2N
间期细胞
4N
4N
整倍性改变 染 色 体 畸 变 染色体数目畸变
非整倍性改变
染色体结构畸变
2 非整倍体
非整倍体是指一个体细胞内染色体数目比二倍体
增加或减少一条或数条,而不是成倍的增减。染色
体数目少于46条的细胞或个体称亚二倍体,多于46
条的称超二倍体。在亚二倍体中,某对染色体少了
一条(2n-1),称某号染色体的单体。在超二倍体
对这些图形进行染色体数目及形态特征的分析
• 染色体分组 A、B、C、D、E、F、G七组
人类非显带染色体核型描述
正常核型描述: “染色体总数,性染色体组成”
例:46,XX ; 46,XY 异常核型的描述方法不同,例:
45, X:一个体细胞有45条染色体,只有一条X染色体。
47, XXY:一个体细胞中有47条染色体,常染色体正 常,性染色体为XXY。
二倍体(2n=2x):指含有两个染色体组的细胞或
个体。
多倍体(2n=mx,m为≥3的整数):指含有三个或
三个以上染色体组的细胞或个体。
(二)、人类染色体的形态结构
• 每一中期染色体都有两条染色单体构成,它们各
含一条DNA双螺旋链。两条单体仅在着丝粒处互相
连接,该处为染色体的缩窄处,又称为主缢痕。
染色体结构畸变
• p
• q •
短臂
长臂
ter
→
末端
从…到…
“+”和“-”当其放在相应的符号之前,表示增加或丢失了
整条染色体,例如:47,XX,+21;当其放在相应符号之后, 则表示染色体长度的增加或减少,例如:46,XY,5p--。
• •
第六章人类染色体与染色体病
C组 包括6~12号七对染色体和X染色体。为中等大小的亚 中着丝粒染色体,其中第6、7、8、11和X染色体的着丝粒略靠 近中央,短臂相对较长,第9、10、12号染色体短臂相对较短, X染色体大小介于第7和第8号之间。第9号染色体长臂上常有一 明显的次缢痕。 D组 包括13~15号三对染色体。为中等大小的近端着丝粒 染色体,短臂上常有随体。 E组 包括16~18号三对染色体。体积较小,其中第16号为 较小的中央着丝粒染色体,其长臂有时可出现次缢痕。第17、 18号染色体为最小的亚中着丝粒染色体。 F组 包括19~20号两对染色体。为最小的中央着丝粒染色 体。 G组 包括21~22号和Y染色体。为最小的近端着丝粒染色 体,其中2l、22号染色体常具有随体。Y染色体无随体,其两 长臂平行靠拢。
以二倍体为标准,如果体细胞染色体数目超出或少 于2n=46,称为染色体数目畸变。它包括整倍性改变和非 整倍性改变两种形式细胞发生。 (一)整倍性改变 整倍性改变的核型描述方法是:写出此细胞中染色 体的总数,数目后加逗号,然后写出性染色体的组成,如 69,XXY等。
体细胞中染色体数目在二倍体的基础上,以染色体组为单位成组地 增加或减少,称为整倍性改变。整个染色体组减少可形成单倍体,在人 类单倍体个体尚未见报道;整个染色体组增加可形成三倍体、四倍体等 多倍体。 以人为例,三倍体细胞含3个 染色体组,染色体总数为69,四倍 体细胞含有4个染色体组,染色体 总数为92。在人类全身三倍性是致 死的,在流产胎儿中较常见,也是 流产的重要原因之一。 全身四倍体罕见,四倍体以 上未见报道。在自然流产的胎儿中, 多倍体约占22%;在肿瘤等组织中, 常见多倍体细胞。
三倍体核型
多倍体的形成机制是: 1.双雄受精和双雌受精 双雄受精是指受精时两个精 子同时进入一个卵子中;双雌受精指减数分裂时,本应分 给极体的那组染色体仍留在卵子内,形成二倍体的异常卵 子,该卵子与正常精子受精。这两种情况都将形成三倍体 受精卵。 2.核内复制 核内复制是指细胞在一次分裂过程中, 染色体复制二次或二次以上,结果导致核内多倍化现象。 核内复制在体细胞与生殖细胞内均可发生。发生在受精卵 的第一次卵裂,可形成四倍体;发生在生殖细胞形成时, 可形成二倍体的生殖细胞,当与正常的单倍体生殖细胞受 精后,可产生三倍体的受精卵。
人类染色体及染色体病---知识点资料整理总结
人类染色体及染色体病1.染色质和染色体:是细胞核内易被碱性染料染成深色的物质,是遗传物质的存在形式。
●染色质:存在于细胞周期的间期,DNA的螺旋结构松散呈细丝状,形态不规则,弥散在细胞核内。
●染色体:细胞分裂期,染色质高度螺旋折叠而缩短变粗,形成条状或棒状。
组成成分:DNA、组蛋白、非组蛋白、RNA。
●从DNA到染色体的四级结构模型:DNA→核小体→螺线管→超螺线管→染色单体●人的46条染色体中,23条来自父亲,23条来自母亲,为23对染色体,称为二倍体(2×23),精子和卵子称为单倍体。
●人类染色体的结构:主要结构包括染色体臂,着丝粒,初级缢痕,次缢痕,核仁组织区(异染色质区),随体,端粒。
2.分裂中的染色体行为●细胞周期:细胞从前一次有丝分裂结束到下一次有丝分裂完成所经历的全过程。
●有丝分裂期的染色体行为:有丝分裂过程中,体细胞染色体复制1次,细胞分裂1次,得到2个染色体数目与亲代细胞完全相同的子代细胞。
●减数分裂期的染色体行为Ⅰ:Ⅱ:减数分裂过程中,精原细胞或卵母细胞染色体复制1次,细胞分裂2次,最后形成4个精子或1个卵子,细胞内染色体数目减少一半。
3.人类染色体分析技术●人类染色体研究常用技术的发展:低渗法制片技术:1952年,美籍华人徐道觉(T.C.Hsu);使细胞遗传学进入低渗时期。
秋水仙素处理法:1956年,华裔学者蒋有兴(Tjio J.H)和Levan A应用秋水仙素和压片技术,在流产胎儿肺组织中发现人类染色体数是2n=46条,标志着现代细胞遗传学的诞生。
目前国际认可的三大细胞遗传学技术共存:染色体显带技术、FISH、ACMG &ISCA 共同推荐芯片技术。
●人类染色体检测技术:核型分析、荧光原位杂交(Fluorescence in situ hybridization,FISH)、微阵列比较基因组杂交(Array-based Comparative Genomic Hybridization, aCGH)4.核型分析●核型(Karyotype):指一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图像。
人类染色体与染色体病
当前18页,共65页,星期日。
当前19页,共65页,星期日。
当前20页,共65页,星期日。
(2) 三体型(2 n + 1)
例:47, XX(XY),+21( 21三体) 47, XXX
❖非整倍体产生的机理
① 减数分裂染色体不分离
② 减数分裂染色体丢失
当前21页,共65页,星期日。
精(卵)原细胞
3 . 倒位 ( inv):
某一染色体中间片段发生两个 断裂,断片倒转180°后重接。
p 21
q 31
()
2号
46, XY, inv ( 2 ) ( p 21q 31 )
4.易位 (t): 一条染色体的断片接到另一条
⑴ 单方易位(转位)
染色体上
当前31页,共65页,星期日。
⑵ 相互易位(平衡易位):
(6)T带 加热后吉姆萨染色 可使染色体末端端粒特异 性深染。用以分析染色体末端有无异常。
(7)高分辨G带 应用细胞增殖同步化技术和秋水仙碱 短时间处理以及改进的显带技术。 鉴别更微小的染色 体结构畸变、更准确的进行基因定位以及肿瘤染色体研 究。
当前9页,共65页,星期日。
(二)染色体显带核型的命名
❖ 临床表现:主要有性发育不全或两性畸形 ❖ 种类:
(一) 性染色体数目畸变引起的疾病:临床案例有 先天性睾丸发育不全综合征 、 先天性卵巢发育不全综合 征 、 X三体型综合征等
(二) 性染色体结构畸变引起的疾病: 临床案例有脆 性X染色体综合征等
(三) 两性畸形 :分真两性畸形和假两性畸形
当前52页,共65页,星期日。
Ø两条染色体断裂后相互交换无着丝粒
断片后重接
q 21
q 31
染色体病名词解释遗传学
染色体病名词解释遗传学
染色体疾病是指由染色体结构或数量异常引起的一类遗传性疾病。
人类细胞中的染色体通常存在于成对状态,即每个细胞核中都包含有
23对染色体,其中22对为非性染色体(自动体染色体),另外一对为性染色体(性别染色体)。
染色体疾病可以分为两类:数目异常和结构异常。
数目异常包括
染色体缺失或多余,例如唐氏综合征(三体综合征)是由于存在于21
号染色体的三条染色体而引起的。
结构异常通常是染色体断裂、重组
或重排所致,导致染色体上的基因缺失、重复、倒位、移位或融合等,例如克拉伯综合征是由于某个染色体片段上几个基因的缺失而引起的。
染色体疾病的表现形式多种多样,包括先天性畸形、智力发育迟缓、肌肉松弛、器官功能异常等。
这些疾病一般是由于胚胎发育过程
中染色体异常产生的,而不是后天环境因素引起的。
值得注意的是,染色体疾病属于遗传性疾病,通常是由于父母之
一或双方染色体异常引起的遗传突变。
因此,对有染色体疾病家族史
的患者,在生育前进行咨询和遗传咨询是非常重要的。
此外,染色体疾病的研究对于遗传学的发展具有重要意义。
通过
对染色体疾病的研究,可以深入了解染色体的结构、功能以及遗传规律,进一步推动遗传学研究的发展,有助于提高对遗传性疾病的诊断、预防和治疗水平。
人类染色体和染色体病教学课件ppt
xx年xx月xx日
人类染色体和染色体病教学课件ppt
CATALOGUE
目录
人类染色体概述染色体疾病的种类与特点染色体疾病的遗传机制染色体疾病的诊断与治疗人类染色体研究的前沿技术人类染色体疾病研究的挑战与未来发展
01
人类染色体概述
染色体是细胞核中容易被碱性染料染成深色的物质,由DNA和组蛋白构成,是遗传信息的主要载体。
染色体疾病的特点与危害
03
染色体疾病的遗传机制
遗传因子是决定生物性状的基本单位,它既存在于细胞核DNA上,又存在于细胞质DNA上。
遗传因子
遗传因子可以控制生物性状,具有传递性,不可改变性和可分离性等特点。
遗传因子的特点
遗传因子的概念与特点
染色体数目异常
染色体数目异常是指染色体数目增多或减少,从而引起基因数目的变化。
染色体定义
根据染色体形态、结构和功能,可以将其分为常染色体和性染色体。男性有一对X染色体和一对Y染色体,女性有一对X染色体和一对常染色体。
染色体种类
染色体的定义和种类
染色体组成
染色体由DNA、组蛋白、非组蛋白和少量RNA组成。
染色体结构
染色体由核膜、核仁、染色质和端粒等结构组成。染色质是DNA和组蛋白的复合体,是遗传信息的主要载体;端粒位于染色体的末端,对维持染色体的稳定性和完整性具有重要作用。
基因组测序技术
基因表达谱
通过检测基因在不同条件下的表达水平,揭示基因与细胞功能之间的关系。
蛋白质组学
研究蛋白质的表达、修饰和相互作用,深入了解细胞内复杂生物过程。
表型组技术
通过建立和利用特定细胞系,研究特定生物学过程和疾病机制。
细胞系
利用细胞培养和组织工程技术,构建仿生生物材料、组织或器官,用于疾病治疗和药物筛选等领域。
人类染色体和染色体病教学课件
人类染色体和染色体病教学课件pptxx年xx月xx日contents •人类染色体概述•人类染色体异常•染色体疾病的诊断与治疗•染色体疾病的遗传咨询•染色体研究前景及展望•教学总结与回顾目录01人类染色体概述染色体是细胞核中容易被碱性染料染成深色的物质,由DNA 和组蛋白构成,是遗传信息的主要载体。
染色体定义根据国际命名原则,人类染色体可分为A~G共7个组,其中常染色体用阿拉伯数字表示,性染色体用英文缩写表示。
染色体种类染色体的定义和种类1染色体的组成和结构23人类染色体由核膜、核仁、染色质和端粒等结构组成。
染色体组成染色质主要由DNA和组蛋白组成,还包含少量非组蛋白和游离的碱基。
染色质成分人类染色体可分为核心区和异染色质区,其中核心区是染色质的基本结构,而异染色质区则富含非组蛋白。
染色体结构染色体复制在细胞分裂间期,DNA进行复制,同时组蛋白也会相应合成,从而形成染色单体。
染色体分裂在细胞分裂期,染色体会发生分裂,其中减数分裂最为复杂,涉及到同源染色体分离和非同源染色体自由组合等过程。
染色体的复制与分裂02人类染色体异常缺失染色体部分片段丢失,导致基因丢失或缺陷。
总结词染色体结构异常是指染色体发生缺失、重复、倒位或易位等变异。
重复染色体上出现重复的基因片段,导致基因过度表达或缺陷。
易位染色体之间发生交换片段,导致基因位置和表达异常。
倒位染色体上基因顺序发生颠倒,导致基因表达异常或缺陷。
三体综合征由于增加一条染色体而导致的综合征。
缺失综合征由于缺失某条染色体而导致的综合征。
多倍体细胞中存在三个或更多染色体组的个体称为多倍体。
总结词染色体数目异常是指染色体组、单个染色体或染色体片段的增加或减少。
非整倍体染色体组、单个染色体或染色体片段的增加或减少导致非整倍体。
总结词染色体连锁遗传是指某种遗传特征或疾病与特定染色体上的基因相关联的现象。
与X染色体相关的遗传病,如血友病、红绿色盲等。
与常染色体相关的显性遗传病,如多指症、先天性心脏病等。
人类染色体与染色体病
基因检测
利用基因测序技术检测与染色 体异常相关的基因突变。
产前诊断
通过羊水穿刺、脐血取样等方 法,对胎儿的染色体进行检测 ,以早期发现染色体异常。
产前诊断和遗传咨询
产,避免出生 缺陷。
遗传咨询
遗传咨询师会根据家族遗传病史、个体表型特征以及产前诊断结果,为家长提供 专业建议和生育指导,帮助他们了解染色体异常的风险和应对措施。
化学物质
某些化学物质如农药、染料等可能引起染色体变异,导致染色体疾 病。
病毒和细菌感染
某些病毒和细菌感染可能导致染色体变异,如风疹病毒、巨细胞病 毒等。
高龄孕妇和染色体病风险
卵子老化
随着年龄增长,卵子质量下降,染色体异常的风险增加。
遗传物质突变
高龄孕妇的卵子中可能出现遗传物质突变,导致后代患染色体疾病 的风险增加。
染色体病的预防措施和建议
1 2 3
遗传咨询
通过遗传咨询了解家族遗传病史,评估风险,制 定生育计划,避免遗传性疾病的传播。
产前诊断
通过产前诊断技术,如羊水穿刺、脐血取样和基 因检测等,检测胎儿染色体异常,以便及时采取 干预措施。
健康生活方式
保持健康的生活方式,如合理饮食、适量运动、 戒烟限酒等,有助于降低染色体异常的发生风险 。
至关重要的作用。
染色体还参与细胞分裂和增殖过 程中的基因表达调控,影响细胞 分化、凋亡和免疫反应等生物学
过程。
染色体的复制和分裂
染色体的复制发生在细胞分裂间期,通过DNA的复制和组蛋白的合成,形成染色质 。
在细胞分裂期,染色质经过高度螺旋化形成染色体,经过分裂和分配,最终形成两 个子细胞的染色体组。
特殊面容
部分染色体异常可能导致特殊 面容,如唐氏综合征的典型面 容。
人类染色体异常与遗传疾病
人类染色体异常与遗传疾病人类染色体异常是指人体细胞染色体数量或结构的异常,这些异常可能导致一些遗传疾病的发生。
这些遗传疾病既可以是染色体异常本身引起的,也可以是染色体异常导致基因表达的改变引起的。
在本文中,我们将探讨人类染色体异常的形成原因,以及其与遗传疾病的关系。
染色体异常的形成原因人类体细胞每个核内都存在23对染色体,共46条染色体。
这些染色体成对出现,分别来自父母双亲。
染色体异常可以分为染色体数量异常和染色体结构异常两种。
染色体数量异常是指细胞染色体数量发生改变,包括染色体数目过多、过少和不整倍体等。
最常见的染色体数量异常是唐氏综合症,患者由于受到了21号染色体三倍体的影响,导致智力发育迟缓、面容异常等一系列症状。
染色体结构异常是指染色体上出现了缺失、重复、倒位、串联等不正常的结构。
染色体结构异常较为复杂,分为交错型和不交错型两种。
交错型染色体异常是指两条染色体上某一部位进行交换,此时往往会导致染色体上的基因排列发生变化,进而导致遗传疾病的发生。
不交错型染色体异常则更加罕见,指染色体上产生了本来不存在的新的结构,这种情况下染色体上的重要基因往往会受到影响。
染色体异常与遗传疾病的关系染色体异常是遗传疾病的重要原因之一,伴随染色体异常而来的遗传疾病也多种多样。
下面我们就对一些常见的染色体异常及其相关遗传疾病进行简要介绍。
1. 唐氏综合症:唐氏综合症是由21号染色体三倍体引起的,患者智力低下、言语受限,同时还伴随着面容异常、身材矮小等症状。
2. 爱德华氏综合症:爱德华氏综合症是由18号染色体三倍体引起的,患者智力低下、面容异常、先天性心脏病等症状表现出来。
3. 织线盘多聚症:织线盘多聚症是由16号或22号染色体的缺失所引起的,导致患者出现短暂性偏瘫、惊厥、运动协调障碍等症状。
4. 米勒-戈列酶缺乏症:米勒-戈列酶缺乏症是由15号染色体的缺失或重复所引起的,这种疾病可能导致胎儿的成长受到阻碍,同时还会引起身体各个器官的缺陷。
高三生物教案:剖析染色体变异与人类疾病的关联
注:本文内容纯属虚构,仅供参考随着现代生物学的发展,研究染色体变异与人类疾病的关联越来越引起人们的关注。
在高三生物课中,解析染色体变异与人类疾病的关联是十分重要的一个知识点。
一、染色体变异我们知道,染色体是细胞质内的一种细长的染色体。
在人类的细胞中,正常情况下每个细胞都应该含有46条染色体,其中有22对体染色体和一对性染色体。
而染色体的变异指的就是在这个正常状态下,由于基因突变等原因,导致染色体数量或结构发生变化。
染色体变异可以分为数量和结构上的变异两种类型。
数量上的染色体变异包括:1. 倍数性染色体变异:就是人体细胞中的染色体数目不是46条,而是染色体增多或减少的情况。
2. 单体性染色体变异:人体细胞的某一条染色体数目发生异常,称为单体性染色体变异。
结构上的染色体变异包括:1. 倒位变异:在染色体的同一染色体上,某个区域颠倒的排列。
2. 重复变异:染色体上的一段基因重复出现。
3. 缺失变异:在染色体上的一段基因缺失。
4. 消失性变异:染色体的一部分消失。
5. 平衡易位:染色体的两个部分互相交换。
6. 非平衡易位:染色体两个部分互相交换,但不是精确的交换。
二、人类疾病与染色体变异的关联在染色体变异的过程中,突变的基因可能会导致人类疾病的发生。
下面我们就来简单介绍一些与染色体变异相关的人类疾病。
1. 唐氏综合症:正常情况下人体细胞含有一对21号染色体,但在某些情况下会出现三条21号染色体,这就是唐氏综合症。
常见的临床表现有智力退化、异常生长、口腔畸形等。
2. 克汀病:这是一种常染色体隐性遗传病。
在正常情况下,我们的细胞中含有两条较短的15号染色体,但在克汀病患者中会出现一条15号染色体上的一段片段无法正常运作的情况。
患者常出现智力缺陷、言语困难、癫痫等症状。
3. 血友病:这是一种X染色体相关的遗传病,主要表现为出血倾向。
正常情况下男性含有一条X染色体,而女性则含有两条。
但在某些情况下,X染色体上的凝血因子基因发生缺失或突变,就会导致血友病的发生。
染色体异常与人类疾病的关系
染色体异常与人类疾病的关系染色体异常是一种常见的遗传因素,它会导致一些人类疾病的发生。
人类基因组中有46条染色体,其中23条来自父亲,23条来自母亲。
这些染色体中的基因编码着我们身体的各种功能,包括生长发育、免疫系统、代谢和认知等。
染色体异常可能会影响染色体的数量、结构和功能,并导致各种健康问题。
染色体异常的类型十分多样,其中最常见的包括多倍体、三体、单体和倒位。
多倍体是指染色体数量多于常规46条,如唐氏综合征。
三体是指染色体数量为47条,其中一条染色体为三联体,如Down综合征。
单体是指染色体数量为45条,缺少一条染色体,如Turner综合征。
倒位是指染色体的结构发生改变,如互换、缺失或重复等,如克恩伯格综合征。
染色体异常与人类疾病的关系可以从多个方面探讨。
首先,染色体异常直接影响染色体中的基因,导致它们表达异常或失去功能,从而影响机体各系统的正常运作。
例如,唐氏综合征是由第21条染色体的三联体引起的,导致许多异常表现,包括智力低下、脑部发育异常、心脏缺陷和肌肉松弛等。
而Turner综合征则是由第23条染色体单体引起的,导致女性性腺发育不全、心血管异常和智力低下等。
另外,染色体异常间接影响机体的正常代谢过程。
染色体异常可能导致基因编码的蛋白质质量、数量和调节都发生变化,进而影响代谢途径和信号传导通路的正常分子机制。
例如,染色体16上的异常导致胰岛素刺激受体基因失活,从而引起自身免疫性胰岛炎和败血病等。
此外,染色体异常也与肿瘤相关。
许多肿瘤都与染色体的异常结构和数量有关。
例如,白血病常常伴有染色体上的不平衡易位,在肿瘤细胞中激活特定的癌基因和抑癌基因。
同样,膀胱癌和大肠癌都伴随着染色体17p和18q的删除等异常,从而影响TP53和SMAD4等基因的表达。
最后,染色体异常的诊断和治疗是当前医学研究的热点之一。
现代技术已经让人类能够对染色体异常进行更加精确的检测,如常规核型分析、CGH芯片和分子遗传学分析等。
11.7-14 人类染色体与染色体病
它由染色质通过多级螺旋包装形成。
结构异染色质 兼性异染色质
性染色质(sex chromatin)
专指间期细胞核中性染色体的异染色质部分 显示出来的特殊结构。 包括X染色质(X-chromatin)
和Y染色质(Y-chromatin)。
利用FISH技术诊断Down综合征
图示:利用 21 号染色体 特异性探针对一位高龄妊 娠妇女进行产前诊断 ,未 培养的羊水细胞进行荧光 原位杂交 , 显示所检测的 细胞均有 3 个杂交信号 , 经 选择性人工流产后确诊为 Down综合征患儿。
2、染色体涂染
(chromosome painting)
T显带(T banding):专门显示染色体端粒的 显带技术,用来分析染色体端粒。 N显带(N banding):专门显示随体以及核仁 组织区的显带技术。
(三)G显带染色体的识别
高分辨显带染色体
采用细胞同步化方法和改进的显带技术, 获得细胞分裂前中期、晚前期或早前期的分裂
相,可以得到带纹更多的染色体,能显示550850条带,甚至2000条带以上。
3.比较基因组杂交(CGH)
(comparative genomic hybridization)
(四)人类染色体的多态性 chromosome polymorphism
定义:正常个体间存在各种染色体恒定微小差异,
包括结构、带纹宽窄和着色强度等。
Y染色体的长度变异(种族差异)
D、G组近端着丝粒染色体的短臂、随体以及
随体柄部的次级缢痕区的变异
第1、9和16号染色体次缢痕
带型
第九章 染色体畸变
(chromosme aberration)
人类染色体和染色体疾病1
Cytogenetics
一、人类染色体标本的制备
1、人类外周淋巴细胞培养及染色体标本制备 采血→接种→培养→秋水仙素处理→收集细 胞→低渗→固定→制片→染色→观察
2、羊水细胞培养及染色体标本制备 抽羊水最佳时间妊娠16—20周
Cytogenetics
3、其他胎儿染色体检查技术 9脐带脐血管穿刺取脐血染色体检查: 在超声波指导下进行脐静脉穿刺 9绒毛膜取样染色体检查: 可比羊膜腔穿刺检查早4~6周进行 通过阴道、子宫颈插入细导管,或通过腹部插 入细针到胎盘取样
简式:46,XX,del (1)(q21)
染色体 性染色 畸变 总数 体组成 符号
畸变染 色体号
断裂点
详式:46,XX,del(1)(pter→q21:)
染色体 性染色 畸变 畸变 总数 体组成 符号 染色体号 重排染色体带的组成
Cytogenetics
简式: 46,XY,t(2;5)(q21;q31) 详式: 46,XY,t(2;5)(2pter 2q21::5q31 5qter;5pter 5q31::2q21 2qter)
次缢痕
异染色质区
Cytogenetics
染色体的四种类型
亚
近
中
中
端
端
部
部
部
部
1/2~5/8
5/8~7/8
7/8~近末端处
中央着丝粒 亚中着丝粒
染色体
染色体
近端着丝粒 染色体
人类
Cytogenetics
三、人类正常核型
(一)核型:一个体细胞(somatic cell)中的全部 染色体称为核型(karyotype) 。确切的说核型是指 是一个体细胞内的全部染色体按其大小和形态特征排 列所构成的图像。对这种图像进行分析称为核型分析。