高一数学人教B版必修1课后强化作业:本册综合测试题(A)

合集下载

高一数学人教B版必修1课后强化作业:第13章(共30份)3.1.2 第1课时指数函数的图象与性质

高一数学人教B版必修1课后强化作业:第13章(共30份)3.1.2 第1课时指数函数的图象与性质

第三章 3.1 3.1.2 第1课时一、选择题1.若函数y =(2a -1)x +a -2为指数函数,则a 的值为( ) A .0 B .12C .1D .2[答案] D[解析] 要使函数y =(2a -1)x+a -2为指数函数,应满足⎩⎪⎨⎪⎧2a -1>02a -1≠1a -2=0,解得a =2.2.函数f (x )=a x (a >0且a ≠1)对于任意的实数x 、y 都有( ) A .f (xy )=f (x )f (y ) B .f (xy )=f (x )+f (y ) C .f (x +y )=f (x )f (y ) D .f (x +y )=f (x )+f (y )[答案] C[解析] ∵f (x )=a x ,∴f (x +y )=a x +y ,f (x )·f (y )=a x ·a y =a x +y , ∴f (x +y )=f (x )·f (y ).3.(2013~2014学年度福建北斗中学高一期中测试)函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =( )A.12 B .2 C .4 D .14[答案] B[解析] 本题主要考查指数函数的单调性在求最值中的应用.因为函数y =a x 在R 上单调,所以最大值与最小值的和即为a 0+a 1=3,得a =2,故选B.4.函数y =2-x 的图象是下图中的( )[答案] B[解析] ∵y =2-x =(12)x ,∴函数y =(12)x 是减函数,且过点(0,1),故选B.5.(2013~2014学年度人大附中高一月考)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )A.12 B .45C .2D .9[答案] C[解析] ∵f (0)=20+1=2,∴f [f (0)]=f (2)=4+2a =4a ,解得a =2.6.若函数y =(1-a )x 在R 上是减函数,则实数a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(-∞,1) D .(-1,1) [答案] B[解析] ∵函数y =(1-a )x 在(-∞,+∞)上是减函数, ∴0<1-a <1,∴0<a <1. 二、填空题7.(2013~2014学年度湖南张家界高一联考)比较大小:2.12014________2.12013.(填“>”或“<”) [答案] >[解析] ∵指数函数y =2.1x ,x ∈R 单调递增, ∴2.12014>2.12013.8.已知f (x )、g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x ·g (x )(a >0,且a ≠1);②g (x )≠0.若f (1)g (1)+f (-1)g (-1)=52,则a 等于________.[答案] 2或12[解析] 由f (x )=a x ·g (x ),得f (x )g (x )=a x . ∵f (1)g (1)+f (-1)g (-1)=52,∴a +a -1=52.解得a =2或12.三、解答题9.(2013~2014学年度广东湛江一中高一上学期期中测试)函数f (x )=12(a x +a -x ),(a >0且a ≠1).(1)讨论f (x )的奇偶性; (2)若函数f (x )的图象过点(2,419),求f (x ). [解析] (1)函数f (x )的定义域为(-∞,+∞), f (-x )=12(a -x +a x )=f (x ),∴函数f (x )为偶函数. (2)∵函数f (x )的图象过点(2,419), ∴419=12(a 2+a -2)=12(a 2+1a 2), 整理得9a 4-82a 2+9=0, ∴a 2=19或a 2=9.∴a =13或a =3.故f (x )=12(3x +3-x ).一、选择题1.下图是指数函数:①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c[答案] B[解析] 直线x =1与四个指数函数图象交点的坐标分别为(1,a )、(1,b )、(1,c )、(1,d ),由图象可知纵坐标的大小关系.2.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域为R ,则( )A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数 [答案] B[解析] f (-x )=3-x +3x =f (x ),∴f (x )为偶函数, g (-x )=3-x -3x =-(3x -3-x )=-g (x ), ∴g (x )为奇函数,故选B.3.函数f (x )=3x -x -4的零点,所在的大致区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)[答案] C[解析] ∵f (-1)=3-1-1-4=13-1-4=-143<0,f (0)=30-4=1-4=-3<0, f (1)=3-1-4=-2<0, f (2)=32-2-4=9-2-4=3>0, ∴函数f (x )的零点所在的大致区间为(1,2).4.定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b b ,a >b,则函数f (x )=1*(12)x 的图象为( )[答案] D[解析] 由题意,得f (x )=⎩⎪⎨⎪⎧1 (x ≤0)(12)x (x >0).∵x ≤0时,f (x )=1,排除A 、C , 又∵x >0时,f (x )=(12)x ,∴f (1)=12<1,排除B ,故选D.二、填空题5.已知a >b ,ab ≠0,下列不等式①a 2>b 2;②2a >2b ; ③0.2-a >0.2-b ;④(13)a <(13)b 中恒成立的有________.[答案] ②③④[解析] ①若0>a >b ,则a 2<b 2,故①不正确; ②y =2x 为增函数,∴2a >2b ,②正确; ③y =0.2x 为减函数,∴0.2-a >0.2-b ,③正确; ④y =(13)x 为减函数,∴(13)a <(13)b ,④正确.6.函数y =2x -12x +1的奇偶性是__________.[答案] 奇函数[解析] f (-x )=2-x -12-x +1=1-2x 1+2x =-2x -12x +1=-f (x ),∴f (x )为奇函数. 三、解答题7.已知a >0且a ≠1,y 1=a 3x +1,y 2=a-2x,问当x 取何范围内的值时,①y 1=y 2;②y 1>y 2.[解析] (1)若y 1=y 2,则a 3x +1=a -2x , 即3x +1=-2x ,解得x =-15,因此当x =-15时,y 1=y 2.(2)由y 1>y 2得a 3x +1>a -2x ,当a >1时,由3x +1>-2x ,得x >-15,当0<a <1时,由3x +1<-2x ,得x <-15,综上可知:当a >1,x >-15时,y 1>y 2;0<a <1,x <-15时,y 1>y 2.8.(2013~2014学年度甘肃兰州一中高一期中测试)已知f (x )=x (12x -1+12)(x ≠0).(1)判断f (x )的奇偶性; (2)求证:f (x )>0.[解析] (1)f (-x )=-x ⎝ ⎛⎭⎪⎫12-x +1+12=-x ⎝ ⎛⎭⎪⎫2x1-2x +12=x ⎝ ⎛⎭⎪⎫2x2x -1-12 =x ⎝ ⎛⎭⎪⎫2x -1+12x-1-12 =x ⎝ ⎛⎭⎪⎫12x -1+12=f (x ) ∴f (x )是偶函数. (2)当x >0时,2x -1>0,∴f (x )=x ⎝ ⎛⎭⎪⎫12x -1+12>0,又∵函数f (x )是偶函数,其图象关于y 轴对称, ∴当x ≠0时,总有f (x )>0.9.设a >0,f (x )=e x a +ae x (e >1)是R 上的偶函数.(1)求a 的值;(2)证明: f (x )在(0,+∞)上是增函数.[解析] (1)依题意,对一切x ∈R ,都有f (-x )=f (x ), ∴e x a +a e x =1ae x +ae x ,∴(a -1a )(e x -1e x )=0, ∴a -1a =0,即a 2=1,又a >0,∴a =1.(2)设任意实数x 1∈R ,x 2∈R ,且x 1<x 2, ∴Δx =x 1-x 2<0,Δy=f(x1)-f(x2)=e x1-e x2+1e x1-1e x2=(e x2-e x1)·(1e x1+x2-1)=e x1 (e x2-x1-1)·1-e x1+x2e x1+x2,∵Δx=x1-x2<0,∴x2-x1>0,又x1+x2>0,e>1,∴e x2-x1-1>0,1-e x1+x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数f(x)在(0,+∞)上是增函数.。

新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

人教B 选择性必修第一册综合测验第一章 空间向量与立体几何............................................................................................ 1 第二章 平面解析几何 .................................................................................................... 15 模块综合测验 . (28)第一章 空间向量与立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD-A'B'C'D'中,向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 是( ) A.有相同起点的向量 B .等长的向量C.共面向量 D .不共面向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD⃗⃗⃗⃗⃗⃗ 显然不是有相同起点的向量,A 不正确; 由该平行六面体不是正方体可知,这三个向量不是等长的向量,B 不正确. 又∵AD '⃗⃗⃗⃗⃗⃗ −AB '⃗⃗⃗⃗⃗⃗ =B 'D '⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB '⃗⃗⃗⃗⃗⃗ ,AD '⃗⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共面,C 正确,D 不正确. 2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A.a ∥c ,b ∥c B.a ∥b ,a ⊥c C.a ∥c ,a ⊥b D.以上都不对a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),∴a ·b =-4+0+4=0,∴a ⊥b .∵-4-2=-6-3=21,∴a ∥c .3.在长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ = ( ) A.D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.D 1B ⃗⃗⃗⃗⃗⃗⃗ C.DB 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BD 1⃗⃗⃗⃗⃗⃗⃗⃗,长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD 1⃗⃗⃗⃗⃗⃗⃗⃗ .4.如图所示,已知空间四边形ABCD ,连接AC ,BD.M ,G 分别是BC ,CD 的中点,则AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ 等于 ( )A.AD ⃗⃗⃗⃗⃗B.GA ⃗⃗⃗⃗⃗C.AG ⃗⃗⃗⃗⃗D.MG ⃗⃗⃗⃗⃗⃗M ,G 分别是BC ,CD 的中点,∴12BC ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ ,12BD ⃗⃗⃗⃗⃗⃗ =MG ⃗⃗⃗⃗⃗⃗ .∴AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AG⃗⃗⃗⃗⃗ . 5.在四棱锥P-ABCD 中,AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则这个四棱锥的高h 等于 ( )A.1 B .2C.13D .26ABCD 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0,即{4x -2y +3z =0,-4x +y =0.不妨令x=3,则y=12,z=4,可得n =(3,12,4), 四棱锥的高h=|AP ⃗⃗⃗⃗⃗ ·n ||n |=2613=2.6.已知两不重合的平面α与平面ABC ,若平面α的法向量为n 1=(2,-3,1),AB ⃗⃗⃗⃗⃗ =(1,0,-2),AC ⃗⃗⃗⃗⃗ =(1,1,1),则( ) A.平面α∥平面ABC B.平面α⊥平面ABCC.平面α、平面ABC 相交但不垂直D.以上均有可能,n 1·AB ⃗⃗⃗⃗⃗ =2×1+(-3)×0+1×(-2)=0,得n 1⊥AB ⃗⃗⃗⃗⃗ ,n 1·AC ⃗⃗⃗⃗⃗ =2×1+(-3)×1+1×1=0,得n 1⊥AC⃗⃗⃗⃗⃗ , 所以n 1⊥平面ABC ,所以平面α的法向量与平面ABC 的法向量共线,则平面α∥平面ABC.7.直线AB 与直二面角α-l-β的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与α,β所成的角分别为θ和φ,则θ+φ的取值范围是( ) A.0°<θ+φ<90° B.0°<θ+φ≤90° C.90°<θ+φ<180° D.θ+φ=90°,分别过点A ,B 向平面β,α作垂线,垂足为A 1,B 1,连接BA 1,AB 1.由已知α⊥β,所以AA 1⊥β,BB 1⊥α,因此∠BAB 1=θ,∠ABA 1=φ.由最小角定理得∠BAA 1≥θ,而∠BAA 1+φ=90°,故θ+φ=θ+90°-∠BAA 1≤90°,当AB ⊥l 时,θ+φ=90°,应选B .8.长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,则集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}中元素的个数为( )A.1 B .2 C .3 D .4长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,∴建立如图的空间直角坐标系, 则A 1(1,1,0),A 2(0,1,0),A 3(0,0,0),A 4(1,0,0), B 1(1,1,2),B 2(0,1,2),B 3(0,0,2),B 4(1,0,2), 则A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2),与A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)相等的向量为A 2B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 3B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 4B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,2)相等的向量为A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,2)相等的向量为A 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4,与A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,2)相等的向量为A 3B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,与A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2)相等的向量为A 4B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,体对角线向量为A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,2),此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3, A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,综上集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}={3,4,5},集合中元素的个数为3个.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.设向量a ,b ,c 可构成空间一个基底,下列选项中正确的是( ) A.若a ⊥b ,b ⊥c ,则a ⊥cB.则a,b,c两两共面,但a,b,c不可能共面C.对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z cD.则a+b,b+c,c+a一定能构成空间的一个基底a,b,c是空间一个基底,知:在A中,若a⊥b,b⊥c,则a与c相交或平行,故A错误;在B中,a,b,c两两共面,但a,b,c不可能共面,故B正确;在C中,对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z c,故C正确;在D中,a+b,b+c,c+a一定能构成空间的一个基底,故D正确.10.已知向量a=(1,2,3),b=(3,0,-1),c=(-1,5,-3),下列等式中正确的是()A.(a·b)c=b·cB.(a+b)·c=a·(b+c)C.(a+b+c)2=a2+b2+c2D.|a+b+c|=|a-b-c|左边为向量,右边为实数,显然不相等,不正确;B.左边=(4,2,2)·(-1,5,-3)=0,右边=(1,2,3)·(2,5,-4)=2+10-12=0,∴左边=右边,因此正确.C.a+b+c=(3,7,-1),左边=32+72+(-1)2=59,右边=12+22+32+32+0+(-1)2+(-1)2+52+(-3)2=59,∴左边=右边,因此正确.D.由C可得左边=√59,∵a-b-c=(-1,-3,7),∴|a-b-c|=√59,∴左边=右边,因此正确.故BCD正确.11.在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AB,CC1,A1D1,C1D1的中点,则下列结论正确的是 ()A.A1E⊥AC1B.BF∥平面ADD1A1C.BF⊥DGD.A1E∥CH解析设正方体的棱长为1,以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A 1(1,0,1),E (1,12,0),C (0,1,0),F (0,1,12),C 1(0,1,1),H 0,12,1,G (12,0,1),A (1,0,0),B (1,1,0),D (0,0,0),则A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1),BF ⃗⃗⃗⃗⃗ =(-1,0,12),DG ⃗⃗⃗⃗⃗ =(12,0,1),CH ⃗⃗⃗⃗⃗ =(0,-12,1), 所以A 1E ⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =-12,所以A 1E 与AC 1不垂直,故A 错误; 显然平面ADD 1A 1的一个法向量v =(0,1,0), 有BF ⃗⃗⃗⃗⃗ ·v =0,所以BF ∥平面ADD 1A 1,故B 正确; BF ⃗⃗⃗⃗⃗ ·DG ⃗⃗⃗⃗⃗ =0,所以BF ⊥DG ,故C 正确; A 1E ⃗⃗⃗⃗⃗⃗⃗ =-CH⃗⃗⃗⃗⃗ ,所以A 1E ∥CH ,故D 正确. 12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°;④AB 与CD 所成的角为60°.其中正确的结论有( ) A.① B.②C.③D.④,建立空间直角坐标系Oxyz ,设正方形ABCD 的边长为√2,则D (1,0,0),B (-1,0,0),C (0,0,1),A (0,1,0),所以AC ⃗⃗⃗⃗⃗ =(0,-1,1),BD ⃗⃗⃗⃗⃗⃗ =(2,0,0),CD ⃗⃗⃗⃗⃗ =(1,0,-1),AD ⃗⃗⃗⃗⃗ =(1,-1,0),AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0,故AC ⊥BD ,①正确.又|AC ⃗⃗⃗⃗⃗ |=√2,|CD ⃗⃗⃗⃗⃗ |=√2,|AD ⃗⃗⃗⃗⃗ |=√2, 所以△ACD 为等边三角形,②正确. 对于③,OA ⃗⃗⃗⃗⃗ 为平面BCD 的一个法向量, cos <AB ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=√2·√1=√2=-√22.因为直线与平面所成的角∈[0°,90°],所以AB 与平面BCD 所成的角为45°,故③错误.又cos <AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||CD⃗⃗⃗⃗⃗⃗ |=√2·√2=-12,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60°,故④正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在棱长为a 的正四面体中,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . -a 22a 的正四面体中,AB=BC=a ,且AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,AC ⊥BD.∴AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =a ·a cos120°+0=-a22.14.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则xy= .2a +2b =(1+2x ,4,-y+4),2a -b =(2-x ,3,-2y-2),因为(a+2b )∥(2a-b ),所以存在λ∈R 使得1+2x=λ(2-x )且4=3λ且-y+4=λ(-2y-2),所以λ=43,x=12,y=-4,所以xy=-2.15.设PA ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB ,PC 分别与α成45°和30°角,PA=2,则PA 与BC 的距离是 ;点P 到BC 的距离是 . √3 √7AD ⊥BC 于点D ,∵PA ⊥面ABC ,∴PA ⊥AD.∴AD 是PA 与BC 的公垂线.易得AB=2,AC=2√3,BC=4,AD=√3,连接PD ,则PD ⊥BC ,P 到BC 的距离PD=√7. 16.已知向量m =(a ,b ,0),n =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,现有以下命题:①向量n 与z 轴正方向的夹角恒为定值(即与c ,d 无关); ②m ·n 的最大值为√2;③<m ,n >(m ,n 的夹角)的最大值为3π4;④若定义u ×v =|u |·|v |sin <u ,v >,则|m×n |的最大值为√2. 其中正确的命题有 .(写出所有正确命题的序号)取z 轴的正方向单位向量a =(0,0,1),则cos <n ,a >=n ·a|n ||a |=√c 2+d 2+12×1=√2=√22,∴向量n 与z 轴正方向的夹角恒为定值π4,命题正确;②m ·n =ac+bd ≤a 2+c 22+b 2+d 22=a 2+c 2+b 2+d 22=1+12=1,当且仅当a=c ,b=d 时取等号,因此m ·n 的最大值为1,命题错误;③由②可得|m ·n |≤1,∴-1≤m ·n ≤1, ∴cos <m ,n >=m ·n|m ||n | =√a 2+b 2·√c 2+d 2+12≥-1×√2=-√22, ∴<m ,n >的最大值是3π4,命题正确; ④由③可知:-√22≤cos <m ,n >≤√22,∴π4≤<m ,n >≤3π4,√22≤sin <m ,n >≤1,∴m×n =|m|×|n|×sin <m ,n >≤1×√2×1=√2,命题正确.综上可知,正确的命题序号是①③④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M-ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB ⃗⃗⃗⃗⃗ ,b =AD ⃗⃗⃗⃗⃗ ,c =AM ⃗⃗⃗⃗⃗⃗ ,试以a ,b ,c 为基向量表示出向量BN⃗⃗⃗⃗⃗⃗ ,并求BN 的长.⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12CM ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12(AM ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ +12[AM ⃗⃗⃗⃗⃗⃗ -(AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )] =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +12AM ⃗⃗⃗⃗⃗⃗ . 所以BN⃗⃗⃗⃗⃗⃗ =-12a+12b+12c , |BN ⃗⃗⃗⃗⃗⃗ |2=BN⃗⃗⃗⃗⃗⃗ 2=-12a+12b+12c 2 =14(a 2+b 2+c 2-2a ·b-2a ·c+2b ·c )=174. 所以|BN⃗⃗⃗⃗⃗⃗ |=√172,即BN 的长为√172.18.(12分)如图,正三棱柱ABC-A 1B 1C 1中,底面边长为√2. (1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1所成的角为π3,求侧棱的长.1=AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ .因为BB 1⊥平面ABC , 所以BB 1⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0. 又△ABC 为正三角形,所以<AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=π-<BA ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >=π-π3=2π3. 因为AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ )·(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =AB ⃗⃗⃗⃗⃗ ·BB 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=-1+1=0, 所以AB 1⊥BC 1.(1)知AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=BB 1⃗⃗⃗⃗⃗⃗⃗ 2-1.又|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=√2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=|BC 1⃗⃗⃗⃗⃗⃗⃗ |,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12+BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2=12,所以|BB 1⃗⃗⃗⃗⃗⃗⃗ |=2,即侧棱长为2.19.(12分)已知空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC ⃗⃗⃗⃗⃗ . (1)若|c |=3,且c ∥BC⃗⃗⃗⃗⃗ ,求向量c ; (2)已知向量k a +b 与b 互相垂直,求k 的值; (3)求△ABC 的面积.∵空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC⃗⃗⃗⃗⃗ , ∴BC⃗⃗⃗⃗⃗ =(3,0,-4)-(1,-1,-2)=(2,1,-2), ∵|c |=3,且c ∥BC⃗⃗⃗⃗⃗ , ∴c =m BC⃗⃗⃗⃗⃗ =m (2,1,-2)=(2m ,m ,-2m ), ∴|c |=√(2m )2+m 2+(-2m )2=3|m|=3,∴m=±1,∴c =(2,1,-2)或c =(-2,-1,2). (2)由题得a =(-1,-1,0),b =(1,0,-2),∴k a +b =k (-1,-1,0)+(1,0,-2)=(1-k ,-k ,-2),∵向量k a +b 与b 互相垂直,∴(k a +b )·b =1-k+4=0,解得k=5.∴k 的值是5. (3)AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ =(1,0,-2),BC ⃗⃗⃗⃗⃗ =(2,1,-2), cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |=√2×√5=-√10,sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√1-110=√10,∴S △ABC =12×|AB ⃗⃗⃗⃗⃗ |×|AC ⃗⃗⃗⃗⃗ |×sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=12×√2×√5×√10=32.20.(12分)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM ⃗⃗⃗⃗⃗⃗ =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ).如图,连接BG ,BD ⃗⃗⃗⃗⃗⃗ =2EH ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =2BF ⃗⃗⃗⃗⃗ ,则EG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=EB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EH ⃗⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ , 由共面向量定理的推论知E 、F 、G 、H 四点共面.(2)因为EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗=12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12BD⃗⃗⃗⃗⃗⃗ . 所以EH ∥BD ,又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH.(3)连接OM ,OA ,OB ,OC ,OD ,OE ,OG , 由(2)知EH ⃗⃗⃗⃗⃗⃗ =12BD⃗⃗⃗⃗⃗⃗ , 同理FG ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ ,所以EH ⃗⃗⃗⃗⃗⃗ =FG⃗⃗⃗⃗⃗ , EH ∥FG ,EH=FG ,所以EG 、FH 交于一点M 且被M 平分,所以OM ⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OG ⃗⃗⃗⃗⃗ )=1212(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )+12(OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ) =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ).21.(12分)(2021全国甲,理19)已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB=BC=2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?如图,连接A 1E ,取BC 中点M ,连接B 1M ,EM.∵E ,M 分别为AC ,BC 中点, ∴EM ∥AB.又AB ∥A 1B 1,∴A 1B 1∥EM ,则点A 1,B 1,M ,E 四点共面,故DE ⊂平面A 1B 1ME.又在侧面BCC 1B 1中,△FCB ≌△MBB 1,∴∠FBM=∠MB 1B. 又∠MB 1B+∠B 1MB=90°,∴∠FBM+∠B 1MB=90°,∴BF ⊥MB 1.又BF ⊥A 1B 1,MB 1∩A 1B 1=B 1,MB 1,A 1B 1⊂平面A 1B 1ME ,∴BF ⊥平面A 1B 1ME ,∴BF ⊥DE.(2)∵BF ⊥A 1B 1,∴BF ⊥AB ,∴AF 2=BF 2+AB 2=CF 2+BC 2+AB 2=9. 又AF 2=FC 2+AC 2,∴AC 2=8,则AB ⊥BC.如图,以B 为原点,BC ,BA ,BB 1为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,0,0),C (2,0,0),A (0,2,0),E (1,1,0),F (2,0,1).则EF ⃗⃗⃗⃗⃗ =(1,-1,1),ED ⃗⃗⃗⃗⃗ =(-1,t-1,2),设DB 1=t ,则D (0,t ,2),0≤t ≤2.则平面BB 1C 1C 的法向量为m =(0,1,0),设平面DEF 的法向量为n =(x ,y ,z ),∴{EF⃗⃗⃗⃗⃗ ·n =0,ED ⃗⃗⃗⃗⃗ ·n =0,即{x -y +z =0,-x +(t -1)y +2z =0,∴n =(1+t ,3,2-t ). 则cos <m ,n >=√(1+t )+32+(2-t )=√2t 2-2t+14.要求最小正弦值,则求最大余弦值.当t=1时二面角的余弦值最大,2时二面角正弦值最小.则B1D=1222.(12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平AD=1,CD=√3.面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60°?AD,AD∥BC,Q为AD的中点,BC=12∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ ⊥BC.又∵PQ∩BQ=Q,∴BC⊥平面PQB.∵BC⊂平面PBC,∴平面PBC⊥平面PQB.(1)可知PQ⊥平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y 轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,√3),B(0,√3,0),C(-1,√3,0),∴QB ⃗⃗⃗⃗⃗ =(0,√3,0),DC ⃗⃗⃗⃗⃗ =(0,√3,0),DP ⃗⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗⃗ =(-1,√3,-√3), PC=√(-1)2+(√3)2+(-√3)2=√7.设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则PM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,-√3λ),且0≤λ≤1,得M (-λ,√3λ,√3−√3λ),∴QM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,√3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则{QM ⃗⃗⃗⃗⃗⃗ ·m =0,QB ⃗⃗⃗⃗⃗ ·m =0,即{-λx +√3λy +√3(1-λ)z =0,√3y =0.令x=√3,则y=0,z=λ1-λ,∴平面MBQ 的一个法向量为m =√3,0,λ1-λ. 设平面PDC 的法向量为n =(x',y',z'),则{DC ⃗⃗⃗⃗⃗ ·n =0,DP ⃗⃗⃗⃗⃗ ·n =0,即{√3y '=0,x '+√3z '=0.令x'=3,则y'=0,z'=-√3,∴平面PDC 的一个法向量为n =(3,0,-√3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos60°=|n ·m ||n ||m |=|3√3-√3·λ1-λ|√12·√3+(λ1-λ) 2=12,∴λ=12.∴PM=12PC=√72.即当PM=√72时,平面QMB 与平面PDC 所成的角大小为60°.第二章 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离,当θ,m 变化时,d 的最大值为 ( ) A.1 B.2C.3D.4cos 2θ+sin 2θ=1,∴P 为单位圆上一点,而直线x-my-2=0过点A (2,0),∴d 的最大值为|OA|+1=2+1=3,故选C .2.已知点P (-2,4)在抛物线y 2=2px (p>0)的准线上,则该抛物线的焦点坐标是( ) A.(0,2) B.(0,4) C.(2,0) D.(4,0)P (-2,4)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p=4,则该抛物线的焦点坐标是(2,0).3.已知直线l 1:x cos 2α+√3y+2=0,若l 1⊥l 2,则l 2倾斜角的取值范围是( ) A.[π3,π2) B.[0,π6] C.[π3,π2] D.[π3,5π6]l 1:x cos 2α+√3y+2=0的斜率k 1=-2√3∈[-√33,0],当cos α=0时,即k 1=0时,k 不存在,此时倾斜角为12π,由l 1⊥l 2,k 1≠0时,可知直线l 2的斜率k=-1k 1≥√3,此时倾斜角的取值范围为[π3,π2).综上可得l 2倾斜角的取值范围为[π3,π2].4.(2021全国乙,文11)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A.52 B.√6 C.√5 D.2方法一)由椭圆方程可得a=√5,b=1,故椭圆的上顶点为B (0,1).设P (x ,y ),则有x 25+y 2=1, 故x 2=5(1-y 2),由椭圆的性质可得-1≤y ≤1.则|PB|2=x 2+(y-1)2=5(1-y 2)+(y-1)2=-4y 2-2y+6=-4y 2+y2+6=-4y+142+254.因为-1≤y ≤1,所以当y=-14时,|PB|2取得最大值,且最大值为254,所以|PB|的最大值为52. (方法二)由题意可设P (√5cos θ,sin θ)(θ∈R ),又B (0,1),则|PB|2=5cos 2θ+(sin θ-1)2=5cos 2θ+sin 2θ-2sin θ+1=-4sin 2θ-2sin θ+6,于是当sin θ=-14时,|PB|2最大,此时|PB|2=-4×116-2×(-14)+6=-14+12+6=254,故|PB|的最大值为52.5.在一个平面上,机器人到与点C (3,-3)的距离为8的地方绕C 点顺时针而行,它在行进过程中到经过点A (-10,0)与B (0,10)的直线的最近距离为( ) A.8√2-8 B.8√2+8C.8√2D.12√2C (3,-3)距离为8的地方绕C 点顺时针而行,在行进过程中保持与点C 的距离不变,∴机器人的运行轨迹方程为(x-3)2+(y+3)2=64,如图所示;∵A (-10,0)与B (0,10),∴直线AB 的方程为x-10+y10=1,即为x-y+10=0, 则圆心C 到直线AB 的距离为d=√1+1=8√2>8,∴最近距离为8√2-8.6.设P 是双曲线x 2a 2−y 2b 2=1(a>0,b>0)上的点,F 1,F 2是焦点,双曲线的离心率是43,且∠F 1PF 2=90°,△F 1PF 2的面积是7,则a+b 等于( ) A.3+√7 B.9+√7C.10D.16,不妨设点P 是右支上的一点,|PF 1|=m ,|PF 2|=n ,则{ 12mn =7,m -n =2a ,m 2+n 2=4c 2,c a =43,∴a=3,c=4.∴b=√c 2-a 2=√7.∴a+b=3+√7.7.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h ,跨径为a ,则桥形对应的抛物线的焦点到准线的距离为()A.a 28ℎ B.a 24ℎC.a 22ℎD.a 2ℎ,以桥顶为坐标原点,桥形的对称轴为y 轴建立如图所示的平面直角坐标系,该抛物线方程可写为x 2=-2py (p>0).∵该抛物线经过点(a2,-ℎ),代入抛物线方程可得a 24=2hp ,解得p=a 28ℎ.∴桥形对应的抛物线的焦点到准线的距离即为p=a 28ℎ.8.平面直角坐标系中,设A (-0.98,0.56),B (1.02,2.56),点M 在单位圆上,则使得△MAB 为直角三角形的点M 的个数是( ) A.1 B.2C.3D.4,如图,若△MAB为直角三角形,分3种情况讨论:①∠MAB=90°,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则k AB=2.56-0.561.02-(-0.98)=1,则k l1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=√2=21√2100<1,直线l1与单位圆相交,有2个公共点,即有2个符合题意的点M;②∠MBA=90°,则点M在过点B与AB垂直的直线上,设该直线为l2,同理可得,直线l2的方程为y-2.56=-(x-1.02),即x+y-3.58=0,此时原点O到直线l2的距离d=√2=179√2100>1,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;③∠AMB=90°,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56),|AB|=√4+4=2√2,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=√2,此时|OC|=√(0.02)2+(1.56)2=√2.4340,则有√2-1<|OC|<√2+1,两圆相交,有2个公共点,即有2个符合题意的点M.综合可得,共有4个符合条件的点M.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2bAB的方程为a2+b2-2ax-2by=0,即2ax+2by=a2+b2,故B正确;分别把A(x1,y1),B(x2,y2)两点代入2ax+2by=a2+b2得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,故A正确;由圆的性质可知,线段AB与线段C1C2互相平分,∴x1+x2=a,y1+y2=b,故C正确,D错误.10.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.3√2+1D.8y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1距离最大,等于AC+r,圆心坐标为(-3,3),所以为√(-3)2+(3+1)2+1=6,当直线与圆有交点时,点P到直线的距离最小为0,所以点P到直线y=kx-1距离的范围为[0,6].11.在平面直角坐标系中,曲线C上任意点P与两个定点A(-2,0)和点B(2,0)连线的斜率之和等于2,则关于曲线C的结论正确的有()A.曲线C是轴对称图形B.曲线C上所有的点都在圆x2+y2=2外C.曲线C是中心对称图形D.曲线C上所有点的横坐标x满足|x|>2P(x,y),则k PA+k PB=2,即yx+2+yx-2=2(x≠±2),整理得x2-xy=4(x≠±2),所以曲线C 是中心对称图形,不是轴对称图形,故C 正确,A 错误;由x 2-xy=4>2=x 2+y 2,所以曲线C 上所有的点都在圆x 2+y 2=2外,故B 正确; 由x 2-xy=4可知,x ∈R 且x ≠0,x ≠±2,故D 错误. 12.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左右焦点,且△F 1PF 2的面积为3,则下列说法正确的是 ( )A.P 点纵坐标为3B.∠F 1PF 2>π2C.△F 1PF 2的周长为4(√2+1)D.△F 1PF 2的内切圆半径为32(√2-1)P 点坐标为(x ,y ),S=12×2c×|y|=12×4×|y|=3,得y=32或y=-32,故A 错误;椭圆中焦点三角形面积为S=b 2tan θ2(θ为焦点三角形的顶角),S=4tan θ2=3,得tan θ2=34,则θ2<π4,∠F 1PF 2<π2,故B 错误;C △F 1PF 2=2a+2c=4(√2+1),故C 正确;设△F 1PF 2的内切圆半径为R ,12R (4√2+4)=3,得R=32(√2-1),故D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.经过点P (1,4),且在两坐标轴上的截距相反的直线方程是 .4x 或y=x+3,分2种情况讨论:①直线经过原点,则直线l 的方程为y=4x ;②直线不经过原点,设直线方程为x-y=a ,把点P (1,4)代入可得1-4=a ,解得a=-3,即直线的方程为y=x+3.综上可得,直线的方程为y=4x 或y=x+3.14.若双曲线x 2m −y 2m -5=1的一个焦点到坐标原点的距离为3,则m 的值为 .或-2c=3,当双曲线的焦点在x 轴上时,m>5,c 2=m+m-5=9,所以m=7;当双曲线的焦点在y 轴上时,m<0,c 2=-m+5-m=9,所以m=-2.综上,m=7或m=-2.15.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,|AB|= .√3(x-1)163F (1,0),准线方程为x=-1,设C (-1,m ),B (a ,b ),∵FC ⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,∴(-2,m )=3(a-1,b )=(3a-3,3b ),则3a-3=-2,m=3b ,即a=13,此时b 2=4×13,得b=-√43=-2√33,即m=-2√3,则C (-1,-2√3),则AB 的斜率k=2√32=√3,则直线方程为y=√3(x-1),代入y 2=4x ,得3x 2-10x+3=0,得x 1+x 2=103,即|AB|=x 1+x 2+2=103+2=163.16.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为 ;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是 (结果用m 表示).2y+2=0 √2m 2+32,设点P 1(a ,b )与点P (1,0)关于直线AB 对称,则P 1在反射光线所在直线上,又由A (4,0),B (0,4),则直线AB 的方程为x+y=4,则有{ba -1=1,a+12+b2=4,解得{a =4,b =3,即P 1(4,3), 反射光线所在直线的斜率k=3-04-(-2)=12, 则其方程为y-0=12(x+2),即x-2y+2=0;设点M 1(a 0,b 0)与点M 关于直线AB 对称,点M 2与M 关于y 轴对称,易得M 2(-m ,0); 线段M 1M 2的长度就是光线所经过的路程,则有{b 0a 0-m=1,m+a2+b 02=4,解得{a 0=4,b 0=4-m ,即M 1(4,4-m ),又由M 2(-m ,0),则|M 1M 2|=√(4+m )2+(4-m )2=√2m 2+32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 三个顶点的坐标分别为A (2,4),B (0,-5),C (10,0),线段AC 的垂直平分线为l.(1)求直线l 的方程;(2)点P 在直线l 上运动,当|AP|+|BP|最小时,求此时点P 的坐标.直线AC 的斜率为k AC =4-02-10=-12,所以直线l 的斜率为k 1=2,直线AC 的中点为(6,2),所以直线l 的方程为y-2=2(x-6),即2x-y-10=0.(2)由(1)得点A 关于直线l 的对称点为点C ,所以直线BC 与直线l 的交点即为|AP|+|BP|最小的点.由B (0,-5),C (10,0)得直线BC 的方程为x10+y-5=1,即x-2y-10=0,联立方程{x -2y -10=0,2x -y -10=0,解得{x =103,y =-103,所以点P 的坐标为(103,-103). 18.(12分)已知直线l :ax-y-3a+1=0恒过定点P ,过点P 引圆C :(x-1)2+y 2=4的两条切线,设切点分别为A ,B.(1)求直线AB 的一般式方程;(2)求四边形PACB 的外接圆的标准方程.∵直线l :y-1=a (x-3).∴直线l 恒过定点P (3,1).由题意可知直线x=3是其中一条切线,且切点为A (3,0). 由圆的性质可知AB ⊥PC ,∵k PC =1-03-1=12,∴k AB =-2,所以直线AB 的方程为y=-2(x-3),即2x+y-6=0. (2)由题意知|PC|=√(3-1)2+(1-0)2=√5.∵PA ⊥AC ,PB ⊥BC ,所以四边形PACB 的外接圆是以PC 为直径的圆,PC 的中点坐标为(2,12),所以四边形PACB 的外接圆为(x-2)2+(y -12)2=54.19.(12分)已知F 1,F 2分别是双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,P 是双曲线上一点,F 2到左顶点的距离等于它到渐近线距离的2倍, (1)求双曲线的渐近线方程;(2)当∠F 1PF 2=60°时,△PF 1F 2的面积为48√3,求此双曲线的方程.因为双曲线的渐近线方程为bx ±ay=0,则点F 2到渐近线距离为√b 2+a 2=b (其中c 是双曲线的半焦距),所以由题意知c+a=2b.又因为a 2+b 2=c 2,解得b=43a ,故所求双曲线的渐近线方程是4x ±3y=0.(2)因为∠F 1PF 2=60°,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=|F 1F 2|2,即|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=4c 2. 又由双曲线的定义得||PF 1|-|PF 2||=2a ,平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,相减得|PF 1|·|PF 2|=4c 2-4a 2=4b 2.根据三角形的面积公式得S=12|PF 1|·|PF 2|sin60°=√34·4b 2=√3b 2=48√3,得b 2=48. 由(1)得a 2=916b 2=27,故所求双曲线方程是x 227−y 248=1.20.(12分)已知过抛物线x 2=2py (p>0)的焦点,斜率为√24的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.抛物线x 2=2py 的焦点为(0,p2),所以直线AB 的方程为y=√24x+p 2, 联立{y =√24x +p2,x 2=2py ,消去x ,得4y 2-5py+p 2=0,所以y 1+y 2=5p4,由抛物线定义得|AB|=y 1+y 2+p=9,即5p4+p=9,所以p=4.所以抛物线的方程为x 2=8y. (2)由p=4知,方程4y 2-5py+p 2=0, 可化为y 2-5y+4=0,解得y 1=1,y 2=4,故x 1=-2√2,x 2=4√2. 所以A (-2√2,1),B (4√2,4).则OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(-2√2,1)+λ(4√2,4)=(-2√2+4√2λ,1+4λ).因为C 为抛物线上一点,所以(-2√2+4√2λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.21.(12分)(2021全国乙,文20)已知抛物线C :y 2=2px (p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.在抛物线C 中,焦点F 到准线的距离为p ,故p=2,C 的方程为y 2=4x.(2)设点P (x 1,y 1),Q (x 2,y 2).又F (1,0),则PQ ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1),QF ⃗⃗⃗⃗⃗ =(1-x 2,-y 2). 因为PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,所以x 2-x 1=9(1-x 2),y 2-y 1=-9y 2, 得x 1=10x 2-9,y 1=10y 2.又因为点P 在抛物线C 上,所以y 12=4x 1,所以(10y 2)2=4(10x 2-9), 则点Q 的轨迹方程为y 2=25x-925. 易知直线OQ 的斜率存在.设直线OQ 的方程为y=kx ,当直线OQ 和曲线y 2=25x-925相切时,斜率取得最大值、最小值.由{y =kx ,y 2=25x -925,得k 2x 2=25x-925,即k 2x 2-25x+925=0,(*)当直线OQ 和曲线y 2=25x-925相切时,方程(*)的判别式Δ=0,即(-25)2-4k 2·925=0,解得k=±13,所以直线OQ 斜率的最大值为13. 22.(12分)如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①,②,③三个区域面积彼此相等.已知椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆x 2a 2+y 2b 2=1(a>b>0)面积为S 椭圆=πab(1)求椭圆的离心率的值;(2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M 生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M 的轨迹方程.建立如图平面直角坐标系.设外椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),∵内外椭圆有相同的离心率且共轴,可得内椭圆长轴为b ,设内椭圆短轴长为b',焦距长为c',得ca =c 'b ,c'=bca ,b'2=b 2-c'2=b 2-b 2c2a 2=b 2(a 2-c 2)a 2=b 4a 2.∴内椭圆的方程为y 2b 2+x 2b 4a 2=1.图中标记的①,②,③三个区域面积彼此相等,由对称性只需S 外=3S 内,即πab=3πb ·b 2a 得a 2=3b 2,即a 2=3(a 2-c 2),故e=√63.(2)同(1)建立如图平面直角坐标系,由于外椭圆长轴为6,∴a=3,又e=√63,∴c=√6,b 2=3. 则外椭圆方程为x 29+y 23=1.设点M (x 0,y 0),切线方程为y-y 0=k (x-x 0),代入椭圆方程得,(1+3k 2)x 2+6k (y 0-kx 0)x+3(y 0-kx 0)2-9=0.∴Δ=36k 2(y 0-kx 0)2-4(1+3k 2)[3(y 0-kx 0)2-9]=0.化简得(x 0-9)k 2-2x 0y 0k+y 02-3=0.∵两条切线互相垂直,∴k 1k 2=-1,即y 02-3x 02-9=-1,即x 02+y 02=12(x 0≠±3).当两切线与坐标轴垂直时,四点(3,±√3),(-3,±√3)也满足方程,∴轨迹方程为x 2+y 2=12.模块综合测验一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA ⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A.13 B.12 C.9 D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3,则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,若点Q (-1,-1),那么|PQ|的取值范围为( ) A.[√2,3√2] B.[√2,2√2] C.[2√2,3√2] D.[1,3√2]mx+ny-2m-2n=0,可化为m (x-2)+n (y-2)=0,故直线过定点M (2,2),坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,故∠OPM=90°,所以P 在以OM 为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2, 故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy,如图所示,设对应抛物线的标准方程为y2=2px,由题意知抛物线过点(10,10),得100=2p×10,得p=5,=2.5,即焦点坐标为(2.5,0),则p2则光源到反光镜顶点的距离是2.5cm.7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗ ||n |·|SA⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗ =√2x -√2z =0,m ·SB⃗⃗⃗⃗⃗ =√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33,∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c 2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4.又√5-4<2,√5+4<10,故A 正确,B 错误;过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b|a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P是椭圆C:x 26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为√5B.C的离心率为√306C.圆D在C的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x 26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ , 而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l的斜率k=.。

2025版新教材高中数学本册综合测试卷新人教B版选择性必修第一册

2025版新教材高中数学本册综合测试卷新人教B版选择性必修第一册

本册综合测试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知e 为直线l 的方向向量,m ,n 是平面α,β的法向量(α,β是不同平面),那么下列说法正确的个数为( )①e ·m =0⇔l ∥α;②m ⊥n ⇔α⊥β;③m ∥n ⇔α∥β;④e ∥m ⇔l ∥α. A .1B .2C .3D .42.已知等轴双曲线的中心在原点,它的一个焦点为F (0,22),则双曲线的方程是( ) A .y 28-x 28=1B .y 24-x 24=1C .x 28-y 28=1D .x 24-y 24=13.如图,在棱长均相等的四面体O ­ABC 中,点D 为AB 的中点,CE =12ED ,设OA →=a ,OB→=b ,OC →=c ,则OE →=( )A .16a +16b +13cB .13a +13b +13cC .16a +16b -13cD .16a +16b +23c 4.如图所示,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在其次、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .2B .3C .32D .625.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a ,b 应满意的关系式是( )A .a 2-2a -2b -3=0B .a 2+2a +2b +5=0C .a 2+2b 2+2a +2b +1=0D .3a 2+2b 2+2a +3b +1=06.直线x +y +2=0分别与x 轴、y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6]B .[4,8]C .[2,32]D .[22,32]7.已知抛物线y 2=4x ,F 为其焦点,抛物线上两点A ,B 满意|AF |+|BF |=8,则线段AB 的中点到y 轴的距离等于( )A .2B .3C .4D .68.设椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个公共点,则cos∠F 1PF 2的值等于( )A .13B .14C .19D .35二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,12D .-3,210.下列四个命题中真命题有( ) A .直线y =x -2在y 轴上的截距为-2B .经过定点A (0,2)的直线都可以用方程y =kx +2表示C .直线6x +my +14=0(m ∈R )必过定点(-73,0)D .已知直线3x +4y +9=0与直线6x +my +14=0平行,则平行线间的距离是111.已知圆M :(x -a )2+(y -a -1)2=1(a ∈R ),则( ) A .圆M 可能过原点B .圆心M 在直线x -y +1=0上C .圆M 与直线x -y -1=0相切D .圆M 被直线x -y =0截得的弦长等于 212.已知椭圆C :x 24+y 28=1内一点M (1,2),直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是( )A .椭圆的焦点坐标为(2,0),(-2,0)B .椭圆C 的长轴长为4 2 C .椭圆的离心率为e =22D .直线l 的方程为x +y -3=0 三、填空题:本题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上. 13.已知u =(3,a ,b )(a ,b ∈R )是直线l 的方向向量,n =(1,2,3)是平面α的法向量,假如l ⊥α,则a +b =________.14.已知曲线C :mx 2+ny 2=1(其中m ,n 为非零常数),若m +n =0,则曲线C 的离心率e 为________.15.若圆x 2+y 2-4x -2y +1=0上有且仅有三个点到直线ax -3y +3=0(a ∈R )的距离为1,则a =________.16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1且垂直于x轴的直线与该双曲线的左支交于A ,B 两点,AF 2,BF 2分别交y 轴于P ,Q 两点,若△PQF 2的周长为16,则b 2a +1的最大值为________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知圆C :x 2+y 2=r 2(r >0),若直线l 1:x -y +2=0与圆C 相交于A ,B 两点,且|AB |=2 2.(1)求圆C 的方程;(2)求过点P (2,-3)且与圆C 相切的直线l 2的方程.18.(12分)已知抛物线C :x 2=2py (0<p <2)的焦点为F ,M (2,y 0)是C 上的一点,且|MF |=52.(1)求C 的方程;(2)直线l 交C 于A ,B 两点,k OA ·k OB =-2且△OAB 的面积为16,求l 的方程.19.(12分)已知四棱锥S ­ABCD 的底面ABCD 是正方形,SA ⊥底面ABCD ,E 是SC 上的随意一点.(1)求证:平面EBD ⊥平面SAC ;(2)设SA =4,AB =2,求点A 到平面SBD 的距离; (3)当SA AB的值为多少时,二面角B ­SC ­D 的大小为120°?20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2分别为椭圆C 的左、右焦点,M 为椭圆C 上一点,△MF 1F 2的周长为4+2 3.(1)求椭圆C 的方程;(2)若∠F 1MF 2=60°,求△MF 1F 2的面积;(3)设P 为圆x 2+y 2=5上随意一点,过P 作椭圆C 的两条切线,切点分别为A ,B ,推断PA →·PB →是否为定值?若是,求出定值;若不是,说明理由.21.(12分)如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E ­BD ­F 的余弦值为13,求线段CF 的长.22.(12分)在①离心率e =12,②椭圆C 过点(1,32),③△PF 1F 2面积的最大值为3,这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1且斜率为k 的直线l 交椭圆于P ,Q 两点,已知椭圆C 的短轴长为23,________.(1)求椭圆C 的方程;(2)若线段PQ 的中垂线与x 轴交于点N ,求证:|PQ ||NF 1|为定值.本册综合测试卷1.答案:B 解析:因为e 为直线l 的方向向量,m ,n 是平面α,β的法向量(α,β是不同平面), 若e ·m =0,则e ⊥m ,由于不确定直线l 是否在平面α内,当直线l 不在平面α内,则l ∥α,故①错误;若m ⊥n ,则α⊥β,故②正确; 若m ∥n ,则α∥β,故③正确;若e ∥m ,即e 也是平面α的法向量,所以l ⊥α,故④错误.故选B. 2.答案:B解析:因为所求双曲线为等轴双曲线,且焦点在y 轴上,故设双曲线的方程为y 2-x2=λ>0,因为双曲线的一个焦点坐标为F (0,22),所以c =22,则2λ=c 2=8,即λ=4,所以双曲线的方程为y 24-x 24=1.故选B.3.答案:D解析:∵CE =12ED ,∴CE →=13CD →=13(CA →+AD →)=13⎝ ⎛⎭⎪⎫CA →+12AB →=13CA →+16AB →,∴OE →=OC →+CE →=OC →+13CA →+16AB →=OC →+13()OA →-OC →+16()OB →-OA → =16OA →+16OB →+23OC →=16a +16b +23c . 4.答案:D解析:由椭圆定义可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形,所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4,所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8,所以|AF 2|-|AF 1|=22,因此对于双曲线C 2有a =2,c =3,所以C 2的离心率e =c a =62.故选D.5.答案:B解析:由题意知,相交弦过已知圆圆心,相交弦所在直线方程为2(1+a )x +2(1+b )y -a 2-1=0,而点(-1,-1)在此直线上,故有a 2+2a +2b +5=0.故选B.6.答案:A解析:设圆心到直线AB 的距离d =|2+0+2|2=2 2.点P 到直线AB 的距离为d ′.易知d -r ≤d ′≤d +r ,即2≤d ′≤3 2.又AB =22,∴S △ABP =12·|AB |·d ′=2d ′,∴2≤S △ABP ≤6.故选A.7.答案:B解析:抛物线y 2=4x 的焦点F (1,0),准线方程x =-1,设A (x 1,y 1),B (x 2,y 2),∴|AF |+|BF |=x 1+1+x 2+1=8,解得x 1+x 2=6,∴线段AB 的中点横坐标为3,∴线段AB 的中点到y 轴的距离为3.故选B.8.答案:A解析:由题意知,F 1(-2,0),F 2(2,0),解方程组⎩⎪⎨⎪⎧x 26+y 22=1,x 23-y 2=1,得⎩⎪⎨⎪⎧x 2=92,y 2=12.取P 点坐标为(322,22),PF 1→=(-2-322,-22),PF 2→=(2-322,-22), cos∠F 1PF 2=PF 1→·PF 2→|PF 1→||PF 2→|=(-2-322)×(2-322)+12(-2-322)2+12(2-322)2+12=13.故选A.9.答案:AC解析:由a ∥b ,可设b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),得⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得μ=12,λ=-3或2.故选AC.10.答案:AC解析:对于直线方程y =x -2,令x =0解得y =-2,故该直线在y 轴上的截距为-2,故A 正确;经过点A (0,2)的直线若斜率存在,可用y =kx +2表示;若斜率不存在,则无法用y =kx +2表示,故B 错误;当m ≠0时,6x +my +14=0可整理为y =-6m (x +73),恒过定点(-73,0);当m =0时,6x +my +14=0即为x =-73,过点(-73,0).故直线6x +my +14=0(m ∈R )必过定点(-73,0),故C 正确;直线3x +4y +9=0与直线6x +my +14=0平行,则m =8,此时6x +my +14=0即6x +8y +14=0,也即3x +4y +7=0,则两平行线间的距离d =|9-7|32+42=25,故D 错误.故选AC. 11.答案:ABD解析:圆M :(x -a )2+(y -a -1)2=1(a ∈R ),圆心为(a ,a +1),半径为1,若圆M 过原点,则(0-a )2+(0-a -1)2=1,解得a =0或a =-1,故A 正确;因为a -(a +1)+1=0,所以圆心在直线x -y +1=0上,故B 正确;圆心到直线x -y -1=0的距离d =|a -(a +1)-1|2=2>1,故圆M 与直线x -y -1=0相离,故C 错误;圆心到直线x -y=0的距离d 1=|a -(a +1)|2=22,所以圆M 被直线x -y =0截得的弦长l =212-(22)2=2,故D 正确.故选ABD. 12.答案:BCD解析:由C :x 24+y 28=1,得椭圆焦点在y 轴上,且a 2=8,b 2=4,则a =22,b =2,c=a 2-b 2=2.∴椭圆的焦点坐标为(0,2),(0,-2),长轴长为2a =42,离心率e =c a=222=22,故A 错误,BC 正确;设A (x 1,y 1),B (x 2,y 2),则x 21 4+y 21 8=1,x 22 4+y 22 8=1,两式作差可得(x 1-x 2)(x 1+x 2)4=-(y 1-y 2)(y 1+y 2)8,∵M (1,2)为线段AB 的中点,∴x 1+x 2=2,y 1+y 2=4,则y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×24=-1,∴直线l 的方程为y -2=-1×(x -1),即x +y -3=0,故D 正确.故选BCD.13.答案:15解析:∵l ⊥α,∴n ∥u ,∴31=a 2=b3,解得a =6,b =9,∴a +b =15. 14.答案: 2解析:∵曲线C :mx 2+ny 2=1,m +n =0,∴曲线C :mx 2-my 2=1(其中m ,n 为非零常数),即曲线为等轴双曲线,∴e = 2. 15.答案:± 3解析:圆x 2+y 2-4x -2y +1=0化为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,因为圆上有且仅有三个点到直线ax -3y +3=0(a ∈R )的距离是1,所以圆心到直线ax -3y+3=0(a ∈R )的距离是圆的半径的一半,即|2a -3+3|a 2+9=1,解得a =± 3.16.答案:4 解析:由△PQF 2的周长为16,得△ABF 2的周长为32.因为AB 是双曲线的通径,所以|AB |=2b 2a .因为|AF 2|+|BF 2|+|AB |=32,|AF 2|+|BF 2|-|AB |=4a ,可得2|AB |=4b2a=32-4a ,所以b 2=a (8-a ),可得a ∈(0,8),则b2a +1=8a -a 2a +1=-(a +1+9a +1-10)≤4,当且仅当a +1=9a +1,即a =2时等号成立.即b2a +1的最大值为4.17.解析:(1)设圆心到直线l 1的距离为d ,则r 2-d 2=(|AB |2)2,即d 2=r 2-2,又d =21+1=2,所以r 2=4,故圆C 的方程为x 2+y 2=4.(2)当直线l 2斜率不存在时,l 2的方程为x =2,恰好与圆相切,满意题意; 当直线l 2斜率存在时,设l 2的方程为y +3=k (x -2),即kx -y -2k -3=0,则圆心到直线l 2的距离为|-2k -3|k 2+1=2,解得k =-512,此时直线l 2的方程为y +3=-512(x -2),即5x +12y +26=0, 综上,直线l 2的方程为5x +12y +26=0或x =2.18.解析:(1)将M (2,y 0)代入x 2=2py 得y 0=2p ,又|MF |=y 0-(-p 2)=2p +p 2=52,∴p=1或p =4(舍),∴抛物线的方程为x 2=2y .(2)直l 的斜率明显存在,设直线l :y =kx +b ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +b x 2=2y 得x 2-2kx -2b =0, ∴x 1+x 2=2k ,x 1x 2=-2b .由k OA k OB =y 1x 1·y 2x 2=x 1x 24=-b2=-2,∴b =4.∴直线方程为y =kx +4,所以直线恒过定点(0,4),原点O 到直线l 的距离d =41+k2,∴S △OAB =12×d |AB |=12×41+k2·1+k 2·(x 1+x 2)2-4x 1x 2=21+k21+k24k 2+32=24k 2+32=16,∴4k 2+32=64,解得k =±22, 所以直线方程为:y =±22x +4.19.解析:(1)证明:由ABCD 是正方形,故AC ⊥BD , 因为SA ⊥平面ABCD ,BD ⊂平面ABCD ,则SA ⊥BD , 又SA ∩AC =A ,SA ,AC ⊂平面SAC ,故BD ⊥平面SAC , 因为BD ⊂平面EBD ,所以平面EBD ⊥平面SAC .(2)由题设V S ­ABD =V A ­SBD ,而V S ­ABD =13×SA ×S △ABD =13×4×12×2×2=83,由AB ,AD ⊂平面ABCD ,易知:SA ⊥AB ,SA ⊥AD ,故SB =SD =25,又BD =22,所以S △SBD =12×BD ×SB 2-(BD2)2=6,若A 到平面SBD 的距离为h ,则13h ×6=83,可得h =43,即A 到平面SBD 的距离为43. (3)构建以A 为原点,AB →,AD →,AS →为x ,y ,z 轴正方向的空间直角坐标系,如图所示:若AB =a >0,SAAB=λ>0时,则B (a ,0,0),C (a ,a ,0),D (0,a ,0),S (0,0,λa ), 所以SC →=(a ,a ,-λa ),SB →=(a ,0,-λa ),SD →=(0,a ,-λa ), 令m =(x ,y ,z )为平面SBC 的一个法向量,则⎩⎪⎨⎪⎧m ·SC →=ax +ay -λaz =0m ·SB →=ax -λaz =0,令x =λ,即m =(λ,0,1),令n =(α,β,γ)为平面SDC 的一个法向量,则⎩⎪⎨⎪⎧n ·SC →=aα+aβ-λaγ=0n ·SD →=aβ-λaγ=0,令β=λ,即n =(0,λ,1),所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=11+λ2=|cos120°|=12,可得λ=±1.因为λ>0,所以λ=1,所以当SA AB=1时,二面角B ­SC ­D 的大小为120°.20.解析:(1)依题意⎩⎪⎨⎪⎧c a =322a +2c =4+23a 2=b 2+c2,解得a =2,b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)依据椭圆的定义可知|MF 1|+|MF 2|=2a =4,|MF 1|2+|MF 2|2+2|MF 1|·|MF 2|=16 ①,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|·cos60°,即12=|MF 1|2+|MF 2|2-|MF 1|·|MF 2| ②,由①②得|MF 1|·|MF 2|=43,所以=12·|MF 1|·|MF 2|·sin60°=12×43×32=33. (3)圆的方程为x 2+y 2=5,椭圆C 的方程为x 24+y 2=1,留意到(2,1),(2,-1),(-2,1),(-2,-1)是圆上的点,过上述四个点中的随意一个作椭圆C 的切线,则两条切线垂直,即PA →·PB →=0.当P (x 0,y 0)是圆x 2+y 2=5上除去上述四个点外的随意一点时, 切线PA 和切线PB 的斜率存在且不为零, 设切线方程为y -y 0=k (x -x 0), 由⎩⎪⎨⎪⎧y -y 0=k (x -x 0)x 24+y 2=1消去y 并化简得(1+4k 2)x 2+8k (y 0-kx 0)x +4[(y 0-kx 0)2-1]=0,令Δ=64k 2(y 0-kx 0)2-4×(1+4k 2)×4[(y 0-kx 0)2-1]=0,整理得(x 20 -4)k 2-2x 0y 0k +y 20 -1=0,所以k PA ·k PB =y 20 -1x 20 -4,由于x 20 +y 20 =5,所以k PA ·k PB =y 20 -1x 20 -4=-1,即PA →·PB →=0.综上所述,PA →·PB →是定值,且定值为0.21.解析:(1)证明:依题意,以A 为坐标原点,分别以AB →,AD →,AE →的方向为x 轴,y 轴,z 轴正方向建立如图所示的空间直角坐标系,可得A (0,0,0),B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2),设CF =h (h >0),则F (1,2,h ).依题意知,AB →=(1,0,0)是平面ADE 的法向量,又BF →=(0,2,h ),可得BF →·AB →=0, 因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧BD →·n =0,BE →·n =0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1).因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49,所以直线CE 与平面BDE 所成角的正弦值为49.(3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧BD →·m =0,BF →·m =0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0,不妨令y 1=1,可得m =(1,1,-2h).由题意得|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪⎪⎪4-2h 32+4h 2=13,解得h =87.经检验,符合题意,所以线段CF 的长为87.22.解析:(1)选①,由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,2b =23,c a =12,解得⎩⎨⎧a =2,,b =3,c =1,所以所求椭圆C 的方程为x 24+y 23=1.选②,由题意得⎩⎪⎨⎪⎧1a 2+94b 2=1,2b =23,解得⎩⎨⎧a =2,b =3,所以所求椭圆C 的方程为x 24+y 23=1.选③,由题意得⎩⎪⎨⎪⎧12×2c ×b =3,2b =23,解得⎩⎨⎧a =2,b =3,所以所求椭圆C 的方程为x 24+y 23=1. (2)证明:(ⅰ)当k =0时,|PQ |=2a =4,|NF 1|=c =1,所以|PQ ||NF 1|=2a c=4. (ⅱ)当k ≠0时,由题意可得,F 1(-1,0).设直线PF 1的方程为y =k (x +1),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,明显Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, 所以|PQ |=1+k 2(x 1+x 2)2-4x 1x 2=1+k 2·(-8k 23+4k 2)2-4·4k 2-123+4k 2=12+12k23+4k2, 所以y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =-8k 33+4k 2+2k =6k 3+4k 2, 所以线段PQ 的中点M (-4k 23+4k 2,3k 3+4k2), 则线段PQ 的中垂线方程为y -3k 3+4k 2=-1k (x +4k 23+4k2). 令y =0,可得x =-k 23+4k 2,即N (-k 23+4k 2,0),又F 1(-1,0), 所以|NF 1|=-k 23+4k 2+1=3k 2+33+4k 2,所以|PQ ||NF 1|=12+12k23+4k 23k 2+33+4k 2=4,综上|PQ ||NF 1|=4.。

(人教版B版最新)高中数学必修第一册 第一章综合测试01-答案

(人教版B版最新)高中数学必修第一册 第一章综合测试01-答案

第一单元测试答案解析一、1.【答案】A【解析】由题意得uA {0,4}= ,又{2,4}B =,所以(){0,2,4}uA B = ,故选A .2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=.3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性).4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭, 又0a ≠∵,0a b +=∴,即a b =-,1b a=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”.7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确.又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞ .故选B . 9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅ ,1m ∴-<,故选D .10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =- ,[1,0)A B =- ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃ ,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分【解析】由已知得S A B ⊆ ,两边取补集,有()S S S A B ⊇ ,即S A B ⊇ ,所以S x B x A ∈⇒∈ ,反之,不一定成立,故x ∈A 是S x B ∈ 的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞ .故2a =-. 16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或 ,A B =∅ ,1114a a ->⎧⎨+<⎩∴,23a ∴<<. 三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x = ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩ 此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在;当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩此时13a < . 综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}- .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=,显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a,||1a ∴ . “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点, 2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<.20.【答案】A B A = ∵,B A ⊆∴,又A B =∅ ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得m ∴实数m的取值范围是|m m ⎧⎪⎨⎪⎩⎭21.【答案】{}2|320{|12}B x x x x x =∈-+=R , p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩ 解得22a -< . 22.【答案】由28200x x --≤,得210x - , 所以{|210P x x =-≤≤.由|1|x m -≤,得11m x m -+ .所以{|11}S x m x m =-+≤≤.(1)要使()P S P ⊆ ,则S P ⊆①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩解得03m .综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =, 则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.。

高中数学(人教B版必修1)本册综合测试题(A)

高中数学(人教B版必修1)本册综合测试题(A)

高中数学学习材料 (灿若寒星 精心整理制作)本册综合测试题(A)(时间:120分钟 满分:150分)一、(本大题共12个小题,每小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是正确的)1.(2013~2014学年度吉林长春外国语学校高一期中测试)已知集合A ={-2,-1,0,1,2},B ={-3,-1,0,2},则A ∩B =( )A .{-1,0,2}B .{-3,-2,-1,0,1,2}C .{0,2}D .{x |-3≤x ≤2}[答案] A[解析] A ∩B ={-2,-1,0,1,2}∩{-3,-1,0,2}={-1,0,2}.2.(2013~2014学年度江西吉安一中高一期中测试)已知集合A ={x |y =lg x },B ={x |x <1},则A ∪B =( )A .RB .{x |0<x <1}C .∅D .{x |x >1}[答案] A[解析] ∵A ={x |y =lg x }={x |x >0},∴A ∪B =R . 3.函数f (x )=3x 21-x +3x +1的定义域是( )A .(-13,+∞)B .(-13,1)C .[-13,1)D .[0,1)[答案] C[解析] 要使函数有意义,应满足⎩⎪⎨⎪⎧1-x >03x +1≥0,∴-13≤x <1,故选C.4.设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x ∈Q 0,x ∈∁R Q ,则f [g (π)]的值为( ) A .1 B .0 C .-1 D .π[答案] B[解析] g (π)=0,∴f [g (π)]=f (0)=0.5.设(x ,y )在映射f 下的象是(2x +y ,x -2y ),则在f 下,象(2,1)的原象是( ) A .(12,32)B .(1,0)C .(1,2)D .(3,2)[答案] B[解析] 由⎩⎪⎨⎪⎧ 2x +y =2x -2y =1,得⎩⎪⎨⎪⎧x =1y =0,故选B.6.用二分法求方程x -2lg 1x=3的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)[答案] C[解析] 本题考查用二分法求解函数零点所在区间.设f (x )=x -2lg1x-3=x +lg x -3,因为f (2)·f (3)=(lg2-1)×lg3<0,且函数图象在(2,3)上连续,所以可以取的一个区间是(2,3),故选C.7.函数y =(12)x 的反函数的图象为( )[答案] D[解析] 函数y =(12)x 的反函数为y =log 12x ,故选D.8.若奇函数f (x )在[1,3]上为增函数且有最小值0,则它在[-3,-1]上( ) A .是减函数,有最大值0 B .是减函数,有最小值0 C .是增函数,有最大值0 D .是增函数,有最小值0 [答案] C[解析] 奇函数在对称区间上单调性相同,且图象关于原点对称,故选C. 9.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( ) A .f (-72)<f (-3)<f (4)B .f (-3)<f (-72)<f (4)C .f (4)<f (-3)<f (-72)D .f (4)<f (-72)<f (-3)[答案] D[解析] ∵f (x )在(-∞,-2]上是增函数, 又-4<-72<-3,∴f (4)=f (-4)<f (-72)<f (-3).10.设函数y =x 3与y =22-x 的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 令f (x )=x 3-22-x ,由题意知x 0是函数f (x )的零点,又f (1)=1-2=-1<0,f (2)=8-1=7>0,故选B.11.设a =60.5,b =0.56,c =log 60.5,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >b >a D .a >c >b[答案] A[解析] a =60.5>60=1,b =0.56<0,50=1, 又0.56>0,∴0<0.56<1, c =log 60.5<log 61=0,∴a >b >c .12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1b ,a -b >1,设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1][答案] B[解析] 依题意可得f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2作出其示意图如图所示.由数形结合知,实数c 需有1<c ≤2或-2<c ≤-1.二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.已知函数f (x +1)=3x +4,则f (x )的解析式为________________. [答案] f (x )=3x +1[解析] 设x +1=t ,∴x =t -1, ∴f (t )=3(t -1)+4=3t +1,∴f (x )=3x +1. 14.3log 925+log 2-1(2+1)的值为__________.[答案] 4[解析] 3 log 925+log2-1(2+1)=3 log 35+log2-1(2-1)-1=5-1=4.15.定义域为R 的函数y =f (x )的值域是[a ,b ],则函数y =f (x +a )的值域是________. [答案] [a ,b ][解析] 函数f (x +a )的图象只是由f (x )的图象向左或向右平移得到,函数值y 没有变化. 16.对于定义域在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若函数f (x )=x 2+ax +1没有不动点,则实数a 的取值范围是__________.[答案] (-1,3)[解析] 由题意,得方程x 2+ax +1=x ,即 x 2+(a -1)x +1=0无实根, ∴Δ=(a -1)2-4=a 2-2a -3<0, ∴-1<a <3.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2013~2014学年度河南信阳市高一期末测试)已知函数f (x )=log 2(x -1)的定义域为集合A ,函数g (x )=(12)x (-1≤x ≤0)的值域为集合B .(1)求A ∩B ;(2)若C ={x |a ≤x ≤2a -1},且C ⊆B ,求实数a 的取值范围. [解析] (1)要使函数f (x )有意义,应满足log 2(x -1)≥0, ∴x -1≥1,∴x ≥2. ∴A ={x |x ≥2}.∴g (x )=(12)x (-1≤x ≤0)是减函数,∴当x =-1时,g (x )取最大值2, 当x =0时,g (x )取最小值1, ∴B ={x |1≤x ≤2},∴A ∩B ={2}. (2)∵C ⊆B ,①当C =∅时满足题意,即a >2a -1,解得a <1;②当C ≠∅时,则有⎩⎪⎨⎪⎧a ≥12a -1≤2,解得1≤a ≤32.综上实数a 的取值范围是(-∞,32].18.(本小题满分12分)设a ,b ,c 为正数,且满足a 2+b 2=c 2. (1)求证:log 2(1+b +c a )+log 2(1+a -cb)=1;(2)若log 4(1+b +c a )=1,log 8(a +b -c )=23,求a ,b ,c 的值.[解析] (1)log 2(1+b +c a )+log 2(1+a -cb )=log 2a +b +c a +log 2a +b -cb=log 2(a +b )2-c 2ab=log 2(a 2+b 2-c 2)+2ab ab=log 22=1.(2)由log 4(1+b +c a )=1,log 8(a +b +c )=23,得1+b +ca=4,a +b -c =4,又a 2+b 2=c 2,整理可得⎩⎪⎨⎪⎧b +c =3a a +b -c =4a 2+b 2=c 2,解得a =6,b =8,c =10.19.(本小题满分12分)2009年某个体企业受金融危机和国家政策调整的影响,经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来的累积利润S (万元)与时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系,0≤t ≤12).请根据图象提供的信息解答下列问题:(1)求累积利润S (万元)与时间t (月)之间的函数关系式; (2)截止到第几月末公司累积利润可达到9万元? (3)该企业第四季度所获利润是多少? [解析]设S (t )=at 2+bt +c , 将点(0,0),(6,0),(3,-3)代入得 ⎩⎪⎨⎪⎧36a +6b =09a +3b =-3c =0,解得⎩⎪⎨⎪⎧a =13b =-2c =0.∴函数关系式S (t )=13t 2-2t (0≤t ≤12).(2)令S =9即13t 2-2t =9,解得t =9或t =-3(舍),∴截止到9月末公司累积利润可达到9万元. (3)S (12)=13×144-2×12=24(万元),S (9)=13×81-2×9=9(万元),∴第四季度获利S (12)-S (9)=24-9=15(万元). 答:第四季度所获利润为15万元.20.(本小题满分12分)若关于x 的方程x 2+mx +m -1=0有一个正根和一个负根,且负根的绝对值较大,求实数m 的取值范围.[解析] 根据题意,画出f (x )=x 2+mx +m -1的图象,如图所示.图象的对称轴为直线x =-m2.因为方程x 2+mx +m -1=0有一个正根和一个负根, 则函数f (x )有两个零点x 1,x 2, 由题意不妨设x 1>0,x 2<0,且|x 1|<|x 2|. 由题意,有⎩⎪⎨⎪⎧f (0)<0-m 2<0,故⎩⎪⎨⎪⎧m -1<0m >0.∴ 0<m <1.即所求的取值范围为(0,1).21.(本小题满分12分)已知定义在R 上的函数f (x )满足f (log 2x )=x +ax ,a 为常数.(1)求函数f (x )的表达式; (2)如果f (x )为偶函数,求a 的值;(3)如果f (x )为偶函数,用函数单调性的定义讨论f (x )的单调性. [解析] (1)令log 2x =t ,则x =2t . ∴f (t )=2t +a2t .∴f (x )=2x +a2x (x ∈R ).(2)由f (-x )=f (x ),则2-x +a 2-x =2x+a 2x , ∴(2x -2-x )(1-a )=0对x ∈R 均成立. ∴1-a =0,即a =1. (3)当a =1时,f (x )=2x +12x ,设0≤x 1<x 2,则 f (x 1)-f (x 2)=2x 1+12x 1-(2 x2+12x 2) =(2 x 1-2 x 2)(1-12 x 1+x 2),∵2 x 1-2 x 2<0,1-12 x 1+x 2>0,∴f (x 1)-f (x 2)<0.即f (x 1)<f (x 2).因此f (x )在区间[0,+∞)上是增函数. 同理当x 1<x 2<0时, f (x 1)-f (x 2)>0,∴f (x )在区间(-∞,0)上是减函数.22.(本小题满分14分)已知函数f (x )=x 2+ax +3,g (x )=(6+a )·2x -1.(1)若f (1)=f (3),求实数a 的值;(2)在(1)的条件下,判断函数F (x )=21+g (x )的单调性,并给出证明;(3)当x ∈[-2,2]时,f (x )≥a (a ∉(-4,4))恒成立,求实数a 的最小值. [解析] (1)∵f (1)=f (3),∴函数f (x )的图象的对称轴方程为x =2, 即-a2=2,故a =-4.(2)由(1)知,g (x )=(6-4)·2x -1=2x ,F (x )=21+2x(x ∈R )函数F (x )在R 上是减函数 设x 1,x 2∈R ,且x 1<x 2. ∴Δx =x 2-x 1>0,Δy =F (x 2)-F (x 1)=21+2x 2-21+2x 1 =2(2 x 1+1-2 x 2-1)(1+2 x 1)(1+2 x 2)=2(2 x 1-2 x 2)(1+2 x 1)(1+2 x 2). 根据指数函数性质及x 1<x 2,得2 x 1-2 x 2<0, 由上式得Δy <0,所以F (x )在R 上是减函数.(3)f (x )=x 2+ax +3=(x +a 2)2+3-a 24,x ∈[-2,2],又a ∉(-4,4),故-a2∉(-2,2).①当-a2≥2,即a ≤-4时,f (x )在[-2,2]上单调递减,f (x )min =f (2)=7+2a ,故7+2a ≥a ,即a ≥-7. 所以-7≤a ≤-4.②当-a2≤-2,即a ≥4时,f (x )在[-2,2]上单调递增,f (x )min =f (-2)=7-2a ,故7-2a ≥a ,即a ≤73,这与a ≥4矛盾,故此情形不存在. 因此,实数a 的最小值为-7.。

2024新教材高中数学本册综合测评新人教B版选择性必修第一册

2024新教材高中数学本册综合测评新人教B版选择性必修第一册
本册综合测评
时间:120 分钟
满分:150 分
一、单项选择题(本题共 8 小题,每小题 5 分,共 40 分.在每小题给出
的四个选项中,只有一项是符合题目要求的)
1.若向量 a=(1,x,2),b=(2,-1,2),a,b 夹角的余弦值为89,则实
数 x 的值为( )
A.2
B.-2
C.-2 或525
32 B. 2 D.3 2
答案
解析 双曲线x42-y22=1 的右焦点坐标为( 6,0),一条渐近线的方程为 y= 22x,不妨设点 P 在第一象限,由于|PO|=|PF|,则点 P 的横坐标为 26, 纵坐标为 22× 26= 23,即△PFO 的底边长为 6,高为 23,所以它的面积 为12× 6× 23=342.故选 A.
解析
11.已知圆 M 与直线 x+y+2=0 相切于点 A(0,-2),圆 M 被 x 轴所 截得的弦长为 2,则下列结论正确的是( )
A.圆 M 的圆心在定直线 x-y-2=0 上 B.圆 M 的面积的最大值为 50π C.圆 M 的半径的最小值为 1 D.满足条件的所有圆 M 的半径之积为 10
∴∠F1BF2=90°.
∴OF2=OB,
∴∠OBF2=∠OF2B.
又∠F1OA=∠BOF2,∠F1OA=∠OF2B,
∴∠BOF2=∠OF2B=∠OBF2,
解析
∴△OBF2 为等边三角形. 如图 1 所示,不妨设 B 的坐标为2c,- 23c. ∵点 B 在直线 y=-bax 上,∴ba= 3, ∴渐近线方程为 y=± 3x, 离心率 e=ac= 1+ba2=2.
D.2 或-525
解析 cos〈a,b〉=|aa|·|bb|=3×6-5+x x2=89,解得 x=-2 或 x=525.故选

(人教版B版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)

(人教版B版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)

(人教版B 版2017课标)高中数学必修第一册 全册综合测试卷一(附答案)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B =U ð( ) A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是( ) A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( )A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且厔,则N 中元素的个数为( ) A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+„的否定是( ) A .32,10x x x ∃∈-+R „B .32,10x x x ∃∈-+R …C .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是( ) A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =…,则M N =I ( ) A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞U9.设集合{|0}M x x m =-„,{}2|(1)1,N y y x x ==--∈R .若M N =∅I ,则实数m 的取值范围是( ) A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-UC .(2,1)[0,1]--UD .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为( )A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是( ) A .01a 剟B .1a <C .1a „D .01a <„或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ð,则x A ∈是x sB ∈ð的条件是__________. 15.关于x 的不等式2043x ax x +++>的解集为(3,1)(2,)--+∞U 的充要条件是__________. 16.已知集合{|||1}A x x a =-„,{}2|540B x x x =-+…,若A B =∅I ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<. (1)当2a =时,求A B ⋂; (2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B =I ,且A B A =U ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-„. (1)若()P S P ⊆U ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、 1.【答案】A【解析】由题意得uA {0,4}=ð,又{2,4}B =,所以(){0,2,4}uA B =U ð,故选A . 2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=. 3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性). 4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-,1ba=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”. 7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确. 又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞I .故选B . 9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅I ,1m ∴-<,故选D . 10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =-U ,[1,0)A B =-I ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃U I ð,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、 13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分【解析】由已知得S A B ⊆ð,两边取补集,有()S S S A B ⊇痧?,即S A B ⊇ð,所以S x B x A ∈⇒∈ð,反之,不一定成立,故x ∈A 是S x B ∈ð的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞U .故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或剠,A B =∅Q I ,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x =I ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩…„此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在; 当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩…„此时13a <„.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}-U .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴ 5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=, 显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a„,||1a ∴…. “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<. 20.【答案】A B A =U ∵,B A ⊆∴, 又A B =∅I ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得m „∴实数m的取值范围是|m m ⎧⎪⎨⎪⎪⎩⎭„21.【答案】{}2|320{|12}B x x x x x =∈-+=R 剟?,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩…剟……解得22a -<„. 22.【答案】由28200x x --≤,得210x -剟,所以{|210P x x =-≤≤. 由|1|x m -≤,得11m x m -+剟.所以{|11}S x m x m =-+≤≤. (1)要使()P S P ⊆U ,则S P ⊆ ①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩……„解得03m 剟.综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若23A a ab =+,24B ab b =-,则A ,B 的大小关系是( ) A .A B „B .A B …C .A B <或A B >D .A B >2.下列结论正确的是( ) A .若ac bc >,则a b > B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D .a b <3.下列变形是根据等式的性质的是( ) A .由213x -=得24x = B .由2x x =得1x = C .由29x =得x=3 D .由213x x -=得51x =-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <5.已知||a b a <<,则( )A .11a b> B .1ab <C .1ab> D .22a b >6.若41x -<<,则222()1x x f x x -+=-( ) A .有最小值2B .有最大值2C .有最小值2-D .有最大值2-7.已知0a >,0b >,2a b +=,则14y a b=+的最小值是( ) A .72B .4C .92D .58.已知1x ,2x 是关于x 的方程230x bx +-=的两根,且满足121234x x x x +-=,那么b 的值为( ) A .5B .5-C .4D .4-9.不等式22120x ax a --<(其中0a <)的解集为( ) A .(3,4)a a -B .(4,3)a a -C .(3,4)-D .(2,6)a a10.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数()*x x ∈N 为二次函数的关系(如图),则每辆客车营运_____年,营运的年平均利润最大( )A .3B .4C .5D .611.若正数x ,y 满足35x y xy +=,则34x y +的最小值是( ) A .245B .285C .5D .612.已知a b >,二次三项式220ax x b ++…对于一切实数x 恒成立,又0x ∃∈R ,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.当1x >时,不等式11x a x +-≥恒成立,则实数a 的取值范围为__________. 14.若0a b <<,则1a b -与1a的大小关系为__________.15.若正数a ,b 满足3ab a b =++,则ab 的取值范围是__________.16.已知关于x 的一元二次方程2320x x m -+=有两个不相等的实数根1x 、2x .若1226x x -=,则实数m 的值为__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式(组):(1)2(2)01x x x +⎧⎨⎩>,<;(2)262318x x x --<„.18.(本小题满分12分)已知a ,b ,c 为不全相等的正实数,且1abc =.111a b c++<.19.(本小题满分12分)已知21()1f x x a x a ⎛⎫=-++ ⎪⎝⎭.(1)当12a =时,解不等式()0f x „; (2)若0a >,解关于x 的不等式()0f x „.20.(本小题满分12分)某镇计划建造一个室内面积为2800 m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?21.(未小题满分12分)设函数2()3(0)f x ax bx a =++≠. (1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值; (2)若(1)4f =,0a >,0b >,求14a b+的最小值.22.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)()(2)0a x a x -->.第二章综合测试答案解析一、 1.【答案】B【解析】()2222334240b A B a ab ab b a b ⎛⎫-=+--=-+ ⎪⎝⎭∵…,A B ∴….2.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误. 3.【答案】A【解析】A .根据等式的性质1,在等式213x -=的左右两边同时加上1,可得24x =,故本选项正确;B .在等式2x x =的左右两边同时除以x ,可得1x =,但是当0x =时,不成立,故本选项错误;C .将等式29x =的左右两边开平方,可得3x =±,故本选项错误;D .根据等式的性质1,在等式213x x -=的左右两边同时加上(31)x +,可得561x x =+,故本选项错误. 4.【答案】D【解析】根据题图可知,21a --<<,01b <<,所以||||b a <. 5.【答案】D【解析】由||a b a <<,可知0||||b a <„,由不等式的性质可知22||||b a <,所以22a b >. 6.【答案】D【解析】2221()(1)11x x f x x x x -+==-+--.又41x -∴<<,10x -∴<,(1)0x --∴> 1()(1)2(1)f x x x ⎡⎤=---+-⎢⎥--⎣⎦∴„当且仅当111x x -=-,即0x =时等号成立.7.【答案】C【解析】2a b +=∵,12a b+=∴∴14142a bab a b +⎛⎫+=+⋅⎪⎝⎭52592222a b b a ⎛⎫=+++= ⎪⎝⎭… (当且仅当22a b b a =,即423b a ==时,等号成立) 故14y a b=+的最小值为92.8.【答案】A【解析】12,x x ∵是关于x 的方程230x bx +-=的两根,12x x b +=-∴,123x x =-, 121234x x x x +-=∵,94b -+=∴,解得5b =.9.【答案】B【解析】方程22120x ax a --=的两根为4a ,3a -,且43a a -<,43a x a <<-∴. 10.【答案】C【解析】求得函数式为2(6)11y x =--+,则营运的年平均利润2512122y x x x ⎛⎫=-+-= ⎪⎝⎭„, 当且仅当25x x=时,取“=”号,解得5x =. 11.【答案】C【解析】35x y xy +=∵,13155y x+=∴1334(34)1(34)55x y x y x y y x ⎛⎫+=+⨯=++ ⎪⎝⎭∴3941213555555x y y x =++++=…当且仅当31255x y y x =,即1x =,12y =时等号成立. 12.【答案】D【解析】a b ∵>,二次三项式220ax x b ++≥对于一切实数x 恒成立, 0a ∴>,且440ab ∆=-„,1ab ≥∴.再由0x ∃∈R ,使20020ax x b ++=成立,可得0∆…,1ab ∴…,又a b >,1a >.2224231101a a b a a a b a a a a+++==---∴> 2242484243624222211*********a a a a a a a a a a a a a a a a ⎛⎫+++ ⎪⎛⎫+++⎝⎭=== ⎪-+-⎛⎫⎝⎭+-+- ⎪⎝⎭ 22222221124412a a a a a a ⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+- ⎪⎝⎭令22112a a +=>,则24231(2)4(2)44(2)444822a t t t a a t t ⎛⎫+-+-+==-+++= ⎪---⎝⎭…, 当且仅当4t =,即a 时取等.故2431a a a ⎛⎫+ ⎪-⎝⎭的最小值为8,故22a b a b +-二、13.【答案】(,3]-∞ 【解析】1x ∵>,11(1)11311x x x x +=-++=--∴….3a ∴„. 14.【答案】11a b a-< 【解析】110()()a ab ba b a a a b a a b -+-==---∵<. 11a b a-∴< 15.【答案】[9,)+∞【解析】33ab a b =++…,所以1)0…,3,所以9ab ….16.【答案】2-【解析】由题意知123x x +=,1226x x -=∵,即12236x x x +-=, 2336x -=∴,解得21x =-,代入到方程中,得1320m ++=,解得2m =-. 三、17.【答案】(1)原不等式组可化为 2 0,11,x x x -⎧⎨-⎩<或><<即01x <<,所以原不等式组的解集为{|01}x x <<. (2)原不等式等价于22623,318,x x x x x ⎧--⎨-⎩≤<即2260,3180,x x x x ⎧--⎨--⎩<…因式分解,得(3)(2)0,(6)(3)0,x x x x -+⎧⎨-+⎩<…所以 2 3,36,x x -⎧⎨-⎩或<<剠所以132x --<≤或36x <„.所以不等式的解集为{|3236}x x x --<≤或≤<.18.【答案】证明:因为a ,b ,c 都是正实数,且1abc =,所以112a b +…11b c +=…11a c +=…以上三个不等式相加,得1112a b c ⎛⎫++ ⎪⎝⎭…,即111a b c++因为a,b,c不全相等,所以上述三个不等式中的“=”不同时成立.111a b c++<.19.【答案】(1)当12a=时,有不等式25()102f x x x=-+≤,1(2)02x x⎛⎫--⎪⎝⎭∴„,122x∴剟,即所求不等式的解集为1,22⎡⎤⎢⎥⎣⎦.(2)1()()0f x x x aa⎛⎫=--⎪⎝⎭∵„,0a>且方程1()0x x aa⎛⎫--=⎪⎝⎭的两根为1x a=,21xa=,∴当1aa>,即011a<<,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa<,即1a>,不等式的解集为1,aa⎡⎤⎢⎥⎣⎦;当1aa=,即1a=,不等式的解集为{1}.20.【答案】设矩形温室的左侧边长为 ma,后侧边长为 mb,蔬菜的种植面积为2mS,则800ab=.所以(4)(2)4288082(2)808648 S a b ab b a a b=--=--+=-+-„当且仅当2a b=,即40a=,20b=时等号成立,则648S=最大值.故当矩形温室的左侧边长为40 m,后侧边长为20 m时,蔬菜的种植面积最大,最大种植面积为2648 m.21.【答案】(1)因为不等式()0f x>的解集为(1,3)-,所以1-和3是方程()0f x=的两个实根,从而有(1)30,(3)9330,f a bf a b-=-+=⎧⎨=++=⎩解得1,2,ab=-⎧⎨=⎩(2)由(1)4f=,得1a b+=,又0a>,0b>,所以1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭4559b a a b =+++… 当且仅当4b a a b =即1,32,3a b ⎧=⎪⎪⎨⎪=⎪⎩时等号成立,所以14a b+的最小值为9. 22.【答案】(1)2560x x --+<∵,2560x x +->∴, (1)(6)0x x -+∴>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{| 6 1}x x x -<或>. (2)当0a <时,()(2)y a x a x =--的图象开口向下,与x 轴交点的横坐标为x a =,2x =,且2a <,()(2)0a x a a --∴>的解集为{|2}x a x <<.当0a =时,()(2)0a x a x --=,()(2)0a x a x --∴>无解.当0a >时,抛物线()(2)y a x a x =--的图像开口向上, 与x 轴交点的横坐标为x a =,2x =.当2a =时,不等式可化为22(2)0x ->,解得2x ≠. 当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.综上,当0a <时,不等式的解集是{|2}x a x <<; 当0a =时,不等式的解集是∅;当02a <<时,不等式的解集是{| 2}x x a x <或>; 当2a =时,不等式的解集是{|2}x x ≠; 当2a >时,不等式的解集是{|2}x x x a <或>.第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2()1f x x =+,则[(1)]f f -的值等于( ) A .2B .3C .4D .5 2.已知函数()1f x x =+,其定义域为{1,0,1,2}-,则函数的值域为( ) A .[0,3]B .{0,3}C .{0,1,2,3}D .{|0}y y …3.函数0y =的定义域是( )A .{|01}x x 剟B .{| 1 1}x x x --<或>C .{|01}x x x ≠-<且D .{}|1 0x x x ≠-≠且4.已知二次函数()y f x =满足(2)(2)f x f x +=-,且函数图像截x 轴所得的线段长为8,则函数()y f x =的零点为( ) A .2,6B .2,6-C .2-,6D .2-,6-5.若函数()y f x =的定义域是{|01}x x ≤≤,则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是( )A .1|22a a x x -⎧⎫-⎨⎬⎩⎭≤≤B .|12a x x a ⎧⎫--⎨⎬⎩⎭≤≤C .{|1}x a x a --≤≤D .1|2a x a x -⎧⎫-⎨⎬⎩⎭≤≤6.如图所示,可表示函数()y f x =的图像的只可能是( )ABCD7.已知函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,则a b +的值是( ) A .1B .1-C .1或1-D .0或18.若()f x 满足()()f x f x -=-,且在(,0)-∞上是增函数,(2)0f -=,则()0xf x <的解集是( ) A .(2,0)(0,2)-UB .(,2)(0,2)-∞-UC .(,2)(2,)-∞-+∞UD .(2,0)(2,)-+∞U9.设函数()f x 与()g x 的定义域是{|1}x x ∈≠±R ,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于( ) A .2221x x -B .211x -C .221x -D .221xx - 10.已知2()21(0)f x ax ax a =++>,若()0f m <,则(2)f m +与1的大小关系式为( ) A .(2)1f m +<B .(2)1f m +=C .(2)1f m +>D .(2)1f m +…11.函数()f x =( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知2()2f x x x =+,若存在实数t ,使()3f x t x +„对[1,]x m ∈恒成立,则实数m 的最大值是( ) A .6B .7C .8D .9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩,当[()]1f f x =时,x ∈__________.14.关于x 的方程240x x a --=有四个不相等的实数根,则实数a 的取值范围为__________.15.已知函数719()1x f x x +=+,则()f x 的图像的对称中心是__________,集合{}*|()x f x ∈=N __________.16.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数2()2||1f x x x =--.(1)利用绝对值及分段函数知识,将函数()f x 的解析式写成分段函数; (2)在坐标系中画出()f x 的图像,并根据图像写出函数()f x 的单调区间和值域.18.(本小题满分12分)已知函数()f x 对任意实数x 均有()2(1)f x f x =-+,且()f x 在区间[0]1,上有解析式2()f x x =. (1)求(1)f -和(1.5)f 的值;(2)写出()f x 在区间[2,2]-上的解析式.19.(本小题满分12分)函数2()1ax bf x x +=+是定义在(,)-∞+∞上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求实数a ,b 的值.(2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值.如有,写出最大值或最小值(无需说明理由).20.(本小题满分12分)已知定义域为R 的单调函数()f x ,且(1)f x -的图像关于点(1,0)对称,当0x >时,1()3x f x x=-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.21.(本小题满分12分)对于定义域为D 的函数()y f x =,若同时满足下列条件:①()f x在D 内单调递增或单调递减;②存在区间[,]a b D ⊆,使()f x 在[,]a b 上的值域为[,]a b ,那么称()()x D y f x =∈为闭函数.(1)求闭函数3y x =-符合条件②的区间[,]a b . (2)判断函数31()(0)4f x x x x=+>是否为闭函数?并说明理由;(3)判断函数y k =+k 的取值范围.22.(本小题满分12分)设函数()f x 的定义域为R ,当0x >时,()1f x >,对任意,x y ∈R ,都有()()()f x y f x f y +=g ,且(2)4f =. (1)求(0)f ,(1)f 的值.(2)证明:()f x 在R 上为单调递增函数.(3)若有不等式1()2f x f x x ⎛⎫+ ⎪⎝⎭g <成立,求x 的取值范围.第三章测试答案解析一、 1.【答案】D【解析】由条件知(-1)2f =,(2)5f =,故选D . 2.【答案】C【解析】将x 的值依次代入函数表达式可得0,1,2,3,所以函数的值域为{0,1,2,3},故选C . 3.【答案】C【解析】由条件知10x +≠且0x x ->,解得0x <且1x ≠-.故选C 4.【答案】C【解析】由于函数()y f x =满足(2)(2)f x f x +=-,所以直线2x =为二次函数()y f x =图像的对称轴,根据二次函数图像的性质,图像与x 轴的交点必关于直线2x =对称.又两交点间的距高为8,则必有两交点的横坐标分别为1246x =+=,2242x =-=-.故函数的零点为2-,6.故选C . 5.【答案】A【解析】由条件知01,021,x a x a +⎧⎨+⎩剟剟,又01a <<则122a ax --≤≤,故选A .6.【答案】D【解析】由函数定义可得,任意一个x 有唯一的y 与之对应,故选D . 7.【答案】B【解析】因为函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,所以21a a =-,1a =-,0b =,因此1a b +=-,故选B.8.【答案】A【解析】根据题意可知函数是奇函数,且在(,0)-∞,(0,)+∞上是增函数,对()0xf x <,分0x >,0x <进行讨论,可知解集为(2,0)(0,2)-U ,故选A.9.【答案】B【解析】1()()1f x g x x -=-∵,1()()1f x g x x ---=--∴,1()()1f xg x x +=--∴, 21122()111f x x x x =-=-+-∴,21()1f x x =-,故选B . 10.【答案】C【解析】因为2()21(0)f x ax ax a =++>,所以其图像的对称轴为直线1x =-,所以()(2)0f m f m =--<,又(0)1f =,所以(2)1f m +>,故选C .11.【答案】A【解析】由定义城可知x 因此原式化简为()f x =那么根据函数的奇偶性的定义,可知该函数是奇函数不是偶函数,故选A . 12.【答案】C【解析】由题意知,对任意[1,]x m ∈,2()2()3x t x t x +++…恒成立,这个不等式可以理解为()f x t +的图像在直线3y x =的图像的下面时x 的取值范围.要使m 最大,需使两图像交点的横坐标分别为1和m .当1x =时,3y =,代入可求得4t =-(0t =舍去).进而求得另一个交点为(8,24),故8m =.故选C. 二、13.【答案】[0,1][2,3]{5}U U【解析】因为1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩所以要满足元[()]1f f x =,需()[0,1]f x ∈,[0,1]x ∈或2[0,1]x -∈或5x =,这样解得x 的取值范围是[0,1][2,3]{5}U U .14.【答案】(0,4)【解析】原方程等价于24x x a -=,在同一坐标系内作出函数24y x x =-与函数y a =的图像,如图所示:平移直线y a =,可得当04a <<时,两图像有4个不同的公共点,相应地方程240x x a --=有4个不相等的实数根,综上所述,可得实数a 的范围为04a <<. 15.(1,7)- {13,7,5,4,3,0,1,2,3,5,11}----- 【解析】因为函数71912()711x f x x x +==+++,则()f x 的图像的对称中心为(1,7)-, 集合{|()}{13,7,5,4,3,0,1,2,3,5,11}x f x *∈=-----N 16.【答案】0【解析】因为()f x 是定义在R 上的偶函数,因此令12x =-,可知11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,分别令32x =-,52x =-,可得302f ⎛⎫= ⎪⎝⎭,502f ⎛⎫= ⎪⎝⎭,令1x =-.得(0)0f =,因此可知502f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭. 三、17.【答案】(1)22321,0()2||121,0x x x f x x x x x x ⎧--=--=⎨+-⎩<….(2)图像如图所示.单调增区间为(1,0)-,(1,)+∞, 单调减区间为(,1)-∞-,(0,1). 值域为[2,)-+∞.18.【答案】(1)由题意知(1)2(11)2(0)0f f f -=--+=-=,1111(1,5)(10.5)(0.5)2248f f f =+=-=-⨯=-. (2)当[0,1]x ∈时,2()f x x =; 当(1,2]x ∈时,1(0,1]x -∈,211()(1)(1)22f x f x x =--=--; 当[1,0)x ∈-时,1[0,1)x +∈, 2()2(1)2(1)f x f x x =-+=-+;当[2,1)x ∈--时,1[1,0)x +∈-,22()2(1)22(11)4(2)f x f x x x ⎡⎤=-+=-⨯-++=+⎣⎦.所以22224(2),[2,1),2(1),[1,0),(),[0,1],1(1),(1,2].2x x x x f x x x x x ⎧+∈--⎪-+∈-⎪⎪=⎨∈⎪⎪--∈⎪⎩19.【答案】(1)2()1ax bf x x +=+∵是奇函数()()f x f x -=-∴, 2211ax b ax bx x -++=-++∴,0b =∴. 故2()1ax f x x =+,又1225f ⎛⎫= ⎪⎝⎭∵,1a =∴ (2)证明:由(1)知2()1xf x x =+,任取1211x x -<<<,()()()()()()1212121222121211111x x x x x xf x f x x x x x ---=-=++++1211x x -∵<<<,1211x x -∴<<,120x x -<,1210x x ->,2110x +>,2210x +>,()()120f x f x -∴<,即()()12f x f x <,()f x ∴在(1,1)-上是增函数.(3)单调减区间为(,1),(1,)-∞-+∞.当1x =-时,min 1()2f x =-;当1x =时,max 1()2f x =.20.【答案】(1)由题意知()f x 的图像关于点(0,0)对称,是奇函数,∴(0)0f = 当0x <时,0x ->,1()3x f x x--=--∴, 又∵函数()f x 是奇函数.∴()()f x f x -=-,1()3x f x x=-∴. 综上所述,1(0),()30(0).x x f x x x ⎧-≠⎪=⎨⎪=⎩(2)2(1)(0)03f f =-=∵<,且()f x 在R 上单调.∴()f x 在R 上单调递减.由()()22220f t t f t k -+-<,得()()2222f t t f t k ---<.∵()f x 是奇函数,∴()()2222f t t f k t --<,又∵()f x 是减函数, ∴2222t t k t -->即2320t t k -->对任意t ∈R 恒成立,∴4120k ∆=+<,得13k -<.21.【答案】(1)由题意,3y x =-,在[,]a b 上单调递减,则33,,,b a a b b a ⎧=-⎪=-⎨⎪>⎩解得1,1,a b =-⎧⎨=⎩所以,所求区间为[1,1]-.(2)取11x =,210x =,则()()1273845f x f x ==<,即()f x 不是(0,)+∞上的减函数.取,1110x -=,21100x =,()()12331010040400f x f x =++=<,即()f x 不是(0,)+∞上的增函数.所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数.(3)若y k =+[,]a b ,在区间[,]a b 上,函数()f x 的值域为[,]a b,即a k b k ⎧=+⎪⎨=⎪⎩∴a ,b为方程x k =的两个实根,即方程22(21)20(2,)x k x k x x k -++-=-厖有两个不等的实根,故两根均大于等于2-,且对称轴在直线2x =-的右边.当2k -„时,有220,(2)2(21)20,212,2k k k ⎧⎪∆⎪-+++-⎨⎪+⎪-⎩>>…解得924k --<„.当2k ->时,有220,(21)20,21,2k k k k k k ⎧⎪∆⎪-++-⎨⎪+⎪⎩>>…无解.综上所述,9,24k ⎛⎤∈-- ⎥⎝⎦.22.【答案】(1)因为(20)(2)(0)f f f +=g ,所以44(0)f =⋅,所以(0)1f =, 又因为24(2)(11)(1)f f f ==+=,且当0x >时,()1f x >,所以(1)2f =.(2)证明:当0x <时,0x ->,所以()1f x ->,而(0)[()]()()f f x x f x f x =+-=-g , 所以1()()f x f x =-,所以0()1f x <<,对任意的12,x x ∈R , 当12x x <时,有()()()]()()()1212222121f x f x f x x x f x f x f x x -=⎡-+-=--⎣, 因为120x x <<,所以120x x -<,所以()1201f x x -<<,即()1210f x x --<, 所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数.(3)因为1()12f x f x ⎛⎫+ ⎪⎝⎭g <,所以11(1)f x f x ⎛⎫++ ⎪⎝⎭<,而()f x 在R 上是单调递增函数,所以111x x ++<,即10x x+<,所以210x x +<,所以0x <,所以x 的取值范围是(,0)-∞.。

(新教材)人教B版数学必修第一册 学期综合测评

(新教材)人教B版数学必修第一册 学期综合测评

学期综合测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A .{1,2,4} B .{2,3,4} C .{0,2,4} D .{0,2,3,4} 答案 C解析 ∵全集U ={0,1,2,3,4},集合A ={1,2,3},∴∁U A ={0,4},又B ={2,4},则(∁U A )∪B ={0,2,4}.故选C. 2.已知条件p :|x -1|<2,条件q :x 2-5x -6<0,则p 是q 的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分又不必要条件 答案 B解析 命题p :-1<x <3,记A ={x |-1<x <3},命题q :-1<x <6,记B ={x |-1<x <6},∵A B ,∴p 是q 的充分不必要条件.3.幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是 ( )A.13 B .-13 C .3 D .-3 答案 A解析 设幂函数为y =x α,因为图象过点⎝ ⎛⎭⎪⎫-2,-18,所以有-18=(-2)α,解得α=-3,所以幂函数的解析式为y =x -3,由f (x )=27,得x -3=27,所以x =13.4.函数f (x )=2x -1+log 2x 的零点所在区间是( ) A.⎝ ⎛⎭⎪⎫18,14 B.⎝ ⎛⎭⎪⎫14,12 C.⎝ ⎛⎭⎪⎫12,1 D .(1,2)答案 C解析 ∵函数f (x )=2x -1+log 2x ,∴f ⎝ ⎛⎭⎪⎫12=-1,f (1)=1,∴f ⎝ ⎛⎭⎪⎫12f (1)<0,故连续函数f (x )的零点所在区间是⎝ ⎛⎭⎪⎫12,1,故选C.5.将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移π6个单位,那么所得的图象对应的函数解析式是( )A .y =sin2xB .y =cos2xC .y =sin ⎝ ⎛⎭⎪⎫2x +2π3D .y =sin ⎝ ⎛⎭⎪⎫2x -π6答案 D解析 ∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,∴将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移π6个单位,得f ⎝ ⎛⎭⎪⎫x -π6=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π6=sin ⎝ ⎛⎭⎪⎫2x -π6,所得的图象对应的函数解析式是y =sin ⎝ ⎛⎭⎪⎫2x -π6,故选D.6.设a =12cos6°-32sin6°,b =2tan13°1-tan 213°,c =1-cos50°2,则有( ) A .a >b >c B .a <b <c C .a <c <b D .b <c <a 答案 C解析 a =12cos6°-32sin6°=sin30°cos6°-cos30°·sin6°=sin24°,b =2tan13°1-tan 213°=tan26°,c =1-cos50°2=sin25°,∴a <c <b . 7.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈Z D.⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z 答案 D解析由图象可知ω4+φ=π2+2mπ,5ω4+φ=3π2+2mπ,m∈Z,所以ω=π,φ=π4+2mπ,m∈Z,所以函数f(x)=cos⎝⎛⎭⎪⎫πx+π4+2mπ=cos⎝⎛⎭⎪⎫πx+π4的单调递减区间为2kπ<πx+π4<2kπ+π,k∈Z,即2k-14<x<2k+34,k∈Z,故选D.8.当x>0时,不等式x2-mx+9>0恒成立,则实数m的取值范围是() A.(-∞,6) B.(-∞,6]C.[6,+∞) D.(6,+∞)答案 A解析由题意得,当x>0时,mx<x2+9,即m<x+9x恒成立.设函数f(x)=x+9x(x>0),则有x+9x≥2x·9x=6,当且仅当x=9x,即x=3时,等号成立.则实数m的取值范围是m<6.9.在△ABC中,若2sinB2·cosB2sin C=cos2A2,则△ABC是()A.等边三角形B.等腰三角形C.非等腰三角形D.直角三角形答案 B解析在△ABC中,因为2sinB2cosB2sin C=cos2A2,所以sin B sin C=cos2A2,即sin B sin C=1+cos A2,2sin B sin C=1-cos(B+C),2sin B sin C=1-cos B cos C+sin B sin C,即cos B cos C+sin B sin C=1,所以cos(B-C)=1,则B-C=0,即B=C,故选B.10.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中整体水面上升高度h与注水时间t之间的函数关系大致是下列图象中的()答案 B解析 开始一段时间,水槽底部没有水,烧杯满了之后,水槽中水面上升先快后慢.故选B.11.设函数f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎨⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(-∞,0),故选D.12.若f (x )是奇函数,且在(0,+∞)上是增函数,又f (-3)=0,则(x -1)f (x )<0的解是( )A .(-3,0)∪(1,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-3,0)∪(1,3) 答案 D解析 ∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数,∴在(-∞,0)内f (x )也是增函数,又∵f (-3)=0,∴f (3)=0,∴当x ∈(-∞,-3)∪(0,3)时,f (x )<0;当x ∈(-3,0)∪(3,+∞)时,f (x )>0;∵(x -1)·f (x )<0,∴⎩⎨⎧ x -1<0,f (x )>0或⎩⎨⎧x -1>0,f (x )<0,解得-3<x <0或1<x <3,∴不等式的解集是(-3,0)∪(1,3),故选D.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知命题p :∀x ∈R ,x 2-x +14>0,则綈p 为________.答案 ∃x ∈R ,x 2-x +14≤0解析 全称量词命题的否定是存在量词命题,一是要改变相应的量词,二是要否定结论.14.定义在R 上的偶函数f (x )在[0,+∞)上单调递减,且f ⎝ ⎛⎭⎪⎫12=0,则f (log 14x )<0的解集为_______________________________________________.答案 ⎝ ⎛⎭⎪⎫0,12∪(2,+∞)解析 因为定义在R 上的偶函数f (x )在[0,+∞)上单调递减,所以在(-∞,0]上单调递增.又f ⎝ ⎛⎭⎪⎫12=0,所以f ⎝ ⎛⎭⎪⎫-12=0,由f (log 14x )<0可得log 14x <-12或log 14x >12,解得x ∈⎝ ⎛⎭⎪⎫0,12∪(2,+∞).15.函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 函数f (x )=sin(x +2φ)-2sin φcos(x +φ)=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin(x +φ-φ)=sin x ,故f (x )的最大值为1.16.已知函数f (x )=⎩⎪⎨⎪⎧1+4x (x ≥4),log 2x (0<x <4),若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.答案 (1,2)解析 关于x 的方程f (x )=k 有两个不同的实根,等价于函数f (x )与函数y =k 的图象有两个不同的交点,作出函数的图象如图,由图可知实数k 的取值范围是(1,2).三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)计算下列各式的值:解18.(本小题满分12分)已知tan ⎝ ⎛⎭⎪⎫π4+α=12. (1)求tan α的值;(2)求sin (2α+2π)-sin 2⎝ ⎛⎭⎪⎫π2-α1-cos (π-2α)+sin 2α的值.解 (1)∵tan ⎝ ⎛⎭⎪⎫π4+α=tan π4+tan α1-tan π4tan α=1+tan α1-tan α=12,解得tan α=-13. (2)原式=sin2α-cos 2α1+cos2α+sin 2α=2sin αcos α-cos 2α2cos 2α+sin 2α=2tan α-12+tan 2α=-1519. 19.(本小题满分12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1).(1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由; (3)确定x 为何值时,有f (x )-g (x )>0. 解 (1)要使函数有意义,则有⎩⎨⎧2x +1>0,1-2x >0,(2)F (x )=f (x )-g (x )=log a (2x +1)-log a (1-2x ),F (-x )=f (-x )-g (-x )=log a (-2x +1)-log a (1+2x )=-F (x ). ∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0,即log a (2x +1)>log a (1-2x ).①当0<a <1时,0<2x +1<1-2x ,∴-12<x <0. ②当a >1时,2x +1>1-2x >0,∴0<x <12.20.(本小题满分12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π3+2sin ⎝ ⎛⎭⎪⎫3π2-x . (1)求函数f (x )的单调递减区间;(2)求函数f (x )的最大值并求f (x )取得最大值时的x 的取值集合; (3)若f (x )=65,求cos ⎝ ⎛⎭⎪⎫2x -π3的值.解 (1)f (x )=2cos x cos π3+2sin x sin π3-2cos x =cos x +3sin x -2cos x =3sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.令2k π+π2≤x -π6≤2k π+3π2(k ∈Z ), ∴2k π+2π3≤x ≤2k π+5π3(k ∈Z ),∴单调递减区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ).(2)f (x )取最大值2时,x -π6=2k π+π2(k ∈Z ),则x =2k π+2π3(k ∈Z ). ∴f (x )的最大值是2,取得最大值时的x 的取值集合是{x ⎪⎪⎪⎭⎬⎫x =2k π+2π3,k ∈Z . (3)f (x )=65,即2sin ⎝ ⎛⎭⎪⎫x -π6=65,∴sin ⎝ ⎛⎭⎪⎫x -π6=35.∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝ ⎛⎭⎪⎫x -π6=1-2×⎝ ⎛⎭⎪⎫352=725.21.(本小题满分12分)某建筑工地要建造一批简易房,供群众临时居住,房形为长方体,高2.5米,前后墙用2.5米高的彩色钢板,两侧用2.5米高的复合钢板,两种钢板的价格都用长度来计算(即钢板的高均为2.5米,用长度乘以单价就是这块钢板的价格),每米单价:彩色钢板为450元,复合钢板为200元,房顶用其他材料建造,每平方米材料费为200元,每套房材料费控制在32000元以内.(1)设房前面墙的长为x ,两侧墙的长为y ,一套简易房所用材料费为p ,试用x ,y 表示p ;(2)一套简易房面积S 的最大值是多少?当S 最大时,前面墙的长度是多少? 解 (1)依题得前后两面墙的钢板费用均为450x ,两侧墙的钢板费用均为200y ,房顶面积为xy ,房顶材料费用为200xy ,∴一套简易房所用材料费为p =900x +400y +200xy .(2)∵S =xy ,∴p =900x +400y +200xy ≥2900×400S +200S =200S +1200S , 又∵p ≤32000,∴200S +1200S ≤32000, 化简得S +6S -160≤0,解得-16≤S ≤10, 又S >0,∴0<S ≤100, 当且仅当⎩⎨⎧900x =400y ,xy =100,即x =203,y =15时S 取得最大值. ∴每套简易房面积S 的最大值是100平方米,当S 最大时前面墙的长度是203米.22.(本小题满分12分)已知函数f (x )=1-23x +1. (1)求函数f (x )的定义域,判断并证明f (x )的奇偶性; (2)用单调性的定义证明函数f (x )在其定义域上是增函数; (3)解不等式f (3m +1)+f (2m -3)<0.解 (1)∵3x >0,∴3x +1≠0,函数f (x )的定义域为R ,即(-∞,+∞),f (x )是奇函数.证明如下:∵f (x )的定义域为R ,又f (x )=1-23x +1=3x +1-23x +1=3x -13x +1,∴f (-x )=3-x -13-x +1=1-3x3x 1+3x 3x =1-3x1+3x=-f (x ),∴f (x )是定义在R 上的奇函数.(3)由f (3m +1)+f (2m -3)<0得f (3m +1)<-f (2m -3), ∵函数f (x )为奇函数,∴-f (2m -3)=f (3-2m ), ∴f (3m +1)<f (3-2m ),由(2)已证得函数f (x )在R 上是增函数, ∴f (3m +1)<f (3-2m ),即3m +1<3-2m , ∴m <25,则不等式f (3m +1)+f (2m -3)<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <25.。

高一数学人教B版必修1课后强化作业:第13章(共30份)3.2.1 第3课时换底公式与自然对数

高一数学人教B版必修1课后强化作业:第13章(共30份)3.2.1 第3课时换底公式与自然对数

第三章 3.2 3.2.1 第3课时一、选择题1.log 52·log 425等于( ) A .-1 B .12C .1D .2[答案] C[解析] log 52·log 425=lg2lg5·lg52lg22=lg2lg5·2lg52lg2=1.2.化简log 1a b -log a 1b 的值为( )A .0B .1C .2log a bD .-2log a b[答案] A[解析] log 1ab -log a 1b =lg b lg 1a-lg1b lg a =-lg b lg a +lg blg a =0.3.(2013~2014学年度河北衡水中学高一期中测试)若x log 34=1,则4x +4-x 的值为( )A. 83 B .103C .2D .1[答案] B[解析] ∵x log 34=1,∴x =1log 34=log 43, ∴4x =4log 43=3,4-x =14x =13,∴4x +4-x =3+13=103.4.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125[答案] D[解析] ∵log 513·log 36·log 6x =2,∴lg13lg5·lg6lg3·lg x lg6=2,∴lg x =-2lg5=lg5-2,∴x =125. 5.1log 1419+1log 1513等于( ) A .lg3 B .-lg3 C.1lg3 D .-1lg3[答案] C[解析] 1log 1419+1log 1513=lg14lg 19+lg 15lg13=-2lg2-2lg3+-lg5-lg3=lg2lg3+lg5lg3=lg10lg3=1lg3. 6.e ln3-e -ln2等于( )A .1B .2 C.52 D .3[答案] C[解析] e ln3-e -ln2=elog e 3-1elog e 2=3-12=52. 二、填空题7.(2013~2014学年度广东湛江一中高一上学期期中测试)计算log 43·log 98=________. [答案] 34[解析] log 43·log 98=lg3lg4·lg8lg9=lg32lg2·3lg22lg3=34.8.已知f (3x )=2x ·log 23,则f (21 005)的值等于________. [答案] 2 010[解析] 令3x =t ,∴x =log 3t , ∴f (t )=2log 3t ·log 23=2·lg t lg3·lg3lg2=2log 2t ,∴f (21 005)=2log 221 005=2×1 005=2 010. 三、解答题9.若log 37·log 29·log 49m =log 412,求m 的值.[解析] ∵log 37·log 29·log 49m =log 412,∴lg7lg3·2lg3lg2·lg m 2lg7=-lg22lg2=-12, ∴lg m =-12lg2=lg2-12 ,∴m =2-12 =22.一、选择题1.已知log 32=a,3b =5,则log 330用a 、b 表示为( ) A.12(a +b +1) B .12(a +b )+1C.13(a +b +1) D .12a +b +1[答案] A[解析] ∵3b =5,∴b =log 35.log 330=12log 330=12(log 33+log 32+log 35)=12(1+a +b ),选A. 2.已知log a x =2,log b x =1,log c x =4,则log x (abc )等于( ) A.47 B .27 C.72 D .74 [答案] D[解析] 由题意得x =a 2,x =b ,x =c 4,∴(abc )4=x 7, ∴abc =x 74,∴log x (abc )=74.3.设2a =5b =m ,且1a +1b =2,则m =( )A.10 B .10 C .20 D .100[答案] A[解析] ∵2a =5b =m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.故选A.4.方程e ln|x |=2的解是( ) A .-2 B .2 C .-2或2D .4[答案] C[解析] ∵e ln|x |=2,∴|x |=2,∴x =-2或2.二、填空题5.12lg0.36+13lg82lg2+lg0.3=________. [答案] 1[解析] 12lg0.36+13lg82lg2+lg0.3=lg0.6+lg2lg4+lg0.3=lg1.2lg1.2=1.6.若m log 35=1,n =5m ,则n 的值为________. [答案] 3[解析] ∵m log 35=1,∴m =1log 35=log 53. ∴n =5m =5log 53=3. 三、解答题7.已知log 98=p ,log 2725=q ,试用p 、q 表示log 52. [解析] ∵p =log 98=32log 32,q =log 2725=23log 35,∴log 52=log 32log 35=23p32q =4p9q.8.已知x ,y ,z 均大于1,a ≠0,log z a =24,log y a =40,log (xyz )a =12,求log x a . [解析] 由log z a =24得log a z =124,由log y a =40得log a y =140,由log (xyz )a =12得log a (xyz )=112, 即log a x +log a y +log a z =112.∴log a x +140+124=112,解得log a x =160,∴log x a =60.9.已知log a x +3log x a -log x y =3(a >1). (1)若设x =a t ,试用a ,t 表示y ;(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值.[解析] (1)由换底公式,得 log a x +3log a x -log a ylog a x =3(a >1),∴log a y =(log a x )2-3log a x +3,当x =a t 时,log a x =log a a t =t ,∴log a y =t 2-3t +3, 故y =a t2-3t +3(t ≠0).(2)y =a (t -32)2+34,∵0<t ≤2,a >1,∴当t =32时,y min =a 34 =8,∴a =16,此时x =a 32=64.。

高中数学 3.2.1 第2课时 积、商、幂的对数课后强化作业 新人教B版必修1

高中数学 3.2.1 第2课时 积、商、幂的对数课后强化作业 新人教B版必修1

高中数学 3.2.1 第2课时 积、商、幂的对数课后强化作业 新人教B 版必修1一、选择题1.lg8+3lg5=( ) A .lg16 B .3lg7 C .6 D .3[答案] D[解析] lg8+3lg5=3lg2+3lg5=3lg10=3. 2.下列计算正确的是( ) A .log 26-log 23=log 23 B .log 26-log 23=1 C .log 39=3 D .log 3(-4)2=2log 3(-4)[答案] B[解析] log 26-log 23=log 263=log 22=1,故选B.3.如果lg x =lg a +3lg b -5lg c ,那么( ) A .x =a +3b -cB .x =3ab 5cC .x =ab 3c5D .x =a +b 3-c 3[答案] C[解析] ∵lg x =lg a +3lg b -5lg c=lg a +lg b 3-lg c 5=lg ab 3c5,∴x =ab 3c5.4.当a >0且a ≠1,x >0,y >0,n ∈N *时,下列各式不恒成立的是( ) A .log a x n=n log a x B .log a x =n log a nx C .xlog ax=xD .log a x n+log a y n=n (log a x +log a y )[答案] C [解析] 要使式子xlog ax=x 恒成立,必须log a x =1,即a =x 时恒成立. 5.方程2log 3x =14的解是( ) A.33B . 3C .19 D .9[答案] C [解析] ∵2log 3x=14=2-2,∴log 3x =-2, ∴x =3-2=19.6.(2013~2014学年度云南玉溪一中高一期中测试)(lg5)2+lg2·lg5+lg20的值是( )A .0B .1C .2D .3[答案] C[解析] (lg5)2+lg2·lg5+lg20 =lg5(lg5+lg2)+lg20 =lg5+lg20=lg100=2. 二、填空题7.(2013·四川文)lg 5+lg 20的值是________. [答案] 1[解析] lg 5+lg 20=lg(5×20)=lg10=1. 8.log 63=0.6131,log 6x =0.3869,则x =________. [答案] 2[解析] log 6x =0.3869=1-0.6131=1-log 63 =log 66-log 63=log 663=log 62,∴x =2.三、解答题9.计算下列各式的值: (1)12lg 3249-43lg 8+lg 245;(2)lg 2+lg3-lg 10lg1.8.[解析] (1)原式=12(5lg2-2lg7)-43×32lg2+12(2lg7+lg5)=52lg2-lg7-2lg2+lg7+12lg5=12(lg2+lg5)=12. (2)原式=12lg2+lg9-lg10lg1.8=12lg1.8lg1.8=12.一、选择题 1.log (2+1)(3-22)的值为( )A .2B .-2C .3D .-3[答案] B [解析] log (2+1)(3-22)=log (2+1)12+12=log (2+1)(2+1)-2=-2.2.已知|lg a |=|lg b |,(a >0,b >0),那么( ) A .a =b B .a =b 或a ·b =1 C .a =±b D .a ·b =1[答案] B[解析] ∵|lg a |=|lg b |;∴lg a =±lg b . ∴lg a =lg b 或lg a =lg 1b ,∴a =b 或a =1b.3.某企业的年产值每一年比上一年增长p %,经过n 年产值翻了一番,则n 等于( ) A .2(1+p %) B .log (1+p %)2 C .log 2(1+p %) D .log 2(1+p %)2[答案] B[解析] 由题意得1·(1+p %)n=2, ∴n =log (1+p %)2. 4.2lg2+lg31+12lg0.36+13lg8=( )A .-1B .1C .2D .3[答案] B [解析]2lg2+lg31+12lg0.36+13lg8=lg4+lg3lg10+lg0.6+lg2=lg12lg12=1.二、填空题5.已知log 32=a ,则2log 36+log 30.5=________. [答案] 2+a[解析] 2log 36+log 30.5=log 336+log 30.5=log 3(36×0.5)=log 318=log 39+log 32=log 332+log 32=2+a .6.方程lg x 2-lg(x +2)=0的解集是________. [答案] {-1,2}[解析] ∵lg x 2-lg(x +2)=0,∴⎩⎪⎨⎪⎧x ≠0x +2>0x 2=x +2,解得x =-1或x =2.∴方程lg x 2-lg(x +2)=0的解集为{-1,2}. 三、解答题7.(2013~2014学年度湖南长沙一中高一期中测试)计算:2723 -2log 23×log 218+2lg(3+5+3-5).[解析] 2723 -2 log 23×log 218+2lg(3+5+3-5)=(33) 23 -3×log 22-3+lg(3+5+3-5)2=9+9+lg10=19.8.(1)设log a 2=m ,log a 3=n ,求a2m +n的值;(2)设x =log 23,求22x+2-2x+22x +2-x的值. [解析] (1)∵log a 2=m ,log a 3=n ,∴a 2m +n=a 2m ·a n =(a m )2·a n =(alog a2)2·alog a3=4×3=12.(2)22x+2-2x+22x +2-x=2x +2-x 22x +2-x=2x +2-x=2log 23+(2log 23)-1=3+13=103.9.计算下列各式的值: (1)log 2748+log 212-12log 242; (2)lg52+23lg8+lg5·lg20+(lg2)2.[解析] (1)原式=log 2748+log 212-log 242 =log 2⎝⎛⎭⎪⎫748×142×12=log 2⎝ ⎛⎭⎪⎫16×8×16×12=log 228=log 22-12 =-12.(2)原式=2lg5+2lg2+lg5·(1+lg2)+(lg2)2=2(lg5+lg2)+lg5+lg2(lg5+lg2) =2+lg5+lg2=2+1=3.。

人教B版数学必修一综合测试附答案

人教B版数学必修一综合测试附答案

人教B 版数学必修一本册综合测试附解析 时间:90分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分) 1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫12x ,x >1,则A ∩B =( )A .⎩⎨⎧⎭⎬⎫y | 0<y <12 B .{y |0<y <1} C .⎩⎨⎧⎭⎬⎫y | 12<y <1D .∅B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛12x,x >1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪0<y <12,∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪0<y <12,故选A .2.已知f (x +1)=x 2+1,则f (x -2)=( ) A .x 2-6x +10 B .(x -2)2+1 C .(x +1)2+1D .x 2-23.已知集合{x |mx 2+2x -1=0}有且只有一个元素,则m 的值是( ) A .0 B .1 C .0或1D .0或-14.幂函数f (x )=x 45,若0<x 1<x 2,则f ⎝ ⎛⎭⎪⎫x 1+x 22与f (x 1)+f (x 2)2的大小关系是( )A .f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2B .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2C .f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2D .无法确定5.(2018·天津卷)已知a =log 372,b =⎝ ⎛⎭⎪⎫1413,c =log1315,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b6.根据表格中的数据,可以断定:方程e x -x -2=0的一个根所在的区间是( )x -1 01 2 3 e x 0.37 1 2.72 7.39 20.09 x +21234 5A .(2,3) C .(0,1)D .(-1,0)7.下列函数中,值域为(0,+∞)的是( ) A .y =512-xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2x8.如果函数f (x )=(a 2-1)x 在R 上是减函数,那么实数a 的取值范围是( ) A .|a |>1 B .|a |<2 C .|a |>3D .1<|a |< 29.对于每个实数x ,设f (x )取y =x 2-3x +2,y =x -1,y =5-x 三个函数中的最小值,则f (x )的最大值是( )A .-1B .0C .1D .210.若函数y =log a x (a >0且a ≠1)的图象如下图所示,则下列函数图象正确的是( )11.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎝ ⎛⎭⎪⎫52的值是( )A .0B .12C .1D .52二、填空题(本大题共4小题,每小题5分,共20分) 13.计算⎝ ⎛⎭⎪⎫-250-30.064+3log 325+lg 2-lg 15的结果是______.14.设实数a ∈⎩⎨⎧⎭⎬⎫-2,-1,12,1,3,如果函数y =x a 是定义域为R 的奇函数,则a 的值的集合为________.15.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则f (2),g (0),f (3)的大小关系是____________.16.已知函数f (x )满足条件:①对任意x 1,x 2,且x 1<x 2时,总有f (x 1)<f (x 2); ②f (x 1+x 2)=f (x 1)·f (x 2).那么满足这2个条件的函数解析式为__________.(举一例即可) 三、解答题(本大题共6小题,共70分)17.(10分)已知集合A ={x |3≤x <6},B ={y |y =2x,2≤x <3}. (1)求A ∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.18.(12分)已知函数f (x )=x 21+x 2,x ∈R .(1)求f (x )+f ⎝ ⎛⎭⎪⎫1x 的值;(2)计算f (1)+f (2)+f (3)+f (4)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫14.19.(12分)已知函数f (x )=x-k 2+k +2(k ∈N ),满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m ,若不存在,请说明理由.20.(12分)若在定义域内存在实数x 0使得f (x 0+1)=f (x 0)+f (1)成立则称函数f (x )有“溜点x 0”.若函数f (x )=⎝ ⎛⎭⎪⎫12x +mx 2在(0,1)上有“溜点”,求实数m 的取值范围.21.(12分)如图,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x .(1)试写出直线l 左边部分的面积f (x )与x 的函数;(2)已知A ={x |f (x )<4},B ={x |a -2<x <a +2},若A ∪B =B ,求a 的取值范围.22.(12分)已知函数f (x )=log 2(x +1),点(x ,y )在函数y =f (x )的图象上运动,点(t ,s )在函数y =g (x )的图象上运动,并且满足t =x3,s =y .(1)求出y =g (x )的解析式;(2)求出使g (x )≥f (x )成立的x 的取值范围; (3)在(2)的范围内求y =g (x )-f (x )的最小值.(本册综合测试)时间:90分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y | y =⎝ ⎛⎭⎪⎫12x ,x >1,则A ∩B =( )A .⎩⎨⎧⎭⎬⎫y | 0<y <12 B .{y |0<y <1} C .⎩⎨⎧⎭⎬⎫y | 12<y <1D .∅解析:A A ={y |y =log 2x ,x >1}={y |y >0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛12x,x >1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪0<y <12, ∴A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪0<y <12,故选A .2.已知f (x +1)=x 2+1,则f (x -2)=( ) A .x 2-6x +10 B .(x -2)2+1 C .(x +1)2+1D .x 2-2解析:A f (x +1)=x 2+1,令x +1=t ,∴x =t -1. ∴f (t )=(t -1)2+1=t 2-2t +2,∴f (x )=x 2-2x +2, 则f (x -2)=(x -2)2-2(x -2)+2=x 2-6x +10.故选A .3.已知集合{x |mx 2+2x -1=0}有且只有一个元素,则m 的值是( ) A .0 B .1 C .0或1D .0或-1解析:D 当m =0时,方程化为2x -1=0符合题意;当m ≠0时,由题意得Δ=4+4m =0,得m =-1.综上得m =0或m =-1.4.幂函数f (x )=x 45,若0<x 1<x 2,则f ⎝ ⎛⎭⎪⎫x 1+x 22与f (x 1)+f (x 2)2的大小关系是( )A .f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2B .f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2C .f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2D .无法确定解析:A f (x )=x 45的图象如图所示,∴f ⎝ ⎛⎭⎪⎫x 1+x 22>f (x 1)+f (x 2)2,故选A .5.(2018·天津卷)已知a =log 372,b =⎝ ⎛⎭⎪⎫1413,c =log1315,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:D 由题意可知,log 33<log 372<log 39, 即1<a <2,0<⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140,即0<b <1,log1315=log 35>log 372,即c >a ,综上可得c >a >b .故选D .6.根据表格中的数据,可以断定:方程e x -x -2=0的一个根所在的区间是( )A .(2,3) C .(0,1)D .(-1,0)解析:B 令f (x )=e x -(x +2),若f (a )·f (b )<0,则在(a ,b )内有零点. 由表知:f (-1)<0,f (0)<0,f (1)<0,f (2)>0,所以零点位于区间(1,2),故答案为B .7.下列函数中,值域为(0,+∞)的是( ) A .y =512-xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2x答案:B8.如果函数f (x )=(a 2-1)x 在R 上是减函数,那么实数a 的取值范围是( ) A .|a |>1 B .|a |<2 C .|a |>3D .1<|a |<2解析:D 由题可得0<a 2-1<1, ∴1<a 2<2,即1<|a |<2,故选D .9.对于每个实数x ,设f (x )取y =x 2-3x +2,y =x -1,y =5-x 三个函数中的最小值,则f (x )的最大值是( )A .-1B .0C .1D .2 解析:D 在同一直角坐标系中画出y =x 2-3x +2,y =x -1,y =5-x 的图象,由图象可知,f (x )=⎩⎪⎨⎪⎧x -1,x ≤1,x 2-3x +2,1<x ≤3,5-x ,x >3,∴f (x )max =f (3)=2.10.若函数y =log a x (a >0且a ≠1)的图象如下图所示,则下列函数图象正确的是( )解析:B 由y =log a x 的图象可知y =log a x 过(3,1)点, ∴log a 3=1,∴a =3,故y =x 3的图象正确,故选B .11.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln(1-x )B .y =ln(2-x )C .y =ln(1+x )D .y =ln(2+x )解析:B 函数y =ln x 过定点(1,0),(1,0)关于x =1对称的点还是(1,0),只有y =ln(2-x )过此点.12.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎝ ⎛⎭⎪⎫52的值是( )A .0B .12C .1D .52解析:A 由题可知f (-x )=f (x ),且xf (x +1)=(1+x )f (x ), 令x =32,则32f ⎝ ⎛⎭⎪⎫52=52f ⎝ ⎛⎭⎪⎫32,∴f ⎝ ⎛⎭⎪⎫52=53f ⎝ ⎛⎭⎪⎫32,令x =12,则12f ⎝ ⎛⎭⎪⎫32=32f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫32=3f ⎝ ⎛⎭⎪⎫12,令x =-12,则-12f ⎝ ⎛⎭⎪⎫12=12f ⎝ ⎛⎭⎪⎫-12,∴f ⎝ ⎛⎭⎪⎫12=0,∴f ⎝ ⎛⎭⎪⎫52=0,故选A . 二、填空题(本大题共4小题,每小题5分,共20分) 13.计算⎝ ⎛⎭⎪⎫-250-30.064+3log 325+lg 2-lg 15的结果是______.解析:原式=1-0.4+25+lg 2+lg 5=2. 答案:2 14.设实数a ∈⎩⎨⎧⎭⎬⎫-2,-1,12,1,3,如果函数y =x a 是定义域为R 的奇函数,则a 的值的集合为________.解析:∵实数a ∈⎩⎨⎧⎭⎬⎫-2,-1,12,1,3,∴当a =-1时,函数y =x -1是定义域(-∞,0)∪(0,+∞)上的奇函数,不满足题意;当a =1时,函数y =x 是定义域R 上的奇函数,满足题意; 当a =3时,函数y =x 3是定义域R 上的奇函数,满足题意; ∴a 的取值集合为{1,3}. 答案:{1,3}15.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则f (2),g (0),f (3)的大小关系是____________.解析:由题可得f (-x )=-f (x ),g (-x )=g (x ), 由f (x )-g (x )=e x ,① 得f (-x )-g (-x )=e -x , 即-f (x )-g (x )=e -x ,②①-②得f (x )=e x -e -x2,f (x )为增函数,∴f (2)<f (3). ①+②得g (x )=-e x +e -x 2,∴g (0)=-1,f (2)=e 2-e -22>0, ∴g (0)<f (2)<f (3). 答案:g (0)<f (2)<f (3) 16.已知函数f (x )满足条件:①对任意x 1,x 2,且x 1<x 2时,总有f (x 1)<f (x 2); ②f (x 1+x 2)=f (x 1)·f (x 2).那么满足这2个条件的函数解析式为__________.(举一例即可)解析:求这样的函数解析式只需从已学过的基本函数出发,一一对比,最后找出.根据条件①知该函数为增函数,又由②知,在基本函数中只有y =a x 满足这个条件.由①②知,此函数为y =a x 且a >1.答案:y =2x三、解答题(本大题共6小题,共70分)17.(10分)已知集合A ={x |3≤x <6},B ={y |y =2x,2≤x <3}. (1)求A ∩B ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围. 解:(1)B ={y |y =2x,2≤x <3}={y |4≤y <8}, ∴A ∩B ={x |4≤x <6}.(2)若C ⊆B ,则⎩⎨⎧a ≥4,a +1≤8,∴4≤a ≤7.∴实数a 的取值范围为[4,7].18.(12分)已知函数f (x )=x 21+x 2,x ∈R .(1)求f (x )+f ⎝ ⎛⎭⎪⎫1x 的值;(2)计算f (1)+f (2)+f (3)+f (4)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫14.解:(1)∵f (x )=x 21+x 2,x ∈R ,∴f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+1x 21+1x 2=x 21+x 2+11+x 2,∴f (x )+f ⎝ ⎛⎭⎪⎫1x =1. (2)由(1)可得f (1)+f (2)+f (3)+f (4)+f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫14=72.19.(12分)已知函数f (x )=x-k 2+k +2(k ∈N ),满足f (2)<f (3).(1)求k 的值并求出相应的f (x )的解析式;(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m ,若不存在,请说明理由.解:(1)由f (2)<f (3),则-k 2+k +2>0,解得-1<k <2,又k ∈N ,则k =0,或k =1.当k =0,或k =1时,f (x )=x 2.(2)由g (x )=f (x )-2x +m =x 2-2x +m =(x -1)2+m -1, 当x ∈[0,2]时,作出函数图象得g (x )∈[m -1,m ], 由已知g (x )的值域为[2,3],则m =3. 故存在这样的m 值,且m =3.20.(12分)若在定义域内存在实数x 0使得f (x 0+1)=f (x 0)+f (1)成立则称函数f (x )有“溜点x 0”.若函数f (x )=⎝ ⎛⎭⎪⎫12x +mx 2在(0,1)上有“溜点”,求实数m 的取值范围.解:f (x )=⎝ ⎛⎭⎪⎫12x +mx 2在(0,1)上有溜点,即f (x +1)=f (x )+f (1)在(0,1)上有解,即⎝ ⎛⎭⎪⎫12x +1+m (x +1)2=⎝ ⎛⎭⎪⎫12x +mx 2+12+m 在(0,1)上有解, 即4mx -1=⎝ ⎛⎭⎪⎫12x 在(0,1)上有解,即h (x )=4mx -1与g (x )=⎝ ⎛⎭⎪⎫12x的图象在(0,1)上有交点.如图所示,只需h (1)>g (1),即4m -1>12,∴m >38. 故实数m 的取值范围是⎝ ⎛⎭⎪⎫38,+∞.21.(12分)如图,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x .(1)试写出直线l 左边部分的面积f (x )与x 的函数;(2)已知A ={x |f (x )<4},B ={x |a -2<x <a +2},若A ∪B =B ,求a 的取值范围.解:(1)函数解析式为y =⎩⎪⎨⎪⎧12x 2,0<x ≤2,2x -2,2<x ≤5,-12(x -7)2+10,5<x ≤7.(2)∵f (x )<4,∴A ={x |0<x <3}, 由A ⊆B ,得⎩⎨⎧a +2≥3,a -2≤0,∴1≤a ≤2.∴a 的取值范围为{a |1≤a ≤2}.22.(12分)已知函数f (x )=log 2(x +1),点(x ,y )在函数y =f (x )的图象上运动,点(t ,s )在函数y =g (x )的图象上运动,并且满足t =x3,s =y .(1)求出y =g (x )的解析式;(2)求出使g (x )≥f (x )成立的x 的取值范围; (3)在(2)的范围内求y =g (x )-f (x )的最小值.解:(1)由题意知⎩⎪⎨⎪⎧x 3=t ,y =s ,则⎩⎨⎧x =3t ,y =s .∵点(x ,y )在函数y =log 2(x +1)的图象上, ∴s =log 2(3t +1),即:y =g (x )=log 2(3x +1). (2)由g (x )≥f (x ),即log 2(3x +1)≥log 2(x +1)得⎩⎨⎧3x +1≥x +1,3x +1>0,x +1>0,⇔⎩⎪⎨⎪⎧x ≥0,x >-13⇒x ≥0,x >-1.∴使g (x )≥f (x )成立的x 的取值范围是x ≥0. (3)y =g (x )-f (x )=log 2(3x +1)-log 2(x +1)= log 23x +1x +1=log 2⎝ ⎛⎭⎪⎫3-2x +1, ∵x ≥0,∴1≤3-2x +1<3, 又∵y =log 2x 在x ∈(0,+∞)上单调递增, ∴当x ≥0时,y =log 2⎝ ⎛⎭⎪⎫3-2x +1≥log 21=0,即y min =0.。

新教材人教B版高中数学选择性必修第一册全册书各章节课时练习题及章末综合测验含答案解析

新教材人教B版高中数学选择性必修第一册全册书各章节课时练习题及章末综合测验含答案解析

人教B选择性必修第一册全册练习题文档中含有大量可修改的数学公式,在网页中显示可能会出现位置错误等情况,下载后均可正常显示、编辑。

第一章空间向量与立体几何...................................................................................................... - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其运算.............................................................................................. - 2 -1.1.2空间向量基本定理.............................................................................................. - 9 -1.1.3空间向量的坐标与空间直角坐标系................................................................ - 17 -1.2空间向量在立体几何中的应用................................................................................... - 25 -1.2.1空间中的点、直线与空间向量........................................................................ - 25 -1.2.2空间中的平面与空间向量................................................................................ - 32 -1.2.3直线与平面的夹角............................................................................................ - 44 -1.2.4二面角 ............................................................................................................... - 53 -1.2.5空间中的距离 ................................................................................................... - 70 -第一章综合测验 ................................................................................................................... - 81 - 第二章平面解析几何 ................................................................................................................... - 95 -2.1坐标法 .......................................................................................................................... - 95 -2.2直线及其方程............................................................................................................. - 102 -2.2.1直线的倾斜角与斜率...................................................................................... - 102 -2.2.2直线的方程 ..................................................................................................... - 108 -2.2.3两条直线的位置关系...................................................................................... - 119 -2.2.4点到直线的距离.............................................................................................. - 126 -2.3圆及其方程 ................................................................................................................ - 133 -2.3.1圆的标准方程 ................................................................................................. - 133 -2.3.2圆的一般方程 ................................................................................................. - 140 -2.3.3直线与圆的位置关系...................................................................................... - 146 -2.3.4圆与圆的位置关系.......................................................................................... - 154 -2.4曲线与方程................................................................................................................. - 162 -2.5椭圆及其方程............................................................................................................. - 168 -2.5.1椭圆的标准方程.............................................................................................. - 168 -2.5.2椭圆的几何性质.............................................................................................. - 176 -2.6双曲线及其方程......................................................................................................... - 186 -2.6.1双曲线的标准方程.......................................................................................... - 186 -2.6.2双曲线的几何性质.......................................................................................... - 194 -2.7抛物线及其方程......................................................................................................... - 202 -2.7.1抛物线的标准方程.......................................................................................... - 202 -2.7.2抛物线的几何性质.......................................................................................... - 209 -第二章综合训练 ................................................................................................................. - 217 -第一章 空间向量与立体几何 1.1 空间向量及其运算1.1.1 空间向量及其运算1.下列命题中为真命题的是( ) A.向量AB ⃗⃗⃗⃗⃗ 与BA ⃗⃗⃗⃗⃗ 的长度相等B.将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C.空间向量就是空间中的一条有向线段D.不相等的两个空间向量的模必不相等2.下列向量的运算结果为零向量的是( ) A.BC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗B.PM ⃗⃗⃗⃗⃗⃗ +MN ⃗⃗⃗⃗⃗⃗⃗ +MP ⃗⃗⃗⃗⃗⃗C.MP ⃗⃗⃗⃗⃗⃗ +GM ⃗⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ +QG ⃗⃗⃗⃗⃗D.BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗3.已知e 1,e 2为单位向量,且e 1⊥e 2,若a =2e 1+3e 2,b =k e 1-4e 2,a ⊥b ,则实数k 的值为( ) A.-6 B.6C.3D.-3a ·b=0,e 1·e 2=0,|e 1|=|e 2|=1,所以(2e 1+3e 2)·(k e 1-4e 2)=0,所以2k-12=0, 所以k=6.故选B .4.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ 的值为( ) A.a 2 B.12a 2 C .14a 2 D .√34a 2⃗⃗ ·AF ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·12AD ⃗⃗⃗⃗⃗=14(AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ )=14a×a×12+a×a×12=14a 2.5.(多选)已知四边形ABCD 为矩形,PA ⊥平面ABCD 连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积一定为零的是( ) A.PC ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗⃗ B .DA ⃗⃗⃗⃗⃗ 与PB ⃗⃗⃗⃗⃗ C.PD ⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ D .PA ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·(BA⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ) =PA ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ +PA ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =-(AB ⃗⃗⃗⃗⃗ )2+(BC⃗⃗⃗⃗⃗ )2≠0. 因为PA ⊥平面ABCD ,所以PA ⊥CD , 即PA ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,又因为AD ⊥AB ,AD ⊥PA ,所以AD ⊥平面PAB ,所以AD ⊥PB ,所以DA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =0,同理PD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,因此B,C,D 中的数量积均为0.故选B,C,D .6.设e 1,e 2是平面内不共线的向量,已知AB ⃗⃗⃗⃗⃗ =2e 1+k e 2,CB ⃗⃗⃗⃗⃗ =e 1+3e 2,CD ⃗⃗⃗⃗⃗ =2e 1-e 2,若A ,B ,D 三点共线,则k= .87.化简:12(a +2b -3c )+5(23a -12b +23c)-3(a -2b +c )= .+92b -76c8.如图,平行六面体ABCD-A'B'C'D'中,AB=AD=1,AA'=2,∠BAD=∠BAA'=∠DAA'=60°,则AC'的长为 .√11AC '⃗⃗⃗⃗⃗⃗ |2=|AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CC '⃗⃗⃗⃗⃗⃗ |2=AB ⃗⃗⃗⃗⃗ 2+BC ⃗⃗⃗⃗⃗ 2+CC '⃗⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +2BC ⃗⃗⃗⃗⃗ ·CC '⃗⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ ·CC'⃗⃗⃗⃗⃗⃗ =12+12+22+2×1×1×cos60°+2×1×2×cos60°+2×1×2×cos60°=11,则|AC'⃗⃗⃗⃗⃗⃗ |=√11. 9.在四面体ABCD 中,E ,F 分别为棱AC ,BD 的中点,求证:AB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =4EF ⃗⃗⃗⃗⃗ .=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )+(CB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ )=2AF ⃗⃗⃗⃗⃗ +2CF ⃗⃗⃗⃗⃗ =2(AF ⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ )=4EF ⃗⃗⃗⃗⃗ =右边,得证. 10.如图,在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是C 1D 1,D 1D 的中点,正方体的棱长为1. (1)求<CE⃗⃗⃗⃗⃗ ,AF ⃗⃗⃗⃗⃗ >的余弦值; (2)求证:BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⊥EF ⃗⃗⃗⃗⃗ .⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =CC 1⃗⃗⃗⃗⃗⃗⃗ +C 1E ⃗⃗⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +12CD ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ . 因为AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,AB ⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗ =0,AD ⃗⃗⃗⃗⃗ ·AA 1⃗⃗⃗⃗⃗⃗⃗ =0,所以CE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗=12.又|AF ⃗⃗⃗⃗⃗ |=|CE ⃗⃗⃗⃗⃗ |=√52,所以cos <CE ⃗⃗⃗⃗⃗ ,AF⃗⃗⃗⃗⃗ >=25.1⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =ED 1⃗⃗⃗⃗⃗⃗⃗ +D 1F ⃗⃗⃗⃗⃗⃗⃗ =-12(AB ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ ), 所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ·EF ⃗⃗⃗⃗⃗ =0,所以BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ⊥EF ⃗⃗⃗⃗⃗ .11.已知空间向量a =(t ,1,t ),b =(t-2,t ,1),则|a -b |的最小值为( ) A.√2 B.√3C.2D.4a =(t ,1,t ),b =(t-2,t ,1),∴a -b =(2,1-t ,t-1),则|a-b |=√22+(1-t )2+(t -1)2=√2(t -1)2+4, ∴当t=1时,|a-b |取最小值为2.故选C .12.设平面上有四个互异的点A ,B ,C ,D ,已知(DB ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ -2DA ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=0,则△ABC 是( ) A.直角三角形 B .等腰三角形 C.钝角三角形 D .锐角三角形DB ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ -2DA ⃗⃗⃗⃗⃗ =(DB ⃗⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗ )+(DC ⃗⃗⃗⃗⃗ −DA ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ,所以(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=|AB ⃗⃗⃗⃗⃗ |2-|AC ⃗⃗⃗⃗⃗ |2=0,所以|AB ⃗⃗⃗⃗⃗ |=|AC⃗⃗⃗⃗⃗ |,即△ABC 是等腰三角形. 13.如图,已知PA ⊥平面ABC ,∠ABC=120°,PA=AB=BC=6,则PC 等于( )A.6√2 B .6C.12D .144PC ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ,所以PC ⃗⃗⃗⃗⃗ 2=PA ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ 2+BC ⃗⃗⃗⃗⃗ 2+2PA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +2PA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =36+36+36+2×36×cos60°=144,所以PC=12. 14.给出下列几个命题:①方向相反的两个向量是相反向量;②若|a|=|b|,则a=b 或a=-b ;③对于任意向量a ,b ,必有|a+b|≤|a|+|b|.其中所有真命题的序号为 .①,长度相等且方向相反的两个向量是相反向量,故①错误;对于②,若|a|=|b|,则a 与b 的长度相等,但方向没有任何联系,故不正确;只有③正确.15.等边三角形ABC 中,P 在线段AB 上,且AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,若CP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ,则实数λ的值为 .-√22|AB ⃗⃗⃗⃗⃗ |=a (a>0),由题知,0<λ<1.如图, CP ⃗⃗⃗⃗⃗ =-AC ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =-AC ⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗ ,故CP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =(λAB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =λ|AB ⃗⃗⃗⃗⃗ |2-|AB ⃗⃗⃗⃗⃗ ||AC⃗⃗⃗⃗⃗ |cos A=a 2λ-12a 2, PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =(-λAB ⃗⃗⃗⃗⃗ )·(1-λ)AB ⃗⃗⃗⃗⃗ =λ(λ-1)|AB ⃗⃗⃗⃗⃗ |2=λ(λ-1)a 2, 则a 2λ-12a 2=λ(λ-1)a 2, 解得λ=1-√22λ=1+√22舍.16.如图,平面α⊥平面β,AC ⊥AB ,BD ⊥AB ,且AB=4,AC=6,BD=8,用AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ 表示CD ⃗⃗⃗⃗⃗ = ,|CD ⃗⃗⃗⃗⃗ |= .−AC ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ 2√29CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ , ∴CD ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ )2 =AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2+BD ⃗⃗⃗⃗⃗⃗ 2-2AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ -2AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =16+36+64=116,∴|CD ⃗⃗⃗⃗⃗ |=2√29.17.已知ABCD-A'B'C'D'是平行六面体,AA'的中点为E ,点F 为D'C'上一点,且D'F=23D'C'.(1)化简:12AA '⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ ;(2)设点M 是底面ABCD 的中心,点N 是侧面BCC'B'对角线BC'上的34分点(靠近C'),设MN ⃗⃗⃗⃗⃗⃗⃗ =αAB ⃗⃗⃗⃗⃗ +βAD ⃗⃗⃗⃗⃗ +γAA'⃗⃗⃗⃗⃗⃗ ,试求α,β,γ的值.由AA'的中点为E ,得12AA '⃗⃗⃗⃗⃗⃗ =EA'⃗⃗⃗⃗⃗⃗ , 又BC ⃗⃗⃗⃗⃗ =A 'D '⃗⃗⃗⃗⃗⃗⃗ ,D'F=23D'C',因此23AB ⃗⃗⃗⃗⃗ =23D 'C '⃗⃗⃗⃗⃗⃗⃗ =D 'F ⃗⃗⃗⃗⃗⃗ .从而12AA '⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ =EA '⃗⃗⃗⃗⃗⃗ +A 'D '⃗⃗⃗⃗⃗⃗⃗ +D 'F ⃗⃗⃗⃗⃗⃗ =EF⃗⃗⃗⃗⃗ . (2)MN ⃗⃗⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BN ⃗⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +34BC '⃗⃗⃗⃗⃗⃗ =12(DA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+34(BC ⃗⃗⃗⃗⃗ +CC '⃗⃗⃗⃗⃗⃗ )=12(-AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+34(AD ⃗⃗⃗⃗⃗ +AA '⃗⃗⃗⃗⃗⃗ )=12AB ⃗⃗⃗⃗⃗ +14AD ⃗⃗⃗⃗⃗ +34AA'⃗⃗⃗⃗⃗⃗ ,因此α=12,β=14,γ=34.18.如图,在三棱柱ABC-A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM=2A 1M ,C 1N=2B 1N.设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c . (1)试用a ,b ,c 表示向量MN⃗⃗⃗⃗⃗⃗⃗ ; (2)若∠BAC=90°,∠BAA 1=∠CAA 1=60°,AB=AC=AA 1=1,求MN 的长.MN ⃗⃗⃗⃗⃗⃗⃗ =MA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +B 1N ⃗⃗⃗⃗⃗⃗⃗⃗=13BA 1⃗⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +13B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =13(c-a )+a+13(b-a ) =13a+13b+13c.(2)因为(a+b+c )2=a 2+b 2+c 2+2a ·b+2b ·c+2a ·c=1+1+1+0+2×1×1×12+2×1×1×12=5,所以|a+b+c|=√5,所以|MN⃗⃗⃗⃗⃗⃗⃗ |=13|a+b+c |=√53,即MN=√53. 19.如图所示,已知线段AB 在平面α内,线段AC ⊥α,线段BD ⊥AB ,且AB=7,AC=BD=24,线段BD 与α所成的角为30°,求CD 的长.AC ⊥α,可知AC ⊥AB ,过点D 作DD 1⊥α, D 1为垂足,连接BD 1,则∠DBD 1为BD 与α所成的角,即∠DBD 1=30°,所以∠BDD 1=60°,因为AC ⊥α,DD 1⊥α,所以AC ∥DD 1,所以<CA ⃗⃗⃗⃗⃗ ,DB ⃗⃗⃗⃗⃗⃗ >=60°,所以<CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ >=120°.又CD ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ , 所以|CD ⃗⃗⃗⃗⃗ |2=(CA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )2=|CA ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2+|BD ⃗⃗⃗⃗⃗⃗ |2+2CA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +2CA ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ +2AB ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ . 因为BD ⊥AB ,AC ⊥AB , 所以BD ⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0.故|CD ⃗⃗⃗⃗⃗ |2=|CA ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2+|BD ⃗⃗⃗⃗⃗⃗ |2+2CA ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗=242+72+242+2×24×24×cos120°=625, 所以|CD ⃗⃗⃗⃗⃗ |=25,即CD 的长是25.20.如图所示,在矩形ABCD 中,AB=1,BC=a ,PA ⊥平面ABCD (点P 位于平面ABCD 的上方),则边BC 上是否存在点Q ,使PQ ⃗⃗⃗⃗⃗ ⊥QD ⃗⃗⃗⃗⃗⃗ ?Q (点Q 在边BC 上),使PQ ⃗⃗⃗⃗⃗ ⊥QD⃗⃗⃗⃗⃗⃗ , 连接AQ ,因为PA ⊥平面ABCD ,所以PA ⊥QD. 又PQ ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +AQ ⃗⃗⃗⃗⃗ ,所以PQ ⃗⃗⃗⃗⃗ ·QD ⃗⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ·QD ⃗⃗⃗⃗⃗⃗ +AQ ⃗⃗⃗⃗⃗ ·QD ⃗⃗⃗⃗⃗⃗ =0. 又PA ⃗⃗⃗⃗⃗ ·QD ⃗⃗⃗⃗⃗⃗ =0,所以AQ ⃗⃗⃗⃗⃗ ·QD ⃗⃗⃗⃗⃗⃗ =0,所以AQ ⃗⃗⃗⃗⃗ ⊥QD ⃗⃗⃗⃗⃗⃗ . 即点Q 在以边AD 为直径的圆上,圆的半径为a2.又AB=1,所以当a2=1,即a=2时,该圆与边BC 相切,存在1个点Q 满足题意; 当a2>1,即a>2时,该圆与边BC 相交,存在2个点Q 满足题意; 当a 2<1,即a<2时,该圆与边BC 相离,不存在点Q 满足题意. 综上所述,当a ≥2时,存在点Q ,使PQ ⃗⃗⃗⃗⃗ ⊥QD ⃗⃗⃗⃗⃗⃗ ; 当0<a<2时,不存在点Q ,使PQ ⃗⃗⃗⃗⃗ ⊥QD ⃗⃗⃗⃗⃗⃗ .1.1.2 空间向量基本定理1.如图所示,在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点.若A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,A 1A ⃗⃗⃗⃗⃗⃗⃗ =c ,则下列向量中与B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量是( )A.-12a +12b +c B.12a +12b +c C.12a -12b +c D.-12a -12b +c1M =B 1B ⃗⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=c +12(-a +b )=-12a +12b +c .2.对于空间一点O 和不共线的三点A ,B ,C ,且有6OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ ,则( ) A.O ,A ,B ,C 四点共面 B.P ,A ,B ,C 四点共面 C.O ,P ,B ,C 四点共面 D.O ,P ,A ,B ,C 五点共面6OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ ,得OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =2(OB ⃗⃗⃗⃗⃗ −OP ⃗⃗⃗⃗⃗ )+3(OC ⃗⃗⃗⃗⃗ −OP ⃗⃗⃗⃗⃗ ),即AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ +3PC⃗⃗⃗⃗⃗ , ∴AP ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ ,PC ⃗⃗⃗⃗⃗ 共面.又三个向量的基线有同一公共点P ,∴P ,A ,B ,C 四点共面. 3.(多选)已知点M 在平面ABC 内,并且对空间任意一点O ,有OM⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ ,则x 的值不可能为 ( ) A.1 B .0 C .3D .13OM ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +13OB⃗⃗⃗⃗⃗ +13OC ⃗⃗⃗⃗⃗ ,且M ,A ,B ,C 四点共面,∴x+13+13=1,∴x=13.4.已知向量a ,b ,且AB ⃗⃗⃗⃗⃗ =a +2b ,BC ⃗⃗⃗⃗⃗ =-5a +6b ,CD ⃗⃗⃗⃗⃗ =7a -2b ,则一定共线的三点是( ) A.A ,B ,D B .A ,B ,C C.B ,C ,D D .A ,C ,DAD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =3a +6b =3(a +2b )=3AB ⃗⃗⃗⃗⃗ ,故AD ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ ,又AD ⃗⃗⃗⃗⃗ 与AB ⃗⃗⃗⃗⃗ 有公共点A ,所以A ,B ,D 三点共线. 5.下列说法错误的是( )A.设a ,b 是两个空间向量,则a ,b 一定共面B.设a ,b 是两个空间向量,则a ·b =b ·aC.设a ,b ,c 是三个空间向量,则a ,b ,c 一定不共面D.设a ,b ,c 是三个空间向量,则a ·(b+c )=a ·b+a ·c设a ,b 是两个空间向量,则a ,b 一定共面,正确,因为向量可以平移;B.设a ,b 是两个空间向量,则a ·b=b ·a ,正确,因为向量的数量积满足交换律;C.设a ,b ,c 是三个空间向量,则a ,b ,c 可能共面,可能不共面,故C 错误;D.设a ,b ,c 是三个空间向量,则a ·(b+c )=a ·b+a ·c ,正确,因为向量的数量积满足分配律.故选C .6.设e 1,e 2是空间两个不共线的向量,已知AB ⃗⃗⃗⃗⃗ =e 1+k e 2,BC ⃗⃗⃗⃗⃗ =5e 1+4e 2,DC ⃗⃗⃗⃗⃗ =-e 1-2e 2,且A ,B ,D 三点共线,实数k= .AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =7e 1+(k+6)e 2,且AB ⃗⃗⃗⃗⃗ 与AD ⃗⃗⃗⃗⃗ 共线,故AD ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ , 即7e 1+(k+6)e 2=x e 1+xk e 2,故(7-x )e 1+(k+6-xk )e 2=0,又e 1,e 2不共线, ∴{7-x =0,k +6-kx =0,解得{x =7,k =1,故k 的值为1. 7.在以下三个命题中,所有真命题的序号为 .①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线的向量,而c=λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.与a ,b 共面,不能构成基底.8.已知平行六面体OABC-O'A'B'C',且OA ⃗⃗⃗⃗⃗ =a ,OC ⃗⃗⃗⃗⃗ =b ,OO '⃗⃗⃗⃗⃗⃗ =c . (1)用a ,b ,c 表示向量AC'⃗⃗⃗⃗⃗⃗ ; (2)设G ,H 分别是侧面BB'C'C 和O'A'B'C'的中心,用a ,b ,c 表示GH ⃗⃗⃗⃗⃗⃗ .AC '⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CC '⃗⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OO '⃗⃗⃗⃗⃗⃗ =b+c-a .(2)GH ⃗⃗⃗⃗⃗⃗ =GO ⃗⃗⃗⃗⃗ +OH ⃗⃗⃗⃗⃗⃗ =-OG ⃗⃗⃗⃗⃗ +OH⃗⃗⃗⃗⃗⃗ =-12(OB ⃗⃗⃗⃗⃗ +OC '⃗⃗⃗⃗⃗⃗ )+12(OB '⃗⃗⃗⃗⃗⃗ +OO '⃗⃗⃗⃗⃗⃗ )=-12(a+b+c+b )+12(a+b+c+c )=12(c-b ).9.已知三个向量a ,b ,c 不共面,并且p =a +b -c ,q =2a -3b -5c ,r =-7a +18b +22c ,向量p ,q ,r 是否共面?λ,μ,使p =λq +μr ,则a +b -c =(2λ-7μ)a +(-3λ+18μ)b +(-5λ+22μ)c .∵a ,b ,c 不共面,∴{2λ-7μ=1,-3λ+18μ=1,-5λ+22μ=-1,解得{λ=53,μ=13,即存在实数λ=53,μ=13,使p =λq +μr ,∴p ,q ,r 共面.10.如图所示,四边形ABCD 和ABEF 都是平行四边形,且不共面,M ,N 分别是AC ,BF 的中点.判断CE ⃗⃗⃗⃗⃗ 与MN⃗⃗⃗⃗⃗⃗⃗ 是否共线?M ,N 分别是AC ,BF 的中点,而四边形ABCD ,ABEF 都是平行四边形,∴MN ⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ +FN ⃗⃗⃗⃗⃗ =12CA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ +12FB⃗⃗⃗⃗⃗ .又MN ⃗⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ +EB ⃗⃗⃗⃗⃗ +BN ⃗⃗⃗⃗⃗⃗ =-12CA ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ −AF ⃗⃗⃗⃗⃗ −12FB⃗⃗⃗⃗⃗ , ∴12CA ⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ +12FB ⃗⃗⃗⃗⃗ =-12CA ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ −AF ⃗⃗⃗⃗⃗ −12FB⃗⃗⃗⃗⃗ , ∴CE ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +2AF ⃗⃗⃗⃗⃗ +FB ⃗⃗⃗⃗⃗ =2(MA ⃗⃗⃗⃗⃗⃗ +AF ⃗⃗⃗⃗⃗ +FN ⃗⃗⃗⃗⃗ )=2MN ⃗⃗⃗⃗⃗⃗⃗ , ∴CE ⃗⃗⃗⃗⃗ ∥MN ⃗⃗⃗⃗⃗⃗⃗ ,即CE⃗⃗⃗⃗⃗ 与MN ⃗⃗⃗⃗⃗⃗⃗ 共线.11.如图,梯形ABCD 中,AB ∥CD ,AB=2CD ,点O 为空间内任意一点,OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,向量OD ⃗⃗⃗⃗⃗⃗ =x a +y b +z c ,则x ,y ,z 分别是 ( ) A.1,-1,2 B.-12,12,1 C.12,-12,1 D.12,-12,-1⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12(OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ )=12OA⃗⃗⃗⃗⃗ −12OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =12a -12b+c ,因此,x=12,y=-12,z=1.故选C .12.在平行六面体ABCD-EFGH 中,若AG ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ -2y BC ⃗⃗⃗⃗⃗ +3z DH⃗⃗⃗⃗⃗⃗ ,则x+y+z 等于( )A.76 B .23C .34D .56于AG ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CG ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DH ⃗⃗⃗⃗⃗⃗ ,对照已知式子可得x=1,-2y=1,3z=1,故x=1,y=-12,z=13,从而x+y+z=56.13.(多选)在正方体ABCD-A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM ⃗⃗⃗⃗⃗⃗ =PB 1⃗⃗⃗⃗⃗⃗⃗ +7BA ⃗⃗⃗⃗⃗ +6AA 1⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,那么对点M 判断错误的是( ) A.在平面BAD 1内 B .在平面BA 1D 内 C.在平面BA 1D 1内 D .在平面AB 1C 1内=PB 1⃗⃗⃗⃗⃗⃗⃗ +7BA ⃗⃗⃗⃗⃗ +6AA 1⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=PB 1⃗⃗⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +6BA 1⃗⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =PB 1⃗⃗⃗⃗⃗⃗⃗ +B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +6BA 1⃗⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =PA 1⃗⃗⃗⃗⃗⃗⃗ +6(PA 1⃗⃗⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )-4(PD 1⃗⃗⃗⃗⃗⃗⃗ −PA 1⃗⃗⃗⃗⃗⃗⃗ ) =11PA 1⃗⃗⃗⃗⃗⃗⃗ -6PB ⃗⃗⃗⃗⃗ -4PD 1⃗⃗⃗⃗⃗⃗⃗ ,且11-6-4=1, 于是M ,B ,A 1,D 1四点共面.14.已知空间单位向量e 1,e 2,e 3,e 1⊥e 2,e 2⊥e 3,e 1·e 3=45,若空间向量m =x e 1+y e 2+z e 3满足:m ·e 1=4,m ·e 2=3,m ·e 3=5,则x+y+z= ,|m |=.√34为e 1⊥e 2,e 2⊥e 3,e 1·e 3=45,空间向量m =x e 1+y e 2+z e 3满足:m ·e 1=4,m ·e 2=3,m ·e 3=5,所以{(xe 1+ye 2+ze 3)·e 1=4,(xe 1+ye 2+ze 3)·e 2=3,(xe 1+ye 2+ze 3)·e 3=5,即{x +45z =4,y =3,45x +z =5,解得{x =0,y =3,z =5,所以x+y+z=8,|m |=√34.15.已知O 是空间任一点,A ,B ,C ,D 四点满足任三点均不共线,但四点共面,且OA ⃗⃗⃗⃗⃗ =2x BO ⃗⃗⃗⃗⃗ +3y CO ⃗⃗⃗⃗⃗ +4z DO ⃗⃗⃗⃗⃗⃗ ,则2x+3y+4z= .1=2x BO ⃗⃗⃗⃗⃗ +3y CO ⃗⃗⃗⃗⃗ +4z DO⃗⃗⃗⃗⃗⃗ =-2x OB ⃗⃗⃗⃗⃗ -3y OC ⃗⃗⃗⃗⃗ -4z OD⃗⃗⃗⃗⃗⃗ .由四点共面的充要条件知-2x-3y-4z=1, 即2x+3y+4z=-1.16.如图,设O 为▱ABCD 所在平面外任意一点,E 为OC 的中点,若AE⃗⃗⃗⃗⃗ =12OD⃗⃗⃗⃗⃗⃗ +x OB ⃗⃗⃗⃗⃗ +y OA ⃗⃗⃗⃗⃗ ,求x ,y 的值.AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ +OC⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ −12OC ⃗⃗⃗⃗⃗ =-OA ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ =-OA ⃗⃗⃗⃗⃗ +12(OD ⃗⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )=-OA ⃗⃗⃗⃗⃗ +12(OD ⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=-OA ⃗⃗⃗⃗⃗ +12OD ⃗⃗⃗⃗⃗⃗ +12(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=-32OA ⃗⃗⃗⃗⃗ +12OD⃗⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ , 所以x=12,y=-32.17.已知非零向量e 1,e 2不共线,如果AB ⃗⃗⃗⃗⃗ =e 1+e 2,AC ⃗⃗⃗⃗⃗ =2e 1+8e 2,AD ⃗⃗⃗⃗⃗ =3e 1-3e 2,求证:A ,B ,C ,D 四点共面.:令λ(e 1+e 2)+μ(2e 1+8e 2)+v (3e 1-3e 2)=0,则(λ+2μ+3v )e 1+(λ+8μ-3v )e 2=0.∵e 1,e 2不共线,∴{λ+2μ+3v =0,λ+8μ-3v =0.易知{λ=-5,μ=1,v =1是其中一组解,则-5AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =0.∴A ,B ,C ,D 四点共面.证法二:观察易得AC ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(2e 1+8e 2)+(3e 1-3e 2)=5e 1+5e 2=5(e 1+e 2)=5AB ⃗⃗⃗⃗⃗ . ∴AB ⃗⃗⃗⃗⃗ =15AC ⃗⃗⃗⃗⃗ +15AD ⃗⃗⃗⃗⃗ .由共面向量知,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ 共面. 又它们有公共点A ,∴A ,B ,C ,D 四点共面.18.如图,在平行六面体ABCD-A 1B 1C 1D 1中,O 是B 1D 1的中点,求证:B 1C ∥平面ODC 1.1C ⃗⃗ =B 1O ⃗⃗⃗⃗⃗⃗⃗ +OC 1⃗⃗⃗⃗⃗⃗⃗ +C 1C ⃗⃗⃗⃗⃗⃗⃗ =B 1O ⃗⃗⃗⃗⃗⃗⃗ +OC 1⃗⃗⃗⃗⃗⃗⃗ +D 1D ⃗⃗⃗⃗⃗⃗⃗⃗=B 1O ⃗⃗⃗⃗⃗⃗⃗ +OC 1⃗⃗⃗⃗⃗⃗⃗ +D 1O ⃗⃗⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ . ∵O 是B 1D 1的中点,∴B 1O ⃗⃗⃗⃗⃗⃗⃗ +D 1O ⃗⃗⃗⃗⃗⃗⃗ =0,∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =OC 1⃗⃗⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ . ∴B 1C ⃗⃗⃗⃗⃗⃗⃗ ,OC 1⃗⃗⃗⃗⃗⃗⃗ ,OD⃗⃗⃗⃗⃗⃗ 共面,且B 1C ⊄平面OC 1D. ∴B 1C ∥平面ODC 1.19.如图所示,四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF ⃗⃗⃗⃗⃗ =23CB ⃗⃗⃗⃗⃗ ,CG ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ .求证:四边形EFGH 是梯形.E ,H 分别是边AB ,AD 的中点,∴AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,AH ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ ,∴EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ . 又FG ⃗⃗⃗⃗⃗ =CG ⃗⃗⃗⃗⃗ −CF ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ −23CB ⃗⃗⃗⃗⃗ =23(CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ )=23BD ⃗⃗⃗⃗⃗⃗ ,∴EH ⃗⃗⃗⃗⃗⃗ =34FG⃗⃗⃗⃗⃗ , ∴EH ⃗⃗⃗⃗⃗⃗ ∥FG ⃗⃗⃗⃗⃗ ,|EH ⃗⃗⃗⃗⃗⃗ |=34|FG ⃗⃗⃗⃗⃗ |. ∵点F 不在EH 上,∴四边形EFGH 是梯形. 20.已知平行四边形ABCD ,从平面ABCD 外一点O 引向量OE ⃗⃗⃗⃗⃗ =k OA ⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ =k OB ⃗⃗⃗⃗⃗ ,OG ⃗⃗⃗⃗⃗ =k OC ⃗⃗⃗⃗⃗ ,OH ⃗⃗⃗⃗⃗⃗ =k OD⃗⃗⃗⃗⃗⃗ .求证:(1)点E ,F ,G ,H 共面; (2)直线AB ∥平面EFGH.∵OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ,∴k OA ⃗⃗⃗⃗⃗ +k AB ⃗⃗⃗⃗⃗ =k OB⃗⃗⃗⃗⃗ . 而OE ⃗⃗⃗⃗⃗ =k OA ⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ =k OB ⃗⃗⃗⃗⃗ ,∴OE ⃗⃗⃗⃗⃗ +k AB ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ . 又OE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,∴EF ⃗⃗⃗⃗⃗ =k AB ⃗⃗⃗⃗⃗ . 同理,EH ⃗⃗⃗⃗⃗⃗ =k AD ⃗⃗⃗⃗⃗ ,EG ⃗⃗⃗⃗⃗ =k AC⃗⃗⃗⃗⃗ . ∵四边形ABCD 是平行四边形, ∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,∴EG ⃗⃗⃗⃗⃗ k =EF ⃗⃗⃗⃗⃗ k+EH ⃗⃗⃗⃗⃗⃗ k,即EG ⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ . 又它们有同一公共点E ,∴点E ,F ,G ,H 共面. (2)由(1)知EF ⃗⃗⃗⃗⃗ =k AB ⃗⃗⃗⃗⃗ ,∴AB ⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ ,即AB ∥EF .又AB ⊄平面EFGH , ∴AB 与平面EFGH 平行,即AB ∥平面EFGH.1.1.3 空间向量的坐标与空间直角坐标系1.已知向量a =(1,-2,1),a +b =(-1,2,-1),则向量b 等于( ) A.(2,-4,2) B .(-2,4,-2) C.(-2,0,-2) D .(2,1,-3)2.向量a =(1,2,x ),b =(2,y ,-1),若|a |=√5,且a ⊥b ,则x+y 的值为( ) A.-2 B .2 C.-1 D .1{√12+22+x 2=√5,2+2y -x =0,即{x=0,y=-1,∴x+y=-1.3.若△ABC中,∠C=90°,A(1,2,-3k),B(-2,1,0),C(4,0,-2k),则k的值为()A.√10B.-√10C.2√D.±√10⃗⃗⃗ =(-6,1,2k),CA⃗⃗⃗⃗⃗ =(-3,2,-k),则CB⃗⃗⃗⃗⃗ ·CA⃗⃗⃗⃗⃗ =(-6)×(-3)+2+2k(-k)=-2k2+20=0,∴k=±√10.4.若△ABC的三个顶点坐标分别为A(1,-2,1),B(4,2,3),C(6,-1,4),则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形=(3,4,2),AC⃗⃗⃗⃗⃗ =(5,1,3),BC⃗⃗⃗⃗⃗ =(2,-3,1).由AB⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ >0,得A为锐角;由CA⃗⃗⃗⃗⃗ ·CB⃗⃗⃗⃗⃗ >0,得C为锐角;由BA⃗⃗⃗⃗⃗ ·BC⃗⃗⃗⃗⃗ >0,得B为锐角.所以△ABC为锐角三角形.5.(多选)如图所示,设Ox,Oy是平面内相交成θ(θ≠π2)角的两条数轴,e1,e2分别是与x,y轴正方向同向的单位向量,则称平面坐标系xOy为θ反射坐标系,若OM⃗⃗⃗⃗⃗⃗ =x e1+y e2,则把有序数对(x,y)叫做向量OM⃗⃗⃗⃗⃗⃗ 的反射坐标,记为OM⃗⃗⃗⃗⃗⃗ =(x,y),在θ=2π3的反射坐标系中,a=(1,2),b=(2,-1).则下列结论正确的是()A.a-b=(-1,3)B.|a|=√3C.a⊥bD.a∥b=(e1+2e2)-(2e1-e2)=-e1+3e2,则a-b =(-1,3),故A 正确; |a |=√(e 1+2e 2)2=√5+4cos2π3=√3,故B 正确;a ·b =(e 1+2e 2)·(2e 1-e 2)=2e 12+3e 1·e 2-2e 22=-32,故C 错误;D 显然错误.6.已知向量a =(1,2,3),b =(x ,x 2+y-2,y ),并且a ,b 同向,则x+y 的值为 .a ∥b ,所以x1=x 2+y -22=y3,即{y =3x ,①x 2+y -2=2x ,②把①代入②得x 2+x-2=0,即(x+2)(x-1)=0, 解得x=-2或x=1. 当x=-2时,y=-6;当x=1时,y=3.则当{x =-2,y =-6时,b =(-2,-4,-6)=-2a ,向量a ,b 反向,不符合题意,故舍去. 当{x =1,y =3时,b =(1,2,3)=a , a 与b 同向,符合题意,此时x+y=4.7.已知向量a =(5,3,1),b =-2,t ,-25,若a 与b 的夹角为钝角,则实数t 的取值范围为 . 答案-∞,-65∪-65,5215解析由已知得a ·b =5×(-2)+3t+1×-25=3t-525,因为a 与b 的夹角为钝角,所以a ·b <0,即3t-525<0,所以t<5215.若a 与b 的夹角为180°,则存在λ<0,使a =λb (λ<0), 即(5,3,1)=λ-2,t ,-25, 所以{5=-2λ,3=tλ,1=-25λ,解得{λ=-52,t =-65, 故t 的取值范围是-∞,-65∪-65,5215.8.已知O 为坐标原点,OA ⃗⃗⃗⃗⃗ =(1,2,3),OB ⃗⃗⃗⃗⃗ =(2,1,2),OP ⃗⃗⃗⃗⃗ =(1,1,2),点Q 在直线OP 上运动,则当QA ⃗⃗⃗⃗⃗ ·QB⃗⃗⃗⃗⃗ 取得最小值时,求Q 的坐标. 解设OQ ⃗⃗⃗⃗⃗⃗ =λOP ⃗⃗⃗⃗⃗ ,则QA ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ -λOP ⃗⃗⃗⃗⃗ =(1-λ,2-λ,3-2λ),QB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ -λOP ⃗⃗⃗⃗⃗ =(2-λ,1-λ,2-2λ),所以QA ⃗⃗⃗⃗⃗ ·QB ⃗⃗⃗⃗⃗ =(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=23λ-432-13.当λ=43时,QA ⃗⃗⃗⃗⃗ ·QB⃗⃗⃗⃗⃗ 取得最小值,此时点Q 的坐标为43,43,83.9.已知正三棱柱ABC-A 1B 1C 1的底面边长AB=2,AB 1⊥BC 1,点O ,O 1分别是棱AC ,A 1C 1的中点.建立如图所示的空间直角坐标系. (1)求该三棱柱的侧棱长;(2)若M 为BC 1的中点,试用向量AA 1⃗⃗⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 表示向量AM ⃗⃗⃗⃗⃗⃗ ; (3)求cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >.设该三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (√3,0,0),C (0,1,0),B 1(√3,0,h ),C 1(0,1,h ),则AB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,h ),BC 1⃗⃗⃗⃗⃗⃗⃗ =(-√3,1,h ),因为AB 1⊥BC 1,所以AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =-3+1+h 2=0,所以h=√2.(2)AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BC 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ +12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ +12AA 1⃗⃗⃗⃗⃗⃗⃗ .(3)由(1)可知AB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,√2),BC⃗⃗⃗⃗⃗ =(-√3,1,0), 所以AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =-3+1=-2,|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√6,|BC ⃗⃗⃗⃗⃗ |=2,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=2√6=-√66.10.(多选)已知点P 是△ABC 所在的平面外一点,若AB ⃗⃗⃗⃗⃗ =(-2,1,4),AP ⃗⃗⃗⃗⃗ =(1,-2,1),AC ⃗⃗⃗⃗⃗ =(4,2,0),则( ) A.AP ⊥AB B.AP ⊥BP C.BC=√53 D.AP ∥BC⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =-2-2+4=0,∴AP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,即AP ⊥AB ,故A 正确;BP ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ =(2,-1,-4)+(1,-2,1)=(3,-3,-3),BP ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =3+6-3=6≠0,∴AP 与BP 不垂直,故B 不正确;BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(4,2,0)-(-2,1,4)=(6,1,-4),∴|BC ⃗⃗⃗⃗⃗ |=√62+12+(-4)2=√53,故C 正确;假设AP⃗⃗⃗⃗⃗ =k BC ⃗⃗⃗⃗⃗ ,则{1=6k ,-2=k ,1=-4k ,无解,因此假设不成立,即AP 与BC 不平行,故D 不正确.11.已知点A (1,0,0),B (0,-1,1),若OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ (O 为坐标原点)的夹角为120°,则λ的值为( ) A.√66 B .-√66C.±√66D .±√6OB ⃗⃗⃗⃗⃗ =(0,-1,1),OA ⃗⃗⃗⃗⃗ +λOB⃗⃗⃗⃗⃗ =(1,-λ,λ), cos120°=(OA⃗⃗⃗⃗⃗⃗ +λAB ⃗⃗⃗⃗⃗ )·OB ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√2λ2+1×2=-12,可得λ<0,解得λ=-√66.故选B .12.已知点A (1,-1,2),B (5,-6,2),C (1,3,-1),则AB ⃗⃗⃗⃗⃗ 在AC ⃗⃗⃗⃗⃗ 上的投影为 .4AB ⃗⃗⃗⃗⃗ =(5,-6,2)-(1,-1,2)=(4,-5,0),AC⃗⃗⃗⃗⃗ =(1,3,-1)-(1,-1,2)=(0,4,-3), ∴cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√42+(-5)×√42+(-3)=-5√41,AB ⃗⃗⃗⃗⃗ 在AC ⃗⃗⃗⃗⃗ 上的投影为|AB ⃗⃗⃗⃗⃗ |cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ > =√42+(-5)2×-5√41=-4.13.已知空间向量a =(1,-2,3),则向量a 在坐标平面xOy 上的投影向量是 .-2,0)14.已知A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3),AP ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ −AC⃗⃗⃗⃗⃗ ),则点P 的坐标是 .,12,0)CB⃗⃗⃗⃗⃗ =(6,3,-4),设P (a ,b ,c ), 则(a-2,b+1,c-2)=(3,32,-2),∴a=5,b=12,c=0,∴P (5,12,0). 15.如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB=√3,BC=1,P A=2,E 为PD 的中点.建立空间直角坐标系, (1)求cos <AC ⃗⃗⃗⃗⃗ ,PB⃗⃗⃗⃗⃗ >; (2)在侧面P AB 内找一点N ,使NE ⊥平面P AC ,求N 点的坐标.解(1)由题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (√3,0,0),C (√3,1,0),D (0,1,0),P (0,0,2),E 0,12,1,从而AC⃗⃗⃗⃗⃗ =(√3,1,0),PB ⃗⃗⃗⃗⃗ =(√3,0,-2). 则cos <AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >=AC ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗ ||PB ⃗⃗⃗⃗⃗ | =2√7=3√714.∴<AC ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ >的余弦值为3√714. (2)由于N 点在侧面P AB 内,故可设N 点坐标为(x ,0,z ),则NE⃗⃗⃗⃗⃗⃗ =-x ,12,1-z , 由NE ⊥平面P AC 可得,{NE ⃗⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ =0,NE ⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,即{(-x ,12,1-z)·(0,0,2)=0,(-x ,12,1-z)·(√3,1,0)=0,化简得{z -1=0,-√3x +12=0,∴{x =√36,z =1,即N 点的坐标为√36,0,1.16.已知点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以向量AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在有向线段为边的平行四边形的面积; (2)若|a |=√3,且向量a 分别与向量AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 垂直,求向量a .AB ⃗⃗⃗⃗⃗ =(-2,-1,3),AC⃗⃗⃗⃗⃗ =(1,-3,2), 设θ为AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 的夹角, 则cos θ=AB⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ |=√4+1+9·√1+9+4=12,∴sin θ=√32.∴S ▱=|AB ⃗⃗⃗⃗⃗ ||AC⃗⃗⃗⃗⃗ |sin θ=7√3. ∴以AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为边的平行四边形面积为7√3. (2)设a =(x ,y ,z ),由题意,得{-2x -y +3z =0,x -3y +2z =0,x 2+y 2+z 2=3.解得{x =1,y =1,z =1或{x =-1,y =-1,z =-1.∴a =(1,1,1)或a =(-1,-1,-1). 17.P是平面ABC外的点,四边形ABCD是平行四边形,AB ⃗⃗⃗⃗⃗ =(2,-1,-4),AD ⃗⃗⃗⃗⃗ =(4,2,0),AP⃗⃗⃗⃗⃗ =(-1,2,-1).(1)求证:P A ⊥平面ABCD ; (2)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ 的绝对值;说明其与几何体P-ABCD 的体积关系,并由此猜想向量这种运算(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ 的绝对值的几何意义.⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =(2,-1,-4)·(-1,2,-1)=-2+(-2)+4=0,∴AP ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,即AP ⊥AB.同理,AP ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =(-1,2,-1)·(4,2,0)=-4+4+0=0,∴AP ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ , 即P A ⊥AD.又AB ⊂平面ABCD ,AD ⊂平面ABCD ,AB ∩AD=A ,∴P A ⊥平面ABCD.(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ |=48, 又cos <AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ >=√105,|AB ⃗⃗⃗⃗⃗ |=√21,|AD ⃗⃗⃗⃗⃗ |=2√5,|AP⃗⃗⃗⃗⃗ |=√6, V=13|AB ⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗ |·sin <AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ >·|AP ⃗⃗⃗⃗⃗ |=16,可得|(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP⃗⃗⃗⃗⃗ |=3V P-ABCD . 猜测:|(AB ⃗⃗⃗⃗⃗ ×AD ⃗⃗⃗⃗⃗ )·AP ⃗⃗⃗⃗⃗ |在几何上可表示以AB ,AD ,AP 为棱的平行六面体的体积(或以AB ,AD ,AP 为棱的四棱柱的体积).18.正四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,A 1C 1与B 1D 1交于点N ,BC 1与B 1C 交于点M ,且AM ⊥BN ,建立空间直角坐标系. (1)求AA 1的长; (2)求<BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >;(3)对于n 个向量a 1,a 2,…,a n ,如果存在不全为零的n 个实数λ1,λ2,…,λn ,使得λ1a 1+λ2a 2+…+λn a n =0成立,则这n 个向量a 1,a 2,…,a n 叫做线性相关,不是线性相关的向量叫线性无关,判断AM⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 是否线性相关,并说明理由.以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AA 1的长为a ,则B (4,4,0),N (2,2,a ),BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,a ),A (4,0,0),M (2,4,a 2),AM ⃗⃗⃗⃗⃗⃗ =(-2,4,a2),由BN ⃗⃗⃗⃗⃗⃗ ⊥AM ⃗⃗⃗⃗⃗⃗ ,得BN ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗ =0,即a=2√2,即AA 1=2√2.(2)BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,2√2),AD 1⃗⃗⃗⃗⃗⃗⃗ =(-4,0,2√2),cos <BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=BN ⃗⃗⃗⃗⃗⃗ ·AD 1⃗⃗⃗⃗⃗⃗⃗⃗|BN ⃗⃗⃗⃗⃗⃗ ||AD 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√63, <BN ⃗⃗⃗⃗⃗⃗ ,AD 1⃗⃗⃗⃗⃗⃗⃗ >=arccos √63.(3)由AM ⃗⃗⃗⃗⃗⃗ =(-2,4,√2),BN ⃗⃗⃗⃗⃗⃗ =(-2,-2,2√2),CD ⃗⃗⃗⃗⃗ =(0,-4,0),λ1(-2,4,√2)+λ2(-2,-2,2√2)+λ3(0,-4,0)=(0,0,0),得λ1=λ2=λ3=0,则AM ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 线性无关.1.2 空间向量在立体几何中的应用1.2.1 空间中的点、直线与空间向量1.已知l 1的方向向量为v 1=(1,2,3),l 2的方向向量为v 2=(λ,4,6),若l 1∥l 2,则λ等于( ) A.1 B .2 C .3 D .4l 1∥l 2,得v 1∥v 2,得1λ=24=36,故λ=2.2.空间中异面直线a 与b 所成角的取值范围是( ) A.[0,π] B.(0,π) C.(0,π2] D.(0,π2),空间中异面直线a 与b 所成角的取值范围是(0,π2]. 3.在正方体ABCD-A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.BDB.ACC.A 1DD .A 1A。

高一数学人教B版必修1课后强化作业:第13章(共30份)2.1.2 第2课时分段函数

高一数学人教B版必修1课后强化作业:第13章(共30份)2.1.2 第2课时分段函数

第二章 2.1.2 第2课时一、选择题1.(2012·江西文)设函数f (x )=⎩⎪⎨⎪⎧x 2+1 (x ≤1)2x (x >1),则f [f (3)]=( ) A.15 B .3 C .23D .139[答案] D[解析] 本题考查分段函数“代入问题”,f (3)=23,f [f (3)]=f (23)=(23)2+1=139.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1 (x ≤-1)x 2(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值为( )A .2B .2或32C .±3 D. 3 [答案] D[解析] 当x ≤-1时,f (x )=x +1=3, ∴x =2(不合题意,舍去);当-1<x <2时,f (x )=x 2=3,x =±3, ∵-1<x <2,∴x =3;当x ≥2时,f (x )=2x =3,∴x =32(不合题意舍去),故选D.3.已知函数f (x )=⎩⎪⎨⎪⎧0 (x >0)-π (x =0)x 2+1 (x <0),则f {f [f (-1)]}的值等于( )A .x 2+1B .π2+1C .-πD .0 [答案] C[解析] f (-1)=(-1)2+1=2, f [f (-1)]=f (2)=0, f {f [f (-1)]}=f (0)=-π.4.函数f (x )=⎩⎪⎨⎪⎧2x (0≤x ≤1)2(1<x <2)3(x ≥2)的值域是( )A .RB .[0,+∞)C .[0,3]D .[0,2]∪{3}[答案] D[解析] 作出y =f (x )的图象,如图所示.由图象知,f (x )的值域是[0,2]∪{3}.5.已知y =f (n )满足⎩⎪⎨⎪⎧f (0)=2f (n +2)=3f (n )+5,n ∈N ,则f (4)的值为( )A .11B .17C .23D .38[答案] D[解析] ∵f (4)=3f (2)+5, f (2)=3f (0)+5=3×2+5=11, ∴f (4)=3×11+5=38.6.已知函数f (x )=⎩⎨⎧2x (x >0)x +1(x ≤0),若f (a )+f (1)=0,则实数a 的值为( )A .-3或-1B .-1C .1D .-3[答案] D[解析] ∵x >0时,f (x )=2x ,∴f (1)=2. ∴f (a )=-f (1)=-2. 当a >0时,f (a )=2a ≠-2,当a ≤0时,f (a )=a +1=-2,∴a =-3,故选D. 二、填空题7.(2013~2014学年度江西吉安一中高一上学期期中测试)已知函数f (x )=⎩⎪⎨⎪⎧2x -1(x ≥3)1-3x (x <3),则f [f (-1)]的值是________.[答案] 7[解析] ∵x <3时,f (x )=1-3x , ∴f (-1)=1-3×(-1)=4.又∵x ≥3时,f (x )=2x -1,∴f (4)=2×4-1=7. ∴f [f (-1)]=f (4)=7.8.已知函数f (x )=⎩⎪⎨⎪⎧1(x 为有理数)0(x 为无理数),g (x )=⎩⎪⎨⎪⎧0(x 为有理数)1(x 为无理数).当x ∈R 时,f [g (x )]=__________,g [f (x )]=__________.[答案] 1 0[解析] ∵f (x )、g (x )的函数值均为有理数, ∴f [g (x )]=1,g [f (x )]=0. 三、解答题9.画出函数y =|x -1|+|2x +4|的图象. [解析] y =|x -1|+|2x +4|= ⎩⎪⎨⎪⎧3x +3 (x >1)x +5 (-2≤x ≤1)-3x -3 (x <-2).画出函数y =|x -1|+|2x +4|的图象如图所示.一、选择题1.已知函数f (x )定义在[-1,1]上,其图象如图所示,那么f (x )的解析式是( )A .f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0]x ,x ∈(0,1]B .f (x )=⎩⎪⎨⎪⎧-x +1,x ∈[-1,0]-x ,x ∈(0,1]C .f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0]-x ,x ∈(0,1]D .f (x )=⎩⎪⎨⎪⎧x +1,x ∈[-1,0)-x ,x ∈[0,1][答案] C[解析] ∵f (x )的图象是由两条线段组成, ∴由一次函数解析式的求法可得f (x )=⎩⎪⎨⎪⎧x +1(-1≤x ≤0)-x (0<x ≤1).2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x +6(x ≤0)-10x (x >0),或f (a )=10,则a =( )A .-4B .-1C .1D .-4或1[答案] A[解析] 当a ≤0时,f (a )=a 2+3a +6=10, ∴a 2+3a -4=0,解得a =-4或a =1, ∵a ≤0,∴a =-4. 当a >0时, f (a )=-10a=10, ∴a =-1,又∵a >0,∴a ≠-1. 综上所述, a =-4.3.函数y =x +|x |x的图象是( )[答案] C[解析] y =x +|x |x=⎩⎪⎨⎪⎧x +1(x >0)x -1(x <0),故选C.4.已知f (x )=⎩⎨⎧-x (x >0)x 2(x <0),则f [f (x )]=( )A .f [f (x )]=⎩⎨⎧ x 2(x >0)-x 2(x <0)B .f [f (x )]=⎩⎨⎧-x 2(x >0)x 2(x <0)C .f (x )=⎩⎨⎧ -x (x >0)x 2(x <0)D .f (x )=⎩⎨⎧-x (x <0)x 2(x >0)[答案] A[解析] 当x >0时,f [f (x )]=f (-x )=(-x )2=x 2; 当x <0时,f [f (x )]=f (x 2)=-(x 2)=-x 2,∴f [f (x )]=⎩⎨⎧x 2(x >0)-x 2(x <0).二、填空题5.某工厂8年来某产品总产量y 与时间t (年)的函数关系如图,则:①前3年总产量增长速度越来越快; ②前3年总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是____________. [答案] ①③[解析] 从图象来看,前三年总产量增长速度越来越快,从第三年开始,总产量不变,说明这种产品已经停产.故①③正确.6.已知f (x )=⎩⎪⎨⎪⎧0 (x >0)-1 (x =0)2x -3 (x <0),则f {f [f (5)]}等于________.[答案] -5[解析] ∵x >0时,f (x )=0,∴f (5)=0. ∵x =0时,f (x )=-1,∴f (0)=-1. 又∵x <0时,f (x )=2x -3,∴f (-1)=-5. ∴f {f [f (5)]}=f [f (0)]=f (-1)=-5. 三、解答题7.求函数f (x )=⎩⎪⎨⎪⎧4x (0<x ≤5)20 (5<x ≤9)56-4x (9<x <14)的定义域和值域.[解析] 当0<x ≤5时,y =4x ,∴0<y ≤20; 当5<x ≤9时,y =20;当9<x <14时,y =56-4x ,∴0<y <20. 又∵(0,20]∪{20}∪(0,20)=(0,20],∴函数f (x )的定义域为(0,5]∪(5,9]∪(9,14)=(0,14),函数f (x )的值域为(0,20]. 8.已知函数f (x )的图象如图所示,求函数f (x )的解析式.[解析] 当x ∈[0,1]时,设f (x )=kx (k ≠0), 将点⎝⎛⎭⎫1,32代入,得32=k ,∴f (x )=32x . 当x ∈[1,2]时,设f (x )=ax +b (a ≠0), 将⎝⎛⎭⎫1,32、(2,0)代入,得⎩⎪⎨⎪⎧32=a +b 0=2a +b ,解得a =-32,b =3,∴f (x )=-32x +3.∴f (x )=⎩⎨⎧32x (0≤x ≤1)-32x +3(1<x ≤2).9.在学校的洗衣店中每洗一次衣服(4.5kg 以内)需要付费4元,如果在这家店洗衣10次以后可以免费洗一次.(1)根据题意填写下表:(2)“费用c (3)写出函数的解析式,并画出图象. [解析] (1)(2)费用c 是次数n 的函数.对于次数集合中的每一个元素(次数),在费用集合中都有惟一的元素(费用)和它对应;但对于费用集合中的每一个元素(费用),在次数集合中并不都是只有惟一的一个元素和它对应.如40元就有两个元素10次和11次和它对应.(3)由以上分析,可得函数的解析式为c =⎩⎨⎧4n , n ≤10,n ∈N +4(n -1), n >10,n ∈N +. 其图象如图所示.。

2014-2015高一数学人教B版必修1课后强化作业:2.2.1一次函数的性质与图象

2014-2015高一数学人教B版必修1课后强化作业:2.2.1一次函数的性质与图象

第二章2。

2 2.2.1一、选择题1.一次函数y=kx(k≠0)的图象上有一点坐标为(m,n),当m>0,n<0时,则直线经过()A.第二、四象限B.第一、三象限C.第二、三象限D.第一、四象限[答案] A[解析]n=km,∵m>0,n〈0,∴k〈0.故直线经过第二、四象限.2.直线ax+by+c=0(ab≠0)如图所示,则( )A.a=b,c=1B.a=b,c=0C.a=-b,c=1D.a=-b,c=0[答案]B[解析] ∵直线过原点,∴c=0,又直线过点(-1,1),∴a=b。

3.一次函数y=kx+错误!(k≠0)的图象可能是( )[答案]D[解析]若k>0,则错误!>0否定C;若k<0,则错误!〈0。

否定A、B.∴选D。

4.若函数y=(2m-3)x+(3n+1)的图象经过第一、二、三象限,则m与n的取值是( )A.m>错误!,n〉-错误!B.m〉3,n>-3C.m<错误!,n〈-错误!D.m〉错误!,n<错误![答案] A[解析]∵函数y=(2m-3)x+(3n+1)的图象经过第一、二、三象限,∴错误!,∴错误!。

5.已知一次函数y=(m-2)x+m2-3m-2,它的图象在y轴上的截距为-4,则m的值为()A.-4 B.2C.1 D.2或1[答案]C[解析] 令x=0,得y=m2-3m-2,由题意,得m2-3m-2=-4且m-2≠0,解得m=1。

当m=2时,函数y=(m-2)x+m2-3m-2=-4,不是一次函数,∴m≠2,故选C.6.如果ab>0,bc〈0,那么一次函数ax+by+c=0的图象的大致形状是( )[答案]A[解析] ∵y=-错误!x-错误!,ab>0,bc〈0,∴-ab<0,-错误!>0,∴直线y=-ab x-错误!的斜率k〈0,直线在y轴上的截距大于零,故选A。

二、填空题7.已知函数y=(k+1)x+k2-1,当k≠________时,它为一次函数;当k=________时,它是正比例函数.[答案] -1 1[解析] 要使函数y=(k+1)x+k2-1为正比例函数,则k2-1=0,即k=±1,又当k=-1时,函数y=(k+1)x+k2-1为常数函数y=0。

高一数学人教B版必修1课后强化作业:第13章(共30份)2.

高一数学人教B版必修1课后强化作业:第13章(共30份)2.

第二章 2.3一、选择题1.(2013·湖北文)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()[答案] C[解析]选项A,随时间的推移,小明离学校越远,不正确;选项B,先匀速,再停止,后匀速,不正确;选项C,与题意想吻合;选项D,中间没有停止,故选C.2.(2013~2014学年度山东曲阜师大附中高一月考)某地固定电话市话收费规定:前三分钟0.20元(不满三分钟按三分钟计算),以后每加一分钟增收0.10元(不满一分钟按一分钟计算),那么某人打市话550秒,应支付电话费()A.1.00元B.0.90元C.1.20元D.0.80元[答案] B[解析]y=0.2+0.1×([x]-3)([x]是不小于x的最小整数,x>0),令x=55060,故[x]=10,则y=0.9.3.(2013~2014学年度江西师大附中高一月考)某厂有许多形状为直角梯形的铁皮边角料,为了降低消耗,现要从这些边角料上截取矩形铁片(如图所示).当截取的矩形面积最大时,矩形两边的长x,y应为()A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14 [答案] A[解析]本题考查二次函数的应用.结合图形,可得x20=24-y16,得y=24-4x5,矩形面积S=xy=x(24-4x5)=-4x25+24x,所以当x=-242×(-45)=15时,S最大,此时y=24-45×15=12,故选A.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y=⎩⎪⎨⎪⎧4x(1≤x<10,x∈N+)2x+10(10≤x<100,x∈N+)1.5x(x≥100,x∈N+),其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为() A.15B.40C.25D.130[答案] C[解析]令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25人.5.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点[答案] D[解析]由题中图象知,甲、乙同时出发,A错误;甲、乙跑的路程相同,B错误;路程相等时,甲比乙用的时间少,所以甲的速度快,C错误.6.用一根长为12 m的铁丝弯成一个矩形的铁框架,则能弯成的框架的最大面积是() A.9 m2B.36 m2C.4.5 m2D.最大面积不存在[答案] A[解析] 设矩形框架一边长x m , 则另一边长为12-2x2=6-x (m).∴面积S =x (6-x )=-x 2+6x =-(x -3)2+9≤9(m 2). 二、填空题7.图中折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (min)之间的函数关系图象,根据图象填空:通话2min ,需付电话费______元;通话5min ,需付电话费______元;如果t ≥3min ,电话费y (元)与通话时间t (min)之间的函数关系式是________________.[答案] 3.6 6 y =1.2t (t ≥3)[解析] 由图知,通话2分钟,需付电话费3.6元; 通话5分钟需付电话费6元;当t ≥3时,设y =kx +b ,则有⎩⎪⎨⎪⎧3.6=3k +b6=5k +b ,解得k =1.2,b =0,∴y =1.2t (t ≥3).8.甲同学家到乙同学家的途中有一公园,甲到公园的距离与乙到公园的距离都是2km.如图表示甲从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,其中甲在公园休息的时间是10min ,那么y =f (x )的表达式为______________.[答案] y =⎩⎪⎨⎪⎧115x (0≤x ≤30)2 (30<x <40)110x -2 (40≤x ≤60)[解析] 由图象知是一个分段函数,且各段均是直线,可用待定系数法求得.三、解答题9.为了保护学生的视力,课桌、椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为y cm ,椅子的高度为x cm ,则y 应是x 的一次函数,下表列出两套符合条件的课桌、椅的高度:(1)(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?为什么?[解析] (1)根据题意,课桌高度y 是椅子高度x 的一次函数,故可设为y =kx +b (k ≠0).将符合条件的两套课桌椅的高度代入上述函数解析式,得⎩⎪⎨⎪⎧ 40k +b =7537k +b =70.2,解得⎩⎪⎨⎪⎧k =1.6b =11. ∴y 与x 的函数关系式是y =1.6x +11.(2)把x =42代入上述函数解析式中,有y =1.6×42+11=78.2.∴给出的这套桌椅是配套的.一、选择题1.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,且含氧量y (g/m 3)与大气压强x (kPa)成正比例函数关系.当x =36kPa 时,y =108g/m 3,则y 与x 的函数关系式为( )A .y =3x (x ≥0)B .y =3xC .y =13x (x ≥0)D .y =13x[答案] A[解析] 由题意设y =kx (k ≠0),将(36,108)代入解析式可得k =3,故y =3x ,考虑到含氧量不可能为负,可知x ≥0.2.某商场以每件30元的价格购进一种商品,试销售中发现,这种商品每天的销量m (件)与每件的售价x (元)满足一次函数:m =162-3x .若要每天获得最大的销售利润,每件商品的售价应定为( )A .30元B .42元C .54元D .越高越好 [答案] B[解析] 设日销售利润为y 元,则y =(x -30)(162-3x ),30≤x ≤54,将上式配方后得y =-3(x -42)2+432,当x =42时,y 取得最大值.故每件商品的售价定为42元时,每天才能获得最大的销售利润.3.某公司在甲、乙两座仓库分别有农用车12辆和6辆.现需要调往A 县10辆,B 县8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B县的运费分别为30元和50元.则总费用最少为()A.300元B.400元C.700元D.860元[答案] D[解析]设从甲仓库调到A县的车辆数为x,则从甲仓库调往B县的车辆数为12-x,从乙仓库调往A县的车辆数为10-x,从乙仓库调往B县的车辆数为6-(10-x)=x-4.设总的费用为y,则y=40x+80×(12-x)+30×(10-x)+50×(x-4)=1 060-20x(4≤x≤10,x∈N)要想使运费y最少,则需x最大,所以当x=10时,运费y最少为860元.4.如图,液体从一个圆锥形漏斗漏入一圆柱形桶中,开始时漏斗中盛满液体,经过3秒漏完,圆柱形桶中液面上升速度是一个常量,则漏斗中液面下降的高度H与下降时间t之间的函数关系的图象只可能是图中的()[答案] B[解析]单位时间内圆柱形桶中液体增加的体积相等,而漏斗容积上大下小,故液面下降先慢后快,故选B.二、填空题5.(2013~2014学年度湖南怀化市怀化三中高一期中测试)某商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价赚了270元,那么每台彩电原价是________元.[答案] 2 250[解析]设每台彩电原价x元,依题意得80%·x(1+40%)-x=270,解得x=2 250.6.(2013~2014学年度山东济南市高一调研)某厂原来月产量为a ,一月份增产10%,二月份比一月份减产10%,设二月份产量为b ,则a 与b 的大小关系是________________.[答案] a >b[解析] 本题考查函数的应用.因为b =a (1+10%)·(1-10%)=a [1-(10%)2]=a (1-1100),即b =a ×99100.故a >b . 三、解答题7.商店出售茶壶与茶杯,茶壶每个定价20元,茶杯每个5元,该商店推出两种优惠办法: ①买一个茶壶送一个茶杯,②按购买总价的92%付款.某顾客购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯数x 个,付款为y (元),试分别建立两种优惠办法中,y 与x 的函数关系式,并指出如果该顾客需要购买茶杯40个,应选择哪种优惠办法?[解析] 由优惠办法①得函数关系式为y 1=20×4+5(x -4)=5x +60(x ≥4,x ∈N *). 由优惠办法②得函数关系式为y 2=(20×4+5x )×92%=4.6x +73.6(x ≥4,x ∈N *).当该顾客购买茶杯40个时,采用优惠办法①应付款y 1=5×40+60=260元;采用优惠办法②应付款y 2=4.6×40+73.6=257.6元,由于y 2<y 1,因此应选择优惠办法②.8.某人定制了一批地砖,每块地砖(如图所示)是边长为1 m 的正方形ABCD ,点E 、F 分别在边BC 和CD 上,且CE =CF ,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元.问点E 在什么位置时,每块地砖所需的材料费用最省? [解析] 设CE =x m ,则BE =(1-x )m ,每块地砖的费用为W ,且制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为30元、20元、10元.则W =12x 2·30+12×1×(1-x )×20+[1-12x 2-12×1×(1-x )]×10=10x 2-5x +15=10(x -14)2+1158.当x =14=0.25 m 时,W 有最小值,即费用最省.答:当点E 在距点C 为0.25 m 时,每块地砖所需费用最省.9.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次为Q 1万元和Q 2万元,它们与投入资金的关系是Q1=15x,Q2=35x.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入应分别为多少?[解析]设投入甲x万元,则投入乙(3-x)万元,利润Q1+Q2=15x+353-x,令3-x=t(0≤t≤3),则x=3-t2,∴Q=15(3-t2)+35t=-15t2+35t+35=-15(t-32)2+2120,∴当t=32,即x=34时,Q取得最大值2120,此时,3-x=9 4.∴为获得最大利润,对甲、乙两种商品的资金投入应分别为34万元和94万元.。

高一数学人教B版必修1课后强化作业:第13章(共30份)1.

高一数学人教B版必修1课后强化作业:第13章(共30份)1.

第一章 1.2 1.2.2 第1课时一、选择题1.(2013~2014学年度河北唐山市开滦二中高一上学期期中测试)已知集合S={0,1},T={0},那么S∪T=()A.∅B.{0}C.{0,1} D.{0,1,0}[答案] C[解析]S∪T={0,1}∪{0}={0,1}.2.(2013~2014学年度天津市五区县高一上学期期中测试)已知集合M={-1,0,1,2},N={y|y=x2,x∈R},则M∩N等于()A.{-1,0,1,2} B.{-1,0}C.{-1,0} D.{0,1,2}[答案] D[解析]∵y=x2≥0,∴N={y|y≥0},又∵M={-1,0,1,2},∴M∩N={0,1,2}.3.(2014·全国新课标Ⅱ文,1)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.∅B.{2}C.{0}D.{-2}[答案] B[解析]∵B={x|x2-x-2=0}={-1,2},A={-2,0,2},∴A∩B={2}.4.(2014·广东文,1)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}[答案] B[解析]M∩N={2,3,4}∩{0,2,3,5}={2,3}.5.(2014·广东理,1)已知集合M={-1,0,1},N={0,1,2},则M∪N=()A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}[答案] B[解析]M∪N={-1,0,1}∪{0,1,2}={-1,0,1,2}.6.若集合M={(x,y)|x+y=0},P={(x,y)|x-y=2},则M∩P等于()A .(1,-1)B .{x =1或y =1}C .{1,-1}D .{(1,-1)}[答案] D[解析] ∵M ∩P 的元素是方程组⎩⎪⎨⎪⎧x +y =0x -y =2的解,∴M ∩P ={(1,-1)}. 二、填空题7.(2013~2014学年度南京市第三中学高一学期期中测试)设集合A ={1,2,3},B ={2,4,5},则A ∪B =________________.[答案] {1,2,3,4,5}[解析] A ∪B ={1,2,3}∪{2,4,5}={1,2,3,4,5}. 8.(2014·江苏,1)已知集合A ={-2,-1,3,4}, B ={-1,2,3},则A ∩B =________. [答案] {-1,3}[解析] A ∩B ={-2,-1,3,4}∩{-1,2,3}={-1,3}. 三、解答题9.集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. [解析] (1)由题意得B ={x |x ≥2}, 又A ={x |-1≤x <3},如图.∴A ∩B ={x |2≤x <3}. (2)由题意得,C ={x |x >-a2},又B ∪C =C ,故B ⊆C ,∴-a2<2,∴a >-4.∴实数a 的取值范围为{a |a >-4}.一、选择题1.已知集合M ={1,3},N ={x ∈Z |0<x <3},P =M ∪N ,那么集合P 的子集共有( ) A .3个 B .7个 C .8个D .16个[答案] C[解析] ∵N ={1,2}∴P =M ∪N ={1,2,3} ∴P 的子集共有23=8个.2.设M ={x |1<x <3}、N ={x |2≤x <4},定义M 与N 的差集M -N ={x |x ∈M 且x ∉N },则M -N =( ) A .{x |1<x <3} B .{x |3≤x <4} C .{x |1<x <2} D .{x |2≤x <3}[答案] C[解析] 将集合M 、N 在数轴上标出,如图所示.∵M -N ={x |x ∈M 且x ∉N },∴M -N ={x |1<x <2}.3.(2012·北京文)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0} 则A ∩B =( ) A .(-∞,-1) B .(-1,-23)C .(-23,3)D .(3,+∞)[答案] D[解析] 由3x +2>0得x >-23,即A ={x |x >-23},由(x +1)(x -3)>0得x <-1或x >3即B ={x <-1或x >3}.∴A ∩B =(3,+∞).解不等式求函数定义域,值域是给出集合的常见方式.4.若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A ,C 之间的关系必定是( ) A .ACB .CAC .A ⊆CD .C ⊆A[答案] C[解析] A ∩B =A ⇒A ⊆B ,B ∪C =C ⇒B ⊆C , ∴A ⊆C ,故选C. 二、填空题5.已知集合M ={0,1,2},N ={x |x =2a -1,a ∈N *},则集合M ∩N =________. [答案] {1}[解析] 若0∈(M ∩N ),则2a -1=0,a =12,又∵a ∈N *,∴0∉(M ∩N );若1∈(M ∩N ),则2a -1=1,∴a =1,满足题意;若2∈(M ∩N ),则2a -1=2,∴a =32,又∵a ∈N *,∴2∉(M ∩N ),∴M ∩N ={1}.6.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是________. [答案] a ≤1[解析] 将集合A 、B 分别表示在数轴上,如图所示.要使A ∪B =R ,则a ≤1. 三、解答题7.设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B ={12},求A ∪B .[解析] ∵A ∩B ={12},∴12∈A 且12∈B ,∴12是方程2x 2-px +q =0与6x 2+(p +2)x +5+q =0的根, ∴⎩⎨⎧12-12p +q =032+(p +2)×12+5+q =0,∴⎩⎪⎨⎪⎧q =-4p =-7.∴A ={-4,12},B ={12,13}.∴A ∪B ={-4,12,13}.8.已知集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1}. (1)若B ⊆A ,求实数m 的取值范围; (2)若x ∈N ,求集合A 的子集的个数. [解析] (1)①当m -1>2m +1, 即m <-2时,B =∅,符合题意.②当m -1≤2m +1,即m ≥-2时,B ≠∅,由B ⊆A ,得⎩⎪⎨⎪⎧m -1≥-12m +1≤6,解得0≤m ≤52,综合①、②可得m <-2或0≤m ≤52.(2)若x ∈N ,则A ={0,1,2,3,4,5,6},所以集合A 的子集的个数为27=128.9.已知A ={x |a ≤x ≤-a +3},B ={x |x <-1或x >5}. (1)若A ∩B =∅,求a 的取值范围; (2)若A ∪B =R ,求a 的取值范围. [解析] (1)①当A =∅时,A ∩B =∅, ∴a >-a +3,∴a >32.②当A ≠∅时,要使A ∩B =∅,必须满足⎩⎪⎨⎪⎧a ≤32-a +3≤5a ≥-1,解得-1≤a ≤32.综上所述,a 的取值范围是a ≥-1.(2)∵A ∪B =R ,∴⎩⎪⎨⎪⎧-a +3≥5a ≤-1,解得a ≤-2.故所求a 的取值范围为a ≤-2.。

高一数学人教B版必修1课后强化作业:第13章(共30份)1.

高一数学人教B版必修1课后强化作业:第13章(共30份)1.

第一章 1.2 1.2.1一、选择题1.集合A={x|0≤x<3且x∈N}的真子集个数是()A.16B.8C.7D.4[答案] C[解析]A={x|0≤x<3且x∈N}={0,1,2},∴真子集有7个.2.(2013~2014学年度重庆市重庆一中高一上学期期末测试)已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=()A.1 B.0C.-2 D.-3[答案] C[解析]∵A⊆B,∴1∈B,∴a+3=1,∴a=-2.3.(2013~2014学年度福州文博中学高一上学期期中测试)下列命题正确的是()A.我校篮球水平较高的学生可以看成一个集合B.-1∈NC.∅⊆ND.∅∈Z[答案] C[解析]空集是任何集合的子集,故选C.4.设M={正方形},T={矩形},P={平行四边形},H={梯形},则下列包含关系中不正确的是() A.M⊆T B.T⊆PC.P⊆H D.M⊆P[答案] C[解析]设U={四边形},则集合U、M、T、P、H的关系用Venn图表示为5.集合M ={x |x 2-1=0},T ={-1,0,1},则M 与T 的关系是( ) A .MTB .MTC .M =TD .M T[答案] A[解析] ∵M ={x |x 2-1=0}={-1,1},T ={-1,0,1},∴M T ,故选A.6.满足{a ,b }⊆A {a ,b ,c ,d }的集合A 有________个( )A .1B .2C .3D .4[答案] C[解析] ∵{a ,b }⊆A ,∴a ∈A ,b ∈A , 又∵A{a ,b ,c ,d },∴c ,d 不能同时为集合A 的元素,∴A ={a ,b }、{a ,b ,c }、{a ,b ,d }共3个. 二、填空题7.已知A ={a,0,-1},B =⎩⎨⎧⎭⎬⎫c +b ,1a +b ,1,且A =B ,则a =________,b =________,c =________.[答案] 1 -2 2[解析] ∵A ={a,0,-1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c +b ,1a +b ,1,A =B ,∴a =1,b +c =0,1a +b =-1,∴b =-2,c=2.8.已知集合A ={x |-2≤x ≤3},B ={x |x ≥m },若A ⊆B ,则实数m 的取值范围为________. [答案] m ≤-2[解析] 将集合A 、B 表示在数轴上,如图所示,∴m ≤-2. 三、解答题9.已知集合A ={x ,xy ,x -y },B ={0,|x |,y },且A =B ,求x 与y 的值.[分析] 两个集合相等,说明这两个集合的元素完全相同,因此集合A 中必有一个元素为0,所以x ,xy ,x -y 这三个元素中必有一个为0.而每个集合中的元素又应该是互异的,由此出发可以列方程来确定x ,y 的值.[解析] ∵0∈B ,A =B ,∴0∈A . ∵集合中元素具有互异性,∴x≠xy,∴x≠0.又∵0∈B,y∈B,∴y≠0.从而x-y=0,即x=y.这时A={x,x2,0},B={0,|x|,x},∴x2=|x|,则x=0(舍去),或x=1(舍去),或x=-1.经检验,x=y=-1.一、选择题1.设A={0,1},B={x|x∈A},则集合A与B的关系是()A.A B B.B AC.A=B D.A∈B[答案] C[解析]B={x|x∈A}说明集合B中的元素是集合A中的全部元素,∴A=B.2.设a,b∈R,集合{1,a+b,a}={0,ba,b},则b-a=()A.1 B.-1 C.2 D.-2 [答案] C[解析]由集合{1,a+b,a}={0,ba,b},知a≠0,且a≠1,∴a+b=0,则a=-b,∴ba=-1,∴a=ba=-1,∴b=1,则b-a=2,故选C.3.已知A={x|x<-1,或x>2},B={x|4x+p<0},且A B,则实数p() A.p≥4 B.p>4C.p≤4 D.p<4[答案] A[解析]∵B={x|4x+p<0},∴B={x|x<-p 4},将集合A及点-p4标在数轴上,如图.由图可知,要使AB ,应满足点-p 4在点-1的左侧或与点-1重合,即-p4≤-1,∴p ≥4.4.数集P ={x |x =(2n +1)π,n ∈Z }与数集Q ={x |x =(4m ±1)π,m ∈Z }之间的关系是( ) A .P Q B .P =Q C .QPD .P ≠Q[答案] B[解析] 取n =…,-1,0,1,2,…,得P ={…,-π,π,3π,5π,…}; 取m =…,0,1,…,得Q ={…,-π,π,3π,5π,…}. ∴P =Q . 二、填空题5.若集合A ={1,3,x },B ={x 2,1},且B ⊆A ,则实数x 的值是________. [答案] 0或±3[解析] ∵B ⊆A ,∴x 2=3,或x 2=x , 解得x =±3,或x =0,或x =1, 当x =1时,集合B 不满足元素的互异性, ∴x =1舍去,故x =0或x =±3.6.(2013~2014学年度宝鸡中学高一上学期期中测试)设集合A ={x |-3≤x ≤2},B ={x |2k -1≤x ≤2k +1},且A ⊇B ,则实数k 的取值范围是____________.[答案] -1≤k ≤12[解析] ∵A ⊇B ,∴⎩⎪⎨⎪⎧2k -1≥-32k +1≤2,∴-1≤k ≤12.三、解答题7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,求实数a 的值. [解析] ∵B ⊆A ,∴a 2-a +1=3或a 2-a +1=a , 当a 2-a +1=3时,a =2或a =-1; 当a 2-a +1=a 时,a =1(舍去), ∴a =2或a =-1.8.设集合A ={x ,y },B ={0,x 2},若A =B ,求实数x ,y 的值. [解析] ∵A =B ,∴x =0或y =0.(1)当x =0时,x 2=0,则B 中的元素0重复出现,此时集合B 不满足集合中元素的互异性,舍去. (2)当y =0时,x =x 2,解得x =1或x =0(舍去),此时A ={1,0}=B ,满足条件. 综上可知,x =1,y =0.9.设集合A ={x |1≤x ≤4},B ={x |m +1≤x ≤2m +3},若B ⊆A ,求实数m 的取值范围. [解析] ①当m +1>2m +3,即m <-2时,B =∅符合题意; ②当m +1≤2m +3,即m ≥-2时,B ≠∅.由B ⊆A ,得⎩⎪⎨⎪⎧m +1≥12m +3≤4,解得0≤m ≤12.综合①②可知,m <-2或0≤m ≤12.。

人教B版高一数学《第一册》综合测试题

人教B版高一数学《第一册》综合测试题

2019年- 人教B 版高一数学《第一册》综合测试题满分100分 时间90分钟一.选择题(本题共10道小题,每小题4分, 共40分).1. .若集合{}2|1,{|02}A x x B x x =<=<<,则A B ⋃等于 ( ) A.{|01}x x << B.{|10}x x -<< C.{|12}x x << D {|12}x x -<<2. 设全集U =R ,集合{|A y y =,则()U A ð等于( ) A.[1,)+∞ B.(,1]-∞ C. [1,)+∞ D.(,1)-∞3.命题“对任意的32,20x x x ∈-+R …”的否定是( ) A.不存在32,20x x x ∈-+R … B.存在32,20x x x ∉-+R … C 存在32,20x x x ∈-+R … D.存在32,20x x x ∈-+<R4.已知函数21(0)()2(0)x x f x x x ⎧+=⎨->⎩…,若()5f x =,则()f x 的值是( ).A. 2或52- B. 2或-3C. 2或-2或52- D.-25.下列各组函数是同一函数的是( )(1)()g()f x x ==(2)()()f x x g x ==与001(3)()()f x x g x x ==与 22()21()21f x x x g t t t =--=--(4)与 A.1,2 B.1,3 C.3,4 D.1,46.设11,0a b b >>>-≠,则下列不等式中恒成立的是( )A.2a b >B.11a b>C.11a b< D.22a b > 7.已知正实数,a b 满足a b ab +=则ab 的最小值为( )A.1C.2 D.48.设a,b,c 为正数,则“a b c +>”是“222a b c +>”的( ) A.充分不必要条件 B 必要不充分条件C.充要条件 D 既不充分也不必要条件9.若关于x 的不等式22840x x m ---…在14x 剟内有解,则实数m 的取值范围是( )A.4m -…B.4m -…C.12m -…D.12m -…10.已知函数2()6f x x ax =-+-,()4g x x =+,若对任意10)[x ∈+∞,存在(]2--1x ∈∞,,使()()12f x g x …,则实数a 的最大值为( )A.6B.4C.3D.2二.填空题(本题共4道小题,每小题5分,共20分)11.已知3()2,(2)3f x ax bx f =++-=,,则(2)f =_____________.12.设22(),()52(0)1x f x g x ax a a x ==+->+,若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得()()01g x f x =成立,则a 的取值范围是___________.13. 已知111f x x ⎛⎫⎪⎝⎭=+,那么函数()2f = ___________.14.已知f(x)是R 上的偶函数,且当0x …时,3()2f x x x =+ ,则不等式()3f x <的解集为_______. 15.已知0,0a b >>,若不等式414m a b a b ++…恒成立,则m 取最大值时ba=___________.三.解答题(共5道小题,每题8分,共40分) 16.已知命题:“1|1{}x x x ∀∈≤≤-,恒有不等式20x x t --<成立”是真命题.(1)求实数t 的取值集合B ;(2)设不等式()320)(x a x a ---<的解集为A ,若x A x B ∈∈是的充分不必要条件,求实数a 的取值范围.17.已知函数()f x 是奇函数,且当0x <时,1()1xf x x+=- (1)求()5f 的值 (2)求函数()f x 的解析式18.已知函数2()(2)4()f x x a x a =-++∈R (1)解关于x 的不等式()24f x a ≤-+(2)若对任意的[]()1,4,10x f x a ∈++≥恒成立,求a 的取值范围19.二次函数()f x 的图象的顶点为()1,16A ,且图象在x 轴上截得线段长为8. (1)求函数()f x 的解析式;(2)令()(22)()g x a x f x =--,若()g x 在区间[]0,2上的最大值是5,求实数a 的值.20.已知()221f x x x =++-的最小值为t . (1)求t 的值;(2)若实数,a b 满足2222a b t +=,求221112a b +++的最小值.答 案一.选择题(本题共10道小题,每小题4分, 共40分).1. .若集合{}2|1,{|02}A x x B x x =<=<<,则A B ⋃等于 ( D ) A.{|01}x x << B.{|10}x x -<< C.{|12}x x << D {|12}x x -<<2. 设全集U =R ,集合{|A y y =,则()U A ð等于( C ) A.[1,)+∞ B.(,1]-∞ C. [1,)+∞ D.(,1)-∞3.命题“对任意的32,20x x x ∈-+R …”的否定是( C ) A.不存在32,20x x x ∈-+R … B.存在32,20x x x ∉-+R … C 存在32,20x x x ∈-+R … D.存在32,20x x x ∈-+<R4.已知函数21(0)()2(0)x x f x x x ⎧+=⎨->⎩…,若()5f x =,则()f x 的值是( D ).A. 2或52-B. 2或-3C. 2或-2或52- D.-25.下列各组函数是同一函数的是( C )(1)()g()f x x ==(2)()()f x x g x ==与001(3)()()f x x g x x ==与 22()21()21f x x x g t t t =--=--(4)与 A.1,2 B.1,3 C.3,4 D.1,46.设11,0a b b >>>-≠,则下列不等式中恒成立的是( A )A.2a b >B.11a b>C.11a b< D.22a b > 7.已知正实数,a b 满足a b ab +=则ab 的最小值为( D )A.1C.2 D.48.设a,b,c 为正数,则“a b c +>”是“222a b c +>”的( B ) A.充分不必要条件 B 必要不充分条件C.充要条件 D 既不充分也不必要条件 9.若关于x 的不等式22840x x m ---…在14x 剟内有解,则实数m 的取值范围是( A ) A.4m -… B.4m -… C.12m -…D.12m -…10.已知函数2()6f x x ax =-+-,()4g x x =+,若对任意10)[x ∈+∞,存在(]2--1x ∈∞,,使()()12f x g x …,则实数a 的最大值为( A )A.6B.4C.3D.2二.填空题(本题共4道小题,每小题5分,共20分)11.已知3()2,(2)3f x ax bx f =++-=,,则(2)f =________1______12.设22(),()52(0)1x f x g x ax a a x ==+->+,若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得()()01g x f x =成立,则a 的取值范围是_______5,42⎡⎤⎢⎥⎣⎦____.13. 已知111f x x ⎛⎫⎪⎝⎭=+,那么函数()2f = _____23______.14.已知f(x)是R 上的偶函数,且当0x …时,3()2f x x x =+ ,则不等式()3f x <的解集为___()1,3____.15.已知0,0a b >>,若不等式414m a b a b ++…恒成立,则m 取最大值时ba=___14________. 三.解答题(共5道小题,每题8分,共40分) 16.已知命题:“1|1{}x x x ∀∈≤≤-,恒有不等式20x x t --<成立”是真命题.(1)求实数t 的取值集合B ;(2)设不等式()320)(x a x a ---<的解集为A ,若x A x B ∈∈是的充分不必要条件,求实数a 的取值范围. 答: (1){|2}t B t =>(2)2,3a ⎡⎫∈+∞⎪⎢⎣⎭17.已知函数()f x 是奇函数,且当0x <时,1()1xf x x+=- (1)求()5f 的值 (2)求函数()f x 的解析式 答案: (1)求()5f =23(2)求函数1,01()1,01xx xf x x x x+⎧<⎪⎪-=⎨-⎪>⎪+⎩18.已知函数2()(2)4()f x x a x a =-++∈R(1)解关于x 的不等式()24f x a ≤-+(2)若对任意的[]()1,4,10x f x a ∈++≥恒成立,求a 的取值范围 答:(1) 当2a <时,不等式解集为2{|}x a x ≤≤; 当2a =时,不等式解集为{}2|x x =; 当2a >时,不等式解集为{|}2x x a ≤≤. (2) a 的取值范围是(4],-∞.19.二次函数()f x 的图象的顶点为()1,16A ,且图象在x 轴上截得线段长为8 (1)求函数()f x 的解析式;(2)令()(22)()g x a x f x =--,若()g x 在区间[]0,2上的最大值是5,求实数a 的值. 答:(1)()2215.f x x x =-++(2)实数a 的值为-420.已知()221f x x x =++-的最小值为t (1)求t 的值;(2)若实数,a b 满足2222a b t +=,求221112a b +++的最小值. 答:(1).故当x=-1时,函数f(x)有最小值2,所以t=2.(2).当且仅当22122b a +=+=,即221,0a b ==时等号成立,故221112a b +++,的最小值为1.。

人教B版必修一课后作业:综合检测 Word版含答案

人教B版必修一课后作业:综合检测 Word版含答案

综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如果A ={x |x >-1},那么( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A答案 D解析 ∵0∈A ,∴{0}⊆A .2.已知集合A ={y |y =31-x ,x ∈R },B ={x |1≤x ≤4},则( ) A .A ∩B =∅B .A ∩B =[1,3]C .A ∪B =(0,+∞)D .A ∪B =(0,4] 答案 C解析 ∵y =31-x =3·(13)x ,∴y >0, ∴A ∪B =(0,+∞)∪[1,4]=(0,+∞).3.函数y =1x 2+1的值域是( ) A .[1,+∞)B .(0,1]C .(-∞,1]D .(0,+∞)答案 B 解析 ∵x 2+1≥1,∴1x 2+1≤1,且1x 2+1>0,即函数的值域为(0,1]. 4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( )A .增函数B .减函数C .先递增再递减D .先递减再递增 答案 C解析 ∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.5.已知a =log 23.6,b =log 43.2,c =log 43.6,则( )A .a >b >cB .a >c >bC .b >a >cD .c >a >b答案 B解析 ∵2<3.6<4,∴log 23.6>1>log 43.6.又∵log 43.6>log 43.2,∴a >c >b .6.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |答案 B解析 ∵y =x 3在定义域R 上是奇函数,∴A 不对.y =-x 2+1在定义域R 上是偶函数,但在(0,+∞)上是减函数,故C 不对.D 中y =2-|x |=(12)|x |虽是偶函数,但在(0,+∞)上是减函数,只有B 对.7.对数式log (a -3)(7-a )=b 中,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞)答案 C解析 由题意得⎩⎪⎨⎪⎧ a -3>0,a -3≠1,7-a >0,解得3<a <7,且a ≠4.8.函数f (x )=log 3x -8+2x 的零点一定位于区间( )A .(5,6)B .(3,4)C .(2,3)D .(1,2)答案 B解析 f (3)=log 33-8+2×3=-1<0,f (4)=log 34-8+2×4=log 34>0.又f (x )在(0,+∞)上为增函数,所以其零点一定位于区间(3,4).9.已知0<a <1,则方程a |x |=|log a x |的实根的个数是( )A .2B .3C .4D .与a 值有关答案 A解析 分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.10.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <54D .-54<a <-1 答案 C解析 ∵f (x )=x 2-2ax +1,∴f (x )的图象是开口向上的抛物线.由题意得⎩⎪⎨⎪⎧ f (0)>0,f (1)<0,f (2)>0,即⎩⎪⎨⎪⎧ 1>0,1-2a +1<0,4-4a +1>0,解得1<a <54. 11.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数答案 C解析 根据幂的运算性质可知,f (x )f (y )=a x a y =a x +y =f (x +y ),故选C.12.已知f (x )=ax 2+bx +c (a ≠0),且方程f (x )=x 无实根.现有四个说法:①若a >0,则不等式f [f (x )]>x 对一切x ∈R 成立;②若a <0,则必存在实数x 0使不等式f [f (x 0)]>x 0成立;③方程f [f (x )]=x 一定没有实数根;④若a +b +c =0,则不等式f [f (x )]<x 对一切x ∈R 成立.其中说法正确的个数是( )A .1B .2C .3D .4答案 C解析 方程f (x )=x 无实根,∴f (x )-x >0或f (x )-x <0.∵a >0,∴f (x )-x >0对一切x ∈R 成立,∴f (x )>x ,用f (x )代替x ,∴f [f (x )]>f (x )>x ,∴说法①正确;同理若a <0,则有f [f (x )]<x ,∴说法②错误;说法③正确;∵a +b +c =0,∴f (1)-1<0,∴必然归为a <0,有f [f (x )]<x ,∴说法④正确.综上,选C.二、填空题(本大题共4小题,每小题5分,共20分)13.计算:0.25×(-12)-4+lg 8+3lg 5=________. 答案 7解析 原式=0.25×24+lg 8+lg 53=(0.5×2)2×22+lg(8×53)=4+lg 1 000=7.14.已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=________.答案 6解析 依题意,得g (-2)=f (-2)+9=-f (2)+9=3,解得f (2)=6.15.定义在R 上的奇函数f (x )为减函数,若a +b ≤0,给出下列不等式:①f (a )·f (-a )≤0;②f (a )+f (b )≤f (-a )+f (-b );③f (b )·f (-b )>0;④f (a )+f (b )≥f (-a )+f (-b ). 其中正确的是________.(填序号)答案 ①④解析 ∵f (x )是R 上的奇函数,∴f (0)=0,又∵f (x )为R 上的减函数,∴当x >0时,f (x )<0,当x <0时,f (x )>0.由于a ·(-a )≤0,∴f (a )·f (-a )≤0,又∵a +b ≤0,即a ≤-b ,∴f (a )≥f (-b ),同理,得f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ).16.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是________. 答案 (1,2)解析 依题意,a >0且a ≠1,∴2-ax 在[0,1]上是减函数,即当x =1时,2-ax 的值最小,又∵2-ax 为真数,∴⎩⎨⎧ a >12-a >0,解得1<a <2. 三、解答题(本大题共6小题,共70分)17.(10分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧ 3x +5(x ≤0),x +5(0<x ≤1),-2x +8(x >1).(1)求f (32),f (1π),f (-1)的值; (2)画出这个函数的图象;(3)求f (x )的最大值.解 (1)∵32>1,∴f (32)=-2×(32)+8=5, ∵0<1π<1,∴f (1π)=1π+5=5π+1π. ∵-1<0,∴f (-1)=-3+5=2.(2)如图,在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6.18.(12分)已知函数f (x )=3x -2-x3x +2-x . (1)判断f (x )的奇偶性;(2)判断f (x )的单调性,并加以证明;(3)写出f (x )的值域.解 (1)f (x )=3x -2-x 3x +2-x =2x ·3x -12x ·3x +1=6x -16x +1,所以f (-x )=6-x -16-x +1=1-6x1+6x=-f (x ),x ∈R , 所以f (x )是奇函数.(2)f (x )=6x -16x +1=(6x +1)-26x +1=1-26x +1在R 上是增函数, 证明如下:任意取x 1,x 2,使得x 1>x 2,所以61x >62x >0,则f (x 1)-f (x 2)=21226161x x ++- 12122(66)0.(61)(61)x x x x -=>++ 所以f (x 1)>f (x 2),f (x )在R 上是增函数.(3)因为0<26x +1<2, 所以f (x )=1-26x +1∈(-1,1), 所以f (x )的值域为(-1,1).19.(12分)已知函数f (x )=log 2(x +1),当点(x ,y )是函数y =f (x )图象上的点时,点⎝⎛⎭⎫x 3,y 2是函数y =g (x )图象上的点.(1)写出函数y =g (x )的表达式;(2)当2g (x )-f (x )≥0时,求x 的取值范围.解 (1)令x ′=x 3,y ′=y 2, 把x =3x ′,y =2y ′代入y =log 2(x +1)得y ′=12log 2(3x ′+1), ∴g (x )=12log 2(3x +1). (2)2g (x )-f (x )≥0,即log 2(3x +1)-log 2(x +1)≥0,∴⎩⎪⎨⎪⎧3x +1>0,x +1>0,3x +1≥x +1,解得x ≥0.20.(12分)已知函数f (x )=⎩⎨⎧ x -2x (x >12),x 2+2x +a -1(x ≤12).(1)若a =1,求函数f (x )的零点;(2)若函数f (x )在[-1,+∞)上为增函数,求a 的取值范围.解 (1)当a =1时,由x -2x =0,x 2+2x =0, 得零点为2,0,-2.(2)显然,函数g (x )=x -2x 在[12,+∞)上单调递增,且g (12)=-72;函数h (x )=x 2+2x +a -1在[-1,12]上单调递增,且h (12)=a +14.故若函数f (x )在[-1,+∞)上为增函数,则a +14≤-72,∴a ≤-154.故a 的取值范围为(-∞,-154].21.(12分)若非零函数f (x )对任意实数a ,b 均有f (a +b )=f (a )·f (b ),且当x <0时,f (x )>1.(1)求证:f (x )>0;(2)求证:f (x )为减函数;(3)当f (4)=116时,解不等式f (x 2+x -3)·f (5-x 2)≤14.(1)证明 f (x )=f (x 2+x 2)=f 2(x 2)≥0,又∵f (x )≠0,∴f (x )>0.(2)证明 设x 1<x 2,则x 1-x 2<0,又∵f (x )为非零函数,∴f (x 1-x 2)=f (x1-x 2)·f(x 2)f (x 2)=f (x 1-x 2+x 2)f (x 2)=f (x 1)f (x 2)>1,∴f (x 1)>f (x 2),∴f (x )为减函数.(3)解 由f (4)=f 2(2)=116,f (x )>0,得f (2)=14.原不等式转化为f (x 2+x -3+5-x 2)≤f (2),结合(2)得x +2≥2,∴x ≥0,故不等式的解集为{x |x ≥0}.22.(12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值;(2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示.解 (1)∵f (x )是奇函数,∴f (-2)=-f (2),即f (2)+f (-2)=0.(2)当x <0时,-x >0,∴f (-x )=a -x -1.∵f (x )是奇函数,有f (-x )=-f (x ),∴f (x )=-a -x +1(x <0).∴f (x )=⎩⎪⎨⎪⎧ a x -1(x ≥0),-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧ x -1<0,-1<-a -x +1+1<4或⎩⎪⎨⎪⎧ x -1≥0,-1<a x -1-1<4,即⎩⎪⎨⎪⎧ x -1<0,-3<a -x +1<2或⎩⎪⎨⎪⎧ x -1≥0,0<a x -1<5.当a >1时,有⎩⎨⎧ x <1.x >1-log a 2或⎩⎨⎧x ≥1.x <1+log a 5,注意此时log a2>0,log a5>0,可得此时不等式的解集为(1-log a2,1+log a5).同理,可得当0<a<1时,不等式的解集为R. 综上所述,当a>1时,不等式的解集为(1-log a2,1+log a5);当0<a<1时,不等式的解集为R.。

新教材数学人教B版必修第一册课时作业:本册综合测试

新教材数学人教B版必修第一册课时作业:本册综合测试

本册综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知集合A ={x |x >1},则下列关系中正确的是( C ) A .0⊆A B .{0}⊆A C .∅⊆A D .{0}∈A2.(2019·全国卷Ⅲ)已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B =( A )A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2} 解析:分别将x =-1,0,1,2代入x 2≤1,知x =-1,0,1适合,所以A ∩B ={-1,0,1}.3.命题“存在一个三角形,内角和不等于180°”的否定为( B )A .存在一个三角形:内角和等于180°B .任意三角形,内角和都等于180°C .任意三角形,内角和都不等于180°D .很多三角形,内角不和等于180° 4.若a <1<b ,则下列结论正确的是( D ) A.1a >1b B.b a >1 C .a 2<b 2 D .ab <a +b 5.(2019·浙江卷)若a >0,b >0,则“a +b ≤4”是“ab ≤4”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:当a >0,b >0时,a +b ≥2ab ,则当a +b ≤4时,有2ab ≤a +b ≤4,解得ab ≤4,充分性成立;当a =1,b =4时,满足ab ≤4,但此时a +b =5>4,必要性不成立,综上所述,“a +b ≤4”是“ab ≤4”的充分不必要条件.6.若a ,b ,c ,d ∈R ,给出下列命题:①若a >b ,c >d ,则a +c >b +d ;②若a >b ,c >d ,则a -c >b -d ;③若a >b ,c >d ,则ac >bd ;④a >b ,c >0,则ac >bc .其中正确命题的序号是( B )A .①②④B .①④C .①③④D .②③7.不等式(x 2-2x -3)(x 2+2)<0的解集是( A )A .{x |-1<x <3}B .{x |x <-1或x >3}C .{x |0<x <3}D .{x |-1<x <0} 8.设x ,y ∈R +且xy -(x +y )=1,则( A )A .x +y ≥2(2+1)B .xy ≤2+1C .x +y ≤(2+1)2D .xy ≥3(2+1)解析:因为x ,y ∈R +且xy -(x +y )=1,则xy =1+(x +y )≥1+2xy ,化为:(xy )2-2xy -1≥0,解得xy ≥1+2,即xy ≥(1+2)2,xy =1+(x +y )≤(x +y )24,即(x +y )2-4(x +y )-4≥0,解得x +y ≥2(2+1),故选A.9.若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( D )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4]解析:因为函数f (x )=mx 2+mx +1的定义域为一切实数,所以对任意x ∈R ,mx 2+mx +1≥0,①m <0时,必存在x ∈R 使得mx 2+mx +1<0, ②m =0时,f (x )=1,满足题意, ③m >0时,Δ=m 2-4m ≤0,则0<m ≤4, 综上,则实数m 的取值范围是[0,4].故选D.10.函数f (x )=2x -3x +1,x ∈⎝ ⎛⎭⎪⎫-34,3的值域为( C )A .[-2,0)B .(-3,0)C .[-258,0) D .[-278,0)解析:令x +1=t ,因为x ∈⎝ ⎛⎭⎪⎫-34,3,所以t ∈⎝ ⎛⎭⎪⎫12,2,所以x =t 2-1,所以y =2(t 2-1)-3t =2⎝ ⎛⎭⎪⎫t -342-258,所以当t =34时,f (x )取最小值-258;当t =2时,f (x )取最大值0,但是取不到.所以f (x )的值域为⎣⎢⎡⎭⎪⎫-258,0.故选C.11.已知函数f (x )是定义在R 上的偶函数,当x <0时,f (x )=x 3,则f (2)的值是( B )A .8B .-8 C.18D .-18解析:因为函数f (x )是定义在R 上的偶函数,所以f (2)=f (-2)=(-2)3=-8,故选B.12.设a >0,b >1,若a +b =2,则2a +1b -1的最小值为( A )A .3+2 2B .6C .4 2D .2 2 解析:a +b =2,a +b -1=1,所以2a +1b -1=(2a +1b -1)(a +b -1)=2+2(b -1)a +ab -1+1≥3+22,故选A.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.(2019·天津卷)设x ∈R ,使不等式3x 2+x -2<0成立的x 的取值范围为(-1,23).解析:3x 2+x -2<0,即(x +1)(3x -2)<0,即-1<x <23,故x 的取值范围是(-1,23).14.已知f (x )=⎩⎪⎨⎪⎧x 2+1(x >0),2f (x +1)(x ≤0),则f (2)=5;f (-1)=8.解析:因为f (x )=⎩⎪⎨⎪⎧x 2+1(x >0),2f (x +1)(x ≤0),所以f (2)=22+1=5,f (-1)=2f (0)=4f (1)=4(1+1)=8.15.已知命题p :-4<x -a <4,q :(x -2)(3-x )>0,若非p 是非q 的充分条件,则实数a 的取值范围是[-1,6],若p 是非q 的充分条件,则实数a 的取值范围是(-∞,-2]∪[7,+∞).解析:由-4<x -a <4,得a -4<x <a +4, 由(x -2)(3-x )>0,得2<x <3. 又非p 是非q 的充分条件,即q 是p 的充分条件,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,解得-1≤a ≤6.非q :x ≤2,x ≥3,又p 是非q 的充分条件,所以a -4≥3或4+a ≤2得a ≥7或a ≤-2.16.已知函数f (x )=⎩⎨⎧(x -a )2,x ≤0,x +4x +3a ,x >0,且f (0)为f (x )的最小值,则实数a 的取值范围是[0,4].解析:若f (0)为f (x )的最小值,则当x ≤0时,函数f (x )=(x -a )2为减函数,则a ≥0,当x >0时,函数f (x )=x +4x +3a 的最小值4+3a ≥f (0),即4+3a ≥a 2,解得-1≤a ≤4,综上所述实数a 的取值范围是[0,4].三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知集合A ={x |x 2-8x +15=0},B ={x |x 2-ax -b =0},(1)若A ∪B ={2,3,5},A ∩B ={3},求a ,b 的值; (2)若∅B A ,求实数a ,b 的值.解:(1)A ={3,5}.若A ∪B ={2,3,5},A ∩B ={3},则B ={2,3},所以⎩⎪⎨⎪⎧2+3=a ,2×3=-b ,所以a =5,b =-6.(2)若∅B A ,则B ={3}或B ={5},所以⎩⎪⎨⎪⎧ 3+3=a ,3×3=-b 或⎩⎪⎨⎪⎧5+5=a ,5×5=-b ,所以⎩⎪⎨⎪⎧ a =6,b =-9或⎩⎪⎨⎪⎧a =10,b =-25.18.(12分)(1)已知非零常数a ,b 满足a +b =1a +1b ,求不等式|-2x +1|≥ab 的解集;(2)解关于x 的不等式x +22x -3≥0;(3)解关于x 的不等式ax 2-x >0.解:(1)已知a +b =a +bab ,因为a ,b 不为0,所以ab =1,原不等式相当于|-2x +1|≥1,所以-2x +1≥1或-2x +1≤-1,得{x |x ≤0或x ≥1}.(2)x +22x -3≥0等价于⎩⎪⎨⎪⎧(x +2)(2x -3)≥0,2x -3≠0,解得x ≤-2或x >32,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-2或x >32.(3)根据题意,分三种情况讨论:①当a =0时,不等式为-x >0,即x <0,此时不等式的解集为{x |x <0}.②当a ≠0时,方程ax 2-x =0有两个根,分别为0和1a .当a >0时,1a >0,此时不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x <0或x >1a ;当a <0时,1a <0,此时不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <0.综上可得,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <0或x >1a ;当a =0时,不等式的解集为{x |x <0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <0.19.(12分)(1)解不等式(x -2)(x 2+3x +2)>0;(2)已知a ,b ,c ∈R +,求证:(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +c ≥4.解:(1)由不等式(x -2)(x 2+3x +2)>0, 即(x -2)(x +1)(x +2)>0, 解得-2<x <-1,或x >2. (2)证明:因为a ,b ,c >0,所以(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +c =[a +(b +c )]⎝ ⎛⎭⎪⎫1a +1b +c=1+a b +c +b +c a +1=2+ab +c +b +c a ≥2+2=4,当且仅当a =b +c 时等号成立.20.(12分)(1)已知x >0,y >0,且3x +2y =2,求xy 的最大值以及相应的x 和y 的值;(2)已知a ,b ∈R +,且a +b =1,求1a +1b 的最小值;(3)已知方程x 2+(m -3)x +m =0的两个根都是正数,求实数m 的取值范围.解:(1)已知x >0,y >0,且3x +2y =2,根据基本不等式得到:3x +2y =2≥26xy ⇒xy ≤16,等号成立的条件为:x =13,y =12.(2)已知a ,b ∈R +,且a +b =1,则1a +1b =⎝ ⎛⎭⎪⎫1a +1b(a +b )=2+a b +ba ≥2+2=4. 最小值为4.(3)已知方程x 2+(m -3)x +m =0的两个根都是正数,则根据韦达定理得到⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0⇒m ≥9或m ≤1,x 1+x 2=3-m >0⇒m <3,x 1x 2=m >0,因此0<m ≤1.21.(12分)已知函数f (x )为定义在R 上的奇函数,且当x >0时,f (x )=-x 2+4x .(1)求函数f (x )的解析式;(2)求函数f (x )在区间[-2,a ](a >-2)上的最小值. 解:(1)当x >0时,f (x )=-x 2+4x ,又f (x )为奇函数,则当x <0时,f (x )=-f (-x )=-(-x 2-4x )=x 2+4x ,又f (0)=0,故f (x )解析式为f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x >0,0,x =0,x 2+4x ,x <0.(2)根据函数解析式画出函数f (x )的图像,可得f (-2)=-4,当x >0时,由f (x )=-4,解得x =2+22(负值舍去).①当-2<a ≤2+22时,观察图像可得函数最小值为f (-2)=-4.②当a >2+22时,函数在[-2,2]上单调递增,在[2,a ]上单调递减,由图像可得函数的最小值为f (a )=-a 2+4a .综上所述:当-2<a ≤2+22,最小值为-4; 当a >2+22时,最小值为-a 2+4a .22.(12分)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2),且当x >1时,f (x )>0.(1)求f (1)的值; (2)证明:f (x )为增函数;(3)若f ⎝ ⎛⎭⎪⎫15=-1,求f (x )在⎣⎢⎡⎦⎥⎤125,125上的最值. 解:(1)因为函数f (x )满足f (x 1·x 2)=f (x 1)+f (x 2), 令x 1=x 2=1,则f (1)=f (1)+f (1),解得f (1)=0. (2)证明:设x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,所以f ⎝ ⎛⎭⎪⎫x 1x 2>0,所以f (x 1)-f (x 2)=f ⎝ ⎛⎭⎪⎫x 2·x 1x 2-f (x 2) =f (x 2)+f ⎝ ⎛⎭⎪⎫x 1x 2-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (3)因为f (x )在(0,+∞)上是增函数.若f ⎝ ⎛⎭⎪⎫15=-1,则f ⎝ ⎛⎭⎪⎫15+f ⎝ ⎛⎭⎪⎫15=f ⎝⎛⎭⎪⎫125=-2,则f ⎝ ⎛⎭⎪⎫15·5=f (1)=f ⎝ ⎛⎭⎪⎫15+f (5)=0,即f (5)=1, 则f (5)+f (5)=f (25)=2,f (5)+f (25)=f (125)=3,所以f (x )在⎣⎢⎡⎦⎥⎤125,125上的最小值为-2,最大值为3.由Ruize收集整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本册综合测试题(A)(时间:120分钟 满分:150分)一、(本大题共12个小题,每小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是正确的)1.(2013~2014学年度吉林长春外国语学校高一期中测试)已知集合A ={-2,-1,0,1,2},B ={-3,-1,0,2},则A ∩B =( )A .{-1,0,2}B .{-3,-2,-1,0,1,2}C .{0,2}D .{x |-3≤x ≤2}[答案] A[解析] A ∩B ={-2,-1,0,1,2}∩{-3,-1,0,2}={-1,0,2}.2.(2013~2014学年度江西吉安一中高一期中测试)已知集合A ={x |y =lg x },B ={x |x <1},则A ∪B =( )A .RB .{x |0<x <1}C .∅D .{x |x >1}[答案] A[解析] ∵A ={x |y =lg x }={x |x >0},∴A ∪B =R . 3.函数f (x )=3x 21-x +3x +1的定义域是( )A .(-13,+∞)B .(-13,1)C .[-13,1)D .[0,1)[答案] C[解析] 要使函数有意义,应满足⎩⎪⎨⎪⎧1-x >03x +1≥0,∴-13≤x <1,故选C.4.设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x ∈Q0,x ∈∁R Q ,则f [g (π)]的值为( ) A .1 B .0 C .-1 D .π[答案] B[解析] g (π)=0,∴f [g (π)]=f (0)=0.5.设(x ,y )在映射f 下的象是(2x +y ,x -2y ),则在f 下,象(2,1)的原象是( ) A .(12,32)B .(1,0)C .(1,2)D .(3,2)[答案] B[解析] 由⎩⎪⎨⎪⎧ 2x +y =2x -2y =1,得⎩⎪⎨⎪⎧x =1y =0,故选B.6.用二分法求方程x -2lg 1x=3的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)[答案] C[解析] 本题考查用二分法求解函数零点所在区间.设f (x )=x -2lg1x-3=x +lg x -3,因为f (2)·f (3)=(lg2-1)×lg3<0,且函数图象在(2,3)上连续,所以可以取的一个区间是(2,3),故选C.7.函数y =(12)x 的反函数的图象为( )[答案] D[解析] 函数y =(12)x 的反函数为y =log 12x ,故选D.8.若奇函数f (x )在[1,3]上为增函数且有最小值0,则它在[-3,-1]上( ) A .是减函数,有最大值0 B .是减函数,有最小值0 C .是增函数,有最大值0 D .是增函数,有最小值0 [答案] C[解析] 奇函数在对称区间上单调性相同,且图象关于原点对称,故选C.9.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( ) A .f (-72)<f (-3)<f (4)B .f (-3)<f (-72)<f (4)C .f (4)<f (-3)<f (-72)D .f (4)<f (-72)<f (-3)[答案] D[解析] ∵f (x )在(-∞,-2]上是增函数, 又-4<-72<-3,∴f (4)=f (-4)<f (-72)<f (-3).10.设函数y =x 3与y =22-x 的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 令f (x )=x 3-22-x ,由题意知x 0是函数f (x )的零点,又f (1)=1-2=-1<0,f (2)=8-1=7>0,故选B.11.设a =60.5,b =0.56,c =log 60.5,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >b >a D .a >c >b[答案] A[解析] a =60.5>60=1,b =0.56<0,50=1, 又0.56>0,∴0<0.56<1, c =log 60.5<log 61=0,∴a >b >c .12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1b ,a -b >1,设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1][答案] B[解析] 依题意可得f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2作出其示意图如图所示.由数形结合知,实数c 需有1<c ≤2或-2<c ≤-1.二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.已知函数f (x +1)=3x +4,则f (x )的解析式为________________. [答案] f (x )=3x +1[解析] 设x +1=t ,∴x =t -1, ∴f (t )=3(t -1)+4=3t +1,∴f (x )=3x +1. 14.3log 925+log 2-1(2+1)的值为__________.[答案] 4[解析] 3 log 925+log2-1(2+1)=3 log 35+log2-1(2-1)-1=5-1=4.15.定义域为R 的函数y =f (x )的值域是[a ,b ],则函数y =f (x +a )的值域是________. [答案] [a ,b ][解析] 函数f (x +a )的图象只是由f (x )的图象向左或向右平移得到,函数值y 没有变化. 16.对于定义域在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若函数f (x )=x 2+ax +1没有不动点,则实数a 的取值范围是__________.[答案] (-1,3)[解析] 由题意,得方程x 2+ax +1=x ,即 x 2+(a -1)x +1=0无实根, ∴Δ=(a -1)2-4=a 2-2a -3<0, ∴-1<a <3.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2013~2014学年度河南信阳市高一期末测试)已知函数f (x )=log 2(x -1)的定义域为集合A ,函数g (x )=(12)x (-1≤x ≤0)的值域为集合B .(1)求A ∩B ;(2)若C ={x |a ≤x ≤2a -1},且C ⊆B ,求实数a 的取值范围. [解析] (1)要使函数f (x )有意义,应满足log 2(x -1)≥0, ∴x -1≥1,∴x ≥2. ∴A ={x |x ≥2}.∴g (x )=(12)x (-1≤x ≤0)是减函数,∴当x =-1时,g (x )取最大值2, 当x =0时,g (x )取最小值1, ∴B ={x |1≤x ≤2},∴A ∩B ={2}. (2)∵C ⊆B ,①当C =∅时满足题意,即a >2a -1,解得a <1;②当C ≠∅时,则有⎩⎪⎨⎪⎧a ≥12a -1≤2,解得1≤a ≤32.综上实数a 的取值范围是(-∞,32].18.(本小题满分12分)设a ,b ,c 为正数,且满足a 2+b 2=c 2. (1)求证:log 2(1+b +c a )+log 2(1+a -cb)=1;(2)若log 4(1+b +c a )=1,log 8(a +b -c )=23,求a ,b ,c 的值.[解析] (1)log 2(1+b +c a )+log 2(1+a -cb )=log 2a +b +c a +log 2a +b -cb=log 2(a +b )2-c 2ab=log 2(a 2+b 2-c 2)+2ab ab=log 22=1.(2)由log 4(1+b +c a )=1,log 8(a +b +c )=23,得1+b +ca =4,a +b -c =4,又a 2+b 2=c 2,整理可得⎩⎪⎨⎪⎧b +c =3a a +b -c =4a 2+b 2=c 2,解得a =6,b =8,c =10.19.(本小题满分12分)2009年某个体企业受金融危机和国家政策调整的影响,经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来的累积利润S (万元)与时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系,0≤t ≤12).请根据图象提供的信息解答下列问题:(1)求累积利润S (万元)与时间t (月)之间的函数关系式; (2)截止到第几月末公司累积利润可达到9万元? (3)该企业第四季度所获利润是多少? [解析]设S (t )=at 2+bt +c , 将点(0,0),(6,0),(3,-3)代入得 ⎩⎪⎨⎪⎧36a +6b =09a +3b =-3c =0,解得⎩⎪⎨⎪⎧a =13b =-2c =0.∴函数关系式S (t )=13t 2-2t (0≤t ≤12).(2)令S =9即13t 2-2t =9,解得t =9或t =-3(舍),∴截止到9月末公司累积利润可达到9万元. (3)S (12)=13×144-2×12=24(万元),S (9)=13×81-2×9=9(万元),∴第四季度获利S (12)-S (9)=24-9=15(万元). 答:第四季度所获利润为15万元.20.(本小题满分12分)若关于x 的方程x 2+mx +m -1=0有一个正根和一个负根,且负根的绝对值较大,求实数m 的取值范围.[解析] 根据题意,画出f (x )=x 2+mx +m -1的图象,如图所示.图象的对称轴为直线x =-m2.因为方程x 2+mx +m -1=0有一个正根和一个负根, 则函数f (x )有两个零点x 1,x 2,由题意不妨设x 1>0,x 2<0,且|x 1|<|x 2|. 由题意,有⎩⎪⎨⎪⎧f (0)<0-m 2<0,故⎩⎪⎨⎪⎧m -1<0m >0.∴ 0<m <1.即所求的取值范围为(0,1).21.(本小题满分12分)已知定义在R 上的函数f (x )满足f (log 2x )=x +ax ,a 为常数.(1)求函数f (x )的表达式; (2)如果f (x )为偶函数,求a 的值;(3)如果f (x )为偶函数,用函数单调性的定义讨论f (x )的单调性. [解析] (1)令log 2x =t ,则x =2t . ∴f (t )=2t +a2t .∴f (x )=2x +a2x (x ∈R ).(2)由f (-x )=f (x ),则2-x +a 2-x =2x+a 2x , ∴(2x -2-x )(1-a )=0对x ∈R 均成立. ∴1-a =0,即a =1. (3)当a =1时,f (x )=2x +12x ,设0≤x 1<x 2,则 f (x 1)-f (x 2)=2x 1+12x 1-(2 x2+12x 2) =(2 x 1-2 x 2)(1-12 x 1+x 2),∵2 x 1-2 x 2<0,1-12 x 1+x 2>0,∴f (x 1)-f (x 2)<0. 即f (x 1)<f (x 2).因此f (x )在区间[0,+∞)上是增函数. 同理当x 1<x 2<0时, f (x 1)-f (x 2)>0,∴f (x )在区间(-∞,0)上是减函数.22.(本小题满分14分)已知函数f (x )=x 2+ax +3,g (x )=(6+a )·2x -1.(1)若f (1)=f (3),求实数a 的值;(2)在(1)的条件下,判断函数F (x )=21+g (x )的单调性,并给出证明;(3)当x ∈[-2,2]时,f (x )≥a (a ∉(-4,4))恒成立,求实数a 的最小值. [解析] (1)∵f (1)=f (3),∴函数f (x )的图象的对称轴方程为x =2, 即-a2=2,故a =-4.(2)由(1)知,g (x )=(6-4)·2x -1=2x ,F (x )=21+2x(x ∈R )函数F (x )在R 上是减函数 设x 1,x 2∈R ,且x 1<x 2. ∴Δx =x 2-x 1>0,Δy =F (x 2)-F (x 1)=21+2x 2-21+2x 1 =2(2 x 1+1-2 x 2-1)(1+2 x 1)(1+2 x 2)=2(2 x 1-2 x 2)(1+2 x 1)(1+2 x 2). 根据指数函数性质及x 1<x 2,得2 x 1-2 x 2<0, 由上式得Δy <0,所以F (x )在R 上是减函数.(3)f (x )=x 2+ax +3=(x +a 2)2+3-a 24,x ∈[-2,2],又a ∉(-4,4),故-a2∉(-2,2).①当-a2≥2,即a ≤-4时,f (x )在[-2,2]上单调递减,f (x )min =f (2)=7+2a ,故7+2a ≥a ,即a ≥-7. 所以-7≤a ≤-4.②当-a2≤-2,即a ≥4时,f (x )在[-2,2]上单调递增,f (x )min =f (-2)=7-2a ,故7-2a ≥a ,即a ≤73,这与a ≥4矛盾,故此情形不存在. 因此,实数a 的最小值为-7.。

相关文档
最新文档