襄阳市襄城区2015年中考适应性考试数学试题及答案

合集下载

襄阳市襄城区中考适应性考试数学试题版附答案

襄阳市襄城区中考适应性考试数学试题版附答案

襄阳市襄城区中考适应性考试数学试题版附答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】机密★启用前襄城区2018年中考适应性考试数学试 题(本试卷共4页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1. 答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定的位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题(主观题)用毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或毫米黑色签字笔。

4. 考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1. 2018的相反数是:A.2018-B.20181C.2018D.20181-2.下列四个数:31,,3,3----π,其中最大的数是:A.3-B.3-C.π-D.31- 3. 如图,已知CD AB //,若︒=∠︒=∠652,1151,则C ∠等于: A.︒40 B.︒45 C.︒50 D.︒60 4. 下列计算正确的是: A.4222a a a =+ B.84222a a a =⋅ C.145=-a a D.824)(a a = 5. 下列调查中,适合采用全面调查(普查)方式的是: A.对某班50名同学视力情况的调查 B.对汉江水质情况的调查 C.对某类烟花燃放质量情况的调查 D.对元宵节期间市场上汤圆质量情况的调查 6. 如图是由几个小立方块所搭成的几何体的俯视图,正方形内的数字表示在该位置小立方块的个数,则这个几何体的左视图为: A B C D 7. 下列图形中是中心对称图形的是: A B C D8. 若二次函数c x x y +-=62的图象过A ),1(a -,B ),2(b ,C ),5(c ,则下列正确的是:A.c b a >>B.b c a >>C.c a b >>D.b a c >> 9. 如图,观察图中尺规作图痕迹,下列说法错误的是:A.OE 是AOB ∠的平分线B.OD OC =B 第3题图B第9题图C.点C,D 到OE 的距离不相等D.BOE AOE ∠=∠ 10. 如图,两个较大正方形的面积分别为225和289,则字母A 所代表的正方形的面积是:A.4B.8C.16D.64二、填空题:(本大题共6个小题,每小题3分,共18分) 把答案填在答题卡的对应位置的横线上.11.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中"80万亿元"用科学记数法可表示为__________________元. 12. 如图,已知ABC ∆的周长是32,OB,OC 分别平分ABC ∠和ACB ∠,BC OD ⊥于D,且6=OD ,ABC ∆的面积是_________.13. 不等式组⎪⎩⎪⎨⎧≥++<-123)1(213x x x 的解集为_________.14. 袋中装有6个黑球和n 个白球,经过若干次试验,发现若从袋中任摸一个球,恰好是白球的概率为25.0,则这个袋子中白球大约有________个.15. 如图,⊙O 的直径为10,弦AB=8,点P 是弦AB 上一动点,那么OP 长的取值范围是______. 16. 已知在ABC ∆中,3:2:=AB AC ,并且5.0tan =∠B ,则A ∠tan 等于_________. 三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.(本小题满分6分)先化简,再求值:a a a a a a a ÷--++--1444222,其中23=a . 18.(本小题满分6分)如图,△ABC ≌△ABD,点E 在边AB 上,并且CE ∥BD,连接DE. 求证:四边形BCED 是菱形. 19.(本小题满分6分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成第15题图第12题图第10题图绩按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(1)在这次抽样调查中,一共抽取了______名学生; (2)请把条形统计图补充完整;(3)请估计该地区九年级学生体育成绩为B 级的人数.20.(本小题满分7分)有大小两种货车,2辆大货车与3辆小货车一次可以运货吨,5辆大货车与6辆小货车一次可以运货35吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现在租用这两种货车共10辆,要求一次运输货物不低于30吨,则大货车至少租几辆?21.(本小题满分7分)如图,在平面直角坐标系中,一次函数的图象与反比例函数图象交于第二,四象限内A,B 两点,与x 轴交于点C,与y 轴交于点D.若点B 的纵坐标为4-,OA=5,6.0sin =∠AOC . (1)求反比例函数解析式; (2)求△AOB 的面积. 22.(本小题满分8分)如图,AB 是⊙O 的直径,AE 平分∠BAF,交⊙O 于点E,交AF 的延长线于点D,交AB 的延长线于点C. (1)求证:CD 是⊙O 的切线; (2)若CB=2,CE=4,求AE 的长.23.(本小题满分10分)2017年元旦莫小贝在襄阳万达广场购进一家商铺,装修后用于销售某品牌的女装.2018元旦莫小贝盘点时发现:2017年自家店内女装的平均成本为4百元/件,当年的销售量y (百件)与平均销售价格x (百元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.(1)请求出y 与x 之间的函数关系式;(2)若莫小贝购商铺及装修一共花了120万元,请通过计算说明2017年莫小贝是赚还是亏若赚,最多赚多少元若亏,最少亏多少元 24.(本小题满分10分)/件)如图,CAB ∆与CDE ∆均是等腰直角三角形,并且︒=∠=∠90DCE ACB .连接BE,AD 的延长线与BC 、BE 的交点分别是点G 与点F. (1) 求证:BE AF ⊥;(2)将CDE ∆绕点C 旋转直至BE CD //时,的数量关系,并证明; (3)在(2)的条件下,若DA=,DG=2,求BF 的值.25.(本小题满分12分)如图,坐标平面内抛物线bxax y +=2经过点A )8,4(--与点B )3,1(-,连接AB,OB,交y 轴于点C,点D 是线段OA(不与A,B 重合)上动点,射线CD 与抛物线交于点E. (1)求抛物线解析式; (2)求线段CD 的最小值;(3)是否存在点D 使得四边形ABOE 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.2018年襄城区适应性考试数学评分标准及参考答案一.选择题二.填空题11.13100.8⨯ 12.96 13.31<≤-x 15.53≤≤OP 或7(第16题只填一种情况并且正确的给2分;填了两种情况但出现错误的,不给分) 三.解答题 17.解:原式=a a a a a a a 11)1()2()2)(2(2⋅--+--+ =122+-+a a =222--++a a a =22-a a.……3分 A∴当23=a 时,原式=6223232-=-⨯..............................………………6分 18.证明:∵ABC ∆≌ABD ∆ ∴21,∠=∠=BD BC .............................………1分在BEC ∆和BED ∆中 ⎪⎩⎪⎨⎧=∠=∠=BE BE BD BC 21 ∴BEC ∆≌BED ∆∴DE CE =........................................………2分又∵BD CE //∴23∠=∠.......................................………3分 ∴13∠=∠∴CB CE =.........................................………4分 ∴DE DB CB CE ===.......................………5分∴四边形BCED 是菱形..................................................………6分19. 解:(1)200;.................................…............................................................................……2分 (2)图略(小长方形的高为32);......................................................................………4分 (3)∵1950200785000=⨯.............................................................................………5分 ∴该地区九年级学生体育成绩为B 级的人数约为1950人......................……6分 20. 解:(1)设每辆大货车与每辆小货车一次分别可运货x 吨与y 吨,则……1分⎩⎨⎧=+=+35655.1532y x y x .......................................................................……2分解得⎩⎨⎧==5.24y x ..........................................................................……3分答:大小货车一次可分别运货4吨与吨............................……4分 (2)设共租用大货车m ,则可租用小货车)10(m -辆,那么30)10(5.24≥-+m m ......................................................................……5分解得310≥m ∵m 取整数∴m 最小取4...................................................................................……6分答:大货车至少租4辆........................................................................……7分21. 解:(1)过点A 作x AE ⊥轴于E ∴︒=∠90AEO∴在AOE Rt ∆中,OAAEAOE =∠sin ∴36.05sin =⨯=∠⋅=AOC OA AE ..................................……1分 ∴4352222=-=-=AE AO OE∴点A 的坐标为)3,4(-..........................................................……2分 设所求反比例函数解析式为x k y =,则43-=k ∴12-=k∴所求反比例函数解析式为xy 12-=...................................……3分 (2)∵在xy 12-=中,当4-=y 时,3=x ∴点B 的坐标为)4,3(-..............................................................................……4分 由A )3,4(-,B )4,3(-可得AB 所在直线为:1--=x y .......................……5分 ∵在上式中当0=x 时,1-=y∴点D 的坐标为)1,0(-..............................................................................……6分 ∴1=OD∴ODB ODA AOB S S S ∆∆∆+= 27=..........................................................................................……7分 22. (1)证明:连接OE ∵AF ED ⊥∴︒=∠90D……1分∵AE 平分BAF ∠ ∴21∠=∠ 又∵OE OA = ∴31∠=∠∴32∠=∠....................................................................................……2分∴AF OE //∴︒=∠=∠90D CEO .................................................................……3分 ∴CD OE ⊥∴CD 是⊙O 的切线.......................................................................……4分 (2)解:连接BE ∵AB 是⊙O 的直径 ∴︒=∠90BEA ∴︒=∠+∠9054 又∵︒=∠+∠9052 ∴42∠=∠∴41∠=∠................................................................……5分 ∵C C ∠=∠ ∴CBE ∆∽CEA ∆ ∴AEBECA CE CE CB ==..................................................……6分 即AEBECA ==442 ∴AE BE CA 21,8== ∴628=-=-=CB CA AB ..................................……7分 ∵在ABE Rt ∆中222AB AE BE =+∴2226)21(=+AE AE∴5512=AE ...........................................................……8分 23. 解:(1)由题可设当84≤≤x 时,xky =..........................................................………1分 将点A )30,4(代入得430k = ∴120=k ∴xy 120=............................................................................................………2分 当288≤≤x 时,可设n mx y +=......................................................………3分 将点B )0,28(),15,8(C 点代入得⎩⎨⎧+=+=n m n m 280815 解得⎪⎩⎪⎨⎧=-=2143n m ∴2143+-=x y ......................................…4分 综上所述y 与x 之间的函数关系式为:⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤=)288(2143)84(120x x x xy .....…5分(2)设2017年莫小贝的利润为W 万元则 当84≤≤x 时xx x W 480120120)4(-=-⋅-=.........................................………6分 ∵0480<-=k ∴W 随x 的增大而增大∴当8=x 时W 存在最大值,此时608480-=-=W ..................................………7分 当288≤≤x 时2042443120)2143()4(2-+-=-+-⋅-=x x x x W12)16(432---=x ........................................................………8分∵043<-=a 抛物线开口向下∴当16=x 时W 存在最大值,此时12-=W .......................................………9分∵01260<-<-∴2017年莫小贝亏钱,最少亏12万元..................…................................……10分 24. (1)证明:∵ACB ∆和DCE ∆均是等腰直角三角形 ∴CB CA CE CD ==,∵︒=∠+∠=∠︒=∠+∠=∠9023,9021DCB ACB∴31∠=∠...................................................................................………1分 在ACD ∆和BCE ∆中 ∴ACD ∆≌BCE ∆ ∴54∠=∠..∵︒=∠90ACB ∴︒=∠+∠9064又∵76∠=∠∴︒=∠+∠9075....................................................................………2分 ∴︒=∠90AFB∴BF AF ⊥.............................................................................………3分(2)DG DA DE ⋅=22,理由如下............................................………4分 ∵在DCE Rt ∆中,DECDDEC =∠sin ∴DE DCE DE CD 22sin =∠⋅=...............................………5分 ∵BE CD //∴︒=∠=∠90AFB CDG∴︒=∠︒=∠+∠90,9026ADC ∴︒=∠=∠∠=∠90,61CDG ADC ∴ADC ∆∽CDG ∆ ∴DCCDCD DA =∴DC DA CD ⋅=2............................................................………6分A即DC DA AE ⋅=2)22(∴DG DA DE ⋅=22.........................................................………7分 (3)由(2)知1825.4222=⨯⨯=⋅=DG DA DE∴23=DE ∴3232222=⨯==DE CD ....................................................………8分 ∵BE CD //∴︒=∠=∠45CDE DEF∴︒=︒+︒=∠+∠=∠904545CED CDE CEF ∴︒=∠=∠=∠90AFE DCE CEF∴四边形DCEF 是矩形 又∵CD=CE∴四边形DCEF 是正方形 ∴3==CD DF∴123=-=-=DG DF GF .....................................……..................…9分 ∵BE CD // ∴BFG ∆∽CDG ∆ ∴DG CDGF BF =即231=BF ∴23=BF ................................................... ....................................………10分 (一二三问分别按3分+4分+3分计分)25. 解:(1)将)3,1(),8,4(---B A 代入bx ax y +=2得................1分⎩⎨⎧+=--=-b a b a 34168 ....................................………2分解得⎩⎨⎧-=-=21b a ........................…..................……3分A∴所求的抛物线的解析式为:x x y 22--=...............4分 (2)由)3,1(),8,4(---B A 可得AB 所在直线解析式为4-=x y 当0=x 时,4-=y 即点C 的坐标为)4,0(- ∴4=OC过点A 作y AF ⊥轴于F ∴︒=∠90AFO∴在AFO Rt ∆中54842222=+=+=OF AF OA .….......5分 ∵垂线段最短∴当OA CD ⊥时,CD 最短.…...................................................……6分 ∴当CD 最短时︒=∠=∠90AFO CDO 又∵COD AOF ∠=∠(公共角)∴AOF ∆∽COD ∆.…..........................................................……7分 ∴OA AFOC CD =即5444=CD ∴554=CD .…................……8分 (3)存在点D )2,1(--使得四边形ABOE 的面积最大,理由如下:..............……9分由)0,0(),8,4(O A --可得AO 所在直线解析式为x y 2= 过点E 作y EG //轴交OA 于点G,设点E 的横坐标为m ,则 点E,点G 的坐标分别为:)2,(),2,(2m m m m m -- ∴m m m m m EG 42222--=---=∴m m m m x x EG S O A AOE 824)4(21||2122--=⨯--=-⋅⋅=∆同理104521||21=⨯⨯=-⋅⋅=∆B A AOB x x OC S∴10822+--=+=∆∆m m S S S AOB AOE ABOE 四边形18)2(22++-=m ...............................................................……10分 ∵02<-=a 抛物线开口向下∴当2-=m 时ABOE S 四边形存在最大值 ∴0)2(2)2(222=-⨯---=--m m∴此时点E 的坐标为)0,2(-.............…...............................................…11分 由)4,0(),0,2(--C E 可得AO 所在直线解析式为42--=x y由⎩⎨⎧=--=x y x y 242解得⎩⎨⎧-=-=21y x即点D 的坐标为)2,1(--....................................................................……12分 (一二三问按每问4分计分)。

湖北省襄阳市2015年数学中考真题试卷及参考答案

湖北省襄阳市2015年数学中考真题试卷及参考答案

在同一平
A.
B.
C.
D.
12. 如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
A . AF=AE B . △ABE≌△AGF C . EF= D . AF=EF
二 、 填 空 题 : 共 5小 题 , 每 小 题 3分 , 共 15分
13. 计算:2﹣1﹣ =________ .
三 、 简 答 题 : 共 9小 题 , 共 69分
18. 先化简,再求值:(
+ )÷
, 其中x=
, y= ﹣ .
19. 如图,已知反比例函数 的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).
(1)
求反比例函数和一次函数的解析式;
(2) 当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
14. 15. 16. 17. 18. 19.
20.
21.
22. 23.
24. 25.
26.
A.
B.
C.
D.
3. 在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A.
B.
C.
D.
4. 如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列
信息,其中错误的是( )
A . 凌晨4时气温最低为﹣3℃ B . 14时气温最高为8℃ C . 从0时至14时,气温随时间增长而上升 D . 从14时至24时,气温随时

2015年湖北省襄阳市中考数学试卷

2015年湖北省襄阳市中考数学试卷

2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A.3.7×106B.3.7×105C.37×104D.3.7×1043.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.4.(3分)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降5.(3分)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a66.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°7.(3分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.28.(3分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次9.(3分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°10.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.911.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.12.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C 与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF二、填空题,共5小题,每小题3分,共15分13.(3分)计算:2﹣1﹣=.14.(3分)分式方程﹣=0的解是.15.(3分)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.(6分)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t 秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A.3.7×106B.3.7×105C.37×104D.3.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:370 000=3.7×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.【分析】根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上表示的方法,可得答案.【解答】解:由2(1﹣x)<4,得2﹣2x<4.解得x>﹣1,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T 随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【分析】根据函数的图象对各选项进行逐一分析即可.【解答】解:A、∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;B、∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C、∵由图象可知,从4时至14时,气温随时间增长而上升,不是从0点,故本选项错误;D、∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选:C.【点评】本题考查的是函数的图象,能根据函数图象在坐标系中的增减性判断出函数的增减性是解答此题的关键.5.(3分)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a6【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选:D.【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.7.(3分)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A.B.1 C.D.2【分析】先根据线段垂直平分线的性质得出BE=CE=2,故可得出∠B=∠DCE=30°,再由角平分线定义得出∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,利用三角形内角和定理求出∠A=180°﹣∠B﹣∠ACB=90°,然后在Rt△CAE中根据30°角所对的直角边等于斜边的一半得出AE=CE=1.【解答】解:∵在△ABC中,∠B=30°,BC的垂直平分线交AB于E,BE=2,∴BE=CE=2,∴∠B=∠DCE=30°,∵CE平分∠ACB,∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,∴∠A=180°﹣∠B﹣∠ACB=90°.在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,∴AE=CE=1.故选:B.【点评】本题考查的是含30度角的直角三角形的性质,线段垂直平分线的性质,等腰三角形的性质,角平分线定义,三角形内角和定理,求出∠A=90°是解答此题的关键.8.(3分)下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选:B.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°【分析】利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.【解答】解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【点评】此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.10.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选:A.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【解答】解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选:C.【点评】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12.(3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C 与点A重合,则下列结论错误的是()A.AF=AE B.△ABE≌△AGF C.EF=2D.AF=EF【分析】设BE=x,表示出CE=8﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE 中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【解答】解:设BE=x,则CE=BC﹣BE=8﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=8﹣x,在Rt△ABE中,AB2+BE2=AE2,即42+x2=(8﹣x)2解得x=3,∴AE=8﹣3=5,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=5,∴A正确;在Rt△ABE和Rt△AGF中,,∴△ABE≌△AGF(HL),∴B正确;过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=4,AH=BE=3,∴FH=AF﹣AH=5﹣3=2,在Rt△EFH中,EF=2,∴C正确;∵△AEF不是等边三角形,∴EF≠AF,故D错误;故选:D.【点评】本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题,共5小题,每小题3分,共15分13.(3分)计算:2﹣1﹣=0.【分析】原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.【解答】解:原式=﹣=0,故答案为:0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(3分)分式方程﹣=0的解是x=15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:x=15.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(3分)若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5.【分析】根据众数的定义先求出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵数据1,2,x,4的众数是1,∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5.【点评】本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].16.(3分)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π.【分析】连结PO交圆于C,根据切线的性质可得∠OAP=90°,根据含30°的直角三角形的性质可得OA=1,再求出△PAO与扇形AOC的面积,由S阴影=2×(S△PAO﹣S扇形AOC)则可求得结果.【解答】解:连结AO,连结PO交圆于C.∵PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,∴∠OAP=90°,OA=1,∴S阴影=2×(S△PAO﹣S扇形AOC)=2×(×1×﹣)=﹣π.故答案为:﹣π.【点评】此题考查了切线长定理,直角三角形的性质,扇形面积公式等知识.此题难度中等,注意数形结合思想的应用.17.(3分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.【分析】首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.【解答】解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=×70°=35°.故答案为:55°或35°.【点评】此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.三、简单题,共9小题,共69分18.(6分)先化简,再求值:(+)÷,其中x=,y=﹣.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=•xy(x﹣y)=•xy(x﹣y)=3xy,当x=+,y=﹣时,原式=3.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(6分)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.【分析】(1)把A的坐标代入反比例函数的解析式,求出m的值,从而确定反比例函数的解析式,把B的坐标代入反比例函数解析式求出B的坐标,把A、B 的坐标代入一次函数的解析式,即可求出a,b的值,从而确定一次函数的解析式;(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.【解答】解:(1)∵反比例函数y=的图象过点A(1,4),∴4=,即m=4,∴反比例函数的解析式为:y=.∵反比例函数y=的图象过点B(n,﹣2),∴﹣2=,解得:n=﹣2∴B(﹣2,﹣2).∵一次函数y=ax+b(k≠0)的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得.∴一次函数的解析式为:y=2x+2;(2)由图象可知:当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小.解题的关键是:确定交点的坐标.20.(6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.【分析】(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.【解答】解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;(3)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB Aa AbB BA Ba Bba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和概率公式.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【解答】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得x(25﹣2x+1)=80,化简,得x2﹣13x+40=0,解得:x1=5,x2=8,当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,答:所围矩形猪舍的长为10m、宽为8m.【点评】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22.(6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.(1)过点A作AE⊥BC于点E,根据cosC=,求出∠C=45°,求出AE=CE=1,【分析】根据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.【解答】解:过点A作AE⊥BC于点E,∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【点评】本题考查的是解直角三角形的知识,正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.23.(7分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A 按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE 求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.24.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600(x≥45);(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,=8000元,∴当x=60时,P最大值即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,=﹣20×58+1600=440,∴当x=58时,y最小值即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.【分析】(1)首先连接OC,由PE是⊙O的切线,AE和过点C的切线互相垂直,可证得OC∥AE,又由OA=OC,易证得∠DAC=∠OAC,即可得AC平分∠BAD;(2)由AB是⊙O的直径,PE是切线,可证得∠PCB=∠PAC,即可证得△PCB∽△PAC,然后由相似三角形的对应边成比例与PB:PC=1:2,即可求得答案;(3)首先过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比例,求得OC的长,再由△PBC∽△PCA,证得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2,可得(2BC)2+BC2=52,即可求得BC的长,继而求得答案.【解答】(1)证明:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;(2)线段PB,AB之间的数量关系为:AB=3PB.理由:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,。

2015年湖北省襄阳市樊城区中考适应性数学试卷(解析版)

2015年湖北省襄阳市樊城区中考适应性数学试卷(解析版)

2015年湖北省襄阳市樊城区中考适应性数学试卷一、选择题:(每小题3分,共36分)1.(3分)数轴上A点表示的数的倒数是()A.2 B.﹣2 C.D.﹣2.(3分)为了解本班学生每天零花钱使用情况,张明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法错误的是()A.众数是3元B.平均数是2.5元C.极差是5元D.中位数是3元3.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x24.(3分)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1 C.x≠1 D.x≥﹣2或x≠15.(3分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG6.(3分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°7.(3分)顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.梯形B.菱形C.矩形D.正方形8.(3分)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:29.(3分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.10.(3分)关于x的一元二次方程(m﹣2)x2+4x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m>﹣2且m≠2 D.m≥﹣2且m≠211.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.12.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值二、填空题:(每小题3分,共18分)13.(3分)如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是.15.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.16.(3分)设α、β是方程2x2﹣6x+3=0的两个根,那么α+β﹣αβ的值为.17.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于cm.三、解答题(共66分)18.(5分)先化简,再求值:(+)•,其中x=tan60°.19.(5分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此区教育局对我区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,并把图①补充完整;(2)图②中C级所占的圆心角的度数为;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是多少?20.(6分)如图所示,二次函数y1=﹣x2+nx+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(0,3).(1)求二次函数解析式,并写出顶点坐标;(2)令直线BC的解析式为y2,分析并观察图象,直接写出当y1<y2时,x的取值范围.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)当旋转角为度时,CF=CB′;(2)在上述条件下,AB与A′B′垂直吗?请说明理由.22.(7分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?23.(7分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.24.(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.25.(10分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;(3)若OC=3,=,sinE=.26.(12分)在正方形AOBC中,OB=OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是边BC上的一个动点,过F点的一次函数y=﹣x+k的图象与AC边交于点E.(1)在点F的运动过程中,∠EOF的取值范围是;(2)令五边形AOBFE的面积为S,求出S与k的函数关系式,当S取最大值时,求k的值;(3)在(2)的条件下,P为线段OB上一动点,作∠CBx的角平分线BM交一次图象于M,连接PM交BC于Q.则点M的坐标为①若∠APM=90°,求出P点的坐标;②在①的条件下,若P点不与O、B重合,连接AQ,探究正方形AOBC内有哪些三角形相似,直接写出结论.2015年湖北省襄阳市樊城区中考适应性数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.(3分)数轴上A点表示的数的倒数是()A.2 B.﹣2 C.D.﹣【分析】根据乘积是1的两数互为倒数,即可解答.【解答】解:数轴上点A表示的数是﹣2,1÷(2)=﹣,故选:D.2.(3分)为了解本班学生每天零花钱使用情况,张明随机调查了15名同学,结果如下表:关于这15名同学每天使用的零花钱,下列说法错误的是()A.众数是3元B.平均数是2.5元C.极差是5元D.中位数是3元【分析】根据众数的定义,极差的定义,算术平均数的求法,以及中位数的定义分别求解即可得到答案;【解答】解:A、每天花3元的人数最多,是5人,所以,众数是3元,故本选项错误;B、平均数=(0×1+1×3+3×5+4×4+5×2)=×44≈2.93元,故本选项正确;C、极差为5﹣0=5元,故本选项错误;D、按照从小到大的顺序排列,15个人中第8人的零花钱数是3元,所以,中位数是3元,故本选项错误.故选:B.3.(3分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x2【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、幂的乘方,应底数不变,指数相乘,所以(x3)3=x9,故本选项错误;B、是同底数幂的乘法,应底数不变,指数相加,所以a6•a4=a10,故本选项错误;C、(﹣bc)4÷(﹣bc)2=(﹣bc)4﹣2=b2c2,正确;D、是同底数幂的除法,应底数不变,指数相减,所以a6÷a3=a3,故本选项错误;故选:C.4.(3分)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1 C.x≠1 D.x≥﹣2或x≠1【分析】根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.5.(3分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG【分析】由平面图形的折叠及正方体的展开图解题.注意找准红心“”标志所在的相邻面.【解答】解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.故选:A.6.(3分)如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°【分析】此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.【解答】解:方法1:∵AB∥CD,∠C=115°,∴∠EFB=∠C=115°.又∠EFB=∠A+∠E,∠A=25°,∴∠E=∠EFB﹣∠A=115°﹣25°=90°;方法2:∵AB∥CD,∠C=115°,∴∠CFB=180°﹣115°=65°.∴∠AFE=∠CFB=65°.在△AEF中,∠E=180°﹣∠A﹣∠AEF=180°﹣25°﹣65°=90°.故选:C.7.(3分)顺次连接对角线互相垂直的四边形各边中点,所得到的四边形一定是()A.梯形B.菱形C.矩形D.正方形【分析】根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.【解答】解:如图,AC⊥BD,E、F、G、H分别为各边的中点,连接点E、F、G、H.∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF∥AC,EH∥BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).故选:C.8.(3分)如图,已知D、E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE :S四边形DBCE=1:8,那么AE:AC等于()A.1:9 B.1:3 C.1:8 D.1:2【分析】由题可知:△ADE∽△ABC,相似比为AE:AC,由S△ADE :S四边形DBCE=1:8,得S△ADE:S△ABC=1:9,根据相似三角形面积的比等于相似比的平方.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴S△ADE :S△ABC=AE2:AC2,∵S△ADE :S四边形DBCE=1:8,∴S△ADE :S△ABC=1:9,∴AE:AC=1:3.故选:B.9.(3分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间满足()A.B.R=3r C.R=2r D.【分析】首先连接OC,根据切线的性质得到OC⊥OB,再根据等腰三角形的性质可得到∠COB=60°,从而进一步求出∠B=30°,再利用直角三角形中30°角所对的边等于斜边的一半,可得到R与r的关系.【解答】解:连接OC,∵C为切点,∴OC⊥AB,∵OA=OB,∴∠COB=∠AOB=60°,∴∠B=30°,∴OC=OB,∴R=2r.故选:C.10.(3分)关于x的一元二次方程(m﹣2)x2+4x﹣1=0有两个不相等的实数根,则m的取值范围是()A.m>﹣2 B.m≥﹣2 C.m>﹣2且m≠2 D.m≥﹣2且m≠2【分析】根据题意得△>0且m﹣2≠0,从而直接解出答案.【解答】解:由题意得:△>0且m﹣2≠0,则△=16﹣4×(m﹣2)(﹣1)=4m+8>0,∴m>﹣2且m≠2,故选:C.11.(3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A. B.C.D.【分析】根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.【解答】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.12.(3分)如图,一个半径为1的圆形纸片在边长为a(a≥2)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A.B.C.3﹣πD.不能求出具体值【分析】过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得AD=.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=1,AD=.∴S=O1D•AD=.由S四形形ADO1E=2S△ADO1=.△ADO1∵由题意,∠DO1E=120°,得S扇形O1DE=,∴圆形纸片不能接触到的部分的面积为3(﹣)=3﹣π.故选:C.二、填空题:(每小题3分,共18分)13.(3分)如图,过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,图中S1+S2=5,则S3=5.【分析】根据过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|即可得到结果.【解答】解:∵过反比例函数y=图象上三点A、B、C分别作直角三角形和矩形,∴S1=S2=,S3=|k|,∴S3=S1+S2=5,故答案为:5.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是m<6且m≠0.【分析】首先解方程求得方程的解,根据方程的解是正数,即可得到一个关于m 的不等式,从而求得m的范围.【解答】解:∵关于x的方程+=2有解,∴x﹣2≠0,∴x≠2,去分母得:2﹣x﹣m=2(x﹣﹣2),即x=2﹣,根据题意得:2﹣>0且2﹣≠2,解得:m<6且m≠0.故答案是:m<6且m≠0.15.(3分)一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是180°.【分析】根据圆锥的侧面积是底面积的2倍可得到圆锥底面半径和母线长的关系,利用圆锥侧面展开图的弧长=底面周长即可得到该圆锥的侧面展开图扇形的圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr,∴n=180.故答案为:180°.16.(3分)设α、β是方程2x2﹣6x+3=0的两个根,那么α+β﹣αβ的值为.【分析】根据根与系数的关系,可得出α+β和αβ的值,再代入α+β﹣αβ求值即可.【解答】解:∵α,β是方程2x2﹣6x+3=0的两个实数根,∴α+β=3,αβ=,又∵原式=(α+β)﹣αβ,∴原式=3﹣=.故答案为.17.(3分)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长等于2cm.【分析】连接A、C,则EF垂直平分AC,推出△OEC∽△BCA,根据勾股定理,可以求出AC的长度,根据相似比求出OE即可.【解答】解:连接AC,与EF交于O点,∵E点在AB上,F在CD上,因为A、C点重合,EF是折痕,∴AO=CO,EF⊥AC,∵AB=8,BC=4,∴AC=4,∵AE=CE,∴∠EAO=∠ECO,∴△OEC∽△BCA,∴OE:BC=OC:BA,∴OE=,∴EF=2OE=2.故答案为:2.三、解答题(共66分)18.(5分)先化简,再求值:(+)•,其中x=tan60°.【分析】原式括号中第二项变形后,利用同分母分式的减法法则计算,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=•=,当x=tan60°=时,原式=.19.(5分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此区教育局对我区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生,并把图①补充完整;(2)图②中C级所占的圆心角的度数为54°;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是多少?【分析】(1)根据A级的人数是50人,所占的百分比是25%,根据百分比的意义即可求得总人数;利用总人数减去其它组的人数,即可求得C级的人数,进而补全图①;(2)C级所占的圆心角的度数用360度乘以对应的百分比即可求得;(3)将A级和B级所占百分比相加即可求解.【解答】解:(1)抽查的总人数是:50÷25%=200(人);C级的人数是:200﹣50﹣120=30(人).图①补充如下:(2)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(3)从抽样调查的学生中,抽取一名学生学习态度达标(达标包括A级和B级)的概率是:25%+60%=85%=.故答案为200;54°.20.(6分)如图所示,二次函数y1=﹣x2+nx+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C(0,3).(1)求二次函数解析式,并写出顶点坐标;(2)令直线BC的解析式为y2,分析并观察图象,直接写出当y1<y2时,x的取值范围.【分析】(1)把A点和C点坐标分别代入y1=﹣x2+nx+m中得到关于m、n的方程组,然后解方程组求出m和n的值即可得到二次函数解析式,再把解析式配成顶点式得到顶点坐标;(2)根据抛物线与x轴的交点问题求出B点坐标,然后观察函数图象,写出直线BC在抛物线上方所对应的自变量的范围即可.【解答】解:(1)把A(3,0),C(0,3)分别代入y1=﹣x2+nx+m得,解得,所以二次函数解析式为y1=﹣x2+2x+3;因为y1=﹣x2+2x+3=﹣(x﹣1)2+4,所以二次函数图象的顶点坐标为(1,4);(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(﹣1,0),所以当x<﹣1或x>0时,y1<y2.21.(7分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B′A′C=30°)按图①方式放置,固定三角板A′B′C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)当旋转角为30度时,CF=CB′;(2)在上述条件下,AB与A′B′垂直吗?请说明理由.【分析】(1)由CF=CB′可知∠CFB′=∠CB′F=60°,从而可求得∠FCB′的度数,然后可求得∠A′CA=30°;(2)由∠A′CA=30°,可求得∠ECB=60°,然后可求得∠A′EO=∠BEC=60°,从而可求得∠A′OE=90°.【解答】解:(1)∵CF=CB′,∴∠CFB′=∠CB′F=60°.∴∠A′CA=90°﹣∠FCB′=90°﹣60°=30°.故旋转角为30°时,CF=CB′;故答案为:30°.(2)∵∠A′CA=30°,∴∠BCE=∠ACB﹣∠A′CA=90°﹣30°=60°.∴∠B=∠BCE=∠BEC=60°.∴∠A′EO=60°.∴∠A′EO+∠A′=60°+30°=90°.∴∠A′OE=90°.∴AB⊥A′B′.22.(7分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?【分析】根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量列出一元二次方程求解即可.【解答】解:设每件玩具上涨x元,则售价为(30+x)元,则根据题意,得(30+x﹣20)(230﹣10x)=2520.整理方程,得x2﹣13x+22=0.解得:x1=11,x2=2,当x=11时,30+x=41>40,∴x=11 不合题意,舍去.∴x=2,∴每件玩具售价为:30+2=32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.23.(7分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【分析】(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,24.(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.25.(10分)如图,PA为⊙O的切线,A为切点.过A作OP的垂线AB,垂足为点C,交⊙O于点B.延长BO与⊙O交于点D,与PA的延长线交于点E.(1)求证:PB为⊙O的切线;(2)试探究线段AD、AB、CP之间的等量关系,并加以证明;(3)若OC=3,=,sinE=.【分析】(1)要证PB是⊙O的切线,只要连接OA,再证∠PBO=90°即可;(2)由∠OBP=∠BCO=90°,根据射影定理得到△OCB∽△PBC,得到,由于OC=AD,BC=AB,于是得到结果;(3)证明△ADE∽△POE,得到,设OC=t,则BC=2t,AD=2t,由△PBC∽△BOC,可求出sin∠E的值.【解答】(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°,∵OA=OB,OP⊥AB于C,∴BC=CA,PB=PA,在△PBO和△PAO中,∴△PBO≌△PAO,∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)∵∠OBP=∠BCO=90°,∴△OCB∽△PBC,∴,∴BC2=OC•PC,∵OC=AD,BC=AB,∴=AD•PC,∴AB2=2AD•PC;(3)解:∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP,∴△ADE∽△POE,∴=,由AD∥OC得AD=2OC,∵BC=2OC,设OC=3,则BC=6,AD=6.∵∠OBC+∠PBC=90°,∠BOC+∠OBC=90°,∴∠BOC=∠PBC,∵∠OCB=∠BCP,∴△PBC∽△BOC,∴PC=2BC=12,OP=15.∴===,可设EA=2m,EP=5m,则PA=3m.∵PA=PB,∴PB=3m,sinE==.26.(12分)在正方形AOBC中,OB=OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是边BC上的一个动点,过F点的一次函数y=﹣x+k的图象与AC边交于点E.(1)在点F的运动过程中,∠EOF的取值范围是0°≤∠EOF≤90°;(2)令五边形AOBFE的面积为S,求出S与k的函数关系式,当S取最大值时,求k的值;(3)在(2)的条件下,P为线段OB上一动点,作∠CBx的角平分线BM交一次图象于M,连接PM交BC于Q.则点M的坐标为(6,2)①若∠APM=90°,求出P点的坐标;②在①的条件下,若P点不与O、B重合,连接AQ,探究正方形AOBC内有哪些三角形相似,直接写出结论.【分析】(1)易知直线y=﹣x+k与x轴成45°角,从而有∠CEF=∠CFE=45°,则有CE=CF.先考虑点F运动到点C、点B对应的∠EOF的值,就可求出∠EOF的取值范围;、S,然后根据S与k的函数关系式,(2)用k的代数式依次表示BF、CF、S△CEF就可求出S取最大值时k的值;(3)如图2①,过点M作MH⊥BD于H.易证MB=MD,∠BMD=90°,根据等腰三角形的性质及直角三角形斜边上的中线等于斜边的一半可得BH=HD=MH=BD=2,求出OH,即可得到点M的坐标.①如图2①,易证△AOP ∽△PHM,根据相似三角形的性质即可求出OP,即可得到点P的坐标;②如图2②,易证△AOP∽△PBQ,则有=.由PB=OP=2可得=.再由∠AOP=∠APQ=90°可得△AOP∽△APQ.【解答】解:(1)如图1,易知直线y=﹣x+k与x轴成45°角,从而有∠CEF=∠CFE=45°,则有CE=CF.当点F运动到点C时,∠EOF=0°;当点F运动到点B时,∠EOF=90°.故答案为0°≤∠EOF≤90°;(2)如图1,当x=4时,y=﹣4+k,则点F(4,﹣4+k),∴BF=﹣4+k,CF=4﹣(﹣4+k)=8﹣k,=CE•CF=CF2=(8﹣k)2,∴S△ECF∴S=16﹣(8﹣k)2,∴当k=8时,S取到最大值;(3)如图2①,过点M作MH⊥BD于H.∵BM平分∠CBD,∴∠MBD=∠CBD=45°,∴∠MBD=∠MDB=∠BCD=45°,∴BD=BC=4,MB=MD,∠BMD=90°,∵MH⊥BD,∴BH=HD=MH=BD=2,∴OH=4+2=6,∴点M的坐标为(6,2).故答案为(6,2);①如图2①,∵∠APM=90°,∠AOP=90°,∴∠APO+∠HPM=180°﹣90°=90°,∠APO+∠OAP=90°,∴∠OAP=∠HPM.又∵∠AOP=∠PHM=90°,∴△AOP∽△PHM,∴=,∴=,解得OP=2或OP=4,∴点P的坐标为(2,0)或(4,0);②如图2②,在正方形AOBC内,△AOP∽△PBQ∽△APQ.理由:∵P点不与O、B重合,∴OP=2,PB=4﹣2=2.由①得∠OAP=∠BPQ.又∵∠AOP=∠PBQ=90°,∴△AOP∽△PBQ,∴=.∵PB=OP=2,∴=.∵∠AOP=∠APQ=90°,∴△AOP∽△APQ,∴△AOP∽△PBQ∽△APQ.。

2015数学试题(正题)答案

2015数学试题(正题)答案

2015年襄阳市初中毕业生学业水平考试数学试题参考答案及评分标准评分说明1.若有与参考答案不同的解法而解答过程准确者,参照评分标准分步给分;2.学生在答题过程中省略某些非关键性步骤,不扣分;学生在答题过程中省略了关键性步骤,后面解答准确者,只扣省略关键性步骤分,不影响后面得分.一、选择题(本大题共12个小题,每小题3分,共36分)二、填空题(本大题共5个小题,每小题3分,共15分)13. 0 14. x =15 15. 32 16. 3-π317. 55°或35°三、解答题(本大题共9个小题,共69分)18. (本小题满分6分)解: 原式=(5x +3y x 2-y 2 -2x x 2-y 2)÷1x 2y -xy 2=5x +3y -2x x 2-y2×(x 2y -xy 2) …………………2分=3(x +y )(x +y )(x -y )×xy (x -y ) ………………………………………………………..3分 =3xy. …………………………………………………………………......……4分 把x =3+2,y =3-2代入,得原式=3(3+2)(3-2)=3. ……………………………………………………..6分 19. (本小题满分6分)解:(1)∵反比例函数y =mx 的图象过点A(1,4),∴m =4.∴反比例函数解析式为y =4x. ………………………………….....………….................1分∵反比例函数y =4x 过点B(n ,-2),∴4n=-2. ∴ n =-2.∴B 点坐标为(-2,-2). ……………………………………………………............…2分 ∵直线y =ax +b 经过点A(1,4)和点B(-2,-2),∴4,2 2.a b a b .... ……………………………………….......………….................…3分解这个方程组,得2,2.a b ∴y =2x +2. ...…………….........…….................…4分(2)x <-2或0<x <1 . ………………………………………….......…….............…6分20. (本小题满分6分)(分)第20题图(1)12,40;(每空1分) . …………....…2分补全统计图见右图. ……………....…3分 (2)108°; ……………....…......……...…4分(3)23. ……………………....…......…..…6分21. (本小题满分6分)解:设矩形猪舍垂直于住房墙的一边长为xm ,则矩形猪舍的另一边长为(26-2x )m . ... 1分依题意,得 x (26-2x )=80. ……………………………………………………....…3分 化简,得 x 2-13x +40=0.解这个方程,得 x 1=5,x 2=8. ………………………………………………..........…5分 当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12.答: 所建矩形猪舍的长为10m ,宽为8m. …………………………………….........…6分22. (本小题满分6分)解:(1)过点A 作AE ⊥BC 于点E. ………1分∵cos C =22,∴∠C =45°.在Rt △ACE 中,CE =AC·cos C =1.∴AE =CE =1. …………………………….....…2分在Rt △ABE 中,∵tan B =13,∴ AE BE =13.∴BE =3AE =3. ∴BC =BE +CE =3+1=4. ……………………………….........3分(2)∵AD 是△ABC 的中线,∴CD =12BC =2.∴DE =CD -CE =2-1=1. ……………………...........…………………….…...….4分 ∵AE ⊥BC ,∴∠ADC =45°. ……………………………....................…….…....…5分∴sin ∠ADC =22. …………………………………………………………...…....6分23.(本小题满分7分)(1)证明:由旋转可知,∠EAF =∠BAC ,AF =AC ,AE =AB.∴∠EAF +∠BAF =∠BAC +∠BAF ,即∠BAE =∠CAF. ......………………...1分又∵AB =AC ,∴AE =AF. .........….………2分 ∴△ABE ≌△ACF. ∴BE =CF. ........………….3分(2)∵四边形ACDE 是菱形,AB =AC =1,∴AC ∥DE ,DE =AE =AB =1. ….......…....…4分又∵∠BAC =45°, ∴∠AEB =∠ABE =∠BAC =45°. ....….……...5分 ∵∠AEB +∠BAE +∠ABE =180°, ∴∠BAE =90°. …………………………....6分 ∴BE =AB 2+AE 2=12+12= 2. ∴BD =BE -DE =2-1. …………………......7分24.(本小题满分10分)45°F ED CB A第23题图E AB C D 第22题图解:(1)y =700-20(x -45)=-20x +1600. …………………………………........…2分 (2)P =(x -40)(-20x +1600)=-20x 2+2400x -64000 …………….…….......…….4分=-20(x -60)2+8000. ………………………………..………......................…5分 ∵x ≥45,a =-20<0,∴当x =60时,P 最大值=8000(元).即当每盒售价定为60元时,每天销售的利润最大,最大利润为8000元. ….......6分 (3)由题意,得-20(x -60)2+8000=6000. 解这个方程,得 x 1=50, x 2=70. .....7分 ∵抛物线P =-20(x -60)2+8000的开口向下,∴当50≤x ≤70时,每天销售粽子的利润不低于6000元. ……………...............8分 又∵x ≤58,∴50≤x ≤58.∵在y =-20x +1600中,k =-20<0,∴y 随x 的增大而减小. ……..............…9分 ∴当x =58时,y 最小值=-20×58+1600=440. …………………………...............10分 即超市每天至少销售粽子440盒. 25.(本小题满分10分) (1)证明: 连接OC.∵PE 与⊙O 相切,∴OC ⊥PE. ∴∠OCP =90°. …1分 ∵AE ⊥PE ,∴∠AEP =90°=∠OCP. ∴OC ∥AE. ∴∠CAD =∠OCA. …………………………………2分∵OA =OC ,∴∠OCA =∠OAC. ∴∠CAD =∠OAC.∴AC 平分∠BAD. …………………………………3分(2)PB ,AB 之间的数量关系为 AB =3PB. 理由如下: ∵AB 为⊙O 的直径,∴∠ACB =90°. ∴∠BAC +∠ABC =90°.∵OB =OC ,∴∠OCB =∠ABC. ∵∠PCB +∠OCB =90°,∴∠PCB =∠PAC. ……………………………………4分 ∵∠P =∠P , ∴△PCA ∽△PBC. ∴PC PB =PAPC. ∴PC 2=PB·PA. ……………………………………………….........…5分 ∵PB ∶PC =1∶2,∴ PC =2PB. ∴PA =4PB. ∴AB =3PB. …...................….6分(3)解: 过点O 作OH ⊥AD 于点H ,则AH =12AD =32,四边形OCEH 是矩形.∴OC =HE. ∴AE =32+OC. …………………………………………..……………..7分∵OC ∥AE ,∴△PCO ∽△PEA. ∴OC AE =POPA . ………………………….…………8分∵AB =3PB ,AB =2OB ,∴OB =32PB.∴OC 32+OC =PB +OB PB +AB =PB +32PBPB +3PB . ∴OC =52. ∴AB =5. ……………………..……9分 ∵△PBC ∽△PCA ,∴PB PC =BC AC =12. ∴AC =2BC.在Rt △ABC 中,AC 2+BC 2=AB 2,∴(2BC)2+BC 2=52. ∴BC = 5. ∴AC =2 5.∴S △ABC =12AC ·BC =5. 即△ABC 的面积为5. ………………………………...10分26. (本小题满分12分)解:(1)过点E 作EG ⊥x 轴于点G.∵四边形OABC 是边长为2的正方形,D 是OA 的中点,A第25题图∴OA =OC =2,OD =1,∠AOC =∠DGE =90°. ∵∠CDE =90°,∴∠ODC +∠GDE =90°. 又∵∠ODC +∠OCD =90°,∴∠OCD =∠GDE.∵DC =DE, ∴△ODC ≌△GED. ……………………………………........………....1分 ∴EG =OD =1,DG =OC =2.∴点E 的坐标为(3,1). …………………………………………………………........…2分 又∵抛物线的对称轴为直线AB ,即直线x =2,∴可设抛物线的解析式为y =a (x -2)2+k . …………………………………......……3分由题意,得42,1.a k a k 解这个方程组,得1,32.3a k ∴抛物线的解析式为y =13 (x -2)2+23. ……………………….……………….......…5分(2)①若△DFP ∽△COD ,则∠PDF =∠DCO.∴PD ∥OC. ………………………………………………………….. .….... .…........6分 ∴∠PDO =∠OCP =∠AOC =90°. ∴四边形PDOC 为矩形.∴PC =OD =1. ∴t =1. ………………………………………......….…............….7分②若△PFD ∽△COD ,则∠DPF =∠DCO ,PD CD =DFOD.∴∠PCF =90°-∠DCO =90°-∠DPF =∠PDF. ∴PC =PD. ∴DF =12CD.∵CD 2=OD 2+OC 2=22+12=5,∴CD = 5. ∴DF =125. …….......…...............8分∵PD CD =DF OD ,∴PC =PD =52×5=52. ∴t =52. …………………….................…...9分 所以,当t 等于1或 52时,以点P ,F ,D 为顶点的三角形与△COD 相似.(3)存在. 满足条件的点有三组,坐标分别为:M 1(2,1),N 1(4,2) ; …………………………………………………...…............10分 M 2(2,3),N 2(0,2) ; ………………………………………….............…............11分M 3(2,13),N 3(2,23)....….............12分。

【2015中考真题】湖北省襄阳市中考数学试题及解析

【2015中考真题】湖北省襄阳市中考数学试题及解析

2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分1.(3分)(2015•大连)﹣2的绝对值是()A.2B.﹣2 C.D.2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用A.3.7×106B.3.7×105C.37×104D.3.7×1043.(3分)(2015•湖北)在数轴上表示不等式2(1﹣x)<4的解集,正确的是()A.B.C.D.4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降5.(3分)(2015•湖北)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a66.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE 平分∠ACB.若BE=2,则AE的长为()A .B .1 C . D .2 8.(3分)(2015•湖北)下列说法中正确的是( ) A . “任意画出一个等边三角形,它是轴对称图形”是随机事件B . “任意画出一个平行四边形,它是中心对称图形”是必然事件C . “概率为0.0001的事件”是不可能事件D . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.(3分)(2015•湖北)点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( ) A . 40° B . 100° C . 40°或140° D . 40°或100° 10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )A . 4B . 5C . 6D . 911.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( )A .B .C .D .12.(3分)(2015•湖北)如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )A . A F=AEB . △ABE ≌△AGFC . E F=2D .A F=EF二、填空题,共5小题,每小题3分,共15分 13.(3分)(2015•湖北)计算:2﹣1﹣= .14.(3分)(2015•湖北)分式方程﹣=0的解是 .15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分数段(分手为x分)频数百分比60≤x<70 8 20%70≤x<80 a 30%80≤x≤90 16 b%90≤x<100 4 10%(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA 的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用C4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为﹣3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降考点:函数的图象.分析:根据函数的图象对各选项进行逐一分析即可.解答:解:A、∵由图象可知,在凌晨4点函数图象在最低点﹣3,∴凌晨4时气温最低为﹣3℃,故本选项正确;B、∵由图象可知,在14点函数图象在最高点8,∴14时气温最高为8℃,故本选项正确;C、∵由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D、∵由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.点评:本题考查的是函数的图象,能根据函数图象在坐标系中的增减性判断出函数的增减性是解答此题的关键.5.(3分)(2015•湖北)下列运算中正确的是()A.a3﹣a2=a B.a3•a4=a12C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°考点:平行线的性质.分析:根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.解:如图,7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE 平分∠ACB.若BE=2,则AE的长为()边的一半得出AE=CE=1.∴AE=CE=1.B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.点评:本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2015•湖北)点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40°B.100°C.40°或140°D.40°或100°考点:三角形的外接圆与外心;圆周角定理.专题:分类讨论.分析:利用圆周角定理以及圆内接四边形的性质得出∠BAC的度数.解答:解:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.点评:此题主要考查了圆周角定理以及圆内接四边形的性质,利用分类讨论得出是解题关键.10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4B.5C.6D.9考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两层3列,故可得出该几何体的小正方体的个数.解答:解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选A.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.(3分)(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()C D∵对称轴为直线x=﹣>0,图象在第一三象限,12.(3分)(2015•湖北)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A 重合,则下列结论错误的是()F=2EF=2,二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=0.分析:原式第一项利用负整数指数幂法则计算,第二项利用立方根定义计算即可得到结果.解答:解:原式=﹣14.(3分)(2015•湖北)分式方程﹣=0的解是15.解答:解:去分母得:x ﹣5﹣10=0, 解得:x=15,经检验x=15是分式方程的解. 故答案为:15. 点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 15.(3分)(2015•湖北)若一组数据1,2,x ,4的众数是1,则这组数据的方差为 1.5 .考点:方差;众数. 分析: 根据众数的定义先求出x 的值,再根据方差的计算公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]进行计算即可.解答:解:∵数据1,2,x ,4的众数是1, ∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1.5;故答案为:1.5. 点评:本题考查了众数和方差:众数是一组数据中出现次数最多的数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]. 16.(3分)(2015•湖北)如图,P 为⊙O 外一点,PA ,PB 是⊙O 的切线,A ,B 为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π .考点: 扇形面积的计算;切线的性质. 分析: 连结PO 交圆于C ,根据切线的性质可得∠OAP=90°,根据含30°的直角三角形的性质可得OA=1,再求出△PAO 与扇形AOC 的面积,由S 阴影=2×(S △PAO ﹣S 扇形AOC )则可求得结果. 解答:解:连结AO ,连结PO 交圆于C . ∵PA ,PB 是⊙O 的切线,A ,B 为切点,PA=,∠P=60°, ∴∠OAP=90°,OA=1,∴S 阴影=2×(S △PAO ﹣S 扇形AOC )=2×(×1×﹣)=﹣π.故答案为:﹣π.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.的度数.ABD==55∴∠A=∠ABD=∠BDE=70°=35°.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.••+﹣19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.解答:解:(1)∵反比例函数y=的图象过点A(1,4),,即∴反比例函数的解析式为:y=.y=∴﹣2=,.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数90≤x<100 4 10%请根据图表提供的信息,解答下列问题:(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.考点:列表法与树状图法;频数(率)分布表;频数(率)分布直方图.分析:(1)首先根据第一小组的频数和频率求得总人数,然后减去其它小组的频数即可求得a值,根据总人数和第三小组的频数即可求得b值;(2)用周角乘以相应分数段所占的百分比即可求得圆心角的度数;(3)列表将所有等可能的结果列举出来利用概率公式求解即可.解答:解:(1)∵60≤x<70小组的频数为8,占20%,∴8÷20%=40人,∴a=40﹣8﹣16﹣4=12,b%=×100%=40%,故答案为:12,40;(2)∵70≤x<80小组所占的百分比为30%,∴70≤x<80对应扇形的圆心角的度数360°×30%=108°,故答案为:108°;(3)用A、B表示男生,用a、b表示女生,列表得:A B a bA AB A a A bB B A Ba B ba aA aB abb bA bB ba∵共有12种等可能的结果,其中一男一女的有8种,∴P(一男一女)==.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和概率公式.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.,求出∠据tanB=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.cosC=在Rt△ABE中,tanB=,即=,BC=2ADC=23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.AC=BE=AC=﹣24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.:圆的综合题.AD=,四边形得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比∴,2AD= +OCPB,,,,∴S△ABC=AC•BC=5.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA 的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.=,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的中,抛物线的解析式为y=(x﹣2)2+;,=∴DF=CD.22222,∵=,PC=PD=×=,,综上所述:t=1或t=时,以点P,F,D为顶点的三角形与△COD相似;))。

2014-2015湖北襄阳中考数学试题(含答案)

2014-2015湖北襄阳中考数学试题(含答案)

2015年襄阳市初中毕业生学业水平考试数 学 试 题一、选择题(本大题共12个小题,每小题3分,共36分) 1.的绝对值是( ▲ ).A .2B .C .12D .2.中国人口众多,地大物博,仅领水面积就约为370 000km 2,将“370 000”这个数用科学记数法表示为( ▲ ). A .3.7×106 B .3.7×105 C .37×104 D .3.7×104 3.在数轴上表示不等式2(1-x )<4的解集,正确的是( ▲ ).A .B .C .D .4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T 随时间t 变化而变 化的关系,观察图象得到下列信息,其中错误的是( ▲ ). A .凌晨4时气温最低为-3°C B .14时气温最高为8°CC .从0时至14时,气温随时间增长而上升D .从14时至24时,气温随时间增长而下降5.下列运算中正确的是( ▲ ). A .a 3-a 2=a B .a 3·a 4=a 12 C .a 6÷a 2=a 3 D .(-a 2)3=-a 6 6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为( ▲ ). A .60° B .50° C .40° D .30° 7.如图,在△ABC 中,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB ,若BE =2,则AE 的长为( ▲ ). A .3 B .1 C .2 D .28.下列说法中正确的是( ▲ ).A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .“任意画出一个平行四边形,它是中心对称图形”是必然事件C .“概率为0.0001的事件”是不可能事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 9.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( ▲ ). A .40°B .100°C .40°或140°D .40°或100°10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( ▲ ).A .4B .5C .6D .9第10题图 主视图俯视图左视图第7题图第6题图 0T /°C t /时24144-38第4题图11.二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数在同一平面直角坐标系中的图象可能是( ▲ ).12.如图,矩形纸片ABCD 中,AB =4,BC =8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( ▲ ). A .AF =AE B .△ABE ≌△AGF C .EF =2 5 D .AF =EF二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上. 13.计算: ▲ .14.分式方程的解是 ▲ .15.若一组数据1,2,x ,4的众数是1,则这组数据的方差为 ▲ .16.如图,P 为⊙O 外一点,P A ,PB 是⊙O 的切线,A ,B 为切点,P A =3,∠P =60°,则图中阴影部分的面积为 ▲ .17.在□ ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 ▲ .三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 18.(本小题满分6分)先化简,再求值:,其中x =3+2,y =3- 2.第16题图GF E DCB A第12题图xyO第11题图OyxxyOA . B. C. D.xx x xx19.(本小题满分6分)如图,已知反比例函数的图象与一次函数y =ax +b 的图象相交于点A (1,4)和点B (n ,-2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x 的取值范围.20.(本小题满分6分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布分数段(分数为x 分)频数 百分比 60≤x <70 8 20% 70≤x <80 a 30% 80≤x <90 16 b % 90≤x <100410%请根据图表提供的信息,解答下列问题:(1)表中的a = ▲ ,b = ▲ ;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x <80对应扇形的圆心角的度数是 ▲ ;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学. 学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 ▲ .第19题图yA (1,4)OxB (n ,-2)第20题图21.(本小题满分6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门. 所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?22.(本小题满分6分)如图,AD 是△ABC 的中线,,,AC= 2. 求:(1)BC 的长;(2)sin ∠ADC 的值.23.(本小题满分7分)如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D . (1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.45°FED CBA第21题图1m住房墙24.(本小题满分10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元. 根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元. 如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(本小题满分10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB∶PC=1∶2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.第25题图26.(本小题满分12分)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点 E在第一象限,且DE⊥DC,DE=DC. 以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F. 当t为何值时,以点P,F,D为顶点的三角形与△COD 相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.第26题图11 /11。

自-2015年中考数学适应性测试试题及参考答案

自-2015年中考数学适应性测试试题及参考答案

襄州区2015年中考数学适应性测试试题及参考答案一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只 有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.-5的绝对值是 ( )A. 51 B. 5 C .51- D. -52.下列各图中,不是中心对称图形的是 ( )3.下列计算正确的是( ) A.()623a a-=- B .222)(b a b a -=- C .235325a a a += D.336a a a =÷4.分解因式2m ma -的结果是( )A.(1)(1)m a a +- B.2(1)m a + C .2(1)m a - D .(1)(1)a a -+ 5.如图,能判定EC ∥AB 的条件是( )A.∠B=∠ACE B .∠A=∠ECD C.∠B=∠ACB D .∠A=∠ACE6.已知m 10x=,n 10y=,则2310x y+等于( )A.n 3m 2+ B.22n m + C.mn 6 D .32n m7.如图,已知△A BC 中,∠C=090,若沿图中虚线剪去∠C,则 ∠1+∠2等于 ( ) A.90° B.135° C.270° D.315°8.已知一元二次方程2x 2+mx-7=0的一个根为x=1,则另一根为( )A.1 B .2 C.-3.5 D .-59.在函数31-=x y 中,自变量x 的取值范围是( ) A.x ≠3 B .x ≠0 C.x >3 D .x ≠-310.已知抛一枚均匀硬币正面朝上的概率为21,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次,必有1次正面朝上. B.连续抛一枚均匀硬币10次,都可能正面朝上.C .大量反复抛一枚均匀硬币,平均100次出现正面朝上50次.D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的.11.如图,线段A B两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第 一象限内将线段AB 缩小为原来的21后得到线段C D,则端点C 的坐标为( ) A .(3,3) B.(4,3) C.(3,1) D .(4,1)12.如图,P 为⊙O 的直径B A延长线上的一点,PC 与⊙O 相切,切点为C ,点D是⊙O上一点,连接P D.已知PC =P D=B C.下列结论:(1)P D与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO =CD ;(4)弧AC =弧A D.其中正确的个数为( )A.1个 B. 2个 C.3个D .4个二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上.13.计算:)3223)(3223(-+=__________________.14.央视报道,中国人每年在餐桌上浪费的粮食价值高达2000亿元,被倒掉的食物相当于 2多人一年的口粮,把200000000用科学计数法表示为___________________.15.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:C 30O60O游船)那么这些运动员跳高成绩的众数是( )A .4 B.1.75 C.1.70 D.1.6516.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测 得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事 故船C 处所需的时间大约为________小时(用根号表示). 17. 在Rt △ABC 中,∠A =90°,有一个锐角为60°,B C=6.若P 在线段C A的延长线上, 且∠AB P=30°,则CP的长为_______.43和6三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内. 18.已知15-=x ,求代数式652-+x x 的值.19.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.20.如图,直径为5的⊙A中,弦BC,ED 所对的圆心角分别是∠BA C,∠EA D.已知DE =3,∠BAC+∠EAD =180°,求点A 到BC 的距离. 21.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,双曲线1y =xm与直线2y =b x +- 交于A,D 两点,直线2y =b x +-交x轴于点C ,交y 轴于 点B ,点B 的坐标为(0,3),3==∆∆D O C AO B s s .(1)求m 和b 的值;(2)求21y y >时x 的取值范围.22.下图是某校未制作完整的三个年级假期义工(不计报酬,为他人提供服务的人)的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有假期义工_______名; (2)将两幅统计图补充完整;(3)要求从七年级、九年级义工中各推荐一名队长候选人,八年级义工中推荐两名队长候选人,再从四名候选人中先后选出两人任队长,用列表法或树形图,求出两名队长都是八年级义工的概率是多少?成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 223.如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE并延长交射线AB 于点F,连结BE .(1) 求证:∠AFD=∠EBC ;(2) 若∠DAB =90°,当∆BE F为等腰三角形时,求∠EFB 的度数.24.响应政府“节能”号召,我市华强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯.已知这种节能灯的出厂价为每个10元.某商场试销发现:销售单价定为15元/个,每月销售量为350个;每涨价1元,每月少卖10个.(1)求出每月销售量y (个)与销售单价x (元)之间的函数关系,并写出自变量的取值范围;(2)设该商场每月销售这种节能灯获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)如果物价部门规定,这种节能灯的销售单价不得高于25元.商场根据公司生产调拨计划得知,每月商场最多可销售这种节能灯300个,在这种情况下,商场每月销售这种节能灯最多可获得多少利润?25.如图,AB 为⊙O 的直径,C ,E 为⊙O上的两 点,AC 平分∠EAB,CD ⊥AE 于D.(1) 求证:CD 为⊙O 的切线;(2) 过点C 作C F⊥AB 于F,如图2,判断CF 和AF ,DE 之间的数量关系,并证明之; (3) 若A D-OA =1.5,AC=33,求图中阴影部分的面积.26.如图,矩形OABC 的顶点O,A,C 都在坐标轴上,点B 的坐标为(8,3),M是B C边的中点.(1)求出点M的坐标和△CO M的周长;(2)若点P 是矩形OABC 的对称轴M N上的一点,使以O ,M,C ,P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标;(3)若P 是OA 边上一个动点,它以每秒1个单位长度的速度从A 点出发,沿AO 方 向向点O匀速运动,设运动时间为t 秒.是否存在在某一时刻t ,使以P ,O,M 为顶点的三角形与△C OM 相似? 若存在,求出此时t 的值;若不存在,请说明 理由.A B C D E FABC D E F(备用图)襄州区2015年中考数学适应性测试试题参考答案评分说明:1.若与参考答案有不用的解法而解答过程正确者,请参照本评分标准分步给分。

2015年湖北省襄阳市中考数学试题及解析

2015年湖北省襄阳市中考数学试题及解析

2015年湖北省襄阳市中考数学试卷一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370B4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()7.(3分)(2015•湖北)如图,在△ABC 中,∠B=30°,BC 的垂直平分线交AB 于点E ,垂足为D ,CE 平分∠ACB .若BE=2,则AE 的长为( )B10.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )11.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( ).12.(3分)(2015•湖北)如图,矩形纸片ABCD 中,AB=4,BC=8,将纸片沿EF 折叠,使点C 与点A 重合,则下列结论错误的是( )F=2二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=.14.(3分)(2015•湖北)分式方程﹣=0的解是.15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为.16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为.17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A 的度数为.三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC 绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.2015年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题,共12小题,每小题3分,共36分2.(3分)(2015•湖北)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370B4.(3分)(2015•湖北)如图,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()6.(3分)(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()7.(3分)(2015•湖北)如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()BCE=1CE=110.(3分)(2015•湖北)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )11.(3分)(2015•湖北)二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=在同一平面直角坐标系中的图象可能是( ) .>图象在第一三象限,12.(3分)(2015•湖北)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是()F=2EF=2,二、填空题,共5小题,每小题3分,共15分13.(3分)(2015•湖北)计算:2﹣1﹣=0.﹣14.(3分)(2015•湖北)分式方程﹣=0的解是15.15.(3分)(2015•湖北)若一组数据1,2,x,4的众数是1,则这组数据的方差为 1.5.[))﹣则这组数据的方差为[,则方差[)﹣﹣16.(3分)(2015•湖北)如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为﹣π.,∠××)﹣故答案为:﹣17.(3分)(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A 的度数为55°或35°.ABD==55ABD=∠BDE=三、简单题,共9小题,共69分18.(6分)(2015•湖北)先化简,再求值:(+)÷,其中x=,y=﹣.••+y=﹣19.(6分)(2015•湖北)如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.y=,即y=2=.20.(6分)(2015•湖北)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图(1)表中的a=12,b=40;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是108°;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.×=21.(6分)(2015•湖北)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(6分)(2015•湖北)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.cosC=,求出∠,求出cosC=tanB=,即=BC=2ADC=23.(7分)(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC 绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.BE=AC=BE=AC=﹣24.(10分)(2015•湖北)为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.(10分)(2015•湖北)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.AD=,四边形+OCAD=,四边形+OCPB,,,,26.(12分)(2015•湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.=,(;,=CD,=PC=PD=×=,,t=时,以点))。

襄阳市襄州区中考适应性考试数学试卷含答案

襄阳市襄州区中考适应性考试数学试卷含答案

襄州区中考适应性考试数学试卷一、 选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中, 只有一个是正确的,请把正确的选项序号在答题卡上涂黑作答. 1.-2的相反数是( )A .-2B .2C .0D .2 2.下列运算正确的是( )A .2+3=5B .3+2=32C .3)3(2-=-D .82=2÷3.把不等式组x 22x <6≥-⎧⎨⎩的解集在数轴上表示出来,正确的是A. B . C .D .4.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )5.一元二次方程220x x m 总有实数根,则m 应满足的条件是( )A .1mB .1mC .1mD .m ≤16.在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F , 若EC=2BE ,则BFFD的值是( ) A.21 B. 31 C. 41 D. 51 7.某校九年级开展“绿色出行”宣传活动,各班级参加该活动的人数统计结果如下表,对于 这组统计数据,下列说法中正确的是( )班级 1 2 3 4 5 6 人数526062545862A .平均数是58B .中位数是58C .极差是40D .众数是60 8.已知下列命题:①在Rt △ABC 中,∠C=90°,若∠A >∠B ,则sinA >sinB ; ②四条线段a ,b ,c ,d 中,若a cb d=,则ad=bc ; ADE③若a >b ,则22(1)(1)a m b m +>+; ④若x x -=-,则0x ≥.其中原命题与逆命题均为真命题的是( )A .①②③B .①②④C .①③④D .②③④9.如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于( ) A.50° B.80° C.65° D.115°10.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长 线交于点C ,若CE=2,则图中阴影部分的面积是( ) A .π﹣B .πC .π﹣D .π二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题正确答案写在答题卡上对应的横线上.11.分解因式:2327x -= .12.PM2.5是指大气中直径小于或等于2.5m μ(10.000001m m μ=)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大.2.5m μ用科学记数法可表示为____________-m .13.如图所示,直线AB ,CD 相交于点O ,OM ⊥AB , 若∠MOD= 30°, 则∠COB=_____度. 14.分式方程11112=---xx x 的解是___________. 15.如图,若□ABCD 的周长为36cm ,过点D 分别作AB ,BC 边上的高DE , DF ,且DE=4cm ,DF=5cm ,□ABCD 的面积为 cm 2.16.⊙O 的半径为5,弦BC=8,点A 是⊙O 上一点,且AB=AC ,直线AO 与BC 交于点D ,则AD 的长为 .三.解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明, 并将答 案写在答题卡上对应的答题区域内. 17.(本题6分)先化简:,然后从﹣2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值.18.(本题6分)为响应“足球进校园”的号召,我区在各中学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共 50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数为________人;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.19.(本题7分)如图,九年级一班数学兴趣小组的同学测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)20.(本题7分)如图,为美化环境,某小区计划在一块长为60m,宽为40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建同样宽的通道,设通道宽为a m.(1)当a =10m 时,花圃的面积=_____________m 2;(2)通道的面积与花圃的面积之比能否恰好等于3:5,如果可以,求出此时通道的宽.21.(本题7分)如图,一次函数1-=kx y 的图象与反比例函数xmy =的图象相交于A 、 B 两点. 已知点A 的坐标是(-2,1),△AOB 的面积为23. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.22.(本题8分)如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交 ⊙O 于D.(1)过D 作DE ⊥MN 于E (保留作图痕迹); (2)证明:DE 是⊙O 的切线; (3)若DE=6,AE=3,求弦AB 的长.23.(本题9分)某商家经销一种绿茶,用于装修门面已3000元.已知绿茶每千克成本50元,经研究发现销量y (kg )随销售单价x (元/ kg )的变化而变化,具体变化规律 如下表所示:设该绿茶的月销售利润为w (元)(销售利润=单价×销售量-成本)(1)请根据上表,写出y 与x 之间的函数关系式(不必写出自变量x 的取值范围); (2)求w 与x 之间的函数关系式(不必写出自变量x 的取值范围),并求出x 为何值时,w 的值最大?(3)若在第一个月里,按使w 获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?24.(本题10分)如图,在三角形ABC 中,点O 是AC 边上一动点,过点O 作直线MN//BC,设MN 交∠BCA 的平分线于点E,交∠ACD 的平分线于点F.销售单价x (元/ kg ) … 70 75 80 85 90 … 月销售量y (kg )…10090807060…(1) 求证:OE=OF ;(2) 当点O 运动到何处时,四边形AECF 会变成矩形?并证明你的结论;(3) 若AC 边上存在点O ,使四边形AECF 是正方形,AB 与EC 相交于点P ,与EF 相交于 点D ,若BC=2,AE=6, 求BP 的长.25.(本题11分)如图,抛物线c bx x y ++-=241与x 轴交于A (﹣1,0),B (5,0)两 点,过点B 作线段BC ⊥x 轴,交直线x y 2-=于点C .(1)求该抛物线的解析式;(2)求点B 关于直线x y 2-=的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;(3)点P 是抛物线上一动点,过点P 作y 轴的平行线,交线段B′C 于点D ,是否存在这样的点P ,使四边形PBCD 是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.数学参考答案一、 选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDADDBAADA二、 填空题(每小题3分,共18分)11.)3)(3(3-+x x ;12. 6-105.2⨯;13. 120;14. 2-=x ;15. 40 16. 2或8. 三、解答题(共72分) 17. (本题6分) 解:原式=×﹣1)-1)(x x 1)-x 2+(( ……………………2分=﹣12+x ……………………3分=142+-x x , ……………………4分由题意可知,x 不能等于1,-1,0, ……………………5分 当x=2时,原式=34-4=0. ……………………6分 18.(本小题6分)解:(1)30; ……………………1分 (2)列如下表:……………………4分从表中可以看到等可能的结果共有12种情况,而A B 分到一组的情况有2种, ……………………5分故恰好选到A 、B 两所学校的概率为P==. ……………………6分19.(本小题7分)解:∵A F ⊥A B ,A B ⊥BE ,DE ⊥BE ,∴四边形A BEF 为矩形,∴A F=BE ,EF=A B=2 ……………………1分设DE=x ,在Rt △CDE 中,CE===x , ……………………2分在Rt △A BC 中, ∵=,A B=2, ∴BC=2, ……………………3分在Rt △A FD 中,DF=DE ﹣EF=x ﹣2,A B C DA AB AC A DB B A BC BDC C A CB CDD D A DB DC∴A F===(x ﹣2), ……………………4分∵A F=BE=BC+CE . ∴(x ﹣2)=2+x , ……………………5分解得x=6. ……………………6分答:树DE 的高度为6米. ……………………7分20.(本小题7分)解:(1)由图可知,花圃的面积为(40-2a )(60-2a );当a =10m 时,面积=(40-2×10)(60-2×10)=800(m 2)………2分 (2)由已知可列式:60×40-(40-2a )(60-2a )=38×60×40,……………………4分 解得:a 1=5,a 2=45(舍去). ……………………6分 答:所以通道的宽为5m . ……………………7分21.(本小题8分)解:(1)据题意,反比例函数xmy =的图象经过点A (﹣2,1), ∴有2-==xy m ∴反比例函数解析式为x y 2-=,………………2分直线1-=kx y 经过点A (﹣2,1),∴112=--k ,得1-=k ,∴一次函数的解析式为1--=x y …………4分 (2)在1-=kx y 中,当10-==y x 时,,设直线与y 轴相较于点C , 则OC=1,……………………5分 设点B 的横坐标为n , 由△AOB 的面积为23,232121=+⨯⨯)(n ,解得n =1, ……………………6分一次函数的值小于反比例函数的值时,02<<-x 或1>x .……………8分22. (本小题8分)解:(1)作图略;……………………2分证明:连接OD , ∵O A =OD ,∴∠O A D=∠OD A ,∵∠O A D=∠D A E ,∴∠OD A =∠D A E 。

襄阳市襄城区年中考适应性考试数学试题新版附答案

襄阳市襄城区年中考适应性考试数学试题新版附答案

机密★启用前襄城区2018年中考适应性考试数学试 题(本试卷共4页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1. 答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定的位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题(主观题)用毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或毫米黑色签字笔。

4. 考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1. 2018的相反数是:A.2018-B.20181C.2018D.20181- 2.下列四个数:31,,3,3----π,其中最大的数是:A.3-B.3-C.π-D.31- 3. 如图,已知CD AB //,若︒=∠︒=∠652,1151,则C ∠等于:A.︒40B.︒45C.︒50D.︒60 4. 下列计算正确的是:A.4222a a a =+B.84222a a a =⋅C.145=-a aD.824)(a a = 5. 下列调查中,适合采用全面调查(普查)方式的是: A.对某班50名同学视力情况的调查 B.对汉江水质情况的调查C.对某类烟花燃放质量情况的调查D.对元宵节期间市场上汤圆质量情况的调查6. 如图是由几个小立方块所搭成的几何体的俯视图,正方形内的数字表示在该位置小立方块的个数,则这个几何体的左视图为: A B C DB 第3题图7. 下列图形中是中心对称图形的是: A B C D8. 若二次函数c x x y +-=62的图象过A ),1(a -,B ),2(b ,C ),5(c ,则下列正确的是: A.c b a >> B.b c a >>C.c a b >>D.b a c >>9. 如图,观察图中尺规作图痕迹,下列说法错误的是: A.OE 是AOB ∠的平分线 B.OD OC = C.点C,D 到OE 的距离不相等 D.BOE AOE ∠=∠10. 如图,两个较大正方形的面积分别为225和母A 所代表的正方形的面积是:A.4B.8C.16D.64 二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上.11.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中"80万亿元"用科学记数法可表示为__________________元. 12. 如图,已知ABC ∆的周长是32,OB,OC 分别平分ABC ∠和ACB ∠,BC OD ⊥于D,且6=OD ,ABC ∆的面积是_________. 13. 不等式组⎪⎩⎪⎨⎧≥++<-123)1(213x x x 的解集为_________.14. 袋中装有6个黑球和n 个白球,经过若干次试验,发现若从袋中任摸一个球,恰好是白球的概率为25.0,则这个袋子中白球大约有________个.15. 如图,⊙O 的直径为10,弦AB=8,点P 是弦AB 上一动点,那么OP长的取值范围是______. 16. 已知在ABC ∆中,3:2:=AB AC ,并且5.0tan =∠B ,则A ∠tan 等于第15题图第12题图B第9题图第10题图_________.三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 17.(本小题满分6分)先化简,再求值:a a a a a a a ÷--++--1444222,其中23=a . 18.(本小题满分6分)如图,△ABC≌△ABD,点E 在边AB 上,并且CE∥BD,连接DE. 求证:四边形BCED 是菱形. 19.(本小题满分6分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(1)在这次抽样调查中,一共抽取了______名学生; (2)请把条形统计图补充完整;(3)请估计该地区九年级学生体育成绩为B 级的人数.20.(本小题满分7分)有大小两种货车,2辆大货车与3辆小货车一次可以运货吨,5辆大货车与6辆小货车一次可以运货35吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现在租用这两种货车共10辆,要求一次运输货物不低于30吨,则大货车至少租几辆? 21.(本小题满分7分)如图,在平面直角坐标系中,一次函数的图象与反比例函数图象各等级人数所占百分比扇形统计图各等级人数条形统计图交于第二,四象限内A,B 两点,与x 轴交于点C,与y 轴交于点D.若点B 的纵坐标为4-,OA=5,6.0sin =∠AOC . (1)求反比例函数解析式; (2)求△AOB 的面积. 22.(本小题满分8分)如图,AB 是⊙O 的直径,AE 平分∠BAF ,作直线ED⊥AF ,交AF 的延长线于点D,交AB (1)求证:CD 是⊙O 的切线;(2)若CB=2,CE=4,求AE 的长.23.(本小题满分10分)2017年元旦莫小贝在襄阳万达广场购进一家商铺,装修后用于销售某品牌的女装.2018元旦莫小贝盘点时发现:2017年自家店内女装的平均成本为4百元/件,当年的销售量y (百件)与平均销售价格x (百元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.(1)请求出y 与x 之间的函数关系式;(2)若莫小贝购商铺及装修一共花了120万元,请通过计算说明2017年莫小贝是赚还是亏?若赚,最多赚多少元?若亏,最少亏多少元?24.(本小题满分10分)如图,CAB ∆与CDE ∆均是等腰直角三角形,并且︒=∠=∠90DCE ACB .连接BE,AD 的延长线与BC 、BE (1) 求证:BE AF ⊥;(2) 将CDE ∆绕点C 旋转直至BE CD //时的数量关系,并证明;(3) 在(2)的条件下,若DA=,DG=2,求BF 的值. 25.(本小题满分12分)A/件)如图,坐标平面内抛物线bx ax y +=2经过点A )8,4(--与点B )3,1(-,连接AB,OB,交y 轴于点C,点D 是线段OA(不与A,B 重合)上动点,射线CD 与抛物线交于点E. (1)求抛物线解析式; (2)求线段CD 的最小值;(3)是否存在点D 使得四边形ABOE 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.2018年襄城区适应性考试数学评分标准及参考答案一.选择题二.填空题11.13100.8⨯ 12.96 13.31<≤-x 15.53≤≤OP 或7(第16题只填一种情况并且正确的给2分;填了两种情况但出现错误的,不给分)三.解答题 17.解:原式=a a a a a a a 11)1()2()2)(2(2⋅--+--+ =122+-+a a =222--++a a a =22-a a.……3分 ∴当23=a 时,原式=6223232-=-⨯..............................………………6分18.证明:∵ABC∆≌ABD∆ ∴21,∠=∠=BD BC (1)分在BEC ∆和BED ∆中 ⎪⎩⎪⎨⎧=∠=∠=BE BE BDBC 21 ∴BEC ∆≌BED ∆∴DE CE =分又∵BD CE //∴23∠=∠ (3)分∴13∠=∠∴CB CE = (4)分∴DE DB CB CE ===.......................………5分 ∴四边形BCED是菱形..................................................………6分 19.解:(1)200;.................................…............................................................................……2分 (2)图略(小长方形的高为32);......................................................................………4分 (3)∵1950200785000=⨯.............................................................................………5分∴该地区九年级学生体育成绩为B 级的人数约为1950人......................……6分 20.解:(1)设每辆大货车与每辆小货车一次分别可运货x 吨与y 吨,则……1分⎩⎨⎧=+=+35655.1532y x y x .......................................................................……2分 解得⎩⎨⎧==5.24y x ..........................................................................……3分答:大小货车一次可分别运货4吨与吨............................……4分(2)设共租用大货车m ,则可租用小货车)10(m -辆,那么30)10(5.24≥-+m m ......................................................................……5分 解得310≥m∵m 取整数 ∴m最小取4...................................................................................……6分答:大货车至少租4辆........................................................................……7分 21.解:(1)过点A 作x AE ⊥轴于E∴︒=∠90AEO∴在AOE Rt ∆中,OAAEAOE =∠sin ∴36.05sin =⨯=∠⋅=AOC OA AE ..................................……1分∴4352222=-=-=AE AO OE ∴点A 的坐标为)3,4(-..........................................................……2分设所求反比例函数解析式为xk y =,则43-=k ∴12-=k ∴所求反比例函数解析式为xy 12-=...................................……3分(2)∵在xy 12-=中,当4-=y 时,3=x∴点B 的坐标为)4,3(-..............................................................................……4分由A)3,4(-,B)4,3(-可得AB 所在直线为:1--=x y (5)分∵在上式中当0=x 时,1-=y ∴点D 的坐标为)1,0(-..............................................................................……6分 ∴1=OD ∴ODB ODA AOB S S S ∆∆∆+=27=..........................................................................................……7分 22.(1)证明:连接OE∵AF ED ⊥ ∴︒=∠90D∵AE 平分BAF ∠ ∴21∠=∠ 又∵OE OA = ∴31∠=∠∴32∠=∠....................................................................................……2分∴AF OE // ∴︒=∠=∠90D CEO .................................................................……3分 ∴CD OE ⊥ ∴CD是⊙O的切线.......................................................................……4分 (2)解:连接BE∵AB 是⊙O 的直径 ∴︒=∠90BEA ∴︒=∠+∠9054 又∵︒=∠+∠9052 ∴42∠=∠ ∴41∠=∠................................................................……5分 ∵C C ∠=∠ ∴CBE ∆∽CEA ∆ ∴AEBECA CE CE CB ==..................................................……6分 即AEBECA ==442∴AE BE CA 21,8==∴628=-=-=CB CA AB (7)分∵在ABE Rt ∆中222AB AE BE =+ ∴2226)21(=+AE AE∴5512=AE ...........................................................……8分 23.解:(1)由题可设当84≤≤x 时,xk y =..........................................................………1分将点A )30,4(代入得430k =∴120=k ∴xy 120=............................................................................................………2分当288≤≤x 时,可设nmx y +=......................................................………3分将点B )0,28(),15,8(C 点代入得⎩⎨⎧+=+=nm n m 280815 解得⎪⎩⎪⎨⎧=-=2143n m ∴2143+-=x y (4)分综上所述y 与x之间的函数关系式为:⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤=)288(2143)84(120x x x xy (5)分(2)设2017年莫小贝的利润为W 万元则 当84≤≤x 时xx x W 480120120)4(-=-⋅-=.........................................………6分 ∵0480<-=k∴W 随x 的增大而增大 ∴当8=x 时W存在最大值,此时608480-=-=W ..................................………7分当288≤≤x 时2042443120)2143()4(2-+-=-+-⋅-=x x x x W12)16(432---=x ........................................................………8分∵043<-=a 抛物线开口向下∴当16=x 时W 存在最大值,此时12-=W .......................................………9分∵01260<-<- ∴2017年莫小贝亏钱,最少亏12万元..................…................................……10分 24.(1)证明:∵ACB ∆和DCE ∆均是等腰直角三角形∴CB CA CE CD ==,∵︒=∠+∠=∠︒=∠+∠=∠9023,9021DCB ACB ∴31∠=∠...................................................................................………1分 在ACD ∆和∆ ∴ACD ∆≌BCE ∆ ∴54∠=∠..∵︒=∠90ACB ∴︒=∠+∠9064 又∵76∠=∠ ∴︒=∠+∠9075....................................................................………2分∴︒=∠90AFB ∴BF AF ⊥.............................................................................………3分A(2)DGDA DE ⋅=22,理由如下............................................………4分 ∵在DCE Rt ∆中,DECD DEC =∠sin∴DE DCE DE CD 22sin =∠⋅= (5)分∵BE CD //∴︒=∠=∠90AFB CDG ∴︒=∠︒=∠+∠90,9026ADC ∴︒=∠=∠∠=∠90,61CDG ADC ∴ADC ∆∽CDG ∆ ∴DCCD CDDA =∴DCDA CD ⋅=2............................................................………6分 即DC DA AE ⋅=2)22(∴DGDA DE ⋅=22.........................................................………7分(3)由(2)知1825.4222=⨯⨯=⋅=DG DA DE ∴23=DE ∴3232222=⨯==DE CD ....................................................………8分 ∵BE CD //∴︒=∠=∠45CDE DEF∴︒=︒+︒=∠+∠=∠904545CED CDE CEF ∴︒=∠=∠=∠90AFE DCE CEF ∴四边形DCEF 是矩形 又∵CD=CE∴四边形DCEF 是正方形 ∴3==CD DF ∴123=-=-=DG DF GF .....................................……..................…9分 ∵BE CD // ∴BFG ∆∽CDG ∆ ∴DGCD GFBF =即231=BF∴23=BF ................................................... ....................................………10分(一二三问分别按3分+4分+3分计分)25.解:(1)将)3,1(),8,4(---B A 代入bx ax y +=2得................1分⎩⎨⎧+=--=-b a ba 34168 ....................................………2分 解得⎩⎨⎧-=-=21b a ........................…..................……3分∴所求的抛物线的解析式为:x x y 22--=...............4分(2)由)3,1(),8,4(---B A 可得AB 所在直线解析式为4-=x y 当0=x 时,4-=y 即点C 的坐标为)4,0(- ∴4=OC过点A 作y AF ⊥轴于F ∴︒=∠90AFO∴在AFO Rt ∆中54842222=+=+=OF AF OA .….......5分 ∵垂线段最短 ∴当OACD ⊥时,CD最短.…...................................................……6分∴当CD 最短时︒=∠=∠90AFO CDO 又∵COD AOF ∠=∠(公共角) ∴AOF∆∽COD∆.…..........................................................……7分 ∴OAAFOC CD = 即5444=CD ∴554=CD .…................……8分(3)存在点D )2,1(--使得四边形ABOE 的面积最大,理由如下:..............……9分由)0,0(),8,4(O A --可得AO 所在直线解析式为x y 2= 过点E 作y EG //轴交OA 于点G,设点E 的横坐标为m ,则 点E,点G 的坐标分别为:)2,(),2,(2m m m m m -- ∴m m m m m EG 42222--=---=∴m m m m x x EG S O A AOE 824)4(21||2122--=⨯--=-⋅⋅=∆同理104521||21=⨯⨯=-⋅⋅=∆B A AOB x x OC S∴10822+--=+=∆∆m m S S S AOB AOE ABOE 四边形18)2(22++-=m ...............................................................……10分∵02<-=a 抛物线开口向下 ∴当2-=m 时ABOE S 四边形存在最大值 ∴0)2(2)2(222=-⨯---=--m m ∴此时点E 的坐标为)0,2(-.............…...............................................…11分由)4,0(),0,2(--C E 可得AO 所在直线解析式为42--=x y 由⎩⎨⎧=--=x y x y 242解得⎩⎨⎧-=-=21y x即点D 的坐标为-......................................................)2(-,1..............……12分(一二三问按每问4分计分)。

襄阳市襄城区年中考适应性考试数学试题新版附答案

襄阳市襄城区年中考适应性考试数学试题新版附答案

机密★启用前襄城区2018年中考适应性考试数学试 题(本试卷共4页,满分120分,考试时间120分钟)★ 祝 考 试 顺 利 ★注意事项:1. 答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上指定的位置。

2. 选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3. 非选择题(主观题)用毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用2B 铅笔或毫米黑色签字笔。

4. 考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1. 2018的相反数是:A.2018-B.20181C.2018D.20181- 2.下列四个数:31,,3,3----π,其中最大的数是:A.3-B.3-C.π-D.31- 3. 如图,已知CD AB //,若︒=∠︒=∠652,1151,则C ∠等于:A.︒40B.︒45C.︒50D.︒60 4. 下列计算正确的是:A.4222a a a =+B.84222a a a =⋅C.145=-a aD.824)(a a = 5. 下列调查中,适合采用全面调查(普查)方式的是: A.对某班50名同学视力情况的调查 B.对汉江水质情况的调查C.对某类烟花燃放质量情况的调查D.对元宵节期间市场上汤圆质量情况的调查6. 如图是由几个小立方块所搭成的几何体的俯视图,正方形内的数字表示在该位置小立方块的个数,则这个几何体的左视图为: A B C DB 第3题图7. 下列图形中是中心对称图形的是: A B C D8. 若二次函数c x x y +-=62的图象过A ),1(a -,B ),2(b ,C ),5(c ,则下列正确的是: A.c b a >> B.b c a >>C.c a b >>D.b a c >>9. 如图,观察图中尺规作图痕迹,下列说法错误的是: A.OE 是AOB ∠的平分线 B.OD OC = C.点C,D 到OE 的距离不相等 D.BOE AOE ∠=∠10. 如图,两个较大正方形的面积分别为225和母A 所代表的正方形的面积是:A.4B.8C.16D.64 二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上.11.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中"80万亿元"用科学记数法可表示为__________________元. 12. 如图,已知ABC ∆的周长是32,OB,OC 分别平分ABC ∠和ACB ∠,BC OD ⊥于D,且6=OD ,ABC ∆的面积是_________. 13. 不等式组⎪⎩⎪⎨⎧≥++<-123)1(213x x x 的解集为_________.14. 袋中装有6个黑球和n 个白球,经过若干次试验,发现若从袋中任摸一个球,恰好是白球的概率为25.0,则这个袋子中白球大约有________个.15. 如图,⊙O 的直径为10,弦AB=8,点P 是弦AB 上一动点,那么OP长的取值范围是______. 16. 已知在ABC ∆中,3:2:=AB AC ,并且5.0tan =∠B ,则A ∠tan 等于第15题图第12题图B第9题图第10题图_________.三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 17.(本小题满分6分)先化简,再求值:a a a a a a a ÷--++--1444222,其中23=a . 18.(本小题满分6分)如图,△ABC≌△ABD,点E 在边AB 上,并且CE∥BD,连接DE. 求证:四边形BCED 是菱形. 19.(本小题满分6分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A,B,C,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(1)在这次抽样调查中,一共抽取了______名学生; (2)请把条形统计图补充完整;(3)请估计该地区九年级学生体育成绩为B 级的人数.20.(本小题满分7分)有大小两种货车,2辆大货车与3辆小货车一次可以运货吨,5辆大货车与6辆小货车一次可以运货35吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现在租用这两种货车共10辆,要求一次运输货物不低于30吨,则大货车至少租几辆? 21.(本小题满分7分)如图,在平面直角坐标系中,一次函数的图象与反比例函数图象各等级人数所占百分比扇形统计图各等级人数条形统计图交于第二,四象限内A,B 两点,与x 轴交于点C,与y 轴交于点D.若点B 的纵坐标为4-,OA=5,6.0sin =∠AOC . (1)求反比例函数解析式; (2)求△AOB 的面积. 22.(本小题满分8分)如图,AB 是⊙O 的直径,AE 平分∠BAF ,作直线ED⊥AF ,交AF 的延长线于点D,交AB (1)求证:CD 是⊙O 的切线;(2)若CB=2,CE=4,求AE 的长.23.(本小题满分10分)2017年元旦莫小贝在襄阳万达广场购进一家商铺,装修后用于销售某品牌的女装.2018元旦莫小贝盘点时发现:2017年自家店内女装的平均成本为4百元/件,当年的销售量y (百件)与平均销售价格x (百元/件)的关系如图所示,其中AB 为反比例函数图象的一部分,BC 为一次函数图象的一部分.(1)请求出y 与x 之间的函数关系式;(2)若莫小贝购商铺及装修一共花了120万元,请通过计算说明2017年莫小贝是赚还是亏?若赚,最多赚多少元?若亏,最少亏多少元?24.(本小题满分10分)如图,CAB ∆与CDE ∆均是等腰直角三角形,并且︒=∠=∠90DCE ACB .连接BE,AD 的延长线与BC 、BE (1) 求证:BE AF ⊥;(2) 将CDE ∆绕点C 旋转直至BE CD //时的数量关系,并证明;(3) 在(2)的条件下,若DA=,DG=2,求BF 的值. 25.(本小题满分12分)A/件)如图,坐标平面内抛物线bx ax y +=2经过点A )8,4(--与点B )3,1(-,连接AB,OB,交y 轴于点C,点D 是线段OA(不与A,B 重合)上动点,射线CD 与抛物线交于点E. (1)求抛物线解析式; (2)求线段CD 的最小值;(3)是否存在点D 使得四边形ABOE 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由.2018年襄城区适应性考试数学评分标准及参考答案一.选择题二.填空题11.13100.8⨯ 12.96 13.31<≤-x 15.53≤≤OP 或7(第16题只填一种情况并且正确的给2分;填了两种情况但出现错误的,不给分)三.解答题 17.解:原式=a a a a a a a 11)1()2()2)(2(2⋅--+--+ =122+-+a a =222--++a a a =22-a a.……3分 ∴当23=a 时,原式=6223232-=-⨯..............................………………6分18.证明:∵ABC∆≌ABD∆ ∴21,∠=∠=BD BC (1)分在BEC ∆和BED ∆中 ⎪⎩⎪⎨⎧=∠=∠=BE BE BDBC 21 ∴BEC ∆≌BED ∆∴DE CE =分又∵BD CE //∴23∠=∠ (3)分∴13∠=∠∴CB CE = (4)分∴DE DB CB CE ===.......................………5分 ∴四边形BCED是菱形..................................................………6分 19.解:(1)200;.................................…............................................................................……2分 (2)图略(小长方形的高为32);......................................................................………4分 (3)∵1950200785000=⨯.............................................................................………5分∴该地区九年级学生体育成绩为B 级的人数约为1950人......................……6分 20.解:(1)设每辆大货车与每辆小货车一次分别可运货x 吨与y 吨,则……1分⎩⎨⎧=+=+35655.1532y x y x .......................................................................……2分 解得⎩⎨⎧==5.24y x ..........................................................................……3分答:大小货车一次可分别运货4吨与吨............................……4分(2)设共租用大货车m ,则可租用小货车)10(m -辆,那么30)10(5.24≥-+m m ......................................................................……5分 解得310≥m∵m 取整数 ∴m最小取4...................................................................................……6分答:大货车至少租4辆........................................................................……7分 21.解:(1)过点A 作x AE ⊥轴于E∴︒=∠90AEO∴在AOE Rt ∆中,OAAEAOE =∠sin ∴36.05sin =⨯=∠⋅=AOC OA AE ..................................……1分∴4352222=-=-=AE AO OE ∴点A 的坐标为)3,4(-..........................................................……2分设所求反比例函数解析式为xk y =,则43-=k ∴12-=k ∴所求反比例函数解析式为xy 12-=...................................……3分(2)∵在xy 12-=中,当4-=y 时,3=x∴点B 的坐标为)4,3(-..............................................................................……4分由A)3,4(-,B)4,3(-可得AB 所在直线为:1--=x y (5)分∵在上式中当0=x 时,1-=y ∴点D 的坐标为)1,0(-..............................................................................……6分 ∴1=OD ∴ODB ODA AOB S S S ∆∆∆+=27=..........................................................................................……7分 22.(1)证明:连接OE∵AF ED ⊥ ∴︒=∠90D∵AE 平分BAF ∠ ∴21∠=∠ 又∵OE OA = ∴31∠=∠∴32∠=∠....................................................................................……2分∴AF OE // ∴︒=∠=∠90D CEO .................................................................……3分 ∴CD OE ⊥ ∴CD是⊙O的切线.......................................................................……4分 (2)解:连接BE∵AB 是⊙O 的直径 ∴︒=∠90BEA ∴︒=∠+∠9054 又∵︒=∠+∠9052 ∴42∠=∠ ∴41∠=∠................................................................……5分 ∵C C ∠=∠ ∴CBE ∆∽CEA ∆ ∴AEBECA CE CE CB ==..................................................……6分 即AEBECA ==442∴AE BE CA 21,8==∴628=-=-=CB CA AB (7)分∵在ABE Rt ∆中222AB AE BE =+ ∴2226)21(=+AE AE∴5512=AE ...........................................................……8分 23.解:(1)由题可设当84≤≤x 时,xk y =..........................................................………1分将点A )30,4(代入得430k =∴120=k ∴xy 120=............................................................................................………2分当288≤≤x 时,可设nmx y +=......................................................………3分将点B )0,28(),15,8(C 点代入得⎩⎨⎧+=+=nm n m 280815 解得⎪⎩⎪⎨⎧=-=2143n m ∴2143+-=x y (4)分综上所述y 与x之间的函数关系式为:⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤=)288(2143)84(120x x x xy (5)分(2)设2017年莫小贝的利润为W 万元则 当84≤≤x 时xx x W 480120120)4(-=-⋅-=.........................................………6分 ∵0480<-=k∴W 随x 的增大而增大 ∴当8=x 时W存在最大值,此时608480-=-=W ..................................………7分当288≤≤x 时2042443120)2143()4(2-+-=-+-⋅-=x x x x W12)16(432---=x ........................................................………8分∵043<-=a 抛物线开口向下∴当16=x 时W 存在最大值,此时12-=W .......................................………9分∵01260<-<- ∴2017年莫小贝亏钱,最少亏12万元..................…................................……10分 24.(1)证明:∵ACB ∆和DCE ∆均是等腰直角三角形∴CB CA CE CD ==,∵︒=∠+∠=∠︒=∠+∠=∠9023,9021DCB ACB ∴31∠=∠...................................................................................………1分 在ACD ∆和∆ ∴ACD ∆≌BCE ∆ ∴54∠=∠..∵︒=∠90ACB ∴︒=∠+∠9064 又∵76∠=∠ ∴︒=∠+∠9075....................................................................………2分∴︒=∠90AFB ∴BF AF ⊥.............................................................................………3分A(2)DGDA DE ⋅=22,理由如下............................................………4分 ∵在DCE Rt ∆中,DECD DEC =∠sin∴DE DCE DE CD 22sin =∠⋅= (5)分∵BE CD //∴︒=∠=∠90AFB CDG ∴︒=∠︒=∠+∠90,9026ADC ∴︒=∠=∠∠=∠90,61CDG ADC ∴ADC ∆∽CDG ∆ ∴DCCD CDDA =∴DCDA CD ⋅=2............................................................………6分 即DC DA AE ⋅=2)22(∴DGDA DE ⋅=22.........................................................………7分(3)由(2)知1825.4222=⨯⨯=⋅=DG DA DE ∴23=DE ∴3232222=⨯==DE CD ....................................................………8分 ∵BE CD //∴︒=∠=∠45CDE DEF∴︒=︒+︒=∠+∠=∠904545CED CDE CEF ∴︒=∠=∠=∠90AFE DCE CEF ∴四边形DCEF 是矩形 又∵CD=CE∴四边形DCEF 是正方形 ∴3==CD DF ∴123=-=-=DG DF GF .....................................……..................…9分 ∵BE CD // ∴BFG ∆∽CDG ∆ ∴DGCD GFBF =即231=BF∴23=BF ................................................... ....................................………10分(一二三问分别按3分+4分+3分计分)25.解:(1)将)3,1(),8,4(---B A 代入bx ax y +=2得................1分⎩⎨⎧+=--=-b a ba 34168 ....................................………2分 解得⎩⎨⎧-=-=21b a ........................…..................……3分∴所求的抛物线的解析式为:x x y 22--=...............4分(2)由)3,1(),8,4(---B A 可得AB 所在直线解析式为4-=x y 当0=x 时,4-=y 即点C 的坐标为)4,0(- ∴4=OC过点A 作y AF ⊥轴于F ∴︒=∠90AFO∴在AFO Rt ∆中54842222=+=+=OF AF OA .….......5分 ∵垂线段最短 ∴当OACD ⊥时,CD最短.…...................................................……6分∴当CD 最短时︒=∠=∠90AFO CDO 又∵COD AOF ∠=∠(公共角) ∴AOF∆∽COD∆.…..........................................................……7分 ∴OAAFOC CD = 即5444=CD ∴554=CD .…................……8分(3)存在点D )2,1(--使得四边形ABOE 的面积最大,理由如下:..............……9分由)0,0(),8,4(O A --可得AO 所在直线解析式为x y 2= 过点E 作y EG //轴交OA 于点G,设点E 的横坐标为m ,则 点E,点G 的坐标分别为:)2,(),2,(2m m m m m -- ∴m m m m m EG 42222--=---=∴m m m m x x EG S O A AOE 824)4(21||2122--=⨯--=-⋅⋅=∆同理104521||21=⨯⨯=-⋅⋅=∆B A AOB x x OC S∴10822+--=+=∆∆m m S S S AOB AOE ABOE 四边形18)2(22++-=m ...............................................................……10分∵02<-=a 抛物线开口向下 ∴当2-=m 时ABOE S 四边形存在最大值 ∴0)2(2)2(222=-⨯---=--m m ∴此时点E 的坐标为)0,2(-.............…...............................................…11分由)4,0(),0,2(--C E 可得AO 所在直线解析式为42--=x y 由⎩⎨⎧=--=x y x y 242解得⎩⎨⎧-=-=21y x即点D 的坐标为-......................................................)2(-,1..............……12分(一二三问按每问4分计分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

襄城区2015年中考适应性数学试题(时间:120分钟满分:120分)一、选择题(每小题3分,共36分)1.的倒数的相反数是()A. B.-5 C.5 D.-2.下列运算正确的是()A. B. C.a D.3.如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A.西偏北30°B.北偏西60°C.北偏东30°D.东偏北60°4.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE等于()A.45°B.54°C.40°D.50°5.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习.值周班长每周对各小组合作学习情况进行综合评分.下表是其中一周的评分结果:组别一二三四五六七分值90 96 89 90 91 85 90“分值”这组数据的中位数和众数分别是()A.89,90B.90,90C.88,95D.90,956.如图是由5个大小相同的正方体组成的几何体,它的主视图是()7.一元一次不等式组的解集中,整数解的个数是()A.4B.5C.6D.78.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM的长是()A.6B.5C.4D.39.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△DEF:S△BCF=()A.4:9B.1:4C. 1:2D.1:110.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π11.如图,在矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.4B.8C.6D.1212. 二次函数y=a的图象如图所示,则一次函数y=bx+与反比例函数y=在同一坐标系内的图象大致为()二、填空题(每小题3分,共15分)13.太阳的半径约为696000km,请用科学计数法表示696000这个数,则这个数可记为 .14.在函数y=中,自变量x的取值范围是 .15.若n(n)是关于x的方程的根,则m+n的值为.16.将抛物线的解析式y=向上平移3个单位长度,在向右平移1个单位长度后,得到的抛物线的解析式是 .17. 如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为 .三、解答题(共69分)18.(5分)先化简,再求值:÷﹣1.其中a=2sin60°﹣tan45°,b=1.19.(6分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)20.(6分)在上信息技术课时,张老师布置了一个练习计算机打字速度的学习任务,过了一段时间,张老师发现小聪打一篇1000字的文章与小明打一篇900字的文章所用的时间相同.已知小聪每分钟比小明每分钟多打5个字,请你求出小聪、小明两人每分钟各打多少个字?21.(6分)如图平面直角坐标系中,点A(1,n)和点B(m,1)为双曲线y=第一象限上两点,连结OA、OB.(1)试比较m、n的大小;(2)若∠AOB=30°,求双曲线的解析式.22.(7分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班学生的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)表示“足球”所在扇形的圆心角是多少度?(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.23.(7分)如图,点P是菱形ABCD对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求对角线BD的长.24.(9分)如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积为平方米;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?25.(11分)如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)试判断△DEF的形状,并说明理由;(3)若OF:OB=1:3,⊙O的半径为3,求AG的长.26.(12分)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形,若存在,请直接写出M点坐标;若不存在,请说明理由.襄城区2015年中考适应性考试数学试题答案一、选择题:1.C2.D3.B4.C5.B6.C7.C8.B9.B 10.D 11.B 12.D二、填空题:13.6.96×14.x≤1且x≠-2 15.-2 16.y=17.或3-三、解答题:18.解:原式=÷﹣1=•﹣1=﹣1=,……3分当a=2sin60°﹣tan45°=2×﹣1=﹣1,b=1时,原式===.……5分19.解:∵∠CBD=∠A+∠ACB ,∠A=30°, ∴∠ACB=∠CBD ﹣∠A=60°﹣30°=30°, ∴∠A=∠ACB , ∴BC=AB=10(米).∵在Rt △BCD 中,sin ∠CBD=∴CD=BC •sin ∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD 的高度为8.7米. ……6分20.解:设小明每分钟打x 个字,则小聪每分钟打(x+5)个字, 由题意得51000+x =x900, 解得:x=45,经检验:x=45是原方程的解.答:小聪每分钟打50个字,小明每分钟打45个字. ……6分 21.解:(1)∵点A (1,n )和点B (m ,1)为双曲线ky x=上的点, ∴,11k kn m==. ∴m =n =k . ……2分 (2)过A 作AC ⊥y 轴于C ,过B 作BD ⊥x 轴于D , 则∠ACO=∠BDO=90°,AC=1,OC=n ,BD=1,OD=m , ∴AC=OC .∵m =n ,∴OC=OD ,AC=OC , ∴△ACO ≌△BDO ,∴∠AOC=∠BOD=12(∠COD -∠AOB )=12(90°-30°)=30°.∵在Rt △AOC 中,tan ∠AOC=AC OC , ∴OC=13tan tan 30AC AOC ==∠, ∴点A 的坐标为(1,3). ∵点A (1,3)为双曲线k y x =上的点, ∴31k =, ∴ k =3. ∴反比例函数的解析式为3y x=. ……6分22.解:(1)该班总人数是:12÷24%=50(人),则E 类人数是:50×10%=5(人),A 类人数为:50﹣(7+12+9+5)=17(人).补全频数分布直方图如下: ……3分(2)×360°=50.4°∴表示“足球”所在扇形的圆心角是50.4°. ……4分(3)画树状图如下:或列表如下:共有12种等可能的情况,其中恰好1人选修篮球,1人选修足球的有4种,则选出的2人恰好1人选修篮球,1人选修足球的概率是:=.……7分23.(1)证明:∵四边形ABCD是菱形,∴∠ADB=∠CDB,AD=DC在△DCP和△DAP中,,∴△DCP≌△DAP∴∠DCP=∠DAP . ……3分(2)解:∵四边形ABCD是菱形,∴CD=AB=2,AB∥CD,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△DCP∽△BFP,∴,∴CD=BF,CP=PF,PD=PB,∴AB=BF,∴点A为BF的中点,又∵PA⊥BF,∴PB=PF,∴CP=PD,由(1)可知,PA=CP,∴PA=PD=PB,在Rt△PAB中,,设PA=x,则PB=2x,BD=3x,∴,解得,x=∴ BD=3x=2 ……7分24. 解:(1)150x ……2分(2)依题意:2112018028015028082x x x +⨯+-=⨯⨯, 整理得:21557500x x -+=125150x x ==,(不符合题意,舍去),∴甬道的宽为5米. ……5分(3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦, 20.040.5240x x =-+∵0.04>0, ∴0.5 6.25220.04b x a =-==⨯时,y 有最小值, 因为根据设计的要求,甬道的宽不能超过6米,∴当x=6米时,总费用最少.最少费用为:20.0460.56240238.44⨯-⨯+=万元. ……9分25.(1)证明:连结OD ,如图,∵AG 是过点A 的切线,AB 是⊙O 的直径,∴AG ⊥AB , ∴∠GAB=90°.∵OG ∥BD ,∴∠AOG=∠OBD ,∠DOG=∠ODB .∵OC=OB , ∴∠OBD=∠ODB .∴∠AOG=∠DOG.在△AOG和△DOG中,∴△AOG≌△DOG,∴∠ODG=∠GAB=90°,即OD⊥DE∵OD是⊙O的半径,∴GD是⊙O的切线;……4分(2)解:△DEF是等腰三角形.理由如下:由(1)知,OD⊥DE,∴∠ODE=90°,即∠ODC+∠EDF=90°,∵OC=OD,∴∠C=∠ODC,∴∠EDF+∠C=90°,而OC⊥OB,∴∠C+∠OFC=90°,∴∠OFC=∠EDF,∵∠DFE=∠OFC,∴∠EDF=∠DFE,∴DE=EF, ∴△DEF是等腰三角形. ……7分(3)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∵DE=EF, ∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴= ,即= ,∴AG=6.……11分26.(1)证明:由题意得,AO=AD,∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,AO=AD,AG=AG,∴△AOG≌△ADG(HL). ……2分(2)∠PAG =45°,PG=OG+BP.理由如下:由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,DP=BP,∵由(1)△AOG≌△ADG,∴∠1=∠DAG,DG=OG,又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,∴∠PAG=∠DAG+∠DAP=45°.∴PG=DG+DP=OG+BP. ……6分(3)∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,OG=AOtan30°=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC==-3,∴P点坐标为:(3,-3)设直线PE的解析式为y=kx+b,则,解得∴直线PE的解析式为y=x﹣3. ……10分(4)、. ……12分。

相关文档
最新文档