2009-2013年北京高考真题--导数大题汇编

合集下载

2013年高考数学文科试题分类汇编导数 2

2013年高考数学文科试题分类汇编导数 2

2013年全国各地高考文科数学试题分类汇编:导数一、选择题1 .(2013年高考课标Ⅱ卷(文))已知函数32()f x x ax bx c =+++,下列结论中错误的是 ( )A .0x ∃∈R,0()0f x =B.函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x = 【答案】C2 .(2013年高考大纲卷(文))已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,( )A .9B .6C .-9D .-6 【答案】D3 .(2013年高考湖北卷(文))已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞ 【答案】B4 .(2013年高考福建卷(文))设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的( )A .)()(,0x f x f R x ≤∈∀B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点 【答案】D5 .(2013年高考安徽(文))已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为 ( )A .3B .4C .5D .6 【答案】A6 .(2013年高考浙江卷(文))已知函数y=f(x)的图像是下列四个图像之一,且其导函数y =f’(x)的图像如右图所示,则该函数的图像是【答案】B 7.(2013年高考广东卷(文))若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =___________【答案】12 8 .(2013年高考江西卷(文))若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_____【答案】2(2013年高考浙江卷(文))已知a∈R,函数f(x)=2x 3-3(a+1)x 2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.【答案】解:(Ⅰ)46(2)680y x x y -=-⇒--=; (Ⅱ)当1a>时,函数()y f x =最小值是233a a -;当1a <-时,函数()y f x =最小值是31a -;(2013年高考大纲卷(文))已知函数()32=33 1.f x x ax x +++(I)求()f ;a x =的单调性;(II)若[)()2,0,.x f x a ∈+∞≥时,求的取值范围【答案】(Ⅰ)当(1)x ∈-∞时,'()0f x >,()f x 在(1)-∞是增函数;当11)x ∈时,'()0f x <,()f x 在11)是减函数;当1,)x ∈+∞时,'()0f x >,()f x 在1,)+∞是增函数; (Ⅱ)a 的取值范围是5[,)4-+∞.(2013年高考课标Ⅱ卷(文))己知函数f(X) = x 2e -x(I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.(2013年高考北京卷(文))已知函数2()sin cos f x x x x x =++.(Ⅰ)若曲线()y f x =在点(,())a f a )处与直线y b =相切,求a 与b 的值.(Ⅱ)若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围.【答案】解:解得0a =,(0)1b f ==.(II)()y f x =与直线y b =有且只有两个不同交点,那么b 的取值范围是(1,)+∞.(2013年高考课标Ⅰ卷(文))已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+.(Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.【答案】121()()2 4.(0)4,(0)4,4,8,4;f x e ax a b x f f b a b a b =++--===+===(I )由已知得故从而 (II) 当2=-2-2=41-)x f x f e -时,函数()取得极大值,极大值为()(.(2013年高考福建卷(文))已知函数()1x a f x x e=-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.【答案】解:(Ⅰ)解得a e =.(Ⅱ)综上,当0a ≤时,函数()f x 无极小值; 当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (Ⅲ)综上,得k 的最大值为1.(2013年高考湖南(文))已知函数f(x)=x e x21x 1+-. (Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x 1)=f(x 2)(x 1≠x 2)时,x 1+x 2<0.【答案】解: (Ⅰ) 所以,)上单调递减,上单调递增;在,在(∞+∈∞=0[]0-)(x x f y .(Ⅱ).0)()(212121<+≠=x x x x x f x f 时,且所以,当(2013年高考广东卷(文))设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M ,()'2321f x x kx =-+【答案】(1)()f x 在R 上单调递增.(2)综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--(2013年高考山东卷(文))已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥.试比较ln a 与2b -的大小解答:当0a >时函数()f x 的单调递减区间是。

2013年全国高考数学试题及答案-北京卷

2013年全国高考数学试题及答案-北京卷

2013年普通高等学校招生全国统一考试第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x=B .x y e -=C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( )A .15 B .59 C D .16.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m-= A .12m >B .1m ≥C .1m >D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。

10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。

11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。

12.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 。

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)

2013北京高考理科数学试题第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为 A.1 B.23 C.1321D.610987 5.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b-=3 A.y =±2x B.y =2x C.12y x =± D.22y x =± 7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43B.2C.83D.1623 8.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求得m的取值范围是A.4,3⎛⎫-∞- ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = . 11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,PA=3,916PD DB =,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ) ,则λμ=14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分。

2009年北京高考数学真题及答案(理科)

2009年北京高考数学真题及答案(理科)

2009北京高考数学真题(理科)第I 卷(选择题 共40分)一、本大题每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.在复平面内,复数(12)z i i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.已知向量,a b 不共线,(),c ka b k R d a b =+∈=-如果//c d ,那么 A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 3.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度4.若正四棱柱1111ABCD A B C D -的底面边长为1,1AB 与底面ABCD 成60°角,则11A C 到底面ABCD 的距离为 A .33B .1C .2D .3 5.“2()6k k Z παπ=+∈”是“1cos 22α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.若5(12)2(,a b a b +++为有理数),则a b +=A .45B .55C .70D .807.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 A .324 B .328 C .360 D .6488.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2009年北京市高考数学试卷(理科)答案与解析

2009年北京市高考数学试卷(理科)答案与解析

2009年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•北京)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限.【解答】解:∵z=i(1+2i)=i+2i=﹣2+i,∴复数z所对应的点为(﹣2,1),故选B【点评】本题主要考查复数在坐标系数内复数与点的对应关系.属于基础知识的考查.2.(5分)(2009•北京)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向【考点】平面向量共线(平行)的坐标表示.【专题】计算题.【分析】根据所给的选项特点,检验k=1是否满足条件,再检验k=﹣1是否满足条件,从而选出应选的选项.【解答】解:∵=(1,0),=(0,1),若k=1,则=+=(1,1),=﹣=(1,﹣1),显然,与不平行,排除A、B.若k=﹣1,则=﹣+=(﹣1,1),=﹣=(1,﹣1),即∥且与反向,排除C,故选D.【点评】本题考查平行向量的坐标表示,当两个向量平行时,一个向量的坐标等于另一个向量坐标的若干倍.3.(5分)(2009•北京)为了得到函数的图象,只需把函数y=lgx的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【考点】对数函数的图像与性质.【分析】先根据对数函数的运算法则对函数进行化简,即可选出答案.【解答】解:∵,∴只需把函数y=lgx的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度故选C.【点评】本题主要考查函数图象的平移变换.属于基础知识、基本运算的考查.4.(5分)(2009•北京)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD 成60°角,则A1C1到底面ABCD的距离为()A. B.1 C. D.【考点】直线与平面平行的性质.【专题】计算题;作图题;压轴题.【分析】画出图象,利用线段的关系,角的三角函数,求解即可.【解答】解:依题意,BB1的长度即A1C1到上面ABCD的距离,∠B1AB=60°,BB1=1×tan60°=,故选:D.【点评】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念,属于基础知识、基本运算的考查.5.(5分)(2009•北京)“a=+2kπ(k∈Z)”是“cos2a=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;任意角的三角函数的定义;二倍角的余弦.【分析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断.属于基础知识、基本运算的考查.将a=+2kπ代入cos2a易得cos2a=成立,但cos2a=时,a=+2kπ(k∈Z)却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:当a=+2kπ(k∈Z)时,cos2a=cos(4kπ+)=cos=反之,当cos2a=时,有2a=2kπ+⇒a=kπ+(k∈Z),或2a=2kπ﹣⇒a=kπ﹣(k∈Z),故选A.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q 的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6.(5分)(2009•北京)若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.80【考点】二项式定理的应用.【专题】计算题.【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选C【点评】本题考查二项式定理求二项展开式、组合数公式求二项式系数.7.(5分)(2009•北京)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648【考点】计数原理的应用.【专题】计算题;压轴题.【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选B【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.8.(5分)(2009•北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点"C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点"【考点】两点间距离公式的应用.【专题】计算题;压轴题;创新题型.【分析】根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l 上的所有点都符合.【解答】解:设A(m,n),P(x,x﹣1)则,B(2m﹣x,2n﹣x+1)∵A,B在y=x2上∴n=m2,2n﹣x+1=(2m﹣x)2消去n,整理得关于x的方程x2﹣(4m﹣1 )x+2m2﹣1=0∵△=8m2﹣8m+5>0恒成立,∴方程恒有实数解,∴故选A.【点评】本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2009•北京)=.【考点】极限及其运算.【专题】计算题.【分析】通过因式分解把原式转化为=,消除零因子后得到,由此能够得到的值.【解答】解:===.故答案为:.【点评】本题考查函数的极限,解题时要注意消除零因子.10.(5分)(2009•北京)若实数x,y满足则s=y﹣x的最小值为﹣6.【考点】简单线性规划.【分析】①画可行域如图②目标函数s为该直线纵截距③平移目标函数可知直线过(4,﹣2)点时s有最小值.【解答】解:画可行域如图阴影部分,令s=0作直线l:y﹣x=0平移l过点A(4,﹣2)时s有最小值﹣6,故答案为﹣6.【点评】本题考查线性规划问题:可行域画法目标函数几何意义11.(5分)(2009•北京)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.【考点】偶函数;导数的几何意义.【分析】偶函数关于y轴对称,结合图象,根据对称性即可解决本题.【解答】解;取f(x)=x2﹣1,如图,易得该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.故应填﹣1.【点评】函数性质的综合应用是函数问题的常见题型,在解决这一类问题是要注意培养数形结合的思想方法.12.(5分)(2009•北京)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=2,∠F1PF2的大小为120°.【考点】椭圆的简单性质.【专题】计算题;压轴题.【分析】第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.【解答】解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°【点评】本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是对曲线的定义和性质考查的很到位.13.(5分)(2009•北京)若函数则不等式的解集为[﹣3,1].【考点】其他不等式的解法.【专题】计算题;压轴题;转化思想.【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].【点评】本题主要考查分段函数和简单绝对值不等式的解法.属于基础知识、基本运算.14.(5分)(2009•北京){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014=0.【考点】数列的概念及简单表示法.【专题】压轴题.【分析】由a4n﹣3=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,第2009项的2009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.【解答】解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,1007=252×4﹣1,∴a2014=0,故答案为:1,0.【点评】培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.三、解答题(共6小题,满分80分)15.(13分)(2009•北京)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.【考点】正弦定理;同角三角函数基本关系的运用.【专题】计算题.【分析】(Ⅰ)由cosA=得到A为锐角且利用同角三角函数间的基本关系求出sinA的值,根据三角形的内角和定理得到C=π﹣﹣A,然后将C的值代入sinC,利用两角差的正弦函数公式化简后,将sinA和cosA代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC和(Ⅰ)可知公式里边的a不知道,所以利用正弦定理求出a即可.【解答】解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,∴A为锐角,则sinA==∴∴sinC=sin(﹣A)=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC中,由正弦定理,得∴a==,∴△ABC的面积S=absinC=×××=.【点评】考查学生灵活运用正弦定理、三角形的面积公式及同角三角函数间的基本关系化简求值.灵活运用两角和与差的正弦函数公式化简求值.16.(14分)(2009•北京)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.【考点】与二面角有关的立体几何综合题;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC 内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件; (2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE 中,求出AD与平面PAC所成角即可;(3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A﹣DE﹣P 的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A ﹣DE﹣P是直二面角.【解答】解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=AB,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠ABC=60°,∴BC=AB,∴在Rt△ADE中,sin∠DAE===,即AD与平面PAC所成角的正弦值为.(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PBC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°,故存在点E使得二面角A﹣DE﹣P是直二面角.【点评】考查线面所成角、线面垂直的判定定理以及二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.17.(13分)(2009•北京)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【考点】离散型随机变量及其分布列;相互独立事件的概率乘法公式.【专题】计算题.【分析】(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.【解答】解:(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,∵事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,∴事件A的概率为(Ⅱ)由题意可得ξ可能取的值为0,2,4,6,8(单位:min)事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),∴,∴即ξ的分布列是ξ0 2 4 6 8P∴ξ的期望是【点评】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.18.(13分)(2009•北京)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间即可;(III)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1时,函数f(x)(﹣1,1)内单调递增,由此即可求k的取值范围.【解答】解:(Ⅰ)f′(x)=(1+kx)e kx,f′(0)=1,f(0)=0,曲线y=f(x)在点(0,f(0))处的切线方程为y=x;(Ⅱ)由f′(x)=(1+kx)e kx=0,得x=﹣(k≠0),若k>0,则当x∈(﹣∞,﹣)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣,+∞,)时,f′(x)>0,函数f(x)单调递增,若k<0,则当x∈(﹣∞,﹣)时,f′(x)>0,函数f(x)单调递增,当x∈(﹣,+∞,)时,f′(x)<0,函数f(x)单调递减;(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1,即k≤1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1,即k≥﹣1时,函数f(x)(﹣1,1)内单调递增,综上可知,函数f(x)(﹣1,1)内单调递增时,k的取值范围是[﹣1,0)∪(0,1].【点评】本小题主要考查直线的斜率、利用导数研究函数的单调性、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力以及分类讨论思想.属于基础题.19.(14分)(2009•北京)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x= (I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.【考点】圆与圆锥曲线的综合.【专题】计算题;综合题;压轴题;转化思想.【分析】( I)先利用条件列出关于a,c的方程解方程求出a,c,b;即可求出双曲线方程.(II)先求出圆的切线方程,再把切线与双曲线方程联立求出关于点A,B坐标之间的方程,再代入求出∠AOB的余弦值即可证明∠AOB的大小为定值.【解答】解:(Ⅰ)由题意,,解得a=1,c=,b2=c2﹣a2=2,∴所求双曲C的方程.(Ⅱ)设P(m,n)(mn≠0)在x2+y2=2上,圆在点P(m,n)处的切线方程为y﹣n=﹣(x﹣m),化简得mx+ny=2.以及m2+n2=2得(3m2﹣4)x2﹣4mx+8﹣2m2=0,∵切L与双曲线C交于不同的两点A、B,且0<m2<2,3m2﹣4≠0,且△=16m2﹣4(3m2﹣4)(8﹣2m2)>0,设A、B两点的坐标分别(x1,y1),(x2,y2),x1+x2=,x1x2=.∵,且=x1x2+[4﹣2m(x1+x2)+m2x1x2]=+[4﹣+]=﹣=0.∴∠AOB的大小为900.【点评】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.20.(13分)(2009•北京)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.【考点】数列的应用.【专题】证明题;综合题;压轴题;新定义;分类讨论.【分析】(I)根据性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A,验证给的集合集{1,3,4}与{1,2,3,6}中的任何两个元素的积商是否为该集合中的元素;(Ⅱ)由性质P,知a n a n>a n,故a n a n∉A,从而1=∈A,a1=1.再验证又∵<<…<<,,,…,,从而++…++=a1+a2+…+a n,命题得证;(Ⅲ)跟据(Ⅱ),只要证明即可.【解答】解:(Ⅰ)由于3×与均不属于数集{1,3,4,∴该数集不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6,∴该数集具有性质P.(Ⅱ)∵A={a1,a2,…,a n}具有性质P,∴a n a n与中至少有一个属于A,由于1≤a1<a2<…<a n,∴a n a n>a n故a n a n∉A.从而1=∈A,a1=1.∵1=a1<a2<…a n,n≥2,∴a k a n>a n(k=2,3,4,…,n),故a k a n∉A(k=2,3,4,…,n).由A具有性质P可知∈A(k=2,3,4,…,n).又∵<<…<<,∴,,…,,从而++…++=a1+a2+…+a n,∴且;(Ⅲ)由(Ⅱ)知,当n=5时,有,,即a5=a2•a4=a32,∵1=a1<a2<…<a5,∴a3a4>a2a4=a5,∴a3a4∉A,由A具有性质P可知∈A.由a2•a4=a32,得∈A,且1<,∴,∴,即a1,a2,a3,a4,a5是首项为1,公比为a2等比数列.【点评】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法.此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属于较难层次题.。

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)

2013年普通高等学校招生全国统一考试数学理试题(北京卷,含答案)
2013 北京高考理科数学试题
一 选择题共 8 小题 目要求的一项 小题 5 第一部 共 40 选择题 共 40 在 个小题给出的四个选项中 只 一项是符合题
1.已知集合 A称{ 1 0 1} B称{x| 1≤x 1} 则 A∩B称 Ⅲ A.{0} B.{ 1 0} C.{0 1} D.{ 1,0,1} 2 2.在复 面内 复数Ⅲ2 i) 对应的点位于Ⅲ ) A.第一象限 B. 第二象限 C.第 象限 D. 第四象限 3. φ称π 是 曲线 y称sinⅢ2x φ)过坐标原点的 A.充 而 必要条件 B.必要而 充 条件 C.充 必要条件 D.既 充 也 必要条件 4.执行如图所示的程序框图 输出的 分 值为 A.1 B.
求 人到达当日空气重度污染的概率 设 下 是 人停留期间空气质 优良的天数 求 下 的 列 数学期望 由图判断从哪天开始连续 天的空气质 指数方差最大? 结论 要求证明 17. Ⅲ本小题共 14 ) 如图 在 棱柱 ABC-A1B1C1 中 AA1C1C 是边长为 4 的 方形. 面 ABC⊥ 面 AA1C1C AB称3 BC称5. 求证 AA1⊥ 面 ABC 求二面角 A1-BC1-B1 的余弦值 证明 在线段 BC1 在点 D 使得 AD⊥A1B 并求
B.2 C.
4 3
的取值范围是
A. −∞, −

4 3
B. −∞,

1 3
C. −∞, − 共 30 .
Байду номын сангаас

2 3
D. −∞, −

5 3
第二部 非选择题 共 110 二 填空题共 6 题 小题 5 9.在极坐标系中 点Ⅲ2
π )到直线 ρsinθ称2 的距离等于 6

2009-2013年北京高考真题--导数大题汇编

2009-2013年北京高考真题--导数大题汇编

_________高考题库,荣誉出品__________●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●2009-2013年北京高考真题--导数大题汇编5年高考真题分类汇编-教师卷题号一总分得分△注意事项:1.本系列试题包含2009至2013年北京市高考真题,并经过精心校对。

2.本系列文档包含全部试题分类汇编,命名规律为:2009-2013年北京高考真题--******试题汇编。

3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。

i.、解答题(本大题共5小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。

(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。

【答案解析】解:(1)'()2cos (2cos )f x x x x x x 因为曲线()y f x 在点(,())a f a 处的切线为y b 所以'()0()f a f a b ,即22cos 0sin cos a a a a a a a b ,解得01a b (2)因为2cos 0x 所以当0x 时'()0f x ,()f x 单调递增当0x 时'()0f x ,()f x 单调递减所以当0x 时,()f x 取得最小值(0)1f ,所以b 的取值范围是(1,)2.(2012年北京高考真题数学(文))。

2009至2018年北京高考真题分类汇编之集合

2009至2018年北京高考真题分类汇编之集合

2009至2018年北京高考真题分类汇编之集合精心校对版△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。

2.本系列文档有相关的试题分类汇编,具体见封面。

3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一 、选择题(本大题共10小题,每小题0分,共0分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2013年北京高考真题数学(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.(2012年北京高考真题数学(文))已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则A B =3.(2011年北京高考真题数学(文))已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞) 4.(2009年北京高考真题数学(文))设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<5.(2010年北京高考真题数学(文))集合,则=(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3}2{03},{9}P x Z x M x R x =∈≤<=∈≤PM(A )(,1)-∞- (B )2(1,)3--(C )2(,3)3-(D )(3,)+∞姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●6.(2014年北京高考真题数学(文))若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}37.(2015年北京高考真题数学(文))若集合A={x|﹣5<x <2},B={x|﹣3<x <3},则A∩B=( )A . {x|﹣3<x <2}B . {x|﹣5<x <2}C . {x|﹣3<x <3}D . {x|﹣5<x <3}8.(2016年北京高考真题数学(文))已知集合{|24},{|3>5}A x x B x x x =<<=<或,则AB =(A ){|2<<5}x x (B ){|<45}x x x >或(C ){|2<<3}x x (D ){|<25}x x x >或 9.(2017年北京高考真题数学(文))已知U =R ,集合{|22}A x x x =<->或,则(A )(2,2)- (B )(,2)(2,)-∞-+∞(C )[2,2]- (D )(,2][2,)-∞-+∞ 10.(2018年北京高考真题数学(文))已知集合A ={x||x |<2},B ={−2,0,1,2},则AB =(A ){0,1}(B ){−1,0,1} (C ){−2,0,1,2}(D ){−1,0,1,2}二 、填空题(本大题共2小题,每小题0分,共0分)11.(2009年北京高考真题数学(文))设A 是整数集的一个非空子集,对于k A ∈,如果1k A-∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.12.(2015年北京高考真题数学(文))如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z=2x+3y 的最大值为 .2009至2018年北京高考真题分类汇编之集合答案解析一、选择题1.B2.D3.D4.A5.B6.C7.A8.C9.C10.A二、填空题11.612.7。

2009年高考北京数学(理科)试题及参考答案

2009年高考北京数学(理科)试题及参考答案

2009年高考北京数学(理科)试题及参考答案教学工作总结2012年上学期一学期以来,我校的教学工作在区教研室的指导下,在中心学校的领导下,经过全体师生的共同努力,学校教学工作始终以全面推进素质教育和打造特色教育的精品为目标,以实施课程改革和提升教育质量为中心,深化教育科研,加强队伍建设,狠抓教育管理,开展了一系列教学活动,取得了一些成绩,现总结如下。

一、加强理论学习,转变教育观念。

开学以来,通过组织教师认真学习区局2012年教学工作会议精神,使教师深刻地理解了教学质量的内涵,形成了抓质量的共识,增强了抓质量的紧迫感和责任感,并切实认识到了课堂教学质量与课程改革是统一的,二者之间并不矛盾:首先,课程改革的根本目的就是为学生的终身发展服务,其次,随着课程改革的不断深入和命题方向的不断改进,试卷检测无疑仍然是衡量教学质量优劣的主要手段。

实践证明,综合素质好的学生往往科学文化素质也很好,在考试的时候也往往能考出较好的成绩,而综合素质差的学生则相反。

通过以上工作的开展。

使我校教师真正形成了质量意识,大家心往一处想,力往一处使,努力提高教学质量,目前已取得了初步成效。

二、加强教师培训、提高教师素质教师是文化的继承者和传播者,是课程改革的具体实施者,师资队伍的水平直接影响到教学质量的提高。

近年来,我校在确保抓好教师业务学习的同时,还切实加强了对教师的培训工作,积极选拔教师参加各级各类培训。

学校还建立了以校为本的教研制度,使教师更新了教育理念,充实了理论知识,激发了创新热情,提升了教育教学水平。

三、坚持质量立校,提高办学效益教学工作是学校的中心工作,教学质量的高低是衡量一所学校办学水平的重要标尺。

近年来,我校坚持以课改为中心,不断加大研讨力度和对教学工作的全程管理,以学会求知为目标,积极探索,大胆实践,努力构建精细化的管理模式,确保了管理行为的准确有效和管理效力的无处不在。

1、加强对备课的指导。

备好课是上好课的前提。

2009年北京市高考数学试卷(理科)(含解析版)

2009年北京市高考数学试卷(理科)(含解析版)

绝密★启用前2009年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题(共8小题,每小题5分,满分40分)1.(5分)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向3.(5分)为了得到函数y=lg的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度4.(5分)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1C.D.5.(5分)“α=+2kπ(k∈Z)”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若(1+)5=a+b(a,b为有理数),则a+b=()A.45B.55C.70D.807.(5分)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.6488.(5分)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”二、填空题(共6小题,每小题5分,满分30分)9.(5分)=.10.(5分)若实数x,y满足则s=y﹣x的最小值为.11.(5分)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=,∠F1PF2的大小为.13.(5分)若函数则不等式的解集为.14.(5分){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=;a2014=.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.16.(14分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.17.(13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.18.(13分)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.19.(14分)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=(I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.20.(13分)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.2009年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限.【解答】解:∵z=i(1+2i)=i+2i=﹣2+i,∴复数z所对应的点为(﹣2,1),故选:B.【点评】本题主要考查复数在坐标系数内复数与点的对应关系.属于基础知识的考查.2.(5分)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向【考点】9K:平面向量共线(平行)的坐标表示.【专题】11:计算题.【分析】根据所给的选项特点,检验k=1是否满足条件,再检验k=﹣1是否满足条件,从而选出应选的选项.【解答】解:∵=(1,0),=(0,1),若k=1,则=+=(1,1),=﹣=(1,﹣1),显然,与不平行,排除A、B.若k=﹣1,则=﹣+=(﹣1,1),=﹣=(1,﹣1),即∥且与反向,排除C,故选:D.【点评】本题考查平行向量的坐标表示,当两个向量平行时,一个向量的坐标等于另一个向量坐标的若干倍.3.(5分)为了得到函数y=lg的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【考点】3A:函数的图象与图象的变换.【分析】先根据对数函数的运算法则对函数进行化简,即可选出答案.【解答】解:∵,∴只需把函数y=lgx的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度故选:C.【点评】本题主要考查函数图象的平移变换.属于基础知识、基本运算的考查.4.(5分)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1C.D.【考点】LS:直线与平面平行.【专题】11:计算题;13:作图题;16:压轴题.【分析】画出图象,利用线段的关系,角的三角函数,求解即可.【解答】解:依题意,BB1的长度即A1C1到上面ABCD的距离,∠B1AB=60°,BB1=1×tan60°=,故选:D.【点评】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念,属于基础知识、基本运算的考查.5.(5分)“α=+2kπ(k∈Z)”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;G9:任意角的三角函数的定义;GS:二倍角的三角函数.【分析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断.属于基础知识、基本运算的考查.将a=+2kπ代入cos2a易得cos2a=成立,但cos2a=时,a=+2kπ(k∈Z)却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:当a=+2kπ(k∈Z)时,cos2a=cos(4kπ+)=cos=反之,当cos2a=时,有2a=2kπ+⇒a=kπ+(k∈Z),或2a=2kπ﹣⇒a=kπ﹣(k∈Z),故选:A.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6.(5分)若(1+)5=a+b(a,b为有理数),则a+b=()A.45B.55C.70D.80【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选:C.【点评】本题考查二项式定理求二项展开式、组合数公式求二项式系数.7.(5分)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【考点】D3:计数原理的应用.【专题】11:计算题;16:压轴题.【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选:B.【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.8.(5分)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”【考点】IR:两点间的距离公式.【专题】11:计算题;16:压轴题;2:创新题型.【分析】根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l上的所有点都符合.【解答】解:设A(m,n),P(x,x﹣1)则,B(2m﹣x,2n﹣x+1)∵A,B在y=x2上∴n=m2,2n﹣x+1=(2m﹣x)2消去n,整理得关于x的方程x2﹣(4m﹣1)x+2m2﹣1=0∵△=8m2﹣8m+5>0恒成立,∴方程恒有实数解,∴故选A.【点评】本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断.二、填空题(共6小题,每小题5分,满分30分)9.(5分)=.【考点】6F:极限及其运算.【专题】11:计算题.【分析】通过因式分解把原式转化为=,消除零因子后得到,由此能够得到的值.【解答】解:===.故答案为:.【点评】本题考查函数的极限,解题时要注意消除零因子.10.(5分)若实数x,y满足则s=y﹣x的最小值为﹣6.【考点】7C:简单线性规划.【分析】①画可行域如图②目标函数s为该直线纵截距③平移目标函数可知直线过(4,﹣2)点时s有最小值.【解答】解:画可行域如图阴影部分,令s=0作直线l:y﹣x=0平移l过点A(4,﹣2)时s有最小值﹣6,故答案为﹣6.【点评】本题考查线性规划问题:可行域画法目标函数几何意义11.(5分)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.【考点】3I:奇函数、偶函数;62:导数及其几何意义.【分析】偶函数关于y轴对称,结合图象,根据对称性即可解决本题.【解答】解;取f(x)=x2﹣1,如图,易得该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.故应填﹣1.【点评】函数性质的综合应用是函数问题的常见题型,在解决这一类问题是要注意培养数形结合的思想方法.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|= 2,∠F1PF2的大小为120°.【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.【解答】解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°【点评】本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是对曲线的定义和性质考查的很到位.13.(5分)若函数则不等式的解集为[﹣3,1].【考点】7E:其他不等式的解法.【专题】11:计算题;16:压轴题;35:转化思想.【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].【点评】本题主要考查分段函数和简单绝对值不等式的解法.属于基础知识、基本运算.14.(5分){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014= 0.【考点】81:数列的概念及简单表示法.【专题】16:压轴题.=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,【分析】由a4n﹣3第2009项的2009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.【解答】解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,1007=252×4﹣1,∴a2014=0,故答案为:1,0.【点评】培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.(Ⅰ)由cosA=得到A为锐角且利用同角三角函数间的基本关系求出sinA 【分析】的值,根据三角形的内角和定理得到C=π﹣﹣A,然后将C的值代入sinC,利用两角差的正弦函数公式化简后,将sinA和cosA代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC和(Ⅰ)可知公式里边的a 不知道,所以利用正弦定理求出a即可.【解答】解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,∴A为锐角,则sinA==∴∴sinC=sin(﹣A)=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC中,由正弦定理,得∴a==,∴△ABC的面积S=absinC=×××=.【点评】考查学生灵活运用正弦定理、三角形的面积公式及同角三角函数间的基本关系化简求值.灵活运用两角和与差的正弦函数公式化简求值.16.(14分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.【考点】MI:直线与平面所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件;(2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE中,求出AD与平面PAC所成角即可;(3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A ﹣DE﹣P的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A﹣DE﹣P是直二面角.【解答】解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=AB,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠ABC=60°,∴BC=AB,∴在Rt△ADE中,sin∠DAE===,即AD与平面PAC所成角的正弦值为.(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PBC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°,故存在点E使得二面角A﹣DE﹣P是直二面角.【点评】考查线面所成角、线面垂直的判定定理以及二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.17.(13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.【解答】解:(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,∵事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,∴事件A的概率为(Ⅱ)由题意可得ξ可能取的值为0,2,4,6,8(单位:min)事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),∴,∴即ξ的分布列是ξ02468P∴ξ的期望是【点评】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.18.(13分)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;16:压轴题.【分析】(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间即可;(III)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1时,函数f(x)(﹣1,1)内单调递增,由此即可求k的取值范围.【解答】解:(Ⅰ)f′(x)=(1+kx)e kx,f′(0)=1,f(0)=0,曲线y=f(x)在点(0,f(0))处的切线方程为y=x;(Ⅱ)由f′(x)=(1+kx)e kx=0,得x=﹣(k≠0),若k>0,则当x∈(﹣∞,﹣)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣,+∞,)时,f′(x)>0,函数f(x)单调递增,若k<0,则当x∈(﹣∞,﹣)时,f′(x)>0,函数f(x)单调递增,当x∈(﹣,+∞,)时,f′(x)<0,函数f(x)单调递减;(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1,即k≤1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1,即k≥﹣1时,函数f(x)(﹣1,1)内单调递增,综上可知,函数f(x)(﹣1,1)内单调递增时,k的取值范围是[﹣1,0)∪(0,1].【点评】本小题主要考查直线的斜率、利用导数研究函数的单调性、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力以及分类讨论思想.属于基础题.19.(14分)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=(I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.【考点】KJ:圆与圆锥曲线的综合.【专题】11:计算题;15:综合题;16:压轴题;35:转化思想.【分析】(I)先利用条件列出关于a,c的方程解方程求出a,c,b;即可求出双曲线方程.(II)先求出圆的切线方程,再把切线与双曲线方程联立求出关于点A,B坐标之间的方程,再代入求出∠AOB的余弦值即可证明∠AOB的大小为定值.【解答】解:(Ⅰ)由题意,,解得a=1,c=,b2=c2﹣a2=2,∴所求双曲C的方程.(Ⅱ)设P(m,n)(mn≠0)在x2+y2=2上,圆在点P(m,n)处的切线方程为y﹣n=﹣(x﹣m),化简得mx+ny=2.以及m2+n2=2得(3m2﹣4)x2﹣4mx+8﹣2m2=0,∵切L与双曲线C交于不同的两点A、B,且0<m2<2,3m2﹣4≠0,且△=16m2﹣4(3m2﹣4)(8﹣2m2)>0,设A、B两点的坐标分别(x1,y1),(x2,y2),x1+x2=,x1x2=.∵,且=x1x2+[4﹣2m(x1+x2)+m2x1x2]=+[4﹣+]=﹣=0.∴∠AOB的大小为900.【点评】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.20.(13分)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.【考点】8B:数列的应用.【专题】14:证明题;15:综合题;16:压轴题;23:新定义;32:分类讨论.【分析】(I)根据性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A,验证给的集合集{1,3,4}与{1,2,3,6}中的任何两个元素的积商是否为该集合中的元素;(Ⅱ)由性质P,知a n a n>a n,故a n a n∉A,从而1=∈A,a1=1.再验证又∵<<…<<,,,…,,从而++…++=a1+a2+…+a n,命题得证;(Ⅲ)跟据(Ⅱ),只要证明即可.【解答】解:(Ⅰ)由于3×与均不属于数集{1,3,4,∴该数集不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6,∴该数集具有性质P.(Ⅱ)∵A={a1,a2,…,a n}具有性质P,∴a n a n与中至少有一个属于A,由于1≤a1<a2<…<a n,∴a n a n>a n故a n a n∉A.从而1=∈A,a1=1.∵1=a1<a2<…a n,n≥2,∴a k a n>a n(k=2,3,4,…,n),故a k a n∉A(k=2,3,4,…,n).由A具有性质P可知∈A(k=2,3,4,…,n).又∵<<…<<,∴,,…,,从而++…++=a1+a2+…+a n,∴且;(Ⅲ)由(Ⅱ)知,当n=5时,有,,即a5=a2•a4=a32,∵1=a1<a2<…<a5,∴a3a4>a2a4=a5,∴a3a4∉A,由A具有性质P可知∈A.由a2•a4=a32,得∈A,且1<,∴,∴,即a1,a2,a3,a4,a5是首项为1,公比为a2等比数列.【点评】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法.此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属于较难层次题.。

2013北京高考数学试题及详解

2013北京高考数学试题及详解

2013北京高考理科数学试题第一部分(选择题共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解.2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限【答案】D【解析】【难度】容易【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的” ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】. 【难度】容易【点评】本题考察简易逻辑关系,.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,例题中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合、简易逻辑相关知识的总结讲解.4.执行如图所示的程序框图,输出的S值为 ( )A.1B.23 C.1321D.610987【答案】C【解析】【难度】中等【点评】本题算法初步。

在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。

在高考精品班数学(理)强化提高班中有对程序框图题目相关的总结讲解。

5.函数f(x)的图象向右平移一个单位长度,所得图象与y=e x关于y 轴对称,则f(x)= ( )A.1e x +B. 1e x -C. 1e x -+D. 1e x -- 【答案】D 【解析】【难度】中等【点评】本题考查分段函数值域求解。

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

十年高考真题汇编(北京卷,含解析)导数及其应用

十年高考真题汇编(北京卷,含解析)导数及其应用

十年高考真题(2011-2020)(北京卷)专题04导数及其应用本专题考查的知识点为:导数及其应用,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:导数研究函数的几何意义,导数研究函数的单调性、极值与最值,导数证明不等式的方法等,预测明年本考点题目会有所变化,备考方向以导数研究函数的极值,导数研究函数的最值为重点较佳.1.【2020年北京卷11】函数f(x)=1x+1+lnx的定义域是____________.2.【2019年北京理科13】设函数f(x)=e x+ae﹣x(a为常数).若f(x)为奇函数,则a=;若f(x)是R上的增函数,则a的取值范围是.3.【2016年北京理科14】设函数f(x)={x3−3x,x≤a −2x,x>a.①若a=0,则f(x)的最大值为;②若f(x)无最大值,则实数a的取值范围是.4.【2020年北京卷19】已知函数f(x)=12−x2.(Ⅰ)求曲线y=f(x)的斜率等于−2的切线方程;(Ⅱ)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值.5.【2019年北京理科19】已知函数f(x)=14x3﹣x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[﹣2,4]时,求证:x﹣6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)﹣(x+a)|(a∈R),记F(x)在区间[﹣2,4]上的最大值为M(a).当M(a)最小时,求a的值.6.【2018年北京理科18】设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.7.【2017年北京理科19】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,π2]上的最大值和最小值.8.【2016年北京理科18】设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e ﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.9.【2015年北京理科18】已知函数f(x)=ln1+x1−x,(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求证,当x∈(0,1)时,f(x)>2(x+x 33 );(Ⅲ)设实数k使得f(x)>k(x+x 33)对x∈(0,1)恒成立,求k的最大值.10.【2013年北京理科18】设l为曲线C:y=lnxx在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.11.【2012年北京理科18】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(﹣∞,﹣1)上的最大值.12.【2011年北京理科18】已知函数f(x)=(x−k)2e x k.(Ⅰ)求f(x)的单调区间;(Ⅱ)若对于任意的x∈(0,+∞),都有f(x)≤1e,求k的取值范围.1.若函数f(x)=x2+ax+1x 在(12,+∞)是增函数,则a的取值范围是()A.[−1,0]B.[−1,+∞)C.[0,3]D.[3,+∞)2.【2020届北京市西城区第四中学高三上学期期中】已知曲线y=a e x+xlnx在点(1,ae)处的切线方程为y =2x+b,则()A.a=e,b=−1B.a=e,b=1C.a=e−1,b=1D.a=e−1,b=−13.【北京市西城区第四中学2019-2020学年高三上学期10月月考】设函数f(x)=√3sinπxm.若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(−∞,−6)∪(6,∞)B.(−∞,−4)∪(4,∞)C.(−∞,−2)∪(2,∞)D.(−∞,−1)∪(1,∞)4.函数f(x)=x3−3x2+2在区间[-1,1]上的最大值是()A.4B.2C.0D.-25.【北京市首都师范大学附属中学2019届高三高考模拟预测卷(二)】已知函数f(x)=13x3−4x+2e x−2e x,其中e是自然对数的底,若f(a−1)+f(2a2)≤0,则实数a的取值范围是()A.(−∞,−1]B.[12,+∞)C.(−1,12)D.[−1,12]6.【2020届北京市昌平区新学道临川学校高三上学期第三次月考】已知函数f(x)=x2−2x+a(e x−1+ e−x+1)有唯一零点,则a=A.−12B.13C.12D.17.【2020届北京市朝阳区六校联考高三年级四月份测试】关于函数f(x)=(x2+ax−1)e x,有以下三个结论:①函数恒有两个零点,且两个零点之积为−1;②函数的极值点不可能是−1;③函数必有最小值.其中正确结论的个数有()A.0个B.1个C.2个D.3个8.【北京市第171中学2019-2020学年高三10月月考】已知函数f(x)=e2x−3,g(x)=14+ln x2,若f(m)=g(n)成立,则n−m的最小值为()A.12+ln2B.ln2C.12+2ln2D.2ln29.【北京市中国人民大学附属中学2019届高三上学期月考(二)】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(−1)=0,当x>0时,xf′(x)−f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(−∞,−1)∪(0,1)B.(−1,0)∪(1,+∞)C.(−∞,−1)∪(−1,0)D.(0,1)∪(1,+∞)≥x a对x∈(1,+ 10.【2020年1月中学生标准学术能力诊断性测试诊断性测试】已知不等式x+alnx+1e x∞)恒成立,则实数a的最小值为()A.−√e B.−eC.−e D.−2e2−alnx(a 11.【北京市清华大学附属中学2019届高三下学期第三次模拟】直线y=x+1是曲线f(x)=x+1x∈R)的切线,则a的值是______.12.已知f(x)=e x·sinx,则f′(0)的值为___.13.【北京市中国人民大学附属中学2019届高三上学期月考(二)】已知函数f(x)=ax3+x+1的图像在点(1,f(1))的处的切线过点(2,7),则a=.14.函数f(x)=xlnx的单调减区间是______.(x>0)的单调递减区15.【北京市丰台区2019届高三年级第二学期综合练习(二)】已知函数f(x)=x+ax间为(0,2),单调递增区间为(2,+∞),那么a=____.16.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=lnx+x是k倍值函数,则实数k的取值范围是________.17.【北京市东城区第五中学2019-2020学年高三上学期12月月考】函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=|k A−k B|叫曲线y=f(x)在点A与点B之间的|AB|“弯曲度”,给出以下命题:(1)函数y=x3−x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>√3;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)⩽2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1−x2=1,若t·φ(A,B)<1恒成立,则实数t 的取值范围是(−∞,1);以上正确命题的序号为__(写出所有正确的)+cosx,给出下列结论:18.【北京市平谷区2020届高三第二学期阶段性测试(二模)】已知函数f(x)=1x①f(x)在(0,π]上有最小值,无最大值;②设F(x)=f(x)−f(−x),则F(x)为偶函数;③f(x)在(0,2π)上有两个零点其中正确结论的序号为________.(写出所有正确结论的序号)19.【北京市通州区2020届高考一模】给出下列四个函数,①y=x2+1;②y=|x+1|+|x+2|;③y=2x+1;④y=x2+cosx,其中值域为[1,+∞)的函数的序号是______.20.【2019届北京市中国人民人大附属中学高三(5月)模拟】已知函数f(x)的导函数为f′(x),且对任意的实数x都有f′(x)=e−x(2x+3)−f(x)(e是自然对数的底数),且f(0)=1,若关于x的不等式f(x)−m <0的解集中恰有两个整数,则实数m的取值范围是________..21.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知函数f(x)=1−xe x(1)求函数f(x)的单调区间;成立,求实数a的最小值.(2)若对任意x1,x2∈[a,+∞),都有f(x1)−f(x2)≥−1e222.【北京市大兴区2019届高三4月一模】已知函数f(x)=a e x图象在x=0处的切线与函数g(x)=lnx图象在x=1处的切线互相平行.(Ⅰ)求a的值;(Ⅱ)设ℎ(x)=f(x)−g(x),求证:ℎ(x)>2.23.【北京五中2020届高三(4月份)高考数学模拟】设函数f(x)=me x﹣x2+3,其中m∈R.(1)如果f(x)同时满足下面三个条件中的两个:①f(x)是偶函数;②m=1;③f(x)在(0,1)单调递减.指出这两个条件,并求函数h(x)=xf(x)的极值;(2)若函数f(x)在区间[﹣2,4]上有三个零点,求m的取值范围.24.【2020届北京市平谷区高三3月质量监控(一模)】已知函数f(x)=(x2+ax−a),其中a∈R.e x(1)当a=0时,求f(x)在(1,f(1))的切线方程;(2)求证:f(x)的极大值恒大于0.25.【2020届北京市海淀区高三一模】已知函数f(x)=e x+ax.(I)当a=-1时,①求曲线y=f(x)在点(0,f(0))处的切线方程;②求函数f(x)的最小值;(II)求证:当a∈(−2,0)时,曲线y=f(x)与y=1−lnx有且只有一个交点.26.【北京市西城区第四中学2019-2020学年高三上学期10月月考】已知函数f(x)=x−alnx(a∈R).(Ⅰ)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的极值.),,其中a 27.【北京市海淀区2019届高三年级第二学期期末练习(二模)】已知函数f(x)=e ax(x2−a+2a≠0.(Ⅰ)求曲线y =f(x)在点(1,f(1))处切线的倾斜角; (Ⅱ)若函数f(x)的极小值小于0,求实数a 的取值范围.28.【北京市第四中学2019届高三高考调研卷(二)】已知函数g(x)=alnx ,f(x)=x 3+x 2+bx . (1)若f(x)在区间[1,2]上不是单调函数,求实数b 的范围;(2)若对任意x ∈[1,e],都有g(x)≥−x 2+(a +2)x 恒成立,求实数a 的取值范围;(3)当b =0时,设F(x)={f(−x),x <1g(x),x ≥1,对任意给定的正实数a ,曲线y =F(x)上是否存在两点P ,Q ,使得ΔPOQ 是以O (O 为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y 轴上?请说明理由.29.【北京市人大附中2019届高三高考模拟预测】已知函数f(x)=(3-x)e x,g(x)=x +a(a∈R)(e 是自然对数的底数,e≈2.718…). (1)求函数f(x)的极值;(2)若函数y =f(x)g(x)在区间[1,2]上单调递增,求实数a 的取值范围; (3)若函数h(x)=f(x)+g(x)x在区间(0,+∞)上既存在极大值又存在极小值,并且函数h(x)的极大值小于整数b ,求b 的最小值.30.已知函数f (x )=x 22﹣(1+2a )x +4a+12ln (2x +1),a >0.(1)已知函数f (x )在x =2取得极小值,求a 的值; (2)讨论函数f (x )的单调区间;(3)当a >14时,若存在x 0∈(12,+∞)使得f (x 0)<12﹣2a 2,求实数a 的取值范围.1.【2020年北京卷11】函数f(x)=1x+1+lnx 的定义域是____________.【答案】(0,+∞) 【解析】由题意得{x >0x +1≠0 ,∴x >0故答案为:(0,+∞)2.【2019年北京理科13】设函数f (x )=e x +ae ﹣x (a 为常数).若f (x )为奇函数,则a = ;若f (x )是R 上的增函数,则a 的取值范围是 . 【答案】解:根据题意,函数f (x )=e x +ae ﹣x ,若f (x )为奇函数,则f (﹣x )=﹣f (x ),即e ﹣x +ae x =﹣(e x +ae ﹣x ),变形可得a =﹣1, 函数f (x )=e x +ae ﹣x ,导数f ′(x )=e x ﹣ae ﹣x若f (x )是R 上的增函数,则f (x )的导数f ′(x )=e x ﹣ae ﹣x ≥0在R 上恒成立, 变形可得:a ≤e 2x 恒成立,分析可得a ≤0,即a 的取值范围为(﹣∞,0]; 故答案为:﹣1,(﹣∞,0].3.【2016年北京理科14】设函数f (x )={x 3−3x ,x ≤a −2x ,x >a.①若a =0,则f (x )的最大值为 ;②若f (x )无最大值,则实数a 的取值范围是 . 【答案】解:①若a =0,则f (x )={x 3−3x ,x ≤0−2x ,x >0,则f ′(x )={3x 2−3,x ≤0−2,x >0,当x <﹣1时,f ′(x )>0,此时函数为增函数, 当x >﹣1时,f ′(x )<0,此时函数为减函数, 故当x =﹣1时,f (x )的最大值为2; ②f ′(x )={3x 2−3,x ≤a −2,x >a,令f ′(x )=0,则x =±1,若f (x )无最大值,则{a ≤−1−2a >a 3−3a,或{a >−1−2a >a 3−3a −2a >2,解得:a ∈(﹣∞,﹣1). 故答案为:2,(﹣∞,﹣1)4.【2020年北京卷19】已知函数f(x)=12−x 2. (Ⅰ)求曲线y =f(x)的斜率等于−2的切线方程;(Ⅱ)设曲线y =f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值. 【答案】(Ⅰ)2x +y −13=0,(Ⅱ)32. 【解析】(Ⅰ)因为f (x )=12−x 2,所以f ′(x )=−2x ,设切点为(x 0,12−x 0),则−2x 0=−2,即x 0=1,所以切点为(1,11), 由点斜式可得切线方程为:y −11=−2(x −1),即2x +y −13=0. (Ⅱ)显然t ≠0,因为y =f (x )在点(t,12−t 2)处的切线方程为:y −(12−t 2)=−2t (x −t ), 令x =0,得y =t 2+12,令y =0,得x =t 2+122t,所以S (t )=12×(t 2+12)⋅t 2+122|t|,不妨设t >0(t <0时,结果一样), 则S (t )=t 4+24t 2+1444t =14(t 3+24t +144t),所以S ′(t )=14(3t 2+24−144t2)=3(t 4+8t 2−48)4t 2=3(t 2−4)(t 2+12)4t 2=3(t−2)(t+2)(t 2+12)4t 2,由S ′(t )>0,得t >2,由S ′(t )<0,得0<t <2, 所以S (t )在(0,2)上递减,在(2,+∞)上递增, 所以t =2时,S (t )取得极小值, 也是最小值为S (2)=16×168=32.5.【2019年北京理科19】已知函数f (x )=14x 3﹣x 2+x . (Ⅰ)求曲线y =f (x )的斜率为l 的切线方程;(Ⅱ)当x ∈[﹣2,4]时,求证:x ﹣6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )﹣(x +a )|(a ∈R ),记F (x )在区间[﹣2,4]上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】解:(Ⅰ)f ′(x )=34x 2−2x +1,由f ′(x )=1得x (x −83)=0, 得x 1=0,x 2=83.又f (0)=0,f (83)=827, ∴y =x 和y −827=x −83, 即y =x 和y =x −6427;(Ⅱ)证明:欲证x ﹣6≤f (x )≤x , 只需证﹣6≤f (x )﹣x ≤0,令g (x )=f (x )﹣x =14x 3−x 2,x ∈[﹣2,4],则g ′(x )=34x 2−2x =34x(x −83),可知g ′(x )在[﹣2,0]为正,在(0,83)为负,在[83,4]为正, ∴g (x )在[﹣2,0]递增,在[0,83]递减,在[83,4]递增,又g (﹣2)=﹣6,g (0)=0,g (83)=−6427>−6,g (4)=0, ∴﹣6≤g (x )≤0, ∴x ﹣6≤f (x )≤x ; (Ⅲ)由(Ⅱ)可得, F (x )=|f (x )﹣(x +a )| =|f (x )﹣x ﹣a | =|g (x )﹣a |∵在[﹣2,4]上,﹣6≤g (x )≤0, 令t =g (x ),h (t )=|t ﹣a |,则问题转化为当t ∈[﹣6,0]时,h (t )的最大值M (a )的问题了,①当a ≤﹣3时,M (a )=h (0)=|a |=﹣a , 此时﹣a ≥3,当a =﹣3时,M (a )取得最小值3; ②当a ≥﹣3时,M (a )=h (﹣6)=|﹣6﹣a |=|6+a |, ∵6+a ≥3,∴M (a )=6+a , 也是a =﹣3时,M (a )最小为3. 综上,当M (a )取最小值时a 的值为﹣3.6.【2018年北京理科18】设函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x . (Ⅰ)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若f (x )在x =2处取得极小值,求a 的取值范围.【答案】解:(Ⅰ)函数f (x )=[ax 2﹣(4a +1)x +4a +3]e x 的导数为 f ′(x )=[ax 2﹣(2a +1)x +2]e x .由题意可得曲线y =f (x )在点(1,f (1))处的切线斜率为0, 可得(a ﹣2a ﹣1+2)e =0,且f (1)=3e ≠0, 解得a =1;(Ⅱ)f (x )的导数为f ′(x )=[ax 2﹣(2a +1)x +2]e x =(x ﹣2)(ax ﹣1)e x , 若a =0则x <2时,f ′(x )>0,f (x )递增;x >2,f ′(x )<0,f (x )递减. x =2处f (x )取得极大值,不符题意;若a >0,且a =12,则f ′(x )=12(x ﹣2)2e x ≥0,f (x )递增,无极值;若a >12,则1a <2,f (x )在(1a ,2)递减;在(2,+∞),(﹣∞,1a )递增, 可得f (x )在x =2处取得极小值;若0<a <12,则1a >2,f (x )在(2,1a )递减;在(1a ,+∞),(﹣∞,2)递增, 可得f (x )在x =2处取得极大值,不符题意;若a<0,则1a <2,f(x)在(1a,2)递增;在(2,+∞),(﹣∞,1a)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(12,+∞).7.【2017年北京理科19】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,π2]上的最大值和最小值.【答案】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,π2],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,π2]递减,可得g(x)≤g(0)=0,则f(x)在[0,π2]递减,即有函数f(x)在区间[0,π2]上的最大值为f(0)=e0cos0﹣0=1;最小值为f(π2)=eπ2cosπ2−π2=−π2.8.【2016年北京理科18】设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e ﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.【答案】解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则{f(2)=2e a−2+2b =2e +2f′(2)=e a−2−2e a−2+b =e −1, 即a =2,b =e ; (Ⅱ)∵a =2,b =e ; ∴f (x )=xe 2﹣x +ex ,∴f ′(x )=e 2﹣x ﹣xe 2﹣x +e =(1﹣x )e 2﹣x +e =(1﹣x +e x ﹣1)e 2﹣x , ∵e 2﹣x >0, ∴1﹣x +e x﹣1与f ′(x )同号,令g (x )=1﹣x +e x ﹣1, 则g ′(x )=﹣1+e x ﹣1,由g ′(x )<0,得x <1,此时g (x )为减函数, 由g ′(x )>0,得x >1,此时g (x )为增函数, 则当x =1时,g (x )取得极小值也是最小值g (1)=1, 则g (x )≥g (1)=1>0,故f ′(x )>0,即f (x )的单调区间是(﹣∞,+∞),无递减区间. 9.【2015年北京理科18】已知函数f (x )=ln 1+x1−x , (Ⅰ)求曲线y =f (x )在点(0,f (0))处的切线方程; (Ⅱ)求证,当x ∈(0,1)时,f (x )>2(x +x 33);(Ⅲ)设实数k 使得f (x )>k(x +x 33)对x ∈(0,1)恒成立,求k 的最大值.【答案】解答:(1)因为f (x )=ln (1+x )﹣ln (1﹣x )所以f ′(x)=11+x +11−x,f′(0)=2 又因为f (0)=0,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =2x . (2)证明:令g (x )=f (x )﹣2(x +x 33),则g '(x )=f '(x )﹣2(1+x 2)=2x 41−x 2,因为g '(x )>0(0<x <1),所以g (x )在区间(0,1)上单调递增. 所以g (x )>g (0)=0,x ∈(0,1), 即当x ∈(0,1)时,f (x )>2(x +x 33). (3)由(2)知,当k ≤2时,f (x )>k(x +x 33)对x ∈(0,1)恒成立.当k >2时,令h (x )=f (x )−k(x +x 33),则h '(x )=f '(x )﹣k (1+x 2)=kx 4−(k−2)1−x 2,所以当0<x <√k−2k4时,h '(x )<0,因此h (x )在区间(0,√k−2k4)上单调递减.当0<x <√k−2k4时,h (x )<h (0)=0,即f (x )<k(x +x 33).所以当k >2时,f (x )>k(x +x 33)并非对x ∈(0,1)恒成立.综上所知,k 的最大值为2.10.【2013年北京理科18】设l 为曲线C :y =lnx x在点(1,0)处的切线.(Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方. 【答案】解:(Ⅰ)∵y =lnx x∴y ′=1−lnx x 2∴l 的斜率k =y ′|x =1=1 ∴l 的方程为y =x ﹣1证明:(Ⅱ)令f (x )=x (x ﹣1)﹣lnx ,(x >0) 曲线C 在直线l 的下方,即f (x )=x (x ﹣1)﹣lnx >0, 则f ′(x )=2x ﹣1−1x =(2x+1)(x−1)x∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,又f (1)=0 ∴x ∈(0,1)时,f (x )>0,即lnx x <x ﹣1 x ∈(1,+∞)时,f (x )>0,即lnx x<x ﹣1即除切点(1,0)之外,曲线C 在直线l 的下方11.【2012年北京理科18】已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a 、b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(﹣∞,﹣1)上的最大值. 【答案】解:(1)f (x )=ax 2+1(a >0),则f '(x )=2ax ,k 1=2a ,g (x )=x 3+bx ,则g ′(x )=3x 2+b ,k 2=3+b ,由(1,c )为公共切点,可得:2a =3+b ①又f (1)=a +1,g (1)=1+b ,∴a +1=1+b ,即a =b ,代入①式可得:{a =3b =3.(2)由题设a 2=4b ,设ℎ(x)=f(x)+g(x)=x 3+ax 2+14a 2x +1则ℎ′(x)=3x 2+2ax +14a 2,令h '(x )=0,解得:x 1=−a 2,x 2=−a6;∵a >0,∴−a 2<−a6, x (﹣∞,−a2)−a 2 (−a 2,−a 6) −a6(−a6,+∞) h ′(x ) + ﹣+ h (x )极大值极小值∴原函数在(﹣∞,−a 2)单调递增,在(−a 2,−a6)单调递减,在(−a 6,+∞)上单调递增①若−1≤−a2,即0<a ≤2时,h (x )在(﹣∞,﹣1]递增,无最大值; ②若−a2<−1<−a6,即2<a <6时,最大值为ℎ(−a2)=1;③若﹣1≥−a 6时,即a ≥6时,最大值为h (−a2)=1.综上所述:当a ∈(0,2]时,无最大值;当a ∈(2,+∞)时,最大值为ℎ(−a2)=1. 12.【2011年北京理科18】已知函数f(x)=(x −k)2e xk. (Ⅰ)求f (x )的单调区间;(Ⅱ)若对于任意的x ∈(0,+∞),都有f (x )≤1e ,求k 的取值范围.【答案】解:(Ⅰ)f ′(x)=2(x −k)e xk +1k(x −k)2e xk =1k(x 2−k 2)e xk ,令f ′(x )=0,得x =±k当k >0时,f ′(x )f (x )随x 的变化情况如下: x(﹣∞,﹣k )﹣k (﹣k ,k ) k (k ,+∞)f ′(x ) + 0﹣ 0 + f (x ) 递增4k 2e ﹣1 递减递增所以,f (x )的单调递增区间是(﹣∞,﹣k ),和(k ,+∞),单调递减区间是(﹣k ,k );当k <0时,f ′(x )f (x )随x 的变化情况如下: x(﹣∞,k )k (k ,﹣k ) ﹣k (﹣k ,+∞) f ′(x ) ﹣ 0 + 0﹣f (x ) 递减递增4k 2e ﹣1 递减所以,f (x )的单调递减区间是(﹣∞,k ),和(﹣k ,+∞),单调递增区间是(k ,﹣k ); (Ⅱ)当k >0时,有f (k +1)=ek+1k>1e ,不合题意,当k <0时,由(I )知f (x )在(0,+∞)上的最大值是f (﹣k )=4k 2e,∴任意的x ∈(0,+∞),f (x )≤1e ,⇔f (﹣k )=4k 2e≤1e,解得−12≤k <0,故对于任意的x ∈(0,+∞),都有f (x )≤1e ,k 的取值范围是−12≤k <0.1.若函数f(x)=x 2+ax +1x 在(12,+∞)是增函数,则a 的取值范围是()A .[−1,0]B .[−1,+∞)C .[0,3]D .[3,+∞)【答案】D 【解析】由条件知f ′(x)=2x +a −1x 2≥0在(12,+∞)上恒成立,即a ≥1x 2−2x 在(12,+∞)上恒成立. ∵函数y =1x 2−2x 在(12,+∞)上为减函数, ∴y max <1(12)2−2×12=3,∴.故选D .2.【2020届北京市西城区第四中学高三上学期期中】已知曲线y =a e x +xlnx 在点(1,ae)处的切线方程为y =2x +b ,则()A.a=e,b=−1B.a=e,b=1C.a=e−1,b=1D.a=e−1,b=−1【答案】D【解析】y′=ae x+lnx+1,k=y′|x=1=ae+1=2,∴a=e−1将(1,1)代入y=2x+b得2+b=1,b=−1,故选D.3.【北京市西城区第四中学2019-2020学年高三上学期10月月考】设函数f(x)=√3sinπxm.若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(−∞,−6)∪(6,∞)B.(−∞,−4)∪(4,∞)C.(−∞,−2)∪(2,∞)D.(−∞,−1)∪(1,∞)【答案】C【解析】由题意知:f(x)的极值为±√3,所以[f(x0)]2=3,因为f′(x0)=πm ⋅√3cosπx0m=0,所以πx0m =kπ+π2,k∈z,所以x0m=k+12,k∈z即|x0m|=|k+12|≥12,所以|x0|≥|m2|,即x02+[f(x0)]2≥m24+3,而已知x02+[f(x0)]2<m2,所以m2>m24+3,故3m24>3,解得m>2或m<−2,故选C.4.函数f(x)=x3−3x2+2在区间[-1,1]上的最大值是()A.4B.2C.0D.-2【答案】B【解析】令f′(x)=3x2−6x=0,解得x=0或x=2.f(0)=2,f(2)=−2,f(−1)=−2,f(1)=0,故函数的最大值为2,所以本小题选B.5.【北京市首都师范大学附属中学2019届高三高考模拟预测卷(二)】已知函数f(x)=13x3−4x+2e x−2e x,其中e是自然对数的底,若f(a−1)+f(2a2)≤0,则实数a的取值范围是()A.(−∞,−1]B.[12,+∞)C.(−1,12)D.[−1,12]【答案】D【解析】由f′(x)=x2−4+2e x+2e−x≥x2−4+2√4e x⋅e−x=x2≥0,知f(x)在R上单调递增,且f(−x)=−13x3+4x+2e−x−2e x=−f(x),即函数f(x)为奇函数,故f(a−1)+f(2a2)≤0⇔f(a−1)≤f(−2a2)⇔a−1≤−2a2⇔2a2+a−1≤0,解得−1≤a≤12.故选D.6.【2020届北京市昌平区新学道临川学校高三上学期第三次月考】已知函数f(x)=x2−2x+a(e x−1+ e−x+1)有唯一零点,则a=A.−12B.13C.12D.1【答案】C【解析】函数f(x)的零点满足x2−2x=−a(e x−1+e−x+1),设g(x)=e x−1+e−x+1,则g′(x)=e x−1−e−x+1=e x−1−1e x−1=e2(x−1)−1e x−1,当g′(x)=0时,x=1;当x<1时,g′(x)<0,函数g(x)单调递减;当x>1时,g′(x)>0,函数g(x)单调递增,当x=1时,函数g(x)取得最小值,为g(1)=2.设ℎ(x)=x2−2x,当x=1时,函数ℎ(x)取得最小值,为−1,若−a>0,函数ℎ(x)与函数−ag(x)没有交点;若−a<0,当−ag(1)=ℎ(1)时,函数ℎ(x)和−ag(x)有一个交点,即−a×2=−1,解得a=12.故选C.7.【2020届北京市朝阳区六校联考高三年级四月份测试】关于函数f(x)=(x2+ax−1)e x,有以下三个结论:①函数恒有两个零点,且两个零点之积为−1;②函数的极值点不可能是−1;③函数必有最小值.其中正确结论的个数有()A.0个B.1个C.2个D.3个【解析】由题意函数f(x)=(x 2+ax −1)e x 的零点即为函数y =x 2+ax −1的零点,令x 2+ax −1=0,则△=a 2+4>0,所以方程必有两个不等实根x 1,x 2,设x 1<x 2, 由韦达定理可得x 1x 2=−1,故①正确;f ′(x)=(2x +a)e x +(x 2+ax −1)e x =[x 2+(a +2)x +a −1]e x ,当x =−1时,f ′(x)=(1−a −2+a −1)e −1=−2e −1≠0,故−1不可能是函数f(x)的极值点,故②正确;令f ′(x)=0即x 2+(a +2)x +a −1=0,△=(a +2)2−4(a −1)=a 2+8>0, 设x 2+(a +2)x +a −1=0的两个实数根为x 3,x 4且x 3<x 4, 则当x ∈(−∞,x 3),x ∈(x 4,+∞)时,f ′(x)>0,函数f(x)单调递增, 当x ∈(x 3,x 4)时,f ′(x)<0,函数f(x)单调递减,所以f(x 4)为函数极小值; 由①知,当x ∈(−∞,x 1)时,函数f(x)>0,所以当x ∈(−∞,x 3)时,f(x)>0, 又f(0)=−e x <0,所以0∈(x 3,+∞),所以f(x 4)≤f(0)<0, 所以f(x 4)为函数的最小值,故③正确. 故选:D .8.【北京市第171中学2019-2020学年高三10月月考】已知函数f(x)=e 2x−3,g(x)=14+ln x2,若f(m )=g(n)成立,则n −m 的最小值为() A .12+ln2B .ln2C .12+2ln2D .2ln2【答案】A 【解析】设e 2m−3=14+ln n2=k(k >0),则m =32+lnk 2,n =2ek−14,令ℎ(k)=n −m =2e k−14−lnk 2−32,所以ℎ′(k)=2e k−14−12k ,又ℎ′(k)=2e k−14−12k在(0,+∞)增函数,且ℎ′(14)=0,当k ∈(0,14)时,ℎ′(k)<0,当k ∈(14,+∞)时,ℎ′(k)>0, 所以ℎ(k)=2e k−14−lnk 2−32在(0,14)上递减,在(14,+∞)上递增.所以ℎ(k)min =ℎ(14)=12+ln2,即n −m 的最小值为12+ln2.9.【北京市中国人民大学附属中学2019届高三上学期月考(二)】设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(−1)=0,当x>0时,xf′(x)−f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(−∞,−1)∪(0,1)B.(−1,0)∪(1,+∞)C.(−∞,−1)∪(−1,0)D.(0,1)∪(1,+∞)【答案】A【解析】构造新函数g(x)=f(x)x ,g′(x)=xf′(x)−f(x)x2,当x>0时g′(x)<0.所以在(0,+∞)上g(x)=f(x)x单减,又f(1)=0,即g(1)=0.所以g(x)=f(x)x>0可得0<x<1,此时f(x)>0,又f(x)为奇函数,所以f(x)>0在(−∞,0)∪(0,+∞)上的解集为:(−∞,−1)∪(0,1).故选A.10.【2020年1月中学生标准学术能力诊断性测试诊断性测试】已知不等式x+alnx+1e x≥x a对x∈(1,+∞)恒成立,则实数a的最小值为()A.−√e B.−e2C.−e D.−2e【答案】C【解析】不等式x+alnx+1e x≥x a对x∈(1,+∞)恒成立可变形为x+1e x≥x a−alnx,即e−x−lne−x≥x a−lnx a对x∈(1,+∞)恒成立设g(x)=x−lnx则g′(x)=1−1x =x−1x当x∈(1,+∞)时,g′(x)>0,即g(x)=x−lnx在x∈(1,+∞)时单调递增当x∈(0,1)时,g′(x)<0,即g(x)=x−lnx在x∈(0,1)时单调递减因而g(e−x)≥g(x a)在x∈(1,+∞)上恒成立即可当x∈(1,+∞)时,e−x∈(0,1e)而当a<0时(因四个选项都小于0,所以只需讨论a<0的情况)x a∈(0,1)因为g(x)=x−lnx在x∈(0,1)时单调递减,若g(e−x)≥g(x a)只需e−x≤x a不等式两边同取自然底数的对数,可得−x≤alnx当x∈(1,+∞)时,0<lnx化简不等式可得−xlnx≤a只需(−xlnx)max≤a令ℎ(x)=−xlnx,x∈(1,+∞)则ℎ′(x)=1−lnx(lnx)2,令ℎ′(x)=0解得x=e当x∈(1,e)时,ℎ′(x)>0,则ℎ(x)=−xlnx在(1,e)内单调递增当x∈(e,+∞)时,ℎ′(x)<0,则ℎ(x)=−xlnx在(e,+∞)内单调递减所以ℎ(x)=−xlnx 在x=e处取得最大值,ℎ(x)max=−elne=−e故−e≤a所以实数a的最小值为−e故选:C11.【北京市清华大学附属中学2019届高三下学期第三次模拟】直线y=x+1是曲线f(x)=x+1x−alnx(a ∈R)的切线,则a的值是______.【答案】−1【解析】设切点的横坐标为x0,f'(x)=1−1x2−ax=x2−ax−1x2=1⇒x0=−1a⇒−a=1x0,则有:f(x0)=x0+1x−alnx0=x0+1⇒lnx0−x0+1=0,令ℎ(x)=lnx−x+1⇒ℎ'(x)=1x−1=0⇒x=1,则ℎ(x)在(0,1)上单调递增,在(1,+∞)上单调递减,又因为ℎ(1)=0,所以x0=1⇒a=−1;故答案为−1.12.已知f(x)=e x ·sinx ,则f ′(0)的值为___. 【答案】1 【解析】因为f ′(x)=e x (sinx +cosx),所以f ′(0)=1.13.【北京市中国人民大学附属中学2019届高三上学期月考(二)】已知函数f(x)=ax 3+x +1的图像在点(1,f(1))的处的切线过点(2,7),则a =. 【答案】1 【解析】f′(x)=3ax 2+1⇒f′(1)=3a +1,f(1)=a +2⇒l:y −(a +2)=(3a +1)(x −1)⇒7−(a +2) =(3a +1)(2−1)⇒a =1.14.函数f(x)=xlnx 的单调减区间是______. 【答案】(0,1e ) 【解析】函数的定义域为x >0,∵y′=lnx +1,令lnx +1<0,得0<x <1e ,∴函数y =xlnx 的单调递减区间是(0,1e ),故答案为(0,1e). 15.【北京市丰台区2019届高三年级第二学期综合练习(二)】已知函数f(x)=x +ax (x >0)的单调递减区间为(0,2),单调递增区间为(2,+∞),那么a =____. 【答案】4. 【解析】依题意可知x =2是函数f (x )的极小值点, 又f′(x)=1−ax 2, 所以,f′(2)=1−a 4=0, 解得:a =4,经检验成立 故答案为:416.对于函数y =f(x),若存在区间[a,b],当x ∈[a,b]时的值域为[ka,kb](k >0),则称y =f(x)为k 倍值函数.若f(x)=lnx +x 是k 倍值函数,则实数k 的取值范围是________.【答案】(1,1+1e)【解析】由题意得lnx+x=kx有两个不同的解,k=lnxx +1,则k′=1−lnxx=0⇒x=e,因此当0<x<e时,k∈(−∞,1+1e ),当x>e时,k∈(1,1+1e),从而要使lnx+x=kx有两个不同的解,需k∈(1,1+1e)17.【北京市东城区第五中学2019-2020学年高三上学期12月月考】函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是k A,k B,规定φ(A,B)=|k A−k B||AB|叫曲线y=f(x)在点A与点B之间的“弯曲度”,给出以下命题:(1)函数y=x3−x2+1图象上两点A、B的横坐标分别为1,2,则φ(A,B)>√3;(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;(3)设点A、B是抛物线,y=x2+1上不同的两点,则φ(A,B)⩽2;(4)设曲线y=e x上不同两点A(x1,y1),B(x2,y2),且x1−x2=1,若t·φ(A,B)<1恒成立,则实数t 的取值范围是(−∞,1);以上正确命题的序号为__(写出所有正确的)【答案】(2)(3)【解析】对于(1),由y=x3−x2+1,得y′=3x2−2x,则k A=y′|x=1=1,k B=y′|x=2=8,y1=1,y2=5,则|AB|=√(2−1)2+(5−1)2=√17,φ(A,B)=|k A−k B||AB|=√17=√17<√3,(1)错误;对于(2),常数函数y=1满足图象上任意两点之间的“弯曲度”为常数,(2)正确;对于(3),设A(x1,y1),B(x2,y2),y′=2x,则k A−k B=2x1−2x2,|AB|=√(x1−x2)2+(x12−x22)2=√(x1−x2)2[1+(x1+x2)2] =|x1−x2|√1+(x1+x2)2.∴φ(A,B)=A B12122=1212122⩽21=2,(3)正确;对于(4),由y=e x,得y′=e x,φ(A,B)=x1x2√(x1−x2)2+(e x−e x)2=x1x2√1+(e x−e x)2.t·φ(A,B)<1恒成立,即t|e x1−e x2|<√1+(e x1−e x2)2恒成立,t=1时该式成立,∴(4)错误.故答案为:(2)(3).18.【北京市平谷区2020届高三第二学期阶段性测试(二模)】已知函数f(x)=1x+cosx,给出下列结论:①f(x)在(0,π]上有最小值,无最大值;②设F(x)=f(x)−f(−x),则F(x)为偶函数;③f(x)在(0,2π)上有两个零点其中正确结论的序号为________.(写出所有正确结论的序号)【答案】①③【解析】①,由于x∈(0,π],所以f′(x)=−1x2−sinx<0,所以f(x)在(0,π]上递减,所以f(x)在(0,π]上有最小值,无最大值,故①正确.②,依题意F(x)=f(x)−f(−x)=1x +cosx−[−1x−cos(−x)]=2x,由于F(−x)≠F(x),所以F(x)不是偶函数,故②错误.③,令f(x)=0得cosx=−1x ,画出y=cosx和y=−1x在区间(0,2π)上的图像如下图所示,由图可知y=cosx和y=−1x在区间(0,2π)上的图像有两个交点,则f(x)在(0,2π)上有两个零点,故③正确.故答案为:①③19.【北京市通州区2020届高考一模】给出下列四个函数,①y=x2+1;②y=|x+1|+|x+2|;③y= 2x+1;④y=x2+cosx,其中值域为[1,+∞)的函数的序号是______.【答案】①②④【解析】①∵x2≥0,∴x2+1≥1,故值域为[1,+∞),符合题意;②y=|x+1|+|x+2|≥|(x+1)−(x+2)|=1,故值域为[1,+∞),符合题意;③∵2x>0,∴2x+1>1,故值域为(1,+∞),不合题意;④函数f(x)=x2+cosx为偶函数,且f′(x)=2x−sinx,f″(x)=2−cosx>0,故f′(x)在R上单调递增,又f′(0)=0,故当x∈(0,+∞)时,f(x)单调递增,则当x∈(−∞,0)时,f(x)单调递减,又f(0)=1,故其值域为[1,+∞),符合题意.故答案为:①②④.20.【2019届北京市中国人民人大附属中学高三(5月)模拟】已知函数f(x)的导函数为f′(x),且对任意的实数x都有f′(x)=e−x(2x+3)−f(x)(e是自然对数的底数),且f(0)=1,若关于x的不等式f(x)−m <0的解集中恰有两个整数,则实数m的取值范围是________.【答案】(−e,0]【解析】∵f′(x)=e−x(2x+3)−f(x),∴f(x)+f′(x)=e−x(2x+3),即[f(x)+f′(x)]e x=(2x+3),即[f(x)e x]′=(2x+3),即f(x)e x=x2+3x+c,,∵f(0)=1,∴f(0)=0+0+c=1,即c=1,即f(x)=x2+3x+ce x,则f′(x)=e−x(2x+3)−f(x)=−e−x(x2+x−2),则f(x)=x2+3x+1e x由f′(x)>0得−2<x<1,此时函数y=f(x)为增函数,由f′(x)<0得x>1或x<−2,此时函数y=f(x)为减函数,即当x=−2时,函数y=f(x)取得极小值f(−2)=−e2,∵f(−1)=−e,f(−3)=e3,且当x>1时,f(x)>0,由图象知,要使不等式f(x)<m的解集中恰有两个整数,则满足f(−1)<m≤0,即−e<m≤0,即实数m的取值范围是(−e,0],故答案为:(−e,0].. 21.【北京市人大附中2020届高三(6月份)高考数学考前热身】已知函数f(x)=1−xe x (1)求函数f(x)的单调区间;(2)若对任意x1,x2∈[a,+∞),都有f(x1)−f(x2)≥−1成立,求实数a的最小值.e2【答案】(1)函数f(x)的单增区间为(2,+∞),单减区间为(−∞,2)(2)a的最小值为1【解析】=0解得x=2,解:(1)由f′(x)=x−2e x则f′(x)及f(x)的情况如下:所以函数f(x)的单增区间为(2,+∞),单减区间为(−∞,2);(2)法一:当x>1时,f(x)=1−xe x<0.当x<1时,f(x)=1−xe x>0.若a≤1,由(1)可知f(x)的最小值为f(2),f(x)的最大值为f(a),所以“对任意x1,x2∈[a,+∞),有f(x1)−f(x2)≥−1e2恒成立”等价于“f(2)−f(a)≥−1e2”,即−1e2−1−ae a≥−1e2,解得a≥1.所以a的最小值为1.法二:当x>1时,f(x)=1−xe x<0.当x<1时,f(x)=1−xe>0.且由(1)可知,f(x)的最小值为f(2)=−1e2, 若2∈[a,+∞),即a≤2时,令x1=2,则任取x2∈[a,+∞),有f(x1)−f(x2)=f(2)−f(x2)=−1e2−f(x2)≥−1e2,所以f(x2)≤0对x2∈[a,+∞)成立,所以必有x2≥1成立,所以[a,+∞)⊆[1,+∞),即a≥1.而当a=1时,∀x1,x2∈[1,+∞),f(x1)≤0,f(x2)≤0,所以f(x1)−f(x2)≥f(x1)−0≥f(2)=−1e2,即a=1满足要求,而当a≥2时,求出的a的值,显然大于1,综上,a的最小值为1.22.【北京市大兴区2019届高三4月一模】已知函数f(x)=a e x图象在x=0处的切线与函数g(x)=lnx图象在x=1处的切线互相平行.(Ⅰ)求a的值;(Ⅱ)设ℎ(x)=f(x)−g(x),求证:ℎ(x)>2. 【答案】(Ⅰ)a =1;(Ⅱ)详见解析. 【解析】(Ⅰ)由f(x)=a e x ,得f ′(x)=a e x ,所以f ′(0)=a . 由g(x)=ln x ,得g ′(x)=1x ,所以g ′(1)=1. 由已知f ′(0)=g ′(1),得a =1. 经检验,a =1符合题意.(Ⅱ)ℎ(x)=f(x)−g(x)=e x −ln x ,x >0, ℎ′(x)=e x −1x ,设φ(x)=e x −1x,则φ′(x)=e x +1x 2>0,所以φ(x)在区间(0,+∞)单调递增, 又φ(1)=e −1>0,φ(12)=√e −2<0, 所以φ(x)在区间(0,+∞)存在唯一零点, 设零点为x 0,则x 0∈(12,1),且e x 0=1x 0.当x ∈(0,x 0)时,ℎ′(x)<0;当x ∈(x 0,+∞),ℎ′(x)>0. 所以,函数ℎ(x)在(0,x 0)递减,在(x 0,+∞)递增, ℎ(x)≥ℎ(x 0)=e x 0−ln x 0=1x 0−ln x 0,由e x 0=1x 0,得ln x 0=−x 0 所以ℎ(x 0)=1x 0+x 0≥2,由于x 0∈(12,1),ℎ(x 0)>2 从而ℎ(x)>2,命题得证.23.【北京五中2020届高三(4月份)高考数学模拟】设函数f (x )=me x ﹣x 2+3,其中m ∈R .(1)如果f (x )同时满足下面三个条件中的两个:①f (x )是偶函数;②m =1;③f (x )在(0,1)单调递减.指出这两个条件,并求函数h (x )=xf (x )的极值; (2)若函数f (x )在区间[﹣2,4]上有三个零点,求m 的取值范围. 【答案】(1)答案见解析;(2)[13e 4,6e 3) 【解析】(1)若满足条件①f(x)是偶函数,则f(−x)=f(x),且函数f(x)的定义域为R,∴me−x−x2+3=me x−x2+3,∴me−x=me x对x∈R恒成立,∴m=0,此时函数f(x)=−x2+3,在(0,1)单调递减,满足条件③f(x)在(0,1)单调递减;若f(x)不满足①,则m=1,f(x)=e x−x2+3,f′(x)=e x−2x,f′(12)=√e−1,所以f(x)在(0,1)不可能单调递减,即不满足③,∴f(x)同时满足条件:①f(x)是偶函数;③f(x)在(0,1)单调递减,此时ℎ(x)=−x3+3x,则ℎ′(x)=−3x2+3=3(1+x)(1−x),∴当x∈(−∞,−1)时,ℎ′(x)<0,函数ℎ(x)单调递减;当x∈(−1,1)时,ℎ′(x)>0,函数ℎ(x)单调递增;当x∈(1,+∞)时,ℎ′(x)<0,函数ℎ(x)单调递减,∴x=1时,函数ℎ(x)取到极大值,极大值为ℎ(1)=2,x=−1时,函数ℎ(x)取到极小值,极小值为ℎ(−1)=−2;(2)令f(x)=me x−x2+3=0,则有m=x2−3e x,函数f(x)在区间[−2,4]上有三个零点,等价于直线y=m与曲线g(x)=x2−3e在区间[−2,4]上有三个交点,g′(x)=2x·e x−(x2−3)e x(e x)2=2x−x2+3e x=−(x−3)(x+1)e x,x∈[−2,4],令g′(x)=0,则x=3或x=−1,令g′(x)<0,则−1<x<3,令g′(x)>0,则−2⩽x<−1或3<x⩽4,∴函数g(x)在区间[−2,−1)上单调递增;在(−1,3)上单调递减,在(3,4]上单调递增,又g(−2)=e2,g(−1)=−2e,g(3)=6e3,g(4)=13e4,画出函数g(x)在[−2,4]上的大致图象,如图所示:,由图可知,当13e 4⩽m <6e 3时, 直线y =m 与曲线g(x)=x 2−3e x在区间[−2,4]上有三个交点,即函数f(x)在区间[−2,4]上有三个零点, ∴m 的取值范围为:[13e 4,6e 3).24.【2020届北京市平谷区高三3月质量监控(一模)】已知函数f(x)=(x 2+ax−a)e x,其中a ∈R .(1)当a =0时,求f(x)在(1,f(1))的切线方程; (2)求证:f(x)的极大值恒大于0. 【答案】(1)y =1e x (2)证明见解析 【解析】 (1)f′(x)=−x 2−(a−2)x+2ae x =−(x+a)(x−2)e x ,当a =0时,f′(1)=1e ,f(1)=1e , 则f(x)在(1,f(1))的切线方程为y =1e x ; (2)证明:令f′(x)=0,解得x =2或x =−a ,①当a =−2时,f′(x)≤0恒成立,此时函数f(x)在R 上单调递减, ∴函数f(x)无极值;②当a >−2时,令f′(x)>0,解得−a <x <2,令f′(x)<0,解得x <−a 或x >2, ∴函数f(x)在(−a,2)上单调递增,在(−∞,−a),(2,+∞)上单调递减, ∴f(x)极大值=f(2)=a+4e 2>0;③当a <−2时,令f′(x)>0,解得2<x <−a ,令f′(x)<0,解得x <2或x >−a , ∴函数f(x)在(2,−a)上单调递增,在(−∞,2),(−a,+∞)上单调递减,∴f(x)极大值=f(−a)=−a e a>0,综上,函数f(x)的极大值恒大于0.25.【2020届北京市海淀区高三一模】已知函数f(x)=e x +ax . (I )当a =-1时,①求曲线y =f (x )在点(0,f (0))处的切线方程; ②求函数f (x )的最小值;(II )求证:当a ∈(−2,0)时,曲线y =f(x)与y =1−lnx 有且只有一个交点. 【答案】(1)切线方程y =1;f(x)min =1;(2)证明见解析 【解析】 (I)当a =−1时,①函数f(x)=e x −x ,∴f(0)=e 0=1, f ′(x)=e x −1,即f ′(0)=e 0−1=0,∴曲线y =f(x)在点(0,f(0))处的切线方程为y =1.②令f ′(x)=e x −1>0,得x >0,令f ′(x)=e x −1<0,得x <0, 所以f(x)在(0,+∞)上单增,在(−∞,0)单减, ∴函数f(x)的最小值为f(x)min =f(0)=1.(II)当a ∈(−2,0)时,曲线y =f(x)与y =1−lnx 有且只有一个交点. 等价于g(x)=e x +ax +lnx −1(x >0)有且只有一个零点. g ′(x)=e x +1x +a(x >0),当x ∈(0,1)时,e x >1,1x >1,∵a ∈(−2,0),则g ′(x)=e x +1x +a >0, 当x ∈[1,+∞)时,e x >e >2,1x >0, ∵a ∈(−2,0),则g ′(x)=e x +1x +a >0, ∴g(x)在(0,+∞)上单增,又∵g(1e )=e 1e+ae −2<e 12−2<0,g(e)=e e +ae >e 2−2e >0,由零点存在性定理得g(x)有唯一零点,即曲线y =f(x)与y =1−lnx 有且只有一个交点.26.【北京市西城区第四中学2019-2020学年高三上学期10月月考】已知函数f(x)=x−alnx(a∈R).(Ⅰ)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(Ⅱ)求函数f(x)的极值.【答案】(1)x+y-2=0;(2)当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-a l n a无极大【解析】解:函数f(x)的定义域为(0,+∞),f′(x)=1-ax.(1)当a=2时,f(x)=x-2lnx,f′(x)=1-2x(x>0),因而f(1)=1,f′(1)=-1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由f′(x)=1-ax =x−ax,x>0知:①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a,又当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0,从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-alna,无极大值.综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-alna,无极大值.27.【北京市海淀区2019届高三年级第二学期期末练习(二模)】已知函数f(x)=e ax(x2−a+2a),,其中a ≠0.(Ⅰ)求曲线y=f(x)在点(1,f(1))处切线的倾斜角;(Ⅱ)若函数f(x)的极小值小于0,求实数a的取值范围.【答案】(Ⅰ)倾斜角为0(Ⅱ)(−∞,−2)∪(0,+∞)【解析】(Ⅰ)因为f(x)=e a x(x2−a+2a),所以f′(x)=e a x(ax2+2x−(a+2)),所以f′(1)=0所以曲线y=f(x)在点(1,f(1))处切线的倾斜角为0。

2009年北京高考数学试题含答案(理)

2009年北京高考数学试题含答案(理)

pp(8)若Fra bibliotek函数 y=tan(ωx+ )(ω>0) 的图像向右平移 个单位长度后,与函数
4
6
p y=tan(ωx+ ) 的图像重合,则 ω 的最小值为
4
1
1
1
1
A. B. C. D.
6
4
3
2
(9)已知 y=k(x+ 2)(k >0) 与抛物线 C : y2 =8x 相交于 A、B 两点,F 为 C 的焦点。︳FA
条形码。 网
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮
擦擦干净后,再选涂其他答案标号。在试题卷上作答无效。
参考公式:
如果事件 A,B 互斥,那么
球的表面积公式
P( A B) P( A) P(B)
S 4πR2
如果事件 A,B 相互独立,那么 P( AgB) P( A)gP(B)
uuur uuur 交 C 于 A、B 两点。若 AF =4FB ,则 C 的离心率为
9
6
789
A. B. C. D.
5
555
(12)12.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。
现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到 △ 右侧的平面图形,则标“△”的面的方位是
(Ⅲ) 记 表示抽取的 3 名工人中男工人数,求 的分布及数学期望。
9
(21).(本小题满分 12 分)
已知椭圆
C
:
x2 a2
+
y2 b2
=1(a
>b
>0)
的离心率为
3 ,过右焦点 F 的直线与 C 相交与 A 、

(北京卷)十年真题(-)高考数学真题分类汇编 专题04 导数及其应用 文(含解析)-人教版高三全册数

(北京卷)十年真题(-)高考数学真题分类汇编 专题04 导数及其应用 文(含解析)-人教版高三全册数

专题04导数及其应用历年考题细目表题型年份考点试题位置解答题2019 导数综合问题2019年文科20解答题2018 导数综合问题2018年文科19解答题2017 导数综合问题2017年文科20解答题2016 导数综合问题2016年文科20解答题2015 导数综合问题2015年文科19解答题2014 导数综合问题2014年文科20解答题2012 导数综合问题2012年文科18解答题2011 导数综合问题2011年文科18解答题2010 导数综合问题2010年文科18历年高考真题汇编1.【2019年文科20】已知函数f(x)x3﹣x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[﹣2,4]时,求证:x﹣6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)﹣(x+a)|(a∈R),记F(x)在区间[﹣2,4]上的最大值为M(a).当M(a)最小时,求a的值.【解答】解:(Ⅰ)f′(x),由f′(x)=1得x(x)=0,得.又f(0)=0,f(),∴y=x和,即y=x和y=x;(Ⅱ)证明:欲证x﹣6≤f(x)≤x,只需证﹣6≤f(x)﹣x≤0,令g(x)=f(x)﹣x,x∈[﹣2,4],则g′(x),可知g′(x)在[﹣2,0]为正,在(0,)为负,在[]为正,∴g(x)在[﹣2,0]递增,在[0,]递减,在[]递增,又g(﹣2)=﹣6,g(0)=0,g()6,g(4)=0,∴﹣6≤g(x)≤0,∴x﹣6≤f(x)≤x;(Ⅲ)由(Ⅱ)可得,F(x)=|f(x)﹣(x+a)|=|f(x)﹣x﹣a|=|g(x)﹣a|∵在[﹣2,4]上,﹣6≤g(x)≤0,令t=g(x),h(t)=|t﹣a|,则问题转化为当t∈[﹣6,0]时,h(t)的最大值M(a)的问题了,①当a≤﹣3时,M(a)=h(0)=|a|=﹣a,此时﹣a≥3,当a=﹣3时,M(a)取得最小值3;②当a≥﹣3时,M(a)=h(﹣6)=|﹣6﹣a|=|6+a|,∵6+a≥3,∴M(a)=6+a,也是a=﹣3时,M(a)最小为3.综上,当M(a)取最小值时a的值为﹣3.2.【2018年文科19】设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值X围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的X围是(1,+∞).3.【2017年文科20】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()cos.4.【2016年文科20】设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值X围;(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.【解答】解:(1)函数f(x)=x3+ax2+bx+c的导数为f′(x)=3x2+2ax+b,可得y=f(x)在点(0,f(0))处的切线斜率为k=f′(0)=b,切点为(0,c),可得切线的方程为y=bx+c;(2)设a=b=4,即有f(x)=x3+4x2+4x+c,由f(x)=0,可得﹣c=x3+4x2+4x,由g(x)=x3+4x2+4x的导数g′(x)=3x2+8x+4=(x+2)(3x+2),当x或x<﹣2时,g′(x)>0,g(x)递增;当﹣2<x时,g′(x)<0,g(x)递减.即有g(x)在x=﹣2处取得极大值,且为0;g(x)在x处取得极小值,且为.由函数f(x)有三个不同零点,可得c<0,解得0<c,则c的取值X围是(0,);(3)证明:若f(x)有三个不同零点,令f(x)=0,可得f(x)的图象与x轴有三个不同的交点.即有f(x)有3个单调区间,即为导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,可得△>0,即4a2﹣12b>0,即为a2﹣3b>0;若a2﹣3b>0,即有导数f′(x)=3x2+2ax+b的图象与x轴有两个交点,当c=0,a=b=4时,满足a2﹣3b>0,即有f(x)=x(x+2)2,图象与x轴交于(0,0),(﹣2,0),则f(x)的零点为2个.故a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.5.【2015年文科19】设函数f(x)klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.【解答】解:(1)由f(x)f'(x)=x由f'(x)=0解得xf(x)与f'(x)在区间(0,+∞)上的情况如下:X(0,)()f'(x)﹣ 0 +f(x)↓↑所以,f(x)的单调递增区间为(),单调递减区间为(0,);f(x)在x处的极小值为f(),无极大值.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f().因为f(x)存在零点,所以,从而k≥e当k=e时,f(x)在区间(1,)上单调递减,且f()=0所以x是f(x)在区间(1,)上唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且,所以f(x)在区间(1,)上仅有一个零点.综上所述,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.6.【2014年文科20】已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值X围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,令f′(x)=0得,x或x,∵f(﹣2)=﹣10,f(),f(),f(1)=﹣1,∴f(x)在区间[﹣2,1]上的最大值为.(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=23x0,且切线斜率为k=63,∴切线方程为y﹣y0=(63)(x﹣x0),∴t﹣y0=(63)(1﹣x0),即46t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),∴g(x)与g′(x)变化情况如下:x(﹣∞,0) 0 (0,1) 1 (1,+∞)g′(x)+ 0 ﹣ 0 +g(x)↗t+3 ↘t+1 ↗∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤﹣3时,g(x)在区间(﹣∞,1]和(1,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(1)=t+1≥0,即t≥﹣1时,g(x)在区间(﹣∞,0]和(0,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(0)>0且g(1)<0,即﹣3<t<﹣1时,∵g(﹣1)=t﹣7<0,g(2)=t+11>0,∴g(x)分别在区间[﹣1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(﹣∞,0)和[1,+∞)上单调,故g(x)分别在区间(﹣∞,0)和[1,+∞)上恰有1个零点.综上所述,当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值X围是(﹣3,﹣1).(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.7.【2012年文科18】已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值X围.【解答】解:(1)f(x)=ax2+1(a>0),则f′(x)=2ax,k1=2a,g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b,由(1,c)为公共切点,可得:2a=3+b①又f(1)=a+1,g(1)=1+b,∴a+1=1+b,即a=b,代入①式,可得:a=3,b=3.(2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x3+3x2﹣9x+1则h′(x)=3x2+6x﹣9,令h'(x)=0,解得:x1=﹣3,x2=1;∴k≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k,2]上的最大值为h(﹣3)=28﹣3<k<2时,函数h(x)在区间[k,2]上的最大值小于28所以k的取值X围是(﹣∞,﹣3]8.【2011年文科18】已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x(﹣∞,k﹣1)k﹣1 (k﹣1,+∞)f′(x)﹣0 +f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k ≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min.9.【2010年文科18】设定函数f(x)x3+bx2+cx+d(a>0),且方程f′(x)﹣9x=0的两个根分别为1,4.(Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(Ⅱ)若f(x)在(﹣∞,+∞)无极值点,求a的取值X围.【解答】解:由得f′(x)=ax2+2bx+c因为f′(x)﹣9x=ax2+2bx+c﹣9x=0的两个根分别为1,4,所以(*)(Ⅰ)当a=3时,又由(*)式得解得b=﹣3,c=12又因为曲线y=f(x)过原点,所以d=0,故f(x)=x3﹣3x2+12x.(Ⅱ)由于a>0,所以“在(﹣∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(﹣∞,+∞)内恒成立”.由(*)式得2b =9﹣5a ,c =4a . 又△=(2b )2﹣4ac =9(a ﹣1)(a ﹣9)解得a ∈[1,9]即a 的取值X 围[1,9] 考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题.历年考题主要以解答题题型出现,重点考查的知识点为:导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,预测明年本考点题目会比较稳定.备考方向以知识点导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题为重点较佳.最新高考模拟试题1.已知函数,若有3个零点,则k 的取值X 围为( )A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e ) 【答案】C 【解析】由题意,函数,要使得函数在R 上有3个零点,当0x >时,令,可得2ln xk x =, 要使得()0F x =有两个实数解,即y k =和()2ln xg x x=有两个交点,又由,令,可得x e =,当(0,)x e ∈时,()0g x '>,则()g x 单调递增; 当时,()0g x '<,则()g x 单调递减,所以当x e =时,,若直线y k =和()2ln x g x x=有两个交点,则1(0,)2k e ∈, 当0x <时,y k =和()1g x x=有一个交点,则0k >,综上可得,实数k 的取值X 围是1(0,)2e,故选C.2.已知,,则下列不等式一定成立的是( )A .2παβ+<B .2παβ+=C .αβ<D .αβ>【答案】C 【解析】由题意,,,设,,设,,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递减,且,()'0f x ∴<,所以()sin x f x x =在0,2π⎛⎫⎪⎝⎭递减,αβ∴<,故选C.3.已知函数(a 为大于1的整数),若()y f x =与的值域相同,则a 的最小值是()(参考数据:,,) A .5 B .6C .7D .8【答案】A 【解析】,当x a >时,'()0f x <,函数()f x 单调递减,当0x a <<时,'()0f x >,函数()f x 单调递增,故,又当,所以函数()f x 的值域为,令因此()t a 是单调递增函数,因此当2,a a Z ≥∈时, ,令由上可知:,,由上可知函数(n)f 在0x a <<时,单调递增,在x a >时,单调递减,要想的值域为,只需,即,设,2,a a Z ≥∈,,所以当3,a a Z ≥∈时,函数()g a 单调递增,,,所以a 的最小值是5,故本题选A.4.已知实数a ,b ,c ,d 满足,则的最小值为( )A .8B .4C .2D 2【答案】D 【解析】,∴可以看成()ln f x x =和()1g x x =+之间的最小值'1()f x x= ∴当时,即点()1,0到直线()1g x x =+的距离最小∴5.若函数在区间()1,+∞上存在零点,则实数a 的取值X 围为( )A .10,2⎛⎫ ⎪⎝⎭B .1,2e ⎛⎫⎪⎝⎭C .()0,∞+D .1,2⎛⎫+∞⎪⎝⎭【答案】D 【解析】 因为函数,所以令,因为,当(1,)x ∈+∞时,,所以()0g x '>所以()g x 在(1,)+∞上为增函数,则,当120a -≥时,()0g x >,所以()0f x '>,所以()f x 在(1,)+∞上为增函数, 则,所以()f x 在(1,)+∞上没有零点.当120a -<时,即12a >,因为()g x 在(1,)+∞上为增函数,则存在唯一的0(1,)x ∈+∞,使得0()0g x =,且当0(1,)x x ∈时,()0g x <,当0(,)x x ∈+∞时,()0g x >;所以当0(1,)x x ∈时,()0f x '<,()f x 为减函数,当0(,)x x ∈+∞时,()0f x '>,()f x 为增函数,当0x x =时,,因为,当x 趋于+∞时,()f x 趋于+∞,所以在0(,)x x ∈+∞内,()f x 一定存在一个零点. 所以1(,)2a ∈+∞, 故答案选D.6.已知函数,若对任意(0,)x ∈+∞,都有成立,则实数a 的取值X 围是( )A .3,2e ⎛⎤-∞- ⎥⎝⎦B .,2eC .3,2e D .2,e【答案】D 【解析】 令,则,因为对任意(0,)x ∈+∞,都有成立,所以在(0,)x ∈+∞上恒成立; 即在(0,)x ∈+∞上恒成立;即在(0,)x ∈+∞上恒成立;令,(0,)x ∈+∞,则,由()0h x '=得,解得1x =-(舍)或12x =,所以,当102x <<时,,单调递减;当12x >时,,单调递增;所以,因为在(0,)x ∈+∞上恒成立,所以只需24a e -≤,解得2a e ≥-. 故选D7.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有,则不等式的解集为( ) A .B .C .(),2018-∞-D .()2016,0-【答案】A 【解析】 设, 因为()f x 为R 上奇函数, 所以,即()g x 为R 上奇函数 对()g x 求导,得, 而当0x >时,有故0x >时,()0g x '>,即()g x 单调递增, 所以()g x 在R 上单调递增 不等式,即所以,解得2016x <-故选A 项.8.已知函数,则使不等式(1)0f x ->成立的x 的最小整数为( ) A .-3 B .-2C .-1D .0【答案】D 【解析】根据题意,函数,其导数,0x ≠时,()f x '可以看成是1为首项,2x -为公比的等比数列,则有,函数()f x 在R 上为增函数, 又由, ,则函数()f x 在(2,1)--上存在唯一的零点,设其零点为t ,,又由21t -<<-,则,故不等式(1)0f x ->成立的x 的最小整数为0;故选:D .9.直线y ax =是曲线1ln y x =+的切线,则实数a =____. 【答案】1 【解析】解:∵1ln y x =+,∴1y x'=设切点为(,1ln )m m +,得切线的斜率为1m, 所以曲线在点(),1ln m m +处的切线方程为:.即:它过原点,∴ln 0m -=,∴1m =, ∴11a m==. 故答案为:1. 10.函数与的图象上存在关于x 轴的对称点,则实数a 的取值X 围为_________. 【答案】1a 【解析】关于x 轴对称的函数为,因为函数与的图象上存在关于x 轴的对称点, 所以与的图象有交点,方程有解,即1x ae x =+有解,0a =时符合题意, 0a ≠时转化为有解, 即的图象有交点,是过定点()1,0-的直线,其斜率为1a, 设相切时,切点的坐标为(),mm e,则111m m e m ae a ⎧=⎪⎪+⎨⎪=⎪⎩,解得1a =,切线斜率为11a =,由图可知,当11a≥,即1a ≤且0a ≠时,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于x 轴的对称点,综上可得,实数a 的取值X 围为1a ≤,故答案为1a ≤. 11.已知函数,若存在实数,()a b a b <使得,则2+a b 的最大值为________.【答案】32ln 27【解析】 作出函数图像如下:由题意,令,a b 为方程()f x m =的两个根,由图像易得01m <<; 由1xe m -=得1x e m =±,解得或,因为a b <,所以,,因此,令,01m <<, 则,因为01m <<,所以由()0g m '>得103m <<;由()0g m '<得113m <<,即函数()g m 在10,3⎛⎫ ⎪⎝⎭上单调递增;在1,13⎛⎫ ⎪⎝⎭上单调递减;所以,因此2+a b 的最大值为32ln 27. 故答案为32ln2712.已知实数a ,b ,c 满足(e 为自然对数的底数),则22a b +的最小值是_______.【答案】15【解析】 设,则,所以函数u(x)的增区间为(0,+∞),减区间为(-∞,0), 所以,即e 1x x ≥+;可知,当且仅当时取等; 因为 所以,.所以,解得,当且仅当15c =时,取等号.故答案为:1513.已知直线x t =与曲线分别交于,M N 两点,则MN 的最小值为________【答案】1. 【解析】 令,,显然为增函数,且'(0)0h =所以当(1,0)t ∈-时,单调递减; 当(1,)t ∈+∞时,单调递增.所以.故答案为1.14.曲线cos y a x =在6x π=处的切线l 的斜率为12,则切线l 的方程为_____. 【答案】【解析】解:曲线cos y a x =,可得,曲线cos y a x =在6x π=处的切线l 的斜率为12, 可得,所以1a =-. 所以切点坐标为:3(,)62π-, 则切线l 的方程为:.即:.故答案为:.15.已知函数若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22- 【解析】作出()f x 的函数图象如图所示, 由,可得,即1a >,不妨设12x x <,则,令,则,,令,则,∴当18t <<时,()'0g t >,g t 在()1,8上递增;当8t 时,()'0g t <,g t 在()8,+∞上递减;∴当8t =时,g t 取得最大值,故答案为3ln 22-. 16.已知函数的图象恰好经过三个象限,则实数a 的取值X 围______.【答案】0a <或2a > 【解析】(1)当0a <时,()f x 在(,0]-∞上单调递减,又(0)1f =-,所以函数()f x 的图象经过第二、三象限,当0x >时,,所以,①若1a -时,()0f x '>恒成立,又当0x +→时,()2f x →,所以函数()f x 图象在0x >时,经过第一象限,符合题意;②若10a -<<时,()0f x '>在[2,)+∞上恒成立,当02x <<时,令()0f x '=,解,所以()f x 在10,3a ⎛⎫+ ⎪ ⎪⎝⎭上单调递减,在1,23a ⎛⎫+ ⎪ ⎪⎝⎭上单调递增, 又所以函数()f x 图象在0x >时,经过第一象限,符合题意;(2)当0a =时,()f x 的图象在(,0)-∞上,只经过第三象限,()0f x '>在(0,)+∞上恒成立,所以()f x 的图象在(0,)+∞上,只经过第一象限,故不符合题意;(3)当0a >时,()f x 在(,0)-∞上单调递增,故()f x 的图象在(,0)-∞上只经过第三象限,所以()f x 在(0,)+∞上的最小值min ()0f x <,当02x <<时,令()0f x '=,解得13a x +=, 若123a +<时,即11a <时,()f x 在(0,)+∞上的最小值为 ,令.若时,则()f x 在02x <<时,单调递减,当2x ≥时,令()0f x '=,解得13a x -=, 若,()f x 在(2,)+∞上单调递增,故()f x 在(0,)+∞上的最小值为,令,所以1113a ≤<;若,()f x 在12,3a ⎛⎫- ⎪ ⎪⎝⎭上单调递减,在上单调递增,故()f x 在(0,)+∞上的最小值为,显然,故13a ≥;结上所述:0a <或2a >. 17.已知函数.(Ⅰ)讨论()f x 的单调性;(Ⅱ)比较与的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(Ⅰ)函数()f x 可化为,当0x a <<时,,从而()f x 在(0,)a 上总是递减的,当x a ≥时,,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增;当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增. (Ⅱ)由(Ⅰ)可知当1a =,1x >时,,即ln 1x x >-,所以ln 11x x x<-.所以.18.已知函数.(1)讨论()f x 的单调性;(2)若12,x x 为()f x 的两个极值点,证明:.【答案】(1)当2a <-时,()f x 在为增函数,减函数,为增函数;当2a ≥-时,()f x 在()0,∞+为增函数.(2)证明见解析.【解析】(1)()f x 的定义域为()0,∞+,,对于函数,①当时,即22a -≤≤时,在0x >恒成立.在()0,∞+恒成立,()f x ∴在()0,∞+为增函数;②当∆>0,即2a <-或2a >时, 当2a <-时,由()0f x '>,得或,,()f x ∴在为增函数,减函数,为增函数,当2a >时,由在()0,∞+恒成立,()f x ∴在()0,∞+为增函数.综上,当2a <-时,()f x 在为增函数,减函数,为增函数;当2a ≥-时,()f x 在()0,∞+为增函数. (2)由(1)知2a <-,且,故故只需证明,令2a t =-,故1t >,原不等式等价于ln 1t t 对1t >成立, 令,所以单调递减,有得证. 19.已知函数.(Ⅰ)当1a =时,求()f x 的最大值; (Ⅱ)若1()ef x e+对恒成立,某某数a 的取值X 围.【答案】(Ⅰ)1;(Ⅱ)[1,e] 【解析】(Ⅰ)当1a =时,,定义域为(1,)-+∞..令()0f x '=,得0x =.当(1,0)x ∈-时,()0f x '>,()f x 单调递增, 当(0,)x ∈+∞时,()0f x '<,()f x 单调递减. 所以.(Ⅱ),1x a >-.令()0f x '=,得1a x a-=. 当时,()0f x '>,()f x 单调递增;当时,()0f x '<,()f x 单调递减,所以.依题意有,设,则,所以()g a 在[1,)a ∈+∞上单调递增.又,故1e a ⇒,即实数a 的取值X 围为[1,e].20.对于函数()y f x =的定义域D ,如果存在区间[],m n D ⊆,同时满足下列条件:①()f x 在上是单调函数;②当[],x m n ∈时,()f x 的值域为[]2,2m n ,则称区间是函数()f x 的“单调倍区间”.已知函数(1)若2a =,求()f x 在点()(),e f e 处的切线方程;(2)若函数()f x 存在“单调倍区间”,求a 的取值X 围.【答案】(1);(2)【解析】 (1)当2a =时,∴当0x >时,,则:,又()f x ∴在()(),e f e 处的切线方程为:即:(2)列表如下:x(),0-∞0,2a ⎛⎫⎪⎝⎭ 2a ,2a ⎛⎫+∞ ⎪⎝⎭()f x '-+-()f x极大值设函数()f x 存在“单调倍区间”是①当0m n <≤时,由()f x 在(),0-∞上单调递减,则有两式相减得:即,代入得:要使此关于,m n 的方程组在0m n <≤时有解,则使得2y a =与的图象有两个公共点当14x =时,min 38y =,当0x =时,12y =结合两函数图象,则31282a <≤,即:31164a <≤ 即此时满足()f x 存在“单调倍区间”的a 的取值X 围是31,164⎛⎤⎥⎝⎦ ②当时,由()f x 在0,2a ⎛⎫⎪⎝⎭上单调递增,则有即:1ln 41ln 4m a mn a n⎧=⎪⎪⎨⎪=⎪⎩设()ln 4xg x x=,则当()0,x e ∈时,()0g x '>,()g x 为增函数 当(),x e ∈+∞时,()0g x '<,()g x 为减函数要使方程1ln 4x a x =有两解,则1y a =与()ln 4x g x x =的图象在0,2a ⎛⎤ ⎥⎝⎦有两个交点 结合两函数图象,则,即:2ln 122114ae a a a a e ⎧>⎪⎪⎪⎪≤⎨⎪⎪<⎪⎪⎩解得:即此时满足()f x 存在“在单调倍区间”的a 的取值X 围是(24,2e e ⎤⎦③当2a m n <<时,由()f x 在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,则有两式相减得:,此式不成立,即此时()f x 不存在“单调倍区间”综上,函数()f x 存在“单调倍区间”的a 的取值X 围是21.已知函数.(1)讨论函数()f x 的单调性; (2)当[0,1)b ∈时,设函数有最小值()h b ,求()h b 的值域.【答案】(1)见解析;(2)【解析】解:(1)()f x 定义域为,.令,①,1︒当04a ≤≤时,0∆≤,,即'()0f x ≥且不恒为零,故()f x 单调递增区间为(,4)-∞-,(4,)-+∞,2︒当4a >时,∆>0,方程①两根为,,由于,.故124x x <-<,因此当1(,)x x ∈-∞时,'()0f x >,()f x 单调递增,1(,4)x x ∈-,'()0f x <,()f x 单调递减, 2(4,)x x ∈-,'()0f x <,()f x 单调递减, 2(,)x x ∈+∞,'()0f x >,()f x 单调递增,综上,当04a ≤≤时,()f x 在(,4)-∞-单调递增,(4,)-+∞单调递增, 当4a >时,()f x 在单调递增,,单调递减;在单调递增.(2),设,由(1)知,0a =时,在(2,)-+∞单调递增, 由于(0)0k b =≥,,故在(2,0]-存在唯一0x ,使0()0k x =,,又当0(2,)x x ∈-,()0k x <,即'()0g x <,()g x 单调递减,0(,)x x ∈+∞,()0k x >,即'()0g x >,()g x 单调递增,故时,0204x e x +=+,0(2,0]x ∈-. 又设,(2,0]x ∈-,,故()m x 单调递增,故,即,即.22.已知函数(无理数 2.718e =…).(1)若()f x 在(1,)+∞单调递增,某某数a 的取值X 围:(2)当0a =时,设,证明:当0x >时,.【答案】(1)2]-∞(,; (2)见解析.【解析】(1)解:由题意可得在1(,)+∞上恒成立. ∴, 令,则,∴函数在1(,)+∞上单调递增. ∴12a h ≤=(). ∴实数a 的取值X 围是2]-∞(,. (2)证明:当0a =时,. ,令, 则,可得2x ln =时,函数u x ()取得极小值,. ∵00g '=(),又. ∴存在,使得. 由单调性可得:0x x =时,函数()g x 取得极小值,即最小值, ∴. 由,可得函数0y g x =()单调递减,故. ∴当0x >时,.。

2013年普通高等学校招生全国统一考试数学理试题(北京卷)

2013年普通高等学校招生全国统一考试数学理试题(北京卷)

2013北京高考理科数学试题 第一部分 (选择题 共40分)一、 选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限 3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件S 值为A.1B.23 C.1321D.610987 5.函数f (x )的图象向右平移1个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1e x - C. 1ex -+ D. 1ex --6.若双曲线22221x y a b-=,则其渐近线方程为A.y =±2xB.y =C.12y x =±D.y x = 7.直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83D.38.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是 A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C.2,3⎛⎫-∞- ⎪⎝⎭ D.5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 . 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = . 11.如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD= ;AB=.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ= .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,1B三、解答题共6小题,共80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i.、解答题(本大题共5小题,共0分)
(2013年北京高考真题数学(文))
已知函数
(1)若曲线 在点 处与直线 相切,求 与 的值。
(2)若曲线 与直线 有两个不同的交点,求 的取值范围。
【答案解析】
解:(1)
因为曲线 在点 处的切线为
所以 ,即 ,解得
(2)因为
所以当 时 , 单调递增
当 时 , 单调递减
,且 .
即 ,且 .
解得 , .
(Ⅱ)记 .当 , 时,


令 ,得 , .
与 在 上的情况如下:
由此可知:
当 ≤ 时,函数 在区间 上的最大值为 ;
当 时,函数 在区间 上的最大值小于 .
因此, 的取值范围是 .
(2011年北京高考真题数学(文))
已知函数 .
(Ⅰ)求 的单调区间;
(Ⅱ)求 在区间[0,1]上的最小值.
设函数 .
(Ⅰ)若曲线 在点 处与极值点.
【答案解析】
(Ⅰ) ,
∵曲线 在点 处与直线 相切,

(Ⅱ)∵ ,
当 时, ,函数 在 上单调递增,此时函数 没有极值点.
当 时,由 ,
当 时, ,函数 单调递增,
当 时, ,函数 单调递减,
当 时, ,函数 单调递增,
【答案解析】
解:(Ⅰ)
令 ,得 .
与 的情况如下:
x
( )

——
0
+


所以, 的单调递减区间是( );单调递增区间是
(Ⅱ)当 ,即 时,函数 在[0,1]上单调递增,
所以 (x)在区间[0,1]上的最小值为
当 时,
由(Ⅰ)知 上单调递减,在 上单调递增,所以 在区间[0,1]上的最小值为 ;
当 时,函数 在[0,1]上单调递减,
所以当 时, 取得最小值 ,
所以 的取值范围是
(2012年北京高考真题数学(文))
已知函数 , .
(Ⅰ)若曲线 与曲线 在它们的交点 处具有公共切线,求 的值;
(Ⅱ)当 , 时,若函数 在区间 上的最大值为 ,求 的取值范围.
【答案解析】
解:(Ⅰ) , .
因为曲线 与曲线 在它们的交点 处具有公共切线,所以
2009-2013年北京高考真题--导数大题汇编
5年高考真题分类汇编-教师卷
题号

总分
得分
△注意事项:
1.本系列试题包含2009至2013年北京市高考真题,并经过精心校对。
2.本系列文档包含全部试题分类汇编,命名规律为:
2009-2013年北京高考真题--******试题汇编。
3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。
所以 在区间[0,1]上的最小值为
(2010年北京高考真题数学(文))
已知函数
(Ⅰ)当 =2时,求曲线 = ( )在点(1, )处的切线方程;
(Ⅱ)求 ( )的单调区间。
【答案解析】
解:(I)当 时, ,
由于 , ,
所以曲线 在点 处的切线方程为

(II) , .
当 时, .
所以,在区间 上, ;在区间 上, .
故 得单调递增区间是 ,单调递减区间是 .
当 时,由 ,得 ,
所以,在区间 和 上, ;在区间 上,
故 得单调递增区间是 和 ,单调递减区间是 .
当 时,
故 得单调递增区间是 .
当 时, ,得 , .
所以没在区间 和 上, ;在区间 上,
故 得单调递增区间是 和 ,单调递减区间是
(2009年北京高考真题数学(文))
∴此时 是 的极大值点, 是 的极小值点.
相关文档
最新文档