新人教版八年级下册数学知识点总结归纳期末总复习
人教版八年级下册数学知识点汇总
人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
八年级数学下册知识点总结(全)
八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
新人教版八年级数学知识点总结归纳上下册
新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。
4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。
5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
人教版八年级上册和下册的数学知识点总结举例题目和解析
人教版八年级上册和下册的数学知识点总结举例题目和解析如下:八年级上册:1. 有理数的加、减、乘、除运算及其性质:例题:计算(-3.5) + 2.7 - (-1.3) 的结果。
解析:首先,将减法转化为加法,即(-1.3)可以改写为-1.3,然后进行加法运算:(-3.5) + 2.7 + 1.3 = -0.5。
2. 整式的加、减、乘、除运算及其性质:例题:计算(2x + 5y) - (3x - 2y) 的结果。
解析:将括号内的减法转化为加法,然后根据同类项合并进行运算:2x + 5y - 3x + 2y = -x + 7y。
3. 分式的加、减、乘、除运算及其性质:例题:计算(1/2) + (3/4) 的结果。
解析:将两个分数的分母取最小公倍数,然后按照相同的分母进行运算:(1/2) + (3/4) = (2/4) + (3/4) = 5/4。
4. 百分数的意义、相互转化及其应用:例题:将0.6 转化为百分数。
解析:将小数移动两位并加上百分号,即0.6 = 60%。
5. 比例与比例方程:例题:如果2:5 = 8:x,求x 的值。
解析:利用比例的性质,交叉相乘并解方程得到x = 20。
八年级下册:1. 平方根与立方根的概念及其性质:例题:求16 的平方根。
解析:16 的平方根为4,因为4 * 4 = 16。
2. 整式的乘法公式与因式分解:例题:将3x^2y * (-4xy^2) 进行乘法运算并化简结果。
解析:使用乘法公式进行运算得到-12x^3y^3。
3. 分式的乘法与除法公式及其应用:例题:将(2/3) ÷(4/5) 化简为最简分数形式。
解析:将除法转化为乘法并取倒数,然后按照分数的乘法规则进行运算得到(2/3) * (5/4) = 10/12,化简为5/6。
4. 二次根式与二次根式的加减运算:例题:计算√8 + √18 的结果。
解析:将两个二次根式分别化简为最简根式,然后进行加法运算得到√8 + √18 = 2√2 + 3√2 = 5√2。
人教版八年级数学下册知识点总结
二次根式1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2;注意使用)0a ()a (a 2≥=.3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4.二次根式的乘法法则:)0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba ba >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1))0b ,0a (bab a >≥=;(2))0b ,0a (b a b a >≥÷=÷;(3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.常用分母有理化因式:a a 与,b a b a +-与,b n a m b n a m -+与,它们也叫互为有理化因式.9.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(1)明显条件题;(2)隐含条件题;(3)讨论条件题.11.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.12.二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.勾股定理1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是2图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.222a b c +=方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab ∆∆=+=⋅+梯形,化简得证:222a b c +=3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在∠=︒,则c=,CABC∆中,90b=,a=②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足222+=,那么这个三角形是直角三角形,其中c为斜边a b c①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222+<,时,以a,b,c为三边的a b c三角形是钝角三角形;若222+>,时,以a,b,c为三边的三角形是锐角三角形;a b c②定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,ca b c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边a c b③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222+=中,a,b,c为正整数时,a b c称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
人教版八年级下册数学知识点全面总结
人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。
- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。
乘法法则:同号得正,异号得负。
除法法则:除以一个不等于0的数等于乘这个数的倒数。
1.2 代数式- 概念:由数字、字母和运算符号组成的式子。
- 代数式的运算:加减乘除、乘方、开方等。
二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。
- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。
- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。
2.2 不等式- 概念:含有不等号的式子。
- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。
2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。
- 不等式组的解法:同线性方程组。
三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。
- 图像:一条直线。
- 性质:随着x的增大,y的值会按照k的正负和大小变化。
3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。
- 图像:一个开口向上或向下的抛物线。
- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。
四、几何4.1 平面几何- 点、线、面的基本概念。
- 线段的性质:长度、中点、垂直平分线等。
- 角的性质:度量、分类、补角、对顶角等。
- 三角形的基本性质:边长、角度、高、中线、角平分线等。
- 四边形的基本性质:边长、对角线、内角和等。
4.2 立体几何- 空间点、线、面的基本概念。
- 三角形、四边形、圆锥、球等立体图形的性质和计算。
新人教版八年级数学全册知识点总结
新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
新人教版八年级下册数学知识点总结归纳期末总复习
新人教版八年级下册数学知识点总结归纳期末总复习一、 第十六章 二次根式 【知识回顾】 :2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的a (a >0)a -(a <0)0 (a =0);(a ≥0,b≥0);=b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算二、第十七章 勾股定理 归纳总结1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b =,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等4.直角三角形的性质(1)直角三角形的两个锐角互余。
全】人教版初中数学八年级下册知识点总结
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
新人教版八年级数学下册知识点总结归纳 20页
人教版八年级数学(下册)知识点总结二次根式 【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a ≥0,b ≥0); b ba a=(b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).a (a >0)a -(a <0)0 (a =0);例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a ≥bD. a ≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---4、比较数值 (1)、根式变形法当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。
人教版八年级下册数学知识点总结
人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
八年级数学下册知识点总结(全)
八年级数学下册知识点总结一、实数1.1 实数的定义及分类实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,包括整数、分数、小数(有限小数和无限循环小数)。
无理数是不能表示为两个整数比的数,例如√2和π。
1.2 实数的性质(1)实数具有加法、减法、乘法、除法四种运算。
(2)实数具有相反数、倒数等概念。
(3)实数可以进行大小比较。
1.3 实数与数轴数轴是一条直线,规定了原点、正方向和单位长度,实数与数轴上的点一一对应。
二、整式与函数2.1 整式的定义及分类整式是只有加、减、乘运算,且运算对象为整数的代数式。
整式包括单项式和多项式。
2.2 整式的运算(1)单项式的运算:加、减、乘、除。
(2)多项式的运算:加、减、乘、除。
2.3 函数的定义及性质函数是一种对应关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的元素。
函数具有唯一性、连续性、单调性等性质。
2.4 一次函数一次函数是形如y=kx+b(k、b为常数,k≠0)的函数。
一次函数的图像是直线。
2.5 二次函数二次函数是形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数。
二次函数的图像是一条抛物线。
三、三角形3.1 三角形的定义及性质三角形是由三条边和三个角组成的图形。
三角形的内角和为180∘,任意两边之和大于第三边。
3.2 三角形的分类(1)锐角三角形:三个内角都小于90∘。
(2)直角三角形:一个内角为90∘。
(3)钝角三角形:一个内角大于90∘。
3.3 三角形的判定(1)SSS 判定:三角形的三边分别相等,则这三个三角形全等。
(2)SAS 判定:三角形的两边和它们夹角分别相等,则这两个三角形全等。
(3)ASA 判定:三角形的两角和它们夹边分别相等,则这两个三角形全等。
(4)AAS 判定:三角形的两角和其中一边分别相等,则这两个三角形全等。
四、平行四边形4.1 平行四边形的定义及性质平行四边形是具有两对平行边的四边形。
新人教版八年级数学知识点总结归纳
1人教版初二数学全册知识点归纳第十一章三角形1、三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形中的主要线段(1)三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段(2)三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段(3)三角形的高:从三角形一个顶点向它对的边做垂线,顶点和垂足之间的线段叫做三角形的高线3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围③证明线段不等关系。
4、三角形的内角和定理及推论:三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
5、多边形定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形。
6、n边形的内角和等于180°(n-2)。
7、多边形的定理:任意凸形多边形的外角和等于360°n边形的对角线条数等于1/2·n(n-3)8、多边形的对角线:连接多边形不相邻的两个顶点的线段从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
9、多边形的内角和.公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数)10、多边形的外角和公式:多边形的外角和等于360°.第十二章全等三角形1、全等三角形定义:能够完全重合的两个三角形2、全等三角形性质:全等三角形的对应边相等、对应角相等、周长相等、面积相、对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定定理●边边边:三边对应相等的两个三角形全等(可简写成“SSS”)●边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)●角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)●角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)●斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4角的平分线:(性质)角的平分线上的点到角的两边的距离相等.(判定)角的内部到角的两边的距离相等的点在角的平分线上。
八年级下数学知识点归纳大全
八年级下数学知识点归纳大全一、分式1. 分式的概念- 分式就像是分数的“升级版”。
如果A、B表示两个整式,A÷B就可以写成(A)/(B)的形式,这里B要是含有字母的整式,而且B不能等于0哦,这样的式子就是分式啦。
比如说(x)/(x + 1)就是分式,而(3)/(5)是分数不是分式,因为分母没有字母。
2. 分式的基本性质- 分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。
这就好比给分式“化妆”,只要按照规则来,它的“本质”不会变。
例如(a)/(b)=(ac)/(bc)(c≠0)。
3. 分式的运算- 分式的乘除:分式相乘,分子乘分子,分母乘分母;分式相除,就把除式的分子分母颠倒位置后再相乘。
就像一群小分式在玩乘法和除法的游戏,按照规则就能算出结果。
- 分式的加减:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,要先通分,把它们变成同分母分式,然后再按照同分母分式加减的方法计算。
这就好比把不同的小伙伴拉到同一个“队伍”里,然后再进行计算。
二、反比例函数1. 反比例函数的概念- 一般地,如果两个变量x、y之间的关系可以表示成y=(k)/(x)(k为常数,k≠0)的形式,那么y是x的反比例函数。
想象一下,x和y就像两个调皮的小孩,它们的乘积是个固定的数(k),但是x越大,y就越小,就像跷跷板一样。
2. 反比例函数的图象和性质- 反比例函数的图象是双曲线。
当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内,y随x的增大而减小;当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y随x的增大而增大。
可以把图象想象成两个弯弯的“手臂”,k的正负决定了这两个“手臂”在哪个象限跳舞。
3. 反比例函数的应用- 在实际生活中,比如压力一定时,压强和受力面积的关系就可以用反比例函数来表示。
这就像我们在雪地里走路,脚面积越大,压强越小,就不容易陷进去,这里压强和受力面积就是反比例关系。
最新【期末复习清单】人教版--八年级数学下册-知识清单梳理+经典例题练习(含答案)
八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。
同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。
分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。
常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。
(2)找出其中的同类二次根式。
(3)合并同类二次根式。
3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
初中八年级下册数学知识点
初中八年级下册数学知识点
下面是初中八年级下册数学的主要知识点:
1. 有理数的四则运算:包括整数、分数和小数的加法、减法、乘法和除法运算。
2. 直角三角形:认识直角三角形和斜角;利用勾股定理求解直角三角形的边长。
3. 几何变换:包括平移、旋转、翻折和对称等几何变换。
4. 平行线与相交线:掌握平行线的判定方法,例如同位角相等、内错角相等等;了解平行线与相交线之间的性质,如内角和、同位角、对顶角等。
5. 二次根式:认识二次根式及其性质;进行二次根式的加法、减法和乘法运算;学习利用二次根式求解一元二次方程。
6. 反比例函数:认识反比例函数的图象特点;进行反比例函数的求解和实际问题的应用。
7. 平面图形的面积:计算矩形、正方形、三角形、梯形、平行四边形和圆的面积。
8. 数据的统计分析:学习数据的组织和整理;计算数据的中位数、众数和均值;学习利用频率表制作柱状图等。
以上是初中八年级下册数学的主要知识点,希望能对你有所帮助。
统编教材部编版人教版八年级数学知识点体系复习学习资料上下册
八年级数学上册期末知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
人教版八年级下册数学知识点归纳
人教版八年级下册数学知识点归纳1. 反比例函数:一般地,函数y =xk(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数值的范围也是一切非零实数。
2. 反比例函数图象及其性质:反比例函数的图像是双曲线。
双曲线既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y=-x 。
对称中心是:原点反比例函数 )0(≠=k xky k 的符号K > 0K < 0图像yOxyOx性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,双曲线在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,双曲线在第二、四象限。
在每个象限内,y 随x 的增大而增大。
3. |k|的几何意义:表示反比例函数图像上的某一点,向两条坐标轴所作的垂线与x 轴、y 轴围成的矩形的面积。
如图:S 四边形OAPB = |k|4、反比例函数解析式的确定----待定系数法。
由于在反比例函数xky =中,只有一个待定系数k ,因此只需要一对x 、y 的对应值或图像上的一个点的坐标,即可求出k 的值,从而确定函数解析式。
xy 01 2y = — k xy=xy=-x第十八章 勾股定理18.1 勾股定理1.勾股定理:直角三角形的两条直角边长的平方和等于斜边长的平方。
( 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2 ) 2. 定理:经过证明被确认正确的命题。
3. 勾股定理的证明方法:方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
4.利用勾股定理,可以作出2、3、5、7、13、17 ……18.2 勾股定理的逆定理1. 勾股定理逆定理:如果三角形三边长a 、b 、c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册数学知识点总结归纳期末总复习 一、 第十六章 二次根式 【知识回顾】 : 1.二次根式:式子 a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. =·(a ≥0,b ≥0); (b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,ab a b b b a a=(>0)(<0) 0 (=0);都适用于二次根式的运算二、第十七章 勾股定理 归纳总结1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b =,a =)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等4.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30° ⇒BC=21AB ∠C=90°(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°CD=21AB=BD=AD D 为AB 的中点5、常用关系式 由三角形面积公式可得:AB .CD=AC.BC6、直角三角形的判定 (1)、有一个角是直角的三角形是直角三角形。
(2)、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
7、三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用: 位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
8、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
2、命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
3、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题) .所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
4、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
5、定经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)6、证明判断一个命题的正确性的推理过程叫做证明。
7、证明的一般步骤(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
第十八章 四边形 四边形1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.1、定义:两组对边分别平行的四边形是平行四边形.2.平行四边形的性质角:平行四边形的邻角互补,对角相等;边:平行四边形两组对边分别平行且相等; 对角线:平行四边形的对角线互相平分;面积:①S=底⨯高=ah ;3.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;一组平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形; 3.⑤对角线互相平分的四边形是平行四边形;二、 3.特殊的平行四边形(一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;3、矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形.(二)菱形1、定义:有一组邻边相等的平行四边形是菱形。
2、菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补; ③对角线:对角线互相垂直平分且每条对角线平分每组对角; 3、菱形的判定方法:A DB CA DBC O CD BA O ABDO C⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形.(三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质:①边:四条边都相等;②角:四角都是直角; ③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。
3、正方形的判定方法: ⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.如图:∵DE 是△ABC 的中位线∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题 ① 设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21 ③ 设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则b S 221=正方形14.三角形中位线定理: 三角形的中位线平行第三边,并且等于它的一半. 15.梯形中位线定理: 梯形的中位线平行于两底,并且等于两底和的一半. 一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边CD A BE D CB A形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形. ※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三公式:1.S菱形= ab=ch.(a、b为菱形的对角线,c为菱形的边长,h为c边上的高)2.S 平行四边形=ah. a为平行四边形的边,h为a上的高)3.S梯形= (a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)四常识:※1.若n是多边形的边数,则对角线条数公式是: . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系. 4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形…… ;仅是中心对称图形的有:平行四边形…… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆…… .注意:线段有两条对称轴.第十九章一次函数一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用奇次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。
)注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。