人教版八年级下册数学知识点归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学(下册)知识点总结

十六章:二次根式

1.二次根式:式子a

(a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:

⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母。 3.同类二次根式:

二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:

(1)(a )2

=a (a ≥0);(2)==a a 2

5.二次根式的运算:

(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.

(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.

=·b≥0); =a>0).

(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.

十七章:勾股定理

1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,

那么a 2+b 2=c 2。

应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则

c =,b =

,a =)

(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。

2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2,那么这个三角形

是直角三角形。(应用:判定一个三角形是否是直角三角形的重要方法。)

a (a >0)

a - (a <0)

0 (a =0);

3.经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

4.勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,

c 为正整数时,称a ,b ,c 为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5; 6,8,10; 5,12,13; 7,24,25等

5.直角三角形的性质

(1)直角三角形的两个锐角互余。可表示如下:∠C=90°⇒∠A+∠B=90°

(2)在直角三角形中,30°角所对的直角边等于斜边的一半。 可表示如下: ∠A=30°

⇒BC=2

1AB

∠C=90°

(3)直角三角形斜边上的中线等于斜边的一半 可表示如下: ∠ACB=90°

⇒CD=2

1

AB=BD=AD

D 为AB 的中点

6.常用关系式

由三角形面积公式可得:AB •CD=AC •BC

7.直角三角形的判定

1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,

那么这个三角形是直角三角形。

8.命题、定理、证明

1、命题的概念

判断一件事情的语句,叫做命题。 理解:命题的定义包括两层含义: (1)命题必须是个完整的句子;

(2)这个句子必须对某件事情做出判断。 2、命题的分类(按正确、错误与否分) 真命题(正确的命题):如果题设成立,那么结论一定成立的命题。 命题

假命题(错误的命题):如果题设成立,不能证明结论总是成立的命题。

3、定理

用推理的方法判断为正确的命题叫做定理。 4、证明

判断一个命题的正确性的推理过程叫做证明。

5、证明命题的一般步骤

(1)根据题意,画出图形。

(2)根据题设、结论、结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。

9.三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。10.数学口诀.

平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

十八章:平行四边形

附:一、 公式:

1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)

3.S 梯形 =2

1(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)

二、常识:

1.若n 是多边形的边数,则对角线条数公式是:2

)

3n (n .

2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.常见图形中,仅是轴对称图形的有:

角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… 注意:线段有两条对称轴.

十九章:一次函数

一.常量、变量:

在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.

三、函数中自变量取值范围的求法(即有意义):

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。 (3)用奇次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。 (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

五、用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。) 注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式: (1)列表法 (2)图像法 (3)解析式法 七、正比例函数

1、定义:一般地,形如y=kx(k 为常数,且k ≠0)的函数叫做正比例函数.其中k 叫做

比例系数。

平行四边形

矩形菱形

正方形

相关文档
最新文档