浙教版八年级数学下册知识点汇总
浙教版八下数学知识点归纳总结
浙教版八下数学知识点归纳总结浙教版八年级数学知识点分为代数学、几何学、统计学、概率学四个部分,其中代数学包括常数项、代数式、一元一次方程与不等式、解析式与图像、二元一次方程组等内容;几何学包括相似与全等、勾股定理、三角形、平行四边形、圆、平面向量等内容;统计学包括统计调查、频数分布、数据分析等内容;概率学包括基本概率、互斥事件、条件概率、事件独立、排列组合等内容。
在代数学中,常数项是指不带任何未知数的数字;代数式是由运算符号及数与未知数构成的式子;一元一次方程与不等式是指只有一个未知数、且未知数的最高次数为一的等式与不等式;解析式与图像是指根据已知的规律,将问题用公式或图像表示出来;二元一次方程组是指有两个未知数、且未知数的最高次数为一的方程组。
在几何学中,相似与全等是两种图形的特殊关系,其中相似图形的对应边成比例,全等图形的对应边长度与角度相等;勾股定理是指直角三角形中,斜边的平方等于另外两条边平方和;三角形具有三条边和三个角度,可以根据不同的条件分类讨论;平行四边形是指有两对对边分别平行且对边长度相等的四边形;圆是指平面上所有与给定点距离相等的点的集合;平面向量是指有大小和方向的量,可以进行向量相加、向量相减、数量积、向量积等运算。
在统计学中,统计调查是指通过采集数据来了解群体的特征、状况和需要;频数分布是指将数据按照一定规律划分成若干个区间,统计在每个区间中出现的次数;数据分析是通过对数据进行分析和比较,找出问题并提出解决方案。
在概率学中,基本概率是对随机事件的概率进行研究;互斥事件是指两个事件不可能同时发生;条件概率是指在已知一个事件发生的条件下,另一个事件发生的概率;事件独立是指两个事件的发生不会互相影响;排列组合是指对于一些元素,选择其中若干个元素,根据不同的序列或组合方式进行计算。
浙教版数学八年级下册各章节知识点汇总
(1)因式分解法:适用于右边为 0 (或可化为 0 ),而左边易分解为两个一次因式积的方程,缺常数项或含有字母 系数的方程用因式分解法较为简便,它是一种最常用的方法.
【注意】应用因式分解法解一元二次方程时,方程的右边必须是零.
(2)公式法:适用于任何形式的一元二次方程,但必须先将方程化为一般形式,并计算 b2 4ac 的值.
方程有整数根的条件: 如果一元二次方程 ax2 bx c 0 (a 0) 有整数根,那么必然同时满足以下条件: (1) b2 4ac 为完全平方数;(2) b b2 4ac 2ak 或 b b2 4ac 2ak ,其中 k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中 a 、 b 、 c 均为有理数)
对于关于 x 的方程 ax2 bx c 0 ,当 a 0 时,方程是一元二次方程;当 a 0 且 b 0 时,方程是一元一次方程. 二、一元二次方程的解法
1.一元二次方程的解法:直接开平方法、配方法、公式法和因式分解法
2.一元二次方程解法的灵活运用 直接开方法,配方法,公式法,因式分解法.在具体解题时,应当根据题目的特点选择适当的解法.
第二章 一元二次方程
一、定义 1、只含有一个未知数,并且未知数的最高次数是 2 的方程叫做一元二次方程.
2、一般形式: ax2 bx c 0(a 0) ,其中,a 叫做二次项系数,bx 叫做一次项,b 叫做一次项系数,c 叫做常数
项。 3、一元二次方程的根:使一元二次方程左右两边相等的值,叫做一元二次方程的根(解). 【注意】
中的 只能是一个非负数,否则 无意义.
5、简化二次根式的被开方数,主要有两个途径:
(1)因式的内移:因式内移时,若
八年级下册数学知识点归纳(浙教版)
八年级下册数学知识点归纳(浙教版)
1、变量与常量
在某一变化过程中均,可以取不同数值的用量量叫做变量,数值常量继续保持不变的量叫做常量。
一般地,在某一变化处理过程中有两个变量x与y,如果对于x的每一个值,y都有已确定的值与它对应,那么就说x是自变量,y 是x的函数。
2、函数解析式
用来表示函数关系的数学式子透露叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的测度全体,叫做自变量的取值范围。
3、复数函数的三种表示法及其优缺点
(1)解析法
两个变量彼此间的函数关系,有时可以用一个含有这两个变量及运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列数值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、解析由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标系,在坐标二维内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
(完整word版)浙教版八下数学知识点,推荐文档
第一章 二次根式1. 二次根式的定义:形如 a (a ≥0)的代数式叫做二次根式。
(被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根)2.取值范围:二次根式被开方数大于等于0分式分母不为02. 二次根式的性质:1.二次根式有双重非负性(0a ≥,0a ≥)2.平方在根号里面(里平方)2(0)(0)a a a a a a ≥⎧==⎨-<⎩ 3平方在根号外面(外平方)2a a =区别:2a 表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根; 相同点:最后的值都是正数3. (0,0)ab a b a b =≥≥0,0)a a a b b b=≥> 根号里面只有乘除才能分开来,加减不能4: 最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母;⑶分母中不含根式。
满足这三个条件的二次根式称为最简二次根式。
5、分母有理化: 1aa 2a b+分子分母同乘以a b 3a b -a b题型:根式的化简和运算(简单题前几题,选择题,填空题)根式的定义、取值范围(选择题,填空题)第二章 一元二次方程1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。
通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。
2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。
(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。
浙教版八下数学各章节知识点及重难点整理(最新版),推荐文档
浙教版八下数学各章节知识点及重难点第一章二次根式(徐旺红老师整理)知识点一:二次根式的概念二次根式的定义:形如a(a≥0)的代数式叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0 时,没有意义。
知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。
1注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
2注:1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0,则等于a 本身,即;若a 是负数,则等于a 的相反数-a,即;2、中的a 的取值范围可以是任意实数,即不论a 取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。
新浙教版八年级下册数学知识点大全
新浙教版八年级下册数学知识点汇编第一章二次根式1. 像 b 3,2s , 5 , a ? a 4 这样表示算术平方根的代数式叫做二次根式。
2.二次根式根号内字母的取值范围一定知足被开方数大于或等于零。
3.二次根式的性质 1:a 2=a a0二次根式的性质2:a 2= a =a(a0)或 a ( a <0)4. 像7 , 5 ,14 ,2s , a 这样,在根号内不含分母,不含开得尽方的因数或因式,这样的二次根式我们就说它是最简二次根式。
二次根式的化简结果应为最简二次根式。
5. ab = a × b ( a 0 , b 0 )6. a = a ( a 0 ,b>0)b b7. a × b = ab ( a 0 , b 0 )8. a = a ( a 0 ,b>0)b b9. 3 2 不可以写成1122 210.二次根式运算的结果,假如能够化简,那么应把它化简为最简二次根式。
11.二次根式的加减法:先把每一个二次根式化简,再把同样的二次根式像归并同类项那样归并。
12.分母有理化分两种情况:对于单个的二次根式,分子分母都乘以这个二次根式。
对于含有二次根式的多项式,把它配成平方差式。
第二章一元二次方程1.两边都是整式,只含有一个未知数,而且未知数的最高次数是 2 次的方程叫做一元二次方程。
2.判断一个方程能否是一元二次方程,一定在化简后判断。
3.能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
4.ax 2+bx+c=0(a、b、c 为常数, a≠0)称为一元二次方程的一般形式,此中 ax2,bx,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
5.确立一元二次方程的各项及其系数一定在一般形式中进行。
6.解一元二次方程的步骤:①化为右侧为 0 的方程;②左侧因式分解;③化为两个一元一次方程;④得解。
7.用因式分解法求解的一元二次方程形式为:右侧为 0,左侧是一个能够因式分解的整式。
浙教版八下数学知识整理
第一章二次根式1.二次根式:一般地,式子)0(≥a a 叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(如不存在√−3)(2)a 是一个重要的非负数,即a ≥0.(如√4=2)2.重要公式:(1))0()(2≥=a a a ,)0()(2≥=-a a a(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ;(3))0a ()a (a 2≥=. 3.二次根式的性质:)0b ,0a (b a ab ≥≥⋅=;)0b ,0a (b a b a >≥=4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式的除法法则:(1))0,0(>≥=b a ba b a; (2))0,0(>≥÷=÷b a b a b a ; (3)分母有理化公式:)0,0(>≥b a①√a √b =√a×√b√b×√b =√ab(√b)2=√ab b (如:√2√5=√2×√5√5×√5=√105) ②√a +√b=√a √b)(√a +√b)×(√a −√b)=√a −√b (√a)2−(√b)2=√a −√b a −b 1√a −√b =1×(√a +√b)(√a −√b)×(√a +√b)=√a +√b (√a)2−(√b)2=√a +√b a −b 6.最简二次根式:(1)最简二次根式:①根号里不含能开的尽的因数或因式,如4、9等;② 根号内不含分数、小数;③分母中不含有根号。
(结果必须是最简的二次根式)7. 利用“”外的因数化简“” ①a aa a a ==1)0(≥a ; ②)0,0(2≥≥=b a b a b a 8.二次根式比较大小的方法:(1)利用近似值比大小; √2≈1.414;√3≈1.732∴√2<√3(2)把二次根式的系数移入二次根号内,然后比大小; 2√3=√22×3=√12,3√2=√32×2=√18∴12<18∴√12<√18(3)分别平方,然后比大小.(√3+√5)2=3+2√15+5=8+2√15=8+√60(√3×√5)2=3×5=15=8+7=8+√49∴√3+√5>√3×√59.同类二次根式:几个二次根式化成最简二次根式后,如果根号里面的数字或字幕相同,这几个二次根式叫做同类二次根式.如√3与2√3。
浙教版八下数学知识点(完整版)
浙教版八年级数学下册知识点汇总八年级(下册)第1章二次根式1.1二次根式1.2二次根式的性质1.3二次根式的运算第2章一元二次方程2.1一元二次方程2.2一元二次方程的解法2.3一元二次方程的应用2.4一元二次方程根与系数的关系第3章数据分析初步3.1平均数3.2中位数和众数3.3方差和标准差第4章平行四边形4.1多边形4.2平行四边形及其性质4.3中心对称4.4平行四边形的判定定理4.5三角形的中位线4.6反证法第5章特殊平行四边形5.1矩形5.2菱形5.3正方形第6章反比例函数6.1反比例函数6.2反比例函数的图像和性质第一章 二次根式1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。
1.2. 二次根式的性质()()0a 2≥=a a ()()⎩⎨⎧<-≥==00a 2a a a a a ()0,0a ab ≥≥⨯=b a b()0,0a >≥=b a ba b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。
1.3. 二次根式的运算()0,0ab a ≥≥=⨯b a b()0,0a >≥=b a b ba第二章一元二次方程2.1一元二次方程像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。
能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
任何一个关于x 的一元二次方程都可以化为ax 2+bx+c=0的形式。
ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
2.2一元二次方程的解法1、因式分解法:利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程,常见ax 2+bx=0(无常数项)、及类似3x(x -1)=x -1等也可以使用因式分解法。
浙教版初中数学八年级下册知识点总结.doc
浙教版八年级下册知识点总结第一章二次根式1.二次根式:一般地,式子 a , (a 0) 叫做二次根式 . 注意:( 1)若a 0 这个条件不成立,则 a 不是二次根式;( 2) a 是一个重要的非负数,即; a ≥ 0.2 .重要公式:( 1 ) ( a ) 2 a (a 0) , ( 2 ) a2 a a (a 0) ;注意使用a (a 0)a ( a) 2 (a 0) .3.积的算术平方根:ab a b (a 0 , b 0) ,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则:a b ab (a 0 , b 0) .5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小 .6.商的算术平方根: a a (a 0 , b 0) ,商的算术平方根等于被除式的算术平方根除b b以除式的算术平方根.7.二次根式的除法法则:(1) a a(a 0 , b 0) ;b b(2) a ba b (a 0, b 0) ;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式: a 与 a , a b 与a b ,m a n b 与 m a 它们也叫互为有理化因式.9.最简二次根式:n b ,(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,② 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题. 11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第二章一元二次方程1.认识一元二次方程:概念:只含有一个未知数,并且可以化为ax2bx c 0 (a,b, c为常数,a0 ) 的整式方程叫一元二次方程。
浙教版初二数学下册知识点总结.doc
浙教版初二数学下册知识点总结初中数学学习对我们来说很关键,因此必须掌握好初中数学知识,课堂上学习完初中数学知识要进行课下复习,下面为大家带来浙教版初二数学下册知识点总结,希望对大家掌握初中数学知识有帮助。
第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。
定义:满足a +b =c 的三个正整数,称为勾股数。
第二章实数定义:任何有限小数或无限循环小数都是有理数。
无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a 的算术平方根。
特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。
求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。
正数的立方根是正数;0的立方根是0;负数的立方根是负数。
求一个数a的立方根的运算,叫做开立方,其中a 叫做被开方数。
有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章图形的平移与旋转定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。
旋转不改变图形的大小和形状。
浙教版八下数学各章节知识点及重难点(修改版)
浙教版八下数学各章节知识点及重难点(改正版)第一章二次根式一.知点 :1.二次根式的定:形如( a≥0)的代数式叫做二次根式。
如:,, ,,5,-3 ⋯⋯2.二次根式的性 :⑴≥ 0 (两重非性);⑵2( a ≥)aa a0⑶a2∣a∣; (4)ab×( a 0, b0 );(5)a÷( a 0, b0 ).b:二次根式拥有两重非性。
3.最二次根式:被开方数不含有开得尽方的数,所含因式是一次式(就是字母的次数是一次),被开方数不含分母。
足三个条件的二次根式称最二次根式。
4.同二次根式:化成最二次根式后,被开方数同样的几个二次根式称同二次根式。
5.二次根式的运算(1)加(减)法:先化,再归并。
(2)乘(除)法:先乘除,再化。
6.分母有理化:分母有理化也称为有理化分母。
就是将分母含有根号的代数式变为分母不含根号的代数式,这个过程叫做分母有理化。
(1)形如:(2)形如: 27.对于拥有两重根号的二次根式。
如:二.要点和难点:要点:二次根式的运算。
难点:混淆运算以及应用。
第二章一元二次方程一.知识点:1. 定义:形如ax2bx c0(a0) 的方程叫做一元二次方程,此中,a叫做二次项系数, bx 叫做一次项, b 叫做一次项系数, c 叫做常数项。
例:若方程 (m2) x|m|3mx10 是对于x的一元二次方程,则()A.m 2B.m=2C.m= —2D.m 22.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法 ; (5)换元法。
例:按要求解方程(1)用配方法解方程: x2 —4x+1=0(2)用公式法解方程: 3x2+5(2x+1)=0(3)用因式分解法解方程: 3(x-5)2=2(5-x)3.一元二次方程根的鉴别式:△=b24ac .△>0, 方程有两个不相等的实数根;△=0 ,方程有两个相等的实数根;△<0,方程无实数根。
(完整版)最新浙教版初中数学八年级下册知识点总结
平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①;②平行四边形的对角线将四边形分成4个面积相等的三底高ah=⨯S=角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形第五章特殊的平行四边形1.几种特殊的平行四边形(1)矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形性质:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)性质:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:四条边都相等,四个角都是直角的四边形是正方形。
性质:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).2.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;3.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.i n g s i n t h e i r b e i n g a re go od fo rs o 所示.。
浙教版八年级数学下册知识点汇总
浙教版八年级数学下册知识点汇总一、知识点梳理1、代数式(1)代数式的概念:把运算或表示数的一些字母用数字填空,从而形成一个明确的式子,这就是代数式。
(2)代数式的书写格式:在一个代数式里,书写数字和字母时要注意以下几点:①数字写在字母的前面;②除号写成分数线;③乘号写成点乘或省略不写;④带分数要写成假分数;⑤有括号的要先算括号里面的。
(3)代数式的求值:求代数式的值一般要按以下步骤进行:①把已知数代入代数式;②化简;③求出所求代数式的值。
2、因式分解因式分解的概念:因式分解是指将一个多项式写成几个整式乘积的形式。
因式分解的方法:常用的方法有提公因式法和公式法。
3、分式分式的概念:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
其中A叫做分式的分子,B叫做分式的分母。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。
分式的约分:把一个分式的分子和分母的公因式约去,叫做分式的约分。
最简分式:一个分式的分子和分母没有公因式时,叫最简分式。
4、实数平方根、算术平方根的概念及性质。
立方根的概念及性质。
二、知识点精讲1、代数式求值的方法:整体代入法、化简求值、一般求法。
2、因式分解的作用:应用因式分解解决一些实际问题,如计算某些数的平方等;用来证明一些定理和题目;应用因式分解进行大数计算。
3、分式的约分作用:化简分式,使分式的运算简便。
4、实数中的算术平方根与立方根的作用:进行开平方运算与开立方运算,解决实际问题中计算平方数与立方数的问题。
5、平方根与立方根的区别与:从定义上看,平方根和立方根的区别在于一个根数是另一个数的平方,立方根是另一个数的立方;从表示符号看,平方根用“±”表示,立方根用“±3√”表示;从运算上看,平方根与立方根的是都可以进行化简运算。
6、实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的反而小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下册)
1. 二次根式
1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。
1.2. 二次根式的性质
()()0a 2≥=a a ()()
⎩⎨⎧<-≥==00a 2a a a a a
()0,0a ab ≥≥⨯=b a b
@ ()0,0a >≥=b a b
a b 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。
1.3. 二次根式的运算
()0,0ab a ≥≥=⨯b a b
()0,0a >≥=b a b
b a
2. 一元二次方程
2.1. 一元二次方程
像方程x 2
+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫做一元二次方程。
能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。
· 任何一个关于x 的一元二次方程都可以化为ax 2
+bx+c=0的形式。
ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。
2.2. 一元二次方程的解法
利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两个一元一次方程。
形如x 2
=a(a ≥0)的方程,根据平方根的定义,可得x 1=a ,x 2=-a ,这种解一元二次方程的方法叫做开平方法。
把一元二次方程的左边配成一个完全平方式,右边为一个非负数,然后用开方法求解,这种解一元二次方程的方法叫做配方法。
一元二次方程ax 2+bx+c=0(a ≠0)的根的情况由代数式b 2-4ac 的值来决定,因此b 2-4ac 叫做一元二次方程的根的判别式,它的值与一元二次方程的根的关系是:
()()()没有实数根;
有两个相等的实数根;;
有两个不相等的实数根0004b 0004b 0004b 222222≠=++⇔<-≠=++⇔=-≠=++⇔>-a c bx ax ac a c bx ax ac a c bx ax ac
2.3. :
2.4. 一元二次方程的应用
2.5. 一元二次方程根与系数的关系(选学)
一元两次方程的根与系数有如下关系:(韦达定理)
如果x 1,x 2是ax 2+bx+c=0(a,b,c 为已知数,a ≠0)的两个根,那a
c x x a b x =⋅-=+2121;x 3. 数据分析初步
3.1. 平均数
有n 个数x 1、x 2、x 3 ...... x n ,我们把()n x x x x ++++.......n
1321叫做这n 个数的算术平均数,简称平均数,记做x (读作“x 拔”) 像n
n n a a a a x a x a x +++⋅++⋅+⋅=............x 212211这种形式的平均数叫做加权平均数,其中分母a 1、a 2......a n 表示各相同数据的个数,称为权。
权越大,对平均数的影响就越大,加权平均数的分母恰好为各权的和。
3.2. '
3.3. 中位数和众数
众数:一组数据中出现次数最多的那个数据叫做这组数据的众数。
中位数:将一组数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数据(当数据个数为奇数时)或最中间两个数的平均数(当数据个数为偶数时)叫做这组数据的中位数。
平均数、中位数和众数都是数据的代表,它们从不同侧面反映了数据的集中程度,但也存在各自的局限。
如平均数容易受极端值得影响;众数、中位数不能充分利用全部数据信息。
3.4. 方差和标准差
在评价数据的稳定性时,我们通常将各数据偏离平均数的波动程度作为指标。
各数据与平均数的差的平方的平均数()()()[]2
22......1s 212x x x x x x n
n -++-+-=叫做这组数据的方差。
方差越大,说明数据的波动越大,越不稳定。
; 一组数据的方差的算术平方根()()()[]222......1s 21x x x x x x n n -++-+-=称为这组数据的标准差。
4. 平行四边形
4.1. 多边形
在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
组成多边形的各条线段叫做多边形的边。
边数为n的多边形叫n边形(n为正整数,且n≥3)。
多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。
四边形的内角和等于360o。
n边形的内角和为(n-2)×180o(n≥3)。
|
任何多边形的外角和为360o。
4.2.平行四边形及其性质
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“”表示,平行四边形ABCD可记做“ ABCD”。
平行四边形的对角相等,平行四边形的对边相等。
夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。
两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。
平行四边形的对角线互相平分。
4.3.中心对称
%
如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
对称中心平分连结两个对称点的线段。
在直角坐标系中,点A(x,y)与点B(-x,-y)关于原点成中心对称。
4.4.平行四边形的判定定理
一组对边平行且相等的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
4.5.三角形的中位线
《
连结三角形两边中点的线段叫做三角形的中位线。
三角形的中位线平行于第三边,并且等于第三边的一半。
4.6.反证法
在证明一个命题时,人们有时先假设命题不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与定义、基本事实、定理等矛盾,从而得出假设命题不成立是错误的,即所求证的命题正确。
这种证明方法叫做反证法。
例如:用反证法求证四边形中至少有一个角是直角或钝角
在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
5.特殊平行四边形
5.1.矩形
}
矩形:有一个角是直角的平行四边形。
矩形的四个角都是直角,矩形的对角线相等。
有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
5.2. 菱形
菱形:有一组邻边相等的平行四边形叫做菱形。
菱形的四条边都相等。
菱形的对角线互相垂直,并且每条对角线平方一组对角。
四条~
五条边相等的四边形是菱形。
对角线互相垂直的平行四边形是菱形。
5.3. 正方形
正方形:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
有一组邻边相等的矩形是正方形。
有一个角是直角的菱形是正方形。
正方形的四个角都是直角,四条边相等。
正方形的对角线相等,并且互相垂直平分,每条对角线平分一组对角。
6.
( 7. 反比例函数
7.1. 反比例函数 函数()0,0k y ≠≠=x k x
k 为常数,叫做反比例函数,这里的x 是自变量,y 是关于x 的函数,k 叫做比例
系数。
7.2. 反比例函数的图象和性质 反比例函数()0k y ≠=x
k 的图象是由两个分支组成的曲线。
当k>0时,图象在一、三象限;当k<0时,
图象在二、四象限。
反比例函数()0k y ≠=x
k 的图象关于直角坐标系的原点成中心对称。
当k>0时,在图象所在的第一、三象限内,函数值y 随自变量x 的增大而减小;当k<0时,在图象所在的第二、四象限内,函数值y 随自变量x 的增大而增大。
7.3. 反比例函数的应用
建立数学模型的过程,具体内容可概括为:
由实验获取数据----用描点法画出图象----根据图象和数据判断或估计函数的类别----用待定系数法求出函数关系式----用实验数据验证函数关系式----应用函数关系式解决问题。