2017-2018学年八年级数学下册 6 平行四边形 6.4.2 多边形的外角和课时训练北师大版 精品

合集下载

北师大版八年级数学下册6.多边形的内角和与外角和课件

北师大版八年级数学下册6.多边形的内角和与外角和课件
不合格
A.270°
B.560° C.1 800° D.1 900°
3.八边形的七个内角都为150°,则第八个内角=____3_0_°__
4.过某个多边形一个顶点的所有对角线,将这个多边形分成5个 三角形,这个多边形是几边形?它的内角和是多少?21·
七边形,内角和为900°
合作探究
1.正三角形(等边三角形)的内角和等于多少度? 每个内角等于多少度?你是怎么计算的? 2.正四边形(正方形)的内角和等于多少度?每个内 角等于多少度?你是怎么计算的?
解:不正确. 设该正多边形的边数为n,如果结果正确,则 145°n=180°(n-2) 解得n= 12
7
6.有两个多边形,边数之比为3﹕4,内角和之比 为1﹕2,求这两个多边形的边数.
3,4
7.如图所示的模板,按规定,AB,CD的延长线相交成 80°的角,因交点不在板上,不便测量,质检员测得 ∠BAE=122°,∠DCF=155°.如果你是质检员,如何 知道模板是否合格?为什么?
拓展延伸
截去一张长方形纸片的一个角后,纸片还剩几个 角?这个多边形的内角和是多少度?与同伴交流.
剪去一张长方形纸片的一个角后,纸片
还剩几个角?这个多边形的内角和是多少度? 与同伴交流.
剪去一张长方形纸片的一个角后,纸片
还剩几个角?这个多边形的内角和是多少度? 与同伴交流.
剪去一张长方形纸片的一个角后,纸片还
3.正五边形、正六边形、正八边形呢···正n边形呢?
知识讲授 正n边形的每个内角度数为: (n 2) 180
n
随堂训练
1.正八边形的每个内角都是( D )
A.60° B.80° C.100° D.135°
2.一个多边形的每个内角均为120°,则这个多边形是( C )

多边形的内角和与外角和-北师大版八年级数学下册课件

多边形的内角和与外角和-北师大版八年级数学下册课件

正多边形
特点:它们的边( 都相等 ) 它们的内角( 都相等 )
定义:在平面内,内角都相等,边都相等的多边形 叫正多边形
课堂小结
1.多边形的外角及外角和的定义; 2.n边形的内角和为(n-2)×1800
3.多边形的外角和等于360°,与边数无关;
4.在探求过程中我们使用了视察、归纳的数学方法, 并且运用了类比、转化等数学思想。
360° n
正多边形的一个内角=180°-
360° n
360
360
°
°
360
360
°
°
新知归纳
多边形的内角和:所有内角的和。 n边形的内角和为(n-2)×1800
例 求十五边形内角和的度数。 解: (n-2)×1800
=(15-2)×1800 = 23400 答:十五边形的内角和是23400
例:已知一个多边形的内角和是1440O,求这个多边 形的边数。
4.若正多边形的内角和是 540°,则该正多边 形的一个外角为( C )
A.45° B.60° C.72° D.90°
怎样利用多边形的外角和计算正多边形的一 个外(外)角的度数?
正多边形的一个外角=
360° n
正多边形的一个内角=180°- 36n0°
定理 多边形的外角和都等于360°.
正多边形的一个外角=
第六章 平行四边形
6.4.2 多边形的内角和与外角和
多边形
在在在平在平平面平面面内面内内,内,,由,由由四由若五条三干条不条不不在不在在同在同同一同一一直一直直线直线线上线上上的上的的线的线线段线段段首段首首尾首尾尾顺尾顺顺次顺次次连次连 接接连连组组接接成成组组的的成成封封的封闭闭封闭图图闭图形形图形叫叫形叫做做叫做多四做三边边五角形形边形。。形。。

八年级数学下册 6.4.2 多边形的内角和与外角和教案2 北师大版(2021年整理)

八年级数学下册 6.4.2 多边形的内角和与外角和教案2 北师大版(2021年整理)

八年级数学下册6.4.2 多边形的内角和与外角和教案2 (新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册6.4.2 多边形的内角和与外角和教案2 (新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册6.4.2 多边形的内角和与外角和教案2 (新版)北师大版的全部内容。

课题:6。

4。

2多边形内角和与外角和教学目标:1.了解多边形的外角定义,并能准确找出多边形的外角。

2。

掌握多边形的外角和公式,利用内角和与外角和公式解决实际问题。

(重难点)教法与学学指导:本节课主要采用“学研一体的教学模式”。

坚持“教与学、知识与能力的辩证统一"和“使每个学生都得到充分发展”的原则,采用讲练结合法、引导学生自主学习、合作学习和探究学习.鼓励学生多思、多说、多练.课前准备:教师:多媒体课件、三角板。

学生:铅笔、直尺、练习本。

教学过程:(一)创设情境,导入新课美在我们的生活中无处不在,今天就让我们再次走进多彩的图形世界,进一步探究有关多边形的问题.【设计意图】为了更形象、更直观用多媒体显示一些实物图形.让学生说出日常生活中给我们角的形象的物体,充分发挥学生的想像力,培养其观察事物的习惯,同时,活跃课堂气氛,调动学生学习积极性.也培养了学生从具体实物图形中抽象出几何图形的能力.(二)温故而知新:【处理方式】学生观察图形,思考解决问题的方法,可在学习小组内交流.学生代表回答.提供充分的时间,鼓励学生用自己的语言表述,教师巡回引导,并集思广益.从而提高学生观察归纳、语言表达、合作交流等能力.方法二:如图:∠1+∠α=180°,∠2+∠β=180°,∠3+∠γ=180°于是∠1+∠α+∠2+∠β+∠3+∠γ=180°×3又∠1+∠2+∠3=180°,∴∠α+∠β+∠γ=360°。

北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿

北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿

北师大版数学八年级下册6.4《多边形的内角和与外角和》说课稿一. 教材分析北师大版数学八年级下册6.4《多边形的内角和与外角和》这一节主要讲述了多边形的内角和与外角和的概念及其计算方法。

多边形的内角和是指多边形所有内角的度数之和,而外角和则是指多边形所有外角的度数之和。

这部分内容是初中数学的重要知识点,对于学生来说,掌握这部分内容对于理解和掌握整个初中数学知识体系具有重要意义。

二. 学情分析在教学之前,我们需要对学生的学习情况进行分析。

学生们在学习了多边形的概念、四边形的性质等基础知识后,对于多边形的内角和与外角和的学习已具备了一定的基础。

然而,由于多边形的内角和与外角和的概念较为抽象,部分学生可能对其理解和运用存在一定的困难。

因此,在教学过程中,我们需要关注学生的学习情况,针对性地进行教学,帮助学生理解和掌握这部分内容。

三. 说教学目标1.知识与技能目标:使学生理解和掌握多边形的内角和与外角和的概念及其计算方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的团队合作意识,使学生在解决实际问题的过程中感受到数学的价值。

四. 说教学重难点1.教学重点:多边形的内角和与外角和的概念及其计算方法。

2.教学难点:多边形内角和与外角和计算方法的推导过程,以及如何运用所学知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生通过观察、操作、推理等过程主动学习,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件、实物模型等教学辅助手段,帮助学生直观地理解多边形的内角和与外角和的概念及其计算方法。

六. 说教学过程1.导入新课:通过展示一些多边形的图片,引导学生观察多边形的特征,从而引出多边形的内角和与外角和的概念。

2.自主学习:让学生通过阅读教材,了解多边形的内角和与外角和的概念及其计算方法。

最新新编八年级数学下册第六章平行四边形知识点归纳新版北师大

最新新编八年级数学下册第六章平行四边形知识点归纳新版北师大

第六章平行四边形一、平行四边形的性质1、定义:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的对边平行且相等。

(2)平行四边形的邻角互补(3)平行四边形的对角相等(4)平行四边形的对角线互相平分。

二、平行四边形的判定1、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对边分别相等的四边形是平行四边形(3)定理2:两条对角线互相平分的四边形是平行四边形(4)定理3:一组对边平行且相等的四边形是平行四边形2、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

3、平行四边形的面积:S平行四边形=底×高=ah三、三角形的中位线1、概念:连接三角两边中点的线段叫做三角的中位线(共三条中位线)2、三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半四、多边形的内角和与外角和1、多边形的内角和定理:n边形的内角和等于(n-2)·180°;多边形的外角和定理:任意多边形的外角和等于360°。

2、正多边形的每个内角都等于(n-2)·180°/n3、中心对称图形:线段、平行四边形、矩形、菱形、正方形,边数为偶数的正多边形不是中心对称图形:四边形、三角形、梯形、边数为奇数的正多边形等4、常4、常见的轴对称图形:等腰三角形、等腰梯形、矩形、菱形、正方形附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

想要不出现太强的考试焦虑,那么最好的办法是,形成自己的掌控感。

1、首先,认真研究考试办法。

这一点对知识水平比较高的考生非常重要。

随着重复学习的次数增加,我们对知识的兴奋度会逐渐下降。

最后时刻,再去重复学习,对于很多学生已经意义不大,远不如多花些力气,来思考考试。

很多老师也会讲解考试的办法。

但是,老师给你的办法,不能很好地提高你对考试的掌控感,你要找到自己的一套明确的考试办法,才能最有效地提高你的掌控感。

6.4--多边形的内角和与外角和(第1课时)

6.4--多边形的内角和与外角和(第1课时)
解:设这五个内角的度数分别为 13x°,11x°,9x°,7x°,5x°.
∵五边形的内角和为(5-2)×180°=540°, ∴13x+11x+9x+7x+5x=540. 解得x=12. ∴最大角为13x°=156°,最小角为5x°=60°.
(1)通过本节课的学习,你学到了哪些知识和方法? (2)你认为这节课中最大的收获是什么? (3)你还有哪些疑惑或不足? 知识: 多边形内角和公式;
4.一个多边形的内角和为1440°,则它是
十 边形.
解析:(n-2)·180°=1440°,解得n=10.故填十.
5.已知一个五边形的五个内角的度数的比是13∶11∶9∶7∶5, 求这五个内角中的最大角和最小角.
解析:设这五个内角的度数分别为13x°,11x°,9x°,7x°,5x°,再根据五 边形的内角和为(5-2)×180°=540°列方程求解.
4.根据四边形的内角和的求法,你能否求出五边形的内角和呢?
方法1:如图(1)所示,连接AD,AC,五边形的内角和 为:3×180°=540°.
方法2:如图(2)所示,连接AC,则五边形的内角和 为:360°+180°=540°.
方法3:如图(3)所示,在AB上任取一点F, 连接FC,FD,FE,则五边形的内角和 为:4×180°-180°=540°.
八年级数学·下 新课标[北师]
第六章 平行四边形
4 多边形的内角和与外角和 (第1课时)
问题思考
学习新知
1.前面我们研究了平行四边形的性质和判定,上一节
又研究了三角形的中位线定理,现在请同学们回忆一下, 三角形的内角和是多少度?
2.四边形的内角和呢?四边形的内角和是怎么得到的? 3.下图中广场中心的边缘是一个五边形,你能设法求出它 的五个内角的和吗?与同伴交流.

北师大版数学八年级下册多边形的内角和与外角和课件

北师大版数学八年级下册多边形的内角和与外角和课件

归纳总结
多边形的外角与外角和
多边形内角的一边与另一边的反向延长线所组 成的角叫做这个多边形的外角.
在多边形每个顶点处各取一个外角,它们的和 叫做这个多边形的外角和.
想一想 如果广场的形状是六边形、八边形,那么结果
会怎样 ? 6×180°- (6-2)×180° = 360° 8×180°-(8-2)×180° = 360°
Байду номын сангаас
典例精析
例1 在四边形 ABCD 中,∠A +∠C = 180°,那么 ∠B 与
∠D 有什么关系?
B
解:∵∠A +∠B +∠C +∠D
= (4 - 2)×180° = 360°,
C
A
∴∠B +∠D
= 360°-(∠A +∠C) = 180°.
D
如果一个四边形的一组对角互补,那么另一组对角互补.
想一想 正三角形 (等边三角形) 、正四边形 (正方形) 、正 五边形、正六边形、正八边形的内角分别是多少度?
多边形内角和
0
1
1×180°=180°
1
2
2×180°=360°
2
3 ··· n-3
3
4 ··· n-2
3×180°=540° 4×180°=720°
······ (n - 2)×180°
总结归纳 多边形的内角和公式 定理 n 边形的内角和等于 (n - 2)×180° ( n 是大于或等于 3 的自然数). 按照 问题2 的方法二再试一试?
(2)他每跑完一圈,跑步方向改变的角一共有几个? 它们的和是多少? 小刚是这样思考的, 跑步方向改变的角分别是 ∠1 、∠2 、∠3 、∠4、 ∠5.

八年级数学下册 第6章 平行四边形 6.4 多边形的内角和与外角和课件

八年级数学下册 第6章 平行四边形 6.4 多边形的内角和与外角和课件

∴ ∠B+∠D= 360°-(∠A+∠C) = 360°- 180° =180°.
如果一个(yī ɡè)四边形的一组对角互补,那么另一组对角互补.
第九页,共三十五页。
【变式题】如图,在四边形ABCD中,∠A与∠C互补, BE平分(píngfēn)∠ABC,DF平分∠ADC,若BE∥DF,求证: △DCF为直角三角形.
2
2
第十六页,共三十五页。
二 多边形的外角和
小刚每跑完一圈,身体转过的角度(jiǎodù)之和是多少?
第十七页,共三十Байду номын сангаас页。
概念学习
多边形内角的一边与另一边的反向延长线所组成的角
叫做(jiàozuò)这个多边形的外角. 如图,∠A的外角是∠1.
多边形所有外角的和叫做 B
(jiàozuò)这个多边形的外角和.
2
1A 5
E
C3
4 D
第十八页,共三十五页。
如图,在五边形的每个顶点(dǐngdiǎn)处 各取一个外角.
1A
B
5
2 C3
E 4
D
问题1:任意一个外角和它相邻的内角有什么关系?
互补(hù bǔ) 问题2:五个外角加上它们分别(fēnbié)相邻的五个内角和是多少?
5×180°=900°
第十九页,共三十五页。
个内角是多少度吗?每个外角呢?为什么?
每个内角(nèi jiǎo)的度 (n 2)180 ,
数是
n
每个外角(wài jiǎo)的度数3 6 0 .

n
练一练:(1)若一个正多边形的内角是120 °,那么这是正
____六边形.
(2)已知多边形的每个外角都是45°,则这个多边形是

北师大版八年级下册数学教案:6.4.2多边形的外角和

北师大版八年级下册数学教案:6.4.2多边形的外角和
在学生小组讨论时,我注意到有些学生并不是很积极地参与到讨论中,可能是因为他们对讨论的主题不够感兴趣,或者是对自己的观点不够自信。我应该在讨论前给学生更多的鼓励和支持,让他们敢于表达自己的看法。
总的来说,今天的课堂让我意识到,作为教师,我需要不断调整和改进教学方法,更好地适应学生的需求。我要在课堂上更加注重学生的主体地位,鼓励他们积极参与,勇于提问,提高课堂的互动性。同时,我也要在课后反思自己的教学效果,根据学生的反馈和学习情况,调整教学策略,以便让每一个学生都能在课堂上有所收获。
-多边形外角和的性质:掌握多边形外角和等于360°这一核心知识,并能够运用到实际问题中。
-外角和与内角和的关系:理解多边形外角和与内角和的联系,能通过外角和推导内角和的性质。
举例:通过具体的多边形图形,如五边形、六边形等,让学生观察并计算外角和,强调无论多边形有多少边,其外角和始终为360°。
2.教学难点
北师大版八年级下册数学教案:6.4.2多边形的外角和
一、教学内容
本节课选自北师大版八年级下册数学教材第六章第四节第二部分:6.4.2多边形的外角和。教学内容主要包括以下两个方面:
1.多边形外角的概念:引导学生理解多边形外角的概念,明确外角与内角的关系,并能正确画出多边形的外角。
2.多边形外角和的性质:通过观察、探索、归纳,使学生掌握多边形外角和等于360°的性质,并能运用这一性质解决相关问题。同时,让学生了解多边形外角和与内角和之间的关系,进一步巩固多边形内角和的知识。
二、核心素养目标
1.培养学生的几何直观能力:通过观察多边形外角的实物模型和图形,使学生能够直观地感知和理解多边形外角的概念及其性质,提高空间想象力和几何直观能力。
2.培养学生的逻辑推理能力:在探索多边形外角和的过程中,引导学生运用归纳、推理等思维方法,从特殊到一般地总结出多边形外角和等于360°的规律,加强逻辑思维和推理能力的培养。

北师大版数学八年级下册6.4《多边形的内角与外角和》说课稿

北师大版数学八年级下册6.4《多边形的内角与外角和》说课稿

北师大版数学八年级下册6.4《多边形的内角与外角和》说课稿一. 教材分析《多边形的内角与外角和》是北师大版数学八年级下册第6.4节的内容。

本节课主要让学生理解并掌握多边形的内角和定理以及外角和定理,能够运用这些定理解决一些简单的问题。

教材通过引出多边形的内角和外角的概念,引导学生探究多边形的内角和外角和与边数的关系,从而得出多边形的内角和定理和外角和定理。

二. 学情分析学生在学习本节课之前,已经学习了三角形的内角和定理,四边形的内角和定理,以及多边形的定义。

他们已经具备了一定的探究能力,能够通过观察和操作来发现规律。

但是,学生对于多边形的内角和外角的概念可能还不够清晰,需要通过实例和活动来进一步理解和掌握。

三. 说教学目标1.知识与技能目标:学生能够理解并掌握多边形的内角和定理和外角和定理,能够运用这些定理解决一些简单的问题。

2.过程与方法目标:学生通过观察和操作,培养观察能力、操作能力和推理能力。

3.情感态度与价值观目标:学生能够积极参与学习活动,克服困难,增强自信心,培养合作精神。

四. 说教学重难点1.教学重点:学生能够理解并掌握多边形的内角和定理和外角和定理。

2.教学难点:学生能够运用多边形的内角和定理和外角和定理解决一些简单的问题。

五. 说教学方法与手段1.教学方法:本节课采用问题驱动法、观察法、操作法、合作学习法等教学方法,引导学生主动探究,发现规律。

2.教学手段:利用多媒体课件、几何画板等教学手段,直观地展示多边形的内角和外角的概念和性质。

六. 说教学过程1.导入:通过展示一些多边形的图片,引导学生回顾多边形的定义,激发学生对多边形的内角和外角的好奇心。

2.探究多边形的内角和:引导学生观察多边形的内角,发现多边形的内角和与边数的关系,通过操作和推理得出多边形的内角和定理。

3.探究多边形的外角和:引导学生观察多边形的外角,发现多边形的外角和与边数的关系,通过操作和推理得出多边形的外角和定理。

多边形的内角和与外角和

多边形的内角和与外角和

例:一个正多边形的一个内角为150°,它是几 边形?
解法一:依题意可得 (n-2)·180°=n·150
解得n=12 答:它是十二边形。
解法二:依题意可得 它的每一个外角 180°-150°=30°
n=360°÷30°=12
课后作业
1.(1)如图,小陈从点O出发,前进5m后向右转20°,再前进
5m后又向右转20°,…,这样一直走下去,他第一次回到出
0
5.【分类讨论思想】(2018·聊城)如果一个正 方形被截掉一个角后,得到一个多边形,那么
这个多边形的内角和是 180°或360°.或540°
6.(自贡·中考)一个多边形截取一个角后, 形成的另一个多边形的内角和是1620°,则原 来多边形的边数是( D ). A.10 B.11 C.12 D.以上都有可能
边形的边数是___2__4___
2.若一个十边形的每个外角都相等,则它的每个外角的
度数为__3_6_____度,每个内角的度数为__1_4__4___度.
3.若一个多边形的内角和等于它的外角和,
则它的边数是_____4__.
4.多边形的边数增加1,则内角和增加
_1_8__0_度.外角和增加_____度
第六章 平行四边形
6.4 多边形的内角和与外角和
1.能说出多边形的有关概念及多边形内角和定理. 2.能说出正多边形的定义. 3.能熟练运用多边形的内角和定理解决问题. 4.能说出并会熟练运用多边形的外角和定理解决问题.
知识回顾 问题1:你还记得三角形内角和是多少度吗? (三角形内角和 180°)
4
计算规律 1 ×180° 2 ×180° 3 ×180° 4 ×180°

… … … … …

北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和

北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和

感悟新知
例2 如图,在四边形ABCD中,∠A+∠C=180°. ∠B与∠D有怎样的关系?
知1-练
解:∵∠A+∠B+∠C+∠D =(4-2)×180°=360°, ∴∠B+∠D =360°-(∠A+∠C) =360°-180°=180°.
感悟新知
归纳
如果四边形一组对角互补,那么另一组 对角也互补.
线条数
0
分割出 的三角 形的个 1数
知1-讲
多边形的 内角和
1×180º
1
2
2×180º
2
3
3×180º
3
4
4×180º
……
n-3
……
……
n-2
(n-2)×180º
感悟新知
一般地,从n边形的一个顶点出发,可以作(n-3) 条对角线,它们将n边形分为(n-2)个三角形,n边形 的内角和等于180°×(n-2).
形的边数是( ) B
A.6B.12
C.16D.18
知2-练
感悟新知
3. 若一个正n边形的每个内角为144°,则这个正
n边形的所有对角线的条数是( ) C
A.7B.10
C.35D.70
知2-练
课堂小结
多边形的内角和
(1)正n边形的每个内角都相等,都等于
n
2
180 .
(2)n边形的内角和与边数有关,每增加一条边,n 内角
感悟新知
归纳
知2-讲
(1)已知多边形的内角和求边数n的方法:根据多边形 内角和公式列方程:(n-2)×180°=内角和,解 方程求出n,即得多边形的边数;
(2)已知正多边形每个内角的度数k求边数n的方法:根据 多边形内角和公式列方程:(n-2)×180°=kn,解方 程求出n,即得多边形的边数.

北师大版八年级数学下册《平行四边形——多边形的内角和与外角和》教学PPT课件(2篇)

北师大版八年级数学下册《平行四边形——多边形的内角和与外角和》教学PPT课件(2篇)

A.1800° B.540 °
C.720 °
D.710 °
3.一个多边形从一个顶点可引对角线3条,这个多边形
内角和等于( B )
A.360°
B.540 ° C.720 ° D.900 °
课堂小结
多边形的 内角和
内角和计 算公式
(n-2) × 180 °(n 是不小于3的 任意整数)
第六章 平行四边形 6.4 多边形的内角和与外角和
问题2:运用所学的知识,证明自己的推论.
已知:四边形ABCD.
A
求证:∠A+∠B+∠C=∠D=360°.
证明:如图,连接AC,
所以四边形被分为两个三角形,
所以四边形ABCD内角和为
B
180°×2=360°.
D C
课程讲授
1 多边形的内角和
问题3:你能仿照求四边形内角和的方法,选一种方法求五 边形和六边形内角和吗?
??
内角和
180° 360° 360° ?360°
课程讲授
1 多边形的内角和
问题1:根据前面所学的知识,我们已经知道三角形, 正方形和长方形的内角和,那么任意一个四边形的内角 和是否为一个定值呢?
D
A
提示:可将四边形分割成两个三角形.
归纳:四边形ABCD的内角和是 360°.
B
C
课程讲授
1 多边形的内角和
E
A
A
F
B
E
B
D
C
D
C
课程讲授
1 多边形的内角和
E
A
A
B
B
D
F E
C
D
C
归纳:五边形的内角和是540°.六边形的内角和是720°.

8年纪下册第6章第4节多边形的内角和与外角和当堂检测与作业设计

8年纪下册第6章第4节多边形的内角和与外角和当堂检测与作业设计

6.4多边形的内角和与外角和(第1课时)一、评价目标1.掌握多边形的内角和公式,会根据边数求内角和,根据内角和求边数。

2.会求正多边形的一个内角度数,进一步发展演绎推理能力。

二、当堂检测A组1.七边形的内角和是。

2.一个多边形的内角和是1080º,则此多边形是边形。

3.一个多边形的每个内角都等于140°,那么这个多边形是_________边形。

4.如图,菊花1角硬币为外圆内正九边形的边缘异形币,则该正九边形的一个内角大小为()A.135°B.140°C.144°D.150°5.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是()A.180°B.540°C.1900°D.1080°6.如果一个多边形每一个内角都是135°,则这个多边形是几边形?B组7.剪掉一张长方形的一个角后,这个多边形的内角和是()°.A.180°或540°B.180°或360°C.360°或540°D.180°或360°或540°三、课后作业A组:1.一个多边形的边数是10,则这个多边形的内角和是.2.已知一个n边形的内角和等于1980°,则n=.3.如果多边形的每个内角都等于150°,则它的边数为.4.如图,若∠1+∠2=220°,则∠A=度.5.一个多边形内角和是540°,那么从一个顶点引出的对角线的条数是条.6.四边形的四个内角的度数比是2:3:3:4,则这个四边形是()A.等腰梯形B.直角梯形C.平行四边形D.不能确定7.如图,用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE,其中∠BAC=()度.A.30B.36C.40D.728.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?9.小彬求出一个正多边形的一个内角为145°,他的计算正确吗?如果正确,他求的是正几边形的内角和?如果不正确,请说明理由.B 组10.如图,点A 、B 、C 、D 、E 在同一平面内连接AB 、BC 、CD 、DE 、EA ,若∠BCD =100°,则∠A+∠B+∠D+∠E =( )A .220°B .240°C .260°D .280°11.如图,在四边形ABCD 中,∠A+∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°-12αB .90°+12αC .12α D .360°﹣α12.如图,以正五边形ABCDE 的边CD 为边作等边△CDF ,使点F 在其内部,连接FE ,则∠DFE = °.13.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F , 则∠DFA = 度.。

八年级数学下册 第6章 平行四边形 4 第2课时 多边形的外角和课件 (新版)北师大版

八年级数学下册 第6章 平行四边形 4 第2课时 多边形的外角和课件 (新版)北师大版
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
Hale Waihona Puke ◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )
◆典例导学 ◆反馈演练 ( ◎第一阶 ◎第二阶 ◎第三阶 )

八年级数学下册第六章平行四边形6.4多边形的内角和与外角和6.4.2多边形的外角和导学案北师大版(

八年级数学下册第六章平行四边形6.4多边形的内角和与外角和6.4.2多边形的外角和导学案北师大版(

八年级数学下册第六章平行四边形6.4 多边形的内角和与外角和6.4.2 多边形的外角和导学案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第六章平行四边形6.4 多边形的内角和与外角和6.4.2 多边形的外角和导学案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第六章平行四边形6.4 多边形的内角和与外角和6.4.2 多边形的外角和导学案(新版)北师大版的全部内容。

6.4.2多边形的外角和导学案学习目标1。

理解和掌握多边形外角和定理的推导过程;2. 能进行多边形内角和、外角和定理的综合运用.一。

自学释疑1。

一个多边形的一个顶点处,可作有几个外角,它们是什么关系?2. 在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?二。

合作探究探究点一问题1:小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,跑步方向改变的哪个角?在图中标出.(2)他每跑完一圈,身体转过的角度之和是多少?(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?小明的推理:问题2:如果广场是六边形、八边形、n边形那会什么结果?探究点二问题1:过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、OD′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,∠1+∠2+∠3+∠4+∠5是多少度?问题2:归纳多边形的外角:多边形的外角和:多边形的外角和:探究点三问题1:已知一个多边形,它的内角和等于外角和的3倍,求这个多边形的边数和对角线的条数?问题2:如图,四边形ABCD中,∠B=∠D=90°,AE平分∠BAD,若AE∥CF,∠BCF=60°,请你求出∠DCF的度数.并说明你的理由.强化训练1。

多边形内角和与外角和 教案

多边形内角和与外角和  教案

课题:6.4.2多边形内角和与外角和来源:北京师范大学出版社2014年版八年级数学下册155页至156页课型:新授课授课对象:八年级设计者:使用者:时间:节次:一、目标确立依据(一)课标分析1.课标摘录《义务教育数学课程标准》(2011年版)与本节课有关的要求:探索并掌握多边形外角和公式.2.课标分解(1)学什么:本节课学生学习的主要内容是探索并掌握多边形外角和公式:多边形外角和等于360°.(2)学到什么程度:课程标准中明确指出,理解多边形外角、外角和的概念,探索并掌握多边形外角和公式,并能够运用“多边形外角和等于360°”解决简单的数学问题.(3)怎么学:先通过利用生活情境,设计问题,研究五边形的外角、外角和,以此为基础继续研究六边形、八边形的外角、外角和,从而让学生自己总结“多边形外角和等于360°”,突破难点,再通过例题巩固训练.(二)教材分析本节课是八年级下册第六章《平行四边形》第四节“多边形的内角和与外角和”的第2课时,主要内容是研究多边形的外角和。

多边形的外角和的公式更为一般,所有的多边形的外角和都是360度。

本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“例2”等内容,强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力.想一想:在研究了五边形外角和的基础上,进一步研究六边形、八边形的外角和,从而归纳得出多边形的外角和.例2:这是多边形外角和公式的简单应用.重点:多边形外角和定理的探索和应用.难点:灵活运用公式解决简单的实际问题.(三)学情分析多数学生对于多种方法归纳出n边形的外角和公式,能解决一些简单简单的实际问题;但学困生对前一节课内角和公式的应用与其他知识的联系,及逻辑推导能力有所欠缺.不能灵活应用知识解决问题针对这一问题.(四)解决的策略教师可引导学生总结做法依据,借用转化、归纳思想,经历探索、猜想、归纳等过程,回归多边形的几何特征,在应用时多让学生说理.二、学习目标1.理解多边形外角、外角和的概念.2.经历探索多边形的外角和公式的过程.3.会应用多边形的外角和公式解决问题.三、教学评价1.根据已有知识自主探究,理解多边形外角、外角和的概念.(对应目标1)2. 经历探究三角形的外角和、四边形的外角、五边形的外角和,得出多边形外角和公式.(对应目标2)3.通过例题的练习,能熟练运用多边形的外角和公式解决问题.(对应目标3)四、教学流程(一)创设情景,导入新课【教学活动】理解多边形外角、外角和的概念(多媒体展示问题)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 平行四边形
6.4.2 多边形的外角和
选择题:
1.一个多边形的内角和是720°,则这个多边形是( )
A.四边形
B.五边形
C.六边形
D.七边形
2.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )
A.5
B.6
C.7
D.8
3.若正n 边形的一个外角为60°,则n 的值是( )
A.4
B.5
C.6
D.8
4.下列角度中,不能成为多边形内角和的是( )
A .600° B.720° C.900° D.1080°
5.若一个多边形的内角和与外角和之和是1800°,则此多边形是( )
A.八边形
B.十边形
C.十二边形
D.十四边形
6.下列命题:① 多边形的外角和小于内角和,② 三角形的内角和等于外角和,③ 多边形的外角和是指这个多边形所有外角之和,④四边形的内角和等于它的外角和.其中正确的有( )
A.0个
B.1个
C.2个
D.3个
7.一个多边形的边数增加2条,则它的内角和增加 ( )
A.180°
B.90°
C. 360°
D.540°
8.过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的( )
A.4倍
B.5倍
C.6倍
D.3倍
9.在四边形ABCD 中,A ∠、B ∠、C ∠、D ∠的度数之比为2∶3∶4∶3,则D ∠的外角等于( )
A.60°
B.75°
C.90°
D.
10.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,那么这个多边形的边数是( ) A. 4 B. 6 C. 8 D. 10
11.如图,AB ∥CD ∥EF,则下列各式中正确的是 ( )
A.∠1+∠2+∠3=180°
B.∠1+∠2-∠3=90°
C.∠1-∠2+∠3=90°
D.∠2+∠3-∠1=180°
12.在下列条件中:①C B A ∠=∠+∠②321::C :B :A =∠∠∠③B A ∠-︒=∠90
④C B A ∠=∠=∠中,能确定ABC ∆是直角三角形的条件有( )
A.①② B.③④ C.①③④ D.①②③
填空题
1.五边形的内角和等于______度.
2.若一凸多边形的内角和等于它的外角和,则它的边数是______.
3.正十五边形的每一个内角等于_______度.
4.十边形的对角线有_____条.
5.内角和是1620°的多边形的边数是________.
6.一个多边形的每一个外角都等于36°,那么这个多边形的内角和是 °.
7.一个多边形的内角和是外角和的4倍,则这个多边形是 边形.
8.已知等腰梯形ABCD 中,AD ∥BC,若∠B=3
1∠D ,则∠A 的外角是 °. 9.如图在△ABC 中,D 是∠ACB 与∠ABC 的角平分线的交点,BD 的延长线交AC 于E , 且∠EDC=50°,则∠A 的度数为 .
10.如图,在六边形ABCDEF 中,AF ∥CD ,AB ∥DE ,且∠A =120°,∠B=80°,
则∠C 的度数是 ,∠D 的度数是 .。

相关文档
最新文档