推理与证明(单元测试)

合集下载

北师大版2020八年级数学下册第一章三角形的证明单元基础达标测试题1(附答案)

北师大版2020八年级数学下册第一章三角形的证明单元基础达标测试题1(附答案)

北师大版2020八年级数学下册第一章三角形的证明单元基础达标测试题1(附答案) 1.如图,平行四边形ABCD 中,E 是AB 上一点,DE 、CE 分别是∠ADC 、∠BCD 的平分线,若AD=5,DE=6,则平行四边形的面积为( )A .96B .48C .60D .302.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .103.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ =PQ ,PR =PS ,①PA 平分∠BAC ;②AS =AR ;③QP ∥AR ;④△BRP ≌△CSP .则这四个结论中正确的有( )A .4个B .3个C .2个D .1个4.如图,在□ABCD 中,CM ⊥AD 于点M ,CN ⊥AB 于点N ,若∠B=40°,则∠MCN=( )A .40°B .50°C .60°D .70°5.已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=12BC ,则△ABC 底角的度数为( ) A .45° B .75° C .60°D .45°或75° 6.如图所示,在平面直角坐标系中,直线OM 是正比例函数3y x =的图象,点A 的坐标为(1,0),在直线OM 上找一点N ,使△ONA 是等腰三角形,则符合条件的点N有( )A.2个B.3个C.4个D.5个7.已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()A.30°B.45°C.60°D.90°8.如图,已知等腰三角形,若以点为圆心,长为半径画弧,交腰于点,则下列结论一定正确的是()A .B.C.D.9.下列各组数不是..勾股数的是()A.2、3、4 B.3、4、5 C.6、8、10 D.5、12、1310.如图,将△ABC沿着直线DE折叠,使点C与点A重合,已知AB=7,BC=9,则△BAD的周长为______________。

第七章 平行线的证明单元测试卷(含解析)

第七章 平行线的证明单元测试卷(含解析)

第七章平行线的证明单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列命题:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个2.如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是()A.5 B.6 C.7 D.83.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°4.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°5.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°6.如图,△ABC中,∠B,∠C的平分线相交于点O,过O作DE∥BC,若BD+EC=5,则DE等于()A.7 B.6 C.5 D.47.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10.已知,如图AB∥CD,∠1=∠2,EP⊥FP,则以下错误的是()A.∠3=∠4 B.∠2+∠4=90°C.∠1与∠3互余D.∠1=∠3二.填空题(共8小题,满分24分,每小题3分)11.用推理的方法判断为正确的命题叫做.12.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,和∠DCE n﹣1的平分线,交点为E n.第n次操作,分别作∠ABE n﹣1若∠E n=1度,那∠BEC等于度13.将一副直角三角尺如图放置(其中∠A=60°,∠F=45°),点E在AC上,ED∥BC,则∠AEF的度数是.14.如图,∠1=52°,∠2=128°,∠C=∠D.探索∠A与∠F的数量关系为.15.说理解答题在空白处填上适当的内容(理由或数学式)解:在ABC中∠B+∠ACB+∠BAC=180°∴∠BAC=180°﹣∠B﹣(等式的性质)=180°﹣36°﹣110°=∵AE是∠BAC的平分线(已知)∴∠CAE=∠BAC=17°∵AD是BC边上的高即AD⊥BC (已知)∴∠D=∵∠AC E是△ACD的外角(已知)∴∠ACE=∠CAD+∠D∴∠CAD=∠ACE﹣∠D (等式的性质)=110°﹣90°═20°∴∠DAE=∠CAD+=20°+17°=.16.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=,,则BB1=.17.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是.18.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,当横板AB的A端着地时,测得∠OAC=α,则在玩跷跷板时,横板AB绕点O上下转动的最大角度为°.三.解答题(共7小题,满分66分)19.(8分)如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.20.(8分)补全解题过程.如图,在△ABC中∠ABC平分线BP和外角平分线CP交于点P,试猜想∠A与∠P之间的关系,并说明理由.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=∠1,∠ACD=2∠2 ()∵∠ACD为△ABC的外角∴∠ACD=∠A+∠=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1同理:∠2=∠P+∴∠A=2∠P.21.(8分)如图:在△ABC中,∠C=90°,点D是AB边上一点,DM⊥AB且DE=BC,过点M作ME∥BC交AB于点E.求证:ME=AB.22.(10分)已知:如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与A点、B点重合的任意一个动点,PQ⊥BC于点Q,QR⊥AC于点R.(1)求证:PQ=BQ;(2)设BP=x,CR=y,求y关于x的函数解析式,并写出定义域;(3)当x为何值时,PR∥BC.23.(10分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b 反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°;(2)在(1)中,若∠1=55°,则∠3=°,若∠1=40°,则∠3=°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n 平行,请说明理由.24.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.25.(12分)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=;若∠A=a°,则∠BEC=.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC=;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A 有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A 有怎样的关系?请说明理由.参考答案与试题解析1.解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.2.解:∵AO平分∠BAC,AO⊥BC,∴∠BAO=∠CAO,∠AOB=∠AOC=90°,∴∠B=∠C,∵DO∥AC,∴∠BOD=∠C,∴∠B=∠BOD,∴DB=DO,又∵DE⊥BO,∴ED平分∠BDO,∵∠B=43°,∴∠BDE=47°,∴∠BAO=∠EDO=∠AOD=∠CAO=∠CGH=47°,故选:A.3.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.4.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.5.解:∵AB∥CD,MP∥AB,∴AB∥CD∥MP,∵∠A=40°,∠D=30°,∴∠AMP=∠A=40°,∠DMP=∠D=30°,∴∠AMD=40°+30°=70°,∵MN平分∠AMD,∴∠AMN=∠AMD=×70°=35°,∴∠NMP=∠AMP﹣∠AMN=40°﹣35°=5°.故选:C.6.解:∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB.又∵∠B,∠C的平分线相交于点O,∴∠DBO=∠DOB,∠EOC=∠ECO.∴DB=DO,EC=EO,又∵BD+EC=5,DO+EO=DE,∴DE=5.故选:C.7.解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK ﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.8.解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.9.解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.10.解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠EPH,∠3=∠HPF,∵EP⊥FP,∴∠2+∠4=90°,∠HPF+∠EPH=90°,∴∠3=∠4,故A正确;∵EP⊥FP,∴∠2+∠4=90°,故B正确;∵∠1=∠2,∠3=∠4,∠2+∠4=90°,∴∠1+∠3=90°,∠1与∠3互余,故C正确;故选:D.11.解:定理是用推理的方法判断为正确的命题,故用推理的方法判断为正确的命题叫做定理.12.解:如图①,过E作EF∥AB,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .13.解:∵ED∥BC,∴∠DEC=∠C=30°,∴∠FEC=15°,∴∠AEF=180°﹣15°=165°,故答案为:165°.14.解:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF,∴∠A=∠F.15.解:在ABC中,∵∠B+∠ACB+∠BAC=180°(三角形内角和定理)∴∠BAC=180°﹣∠B﹣∠BCA(等式的性质)=180°﹣36°﹣110°=34°∵AE是∠BAC的平分线(已知)∴∠CAE=∠BAC=17°∵AD是BC边上的高即AD⊥BC (已知)∴∠D=90°,∵∠AC E是△ACD的外角(已知)∴∠ACE=∠CAD+∠D(三角形外角的性质)∴∠CAD=∠ACE﹣∠D (等式的性质)=110°﹣90°=20°∴∠DAE=∠CAD+∠CAE=20°+17°=37°.故答案为:三角形内角和定理;∠BAC;34°;;90°;三角形外角的性质;∠CAE;37°.16.解:∵△ABC是等腰直角三角形,∴平移后∠PB1C=∠CB=45°,∴△PB1C是等腰直角三角形,∴S=B1C•(B1C)=2,△PB1C解得B1C=2,∴BB1=BC﹣B1C=3﹣2=.故答案为:.17.解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°18.解:如图所示,作DE∥AC,则有∠1=∠A=α,则上下最大可以转动的角度为2α.故答案为:2α.19.证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.20.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=2∠1,∠ACD=2∠2 (角平分线的定义)∵∠ACD为△ABC的外角∴∠ACD=∠A+∠ABC=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1,∴∠A=2∠P.故答案为:2,角平分线的定义,ABC,∠1.21.证明:∵ME∥BC,∴∠B=∠MED,∵DM⊥AB,∴∠MDE=90°,∴∠MDE=∠C=90°,在△ABC和△MED中,,∴△ABC≌△MED(ASA),∴ME=AB.22.(1)证明:∵∠A=90°,AB=AC=1∴∠B=∠C=45°又∵PQ⊥BQ∴∠BPQ=45°∴△BPQ是等腰三角形∴PQ=BQ.(2)解:在等腰直角△BPQ中,∵BP=x∴BQ=在Rt△ABC中,BC==在等腰直角三角形CQR中,CR=y∴CQ=y∵CQ=BC﹣BQ即y=﹣所以y=﹣x+1.又∵△BPQ为等腰三角形,∴PQ=∵PR∥BC∴∠PRQ=∠RQC=45°∴PR=∠A=∠A,∠APR=∠B,∠ARP=∠C∴△APR∽△ABC∴即解得:x=.23.解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°,根据m∥n,所以∠2=180°﹣∠7=100°,所以∠5=∠6=(180°﹣100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°﹣∠4﹣∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°(2分)理由:因为∠3=90°,所以∠4+∠5=90°,=360°﹣2∠4﹣2∠5,=360°﹣2(∠4+∠5),=180°.由同旁内角互补,两直线平行,可知:m∥n.24.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).25.解:∵∠A=82°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣82°=98°,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×98°=49°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣49°=131°;由三角形的内角和定理得,∠ABC+∠ACB=180°﹣∠A=180°﹣a°,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°﹣a°)=90°﹣a°,故答案为:131°,90°+a°;探究:(1)由三角形的内角和定理得,∠ABC+∠ACB=180°﹣∠A=180°﹣a°,∵BD,BE三等分∠ABC,CD,CE三等分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°﹣a°)=120°﹣a°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(120°﹣a°)=60°+a°;故答案为:60°+a°;(2)∠BOC=∠A.理由如下:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠OCD=∠BOC+∠OBC,∵O是∠ABC与外角∠ACD的平分线BO和CO的交点,∴∠ABC=2∠OBC,∠ACD=2∠OCD,∴∠A+∠ABC=2(∠BOC+∠OBC),∴∠A=2∠BOC,∴∠BOC=∠A;(3)∠BOC=90°﹣∠A.理由如下:∵O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,∴∠OBC=(180°﹣∠ABC)=90°﹣∠ABC,∠OCB=(180°﹣∠ACB)=90°﹣∠ACB,在△OBC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(90°﹣∠ABC)﹣(90°﹣∠ACB)=(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°﹣∠A,∴∠BOC=(180°﹣∠A)=90°﹣∠A.。

2020届人教B版(文科数学) 推理与证明、算法、复数 (8) 单元测试

2020届人教B版(文科数学)  推理与证明、算法、复数  (8)  单元测试

2020届人教B版(文科数学)推理与证明、算法、复数 (8) 单元测试1.若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.证明过程如下:因为a,b,c∈R,所以a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又因为a,b,c不全相等,所以以上三式至少有一个“=”不成立,所以将以上三式相加得2(a2+b2+c2)>2(ab+bc+ac),所以a2+b2+c2>ab+bc+ca.此证法是(B)(A)分析法 (B)综合法(C)分析法与综合法并用(D)反证法解析:由已知条件入手证明结论成立,满足综合法的定义.故选B.2.用数学归纳法证明“2n>2n+1对于n≥n的正整数n都成立”时,第一步证明中的应取(B)起始值n(A)2 (B)3 (C)5 (D)6解析:因为n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.=3.故选B.所以n的第一个取值n3.按照图1~图3的规律,第10个图中圆点的个数为(B)(A)36 (B)40 (C)44 (D)52解析:因为根据图形,第一个图有4个点,第二个图有8个点,第三个图有12个点,…,所以第10个图有10×4=40个点,故选B.4.在△ABC中,不等式++≥成立;在四边形ABCD中,不等式+++≥成立;在五边形ABCDE中,++++≥成立.猜想在n边形中,成立的不等式为(C)(A)++…+≥(B)++…+≥(C)++…+≥(D)++…+≥解析:通过观察发现不等式左边为多边形的各个内角的倒数之和,右边的分子为边数的平方,分母为多边形的内角和,而n边形的内角和为(n-2)π,故猜想在n边形中成立的不等式为++…+≥,故选C.5.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为(C)(A)6 (B)7 (C)8 (D)9解析:由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n(n≥2,n∈N+)层的点数为6(n-1).设一个点阵有n(n≥2,n∈N+)层,则共有的点数为1+6+6×2+…+6(n-1)=1+×(n-1)=3n2-3n+1,由题意得3n2-3n+1=169,即(n+7)·(n-8)=0,所以n=8,故共有8层.6.函数y=x+在(0,1]上是减函数,在[1,+∞)上是增函数,函数y=x+在(0,]上是减函数,在[,+∞)上是增函数,函数y=x+在(0,]上是减函数,在[,+∞)上是增函数,……利用上述所提供的信息解决下列问题:若函数y=x+(x>0)的值域是[6,+∞),则实数m的值为(B)(A)1 (B)2 (C)3 (D)4解析:由归纳和类比推理知,函数y=x+(x>0)在(0,]上是减函数,在[,+∞)上为增函数,所以当x=时,y有最小值,即+=6,解得m=2,故选B.7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=时,命题亦真.解析:n为正奇数,假设n=2k-1成立后,需证明的应为n=2k+1时成立.答案:2k+18.若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a的取值范围是.解析:假设两个一元二次方程均无实根,则有即解得{a|-2<a<-1},所以其补集{a|a≤-2或a≥-1}即为所求的a的取值范围.答案:{a|a≤-2或a≥-1}9.(2018·渭南一模)观察下列不等式:①<1;②+<;③++<;…则第5个不等式为.解析:由①<1;②+<;③++<;归纳可知第4个不等式应为+++<2;第5个不等式应为++++<.答案:++++<能力提升练(时间:15分钟)10.导学号 18702625将1,,,按如图所示的方式排列,若规定(m,n)表示第m排从左往右第n个数,则(7,5)表示的数是(B)1第1排第2排1第3排1第4排1第5排…………(A)1 (B)(C)(D)解析:所给数字4个数一循环,且每排的个数与排数相等.因为前6排的个数为1+2+3+4+5+6==21,所以(7,5)表示第21+5=26个数,因为26÷4=6……2,所以(7,5)表示的数为.选B.11.导学号 18702626从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为(C)(A)2 097 (B)1 553 (C)1 517 (D)2 111解析:根据如题图所示的规则排列,设最上层的一个数为a,则第二层的三个数为a+7,a+8,a+9,第三层的五个数为a+14,a+15,a+16,a+17,a+18,这9个数之和为a+3a+24+5a+80=9a+104.由9a+104=1 517,得a=157,是自然数.且a为表中第20行第5个数,符合,若9a+104=2 097,a≈221.4不合题意;若9a+104=1 553,a=161,a为表中第21行第一个数不合题意;若9a+104=2 111,a=223,a为表中第28行第7个数,不合题意.12.已知命题:在平面直角坐标系xOy中,椭圆+=1(a>b>0),△ABC的顶点B在椭圆上,顶点A,C分别为椭圆的左、右焦点,椭圆的离心率为e,则=,现将该命题类比到双曲线中,△ABC的顶点B在双曲线上,顶点A,C分别为双曲线的左、右焦点,设双曲线的方程为-=1(a>0,b>0).双曲线的离心率为e,则有.解析:根据题意,由类比推理知,命题的前提已经给出,需要计算研究命题的结论, 在双曲线中===,在△ABC中,由正弦定理得=,所以=.答案:=好题天天练1.导学号 18702627运用合情推理知识可以得到:当n≥2时,(1-)(1-)(1-)…(1-)=.解题关键:根据n=2,3时的关系式寻找规律,利用归纳推理求解.解析:n=2时,1-==,n=3时, (1-)(1-)=×==,…从而可得当n≥2时, (1-)(1-)(1-)…(1-)=.答案:2.导学号 18702628在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),…n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2),类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为.解题关键:根据已知条件及类比推理将n(n+1)(n+2)表示为某相邻两式的差.解析:因为k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)]=k(k+1)[(k+2)-(k-1)],所以k(k+1)(k+2)=k(k+1)(k+2)[(k+3)-(k-1)]=[k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)].因为n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)],所以1×2×3=(1×2×3×4-0×1×2×3),2×3×4=(2×3×4×5-1×2×3×4),…n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)].所以1×2×3+2×3×4+…+n(n+1)(n+2)=[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n(n+1)×(n+2)×(n+3)-(n-1)×n×(n+1)×(n+2)]=n(n+1)(n+2)(n+3).答案:n(n+1)(n+2)(n+3)。

第七章 平行线的证明 单元测试 2022-2023学年北师大版数学八年级上册

第七章 平行线的证明 单元测试 2022-2023学年北师大版数学八年级上册

北师大版八上第7章平行线的证明单元测试一、选择题(共10小题)1. 如图,直线a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 55∘D. 60∘2. 下列推理正确的是( )A. 弟弟今年13岁,哥哥比弟弟大6岁,到了明年,哥哥比弟弟只大5岁了,理由是弟弟明年比今年长大了1岁B. 若△ABC≌△DEF,则∠ABC=∠DEFC. ∠A与∠B相等,原因是它们看起来大小差不多D. 因为对顶角必然相等,所以相等的角也必是对顶角3. 如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是( )A. 连接直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行4. 如图,AB和CD相交于点O,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠55. 如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37∘时,∠1的度数为( )A. 37∘B. 43∘C. 53∘D. 54∘6. 下列命题中,是真命题的是( )A. √9的算术平方根是3B. 数据−2,1,0,2,2,3的方差是83C. y=kx+b(k,b为常数)是一次函数D. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等7. 如图,在△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是( )A. ∠DCE>∠ADBB. ∠ADB>∠DBCC. ∠ADB>∠ACBD. ∠ADB>∠DEC8. 如图是汽车灯的剖面图,从位于O点的灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60∘,则∠BOC的度数为( )A. 180∘−αB. 120∘−αC. 60∘+αD. 60∘−α9. 如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=( )A. 180∘B. 360∘C. 270∘D. 540∘10. 如图,△ABC中,将∠A沿DE翻折,点A落在Aʹ处,∠CEAʹ,∠BDAʹ,∠A三者之间的关系是( )A. ∠CEAʹ=∠BDAʹ+∠AB. ∠CEAʹ−3∠A=∠BDAʹC. ∠CEAʹ=2(∠BDAʹ+∠A)D. ∠CEAʹ−∠BDAʹ=2∠A二、填空题(共6小题)11. 命题“没有公共点的两条直线是平行的”的条件是,结论是,这个命题是命题.12. 如图,若AB∥CD,∠A=110∘,则∠1=∘.13. 如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30∘,∠EFC=130∘,则∠A=.14. 如图,将分别含有30∘,45∘角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65∘,则图中角α的度数为.15. 如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)16. 一个大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150∘,则∠ABC=∘.三、解答题(共5小题)17. 补全证明过程:(括号内填写理由)如图,一条直线分别与直线BE,直线CE,直线BF,直线CF相交于A,G,H,D,如果∠1=∠2,∠A=∠D,求证:∠B=∠C.证明:∵∠1=∠2,(已知)∠1=∠3,()∴∠2=∠3()∴CE∥BF,()∴∠C=∠4,()又∵∠A=∠D,()∴AB∥,()∴∠B=∠4,()∴∠B=∠C.(等量代换)18. 如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在Dʹ,Cʹ的位置上,EDʹ与BC的交点为G,若∠EFG=55∘,求∠1,∠2的度数.19. 如图①,在三角形ABC中,∠BAE=1∠BAC,∠C>∠B,且FD⊥BC于点D.2(1)试推出∠EFD,∠B,∠C之间的关系;(2)如图②,当点F在AE的延长线上时,其他条件不变,(1)中推导的结论还成立吗?请直接写出结论.20. 如图,AD是△ABC的角平分线,点E在BC的延长线上,求证:∠B+∠1=2∠2.21. 如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的邻补角的三等分线交于点P,即∠POC=1 3∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若∠POC=1n ∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小.(用含n的式子表示)答案1. B2. B【解析】由全等三角形的性质可知,B 正确.3. B 【解析】由题意得 a ⊥AB ,b ⊥AB ,∴a ∥b (在同一平面内,垂直于同一条直线的两条直线平行).4. A【解析】∵∠1 和 ∠2 是对顶角,∴∠1=∠2,故A 正确;∵∠2=∠A +∠3,∴∠2>∠3,故B 错误;∵∠1=∠4+∠5,故③错误;∵∠2=∠4+∠5,∴∠2>∠5,故D 错误.故选A .5. C【解析】如图,∵AB ∥CD ,∠2=37∘,∴∠2=∠3=37∘,∵∠1+∠3=90∘,∴∠1=53∘.6. B【解析】A .√9=3,3 的算术平方根是 √3,原命题是假命题,不符合题意;B .数据 −2,1,0,2,2,3 的平均数是 1,方差=16×[(−2−1)2+(1−1)2+(0−1)2+(2−1)2×2+(3−1)2]=83,原命题是真命题,符合题意;C .y =kx +b (k ,b 为常数,且 k ≠0)是一次函数,原命题是假命题,不符合题意;D .如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,原命题是假命题,不符合题意.故选B .7. A【解析】A 选项无法判断;∵∠ADB 是 △BCD 的一个外角,∴∠ADB >∠DBC ,∠ADB >∠ACB ,故选项B ,C 均成立;∵∠ACB 是 △CDE 的一个外角,∴∠ACB >∠DEC ,∴∠ADB >∠DEC ,故选项D 成立.8. C【解析】连接 BC ,∵AB∥CD,∴∠ABO+∠CBO+∠BCO+∠OCD=180∘,又∠CBO+∠BCO+∠BOC=180∘,∴∠BOC=∠ABO+∠DCO=α+60∘.9. B 【解析】过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180∘,∠3+∠APN=180∘,∴∠1+∠MPA+∠3+∠APN=180∘+180∘=360∘,∴∠1+∠2+∠3=360∘.10. D【解析】如图,由折叠得∠A=∠Aʹ,∵∠CEAʹ=∠A+∠1,∠1=∠Aʹ+∠BDAʹ,∴∠CEAʹ=∠A+∠Aʹ+∠BDAʹ=2∠A+∠BDAʹ,∴∠CEAʹ−∠BDAʹ=2∠A.故选D.11. 两条直线没有公共点,这两条直线互相平行,假12. 70【解析】如图,∵AB∥CD,∴∠2=∠A=110∘.又∵∠1+∠2=180∘,∴∠1=180∘−∠2=180∘−110∘=70∘.13. 20∘【解析】∵AB∥CD,∴∠ABF+∠EFC=180∘,∵∠EFC=130∘,∴∠ABF=50∘,∵∠A+∠E=∠ABF=50∘,∠E=30∘,∴∠A=20∘.14. 140∘【解析】如图,∵∠ACB=90∘,∠DCB=65∘,∴∠ACD=∠ACB−∠BCD=90∘−65∘=25∘,∵∠A=60∘,∴∠DFB=∠AFC=180∘−∠ACD−∠A=180∘−25∘−60∘=95∘,∵∠D=45∘,∴∠α=∠D+∠DFB=45∘+95∘=140∘.15. ∠A+∠ABC=180∘或∠C+∠ADC=180∘或∠CBD=∠ADB或∠C=∠CDE(答案不唯一)【解析】若∠A+∠ABC=180∘,则BC∥AD;若∠C+∠ADC=180∘,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD,故答案为∠A+∠ABC=180∘或∠C+∠ADC=180∘或∠CBD=∠ADB或∠C=∠CDE(答案不唯一).16. 120【解析】如图,过点B作BG∥CD.∵CD∥AE,CD∥BG,∴∠C+∠CBG=180∘,BG∥AE,∴∠BAE+∠ABG=180∘,又易知∠BAE=90∘,∴∠ABG=90∘,∵∠C=150∘,∴∠CBG=30∘,∴∠ABC=∠ABG+∠CBG=90∘+30∘=120∘.17. 对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;CD;内错角相等,两直线平行;两直线平行,内错角相等18. ∵AD∥BC,∠EFG=55∘,∴∠2=∠GED,∠DEF=∠EFG=55∘,由折叠知∠GEF=∠DEF=55∘,∴∠GED=110∘,∴∠1=180∘−∠GED=70∘,∠2=110∘.19. (1)∠EFD=90∘−∠FED=90∘−(∠B+∠BAE)=90∘−∠B−12∠BAC=90∘−∠B−12(180∘−∠B−∠C)=90∘−∠B−90∘+12∠B+12∠C=12(∠C−∠B).(2)(1)中推导的结论仍成立,∠EFD=12(∠C−∠B).20. ∵AD是△ABC的角平分线,∴∠BAC=2∠BAD,∵∠1=∠B+∠BAC,∠2=∠B+∠BAD,∴∠B+∠1=∠B+∠B+∠BAC=2∠B+2∠BAD=2∠2.21. (1)∵A,B的纵坐标相等,所以AB∥OC,∴∠BAC=∠OCA,又AC平分∠OAB,∴∠OAC=∠BAC,∴∠OAC=∠OCA.(2)由(1)得∠OAC=∠OCA,∴OA=OC,∴∠OAC=∠OCA=45∘,∴∠ACE=135∘,∵∠POC=13∠AOC,∠PCE=13∠ACE,∴∠P=∠PCE−∠POC=13∠ACE−13∠AOC=13×(∠ACE−∠AOC)=13×(135∘−90∘)=15∘.(3)∠OPC=45∘n .证明:∠OPC=∠PCE−∠POC(∠ACE−∠AOC)=1n(135∘−90∘)=1n=45∘.n第11页(共12 页)第12页(共12 页)。

2019-2020年九年级数学上第一单元测试题及答案

2019-2020年九年级数学上第一单元测试题及答案

2019-2020年九年级数学上第一单元测试题及答案第一章证明(二)(时间90分钟满分120分)一、选择题(每小题3分,共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图,由∠1=∠2,BC=DC,AC=EC,得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。

其中结论正确的是()A、(1),(3)B、(2),(3)C、(3),(4)D、(1),(2),(4)5、如图,△ABC中,∠ACB=90°,BA的垂直平分线交CB边于D,若AB=10,AC=5,则图中等于60°的角的个数为()A、2B、3C、4D、5(第2题图) (第4题图) (第5题图)6、设M表示直角三角形,N表示等腰三角形,P表示等边三角形,Q表示等腰直角三角形,则下列四个图中,能表示他们之间关系的是()7、如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm8、如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A、30°B、36°C、45°D、70°9、如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C(第7题图) (第8题图) (第9题图) (第10题图)10、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则ABC的大小是()A、40°B、45°C、50°D、60°二、填空题(每小题3分,共15分)11、如果等腰三角形的一个底角是80°,那么顶角是度.12、如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(第12题图) (第13题图) (第15题图)13、如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。

宿松二中高二数学理科单元测试题第二章推理与证明综合检测.

宿松二中高二数学理科单元测试题第二章推理与证明综合检测.

宿松二中高二数学理科单元测试题 选修2-2第二章 推理与证明综合检测时间120分钟,满分150分。

2013-1-5一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.锐角三角形的面积等于底乘高的一半; 直角三角形的面积等于底乘高的一半; 钝角三角形的面积等于底乘高的一半; 所以,凡是三角形的面积都等于底乘高的一半. 以上推理运用的推理规则是( ) A .三段论推理 B .假言推理 C .关系推理 D .完全归纳推理 [答案] D[解析] 所有三角形按角分,只有锐角三角形、Rt 三角形和钝角三角形三种情形,上述推理穷尽了所有的可能情形,故为完全归纳推理.2.数列1,3,6,10,15,…的递推公式可能是( )A.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +n (n ∈N *) B.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+n (n ∈N *,n ≥2) C.⎩⎪⎨⎪⎧a 1=1,a n +1=a n +(n -1)(n ∈N *) D.⎩⎪⎨⎪⎧a 1=1,a n =a n -1+(n -1)(n ∈N *,n ≥2) [答案] B[解析] 记数列为{a n },由已知观察规律:a 2比a 1多2,a 3比a 2多3,a 4比a 3多4,…,可知当n ≥2时,a n 比a n -1多n ,可得递推关系⎩⎪⎨⎪⎧a 1=1,a n -a n -1=n (n ≥2,n ∈N *).3.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误 [答案] C[解析] 大小前提都正确,其推理形式错误.故应选C.4.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4 [答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.5.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 都成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12[答案] C[解析] 类比题目所给运算的形式,得到不等式(x -a )⊗(x +a )<1的简化形式,再求其恒成立时a 的取值范围.(x -a )⊗(x +a )<1⇔(x -a )(1-x -a )<1 即x 2-x -a 2+a +1>0 不等式恒成立的充要条件是 Δ=1-4(-a 2+a +1)<0 即4a 2-4a -3<0 解得-12<a <32.故应选C.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0 [答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0, ∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <b C .a =b D .a 、b 大小不定 [答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.若凸k 边形的内角和为f (k ),则凸(k +1)边形的内角和f (k +1)(k ≥3且k ∈N *)等于( )A .f (k )+π2B .f (k )+πC .f (k )+32πD .f (k )+2π [答案] B[解析] 由凸k 边形到凸(k +1)边形,增加了一个三角形,故f (k +1)=f (k )+π. 10.若sin A a =cos B b =cos C c ,则△ABC 是( )A .等边三角形B .有一个内角是30°的直角三角形C .等腰直角三角形D .有一个内角是30°的等腰三角形 [答案] C[解析] ∵sin A a =cos B b =cos Cc ,由正弦定理得,sin A a =sin B b =sin C c ,∴sin B b =cos B b =cos C c =sin Cc , ∴sin B =cos B ,sin C =cos C ,∴∠B =∠C =45°, ∴△ABC 是等腰直角三角形.11.若a >0,b >0,则p =(ab )a +b2与q =a b ·b a 的大小关系是( )A .p ≥qB .p ≤qC .p >qD .p <q [答案] A若a >b ,则a b >1,a -b >0,∴pq >1;若0<a <b ,则0<a b <1,a -b <0,∴pq >1;若a =b ,则pq=1,∴p ≥q .12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 B .2 C .4 D .5 [答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.半径为r 的圆的面积S (r )=πr 2,周长C (r )=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)′=2πr .①①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①式的式子:______________________________,你所写的式子可用语言叙述为__________________________.[答案] ⎝⎛⎭⎫43πR 3′=4πR 2;球的体积函数的导数等于球的表面积函数. 14.已知f (n )=1+12+13+…+1n (n ∈N *),用数学归纳法证明f (2n )>n 2时,f (2k +1)-f (2k )=________.[答案]12k+1+12k +2+…+12k +1 [解析] f (2k +1)=1+12+13+…+12k +1f (2k )=1+12+13+…+12kf (2k +1)-f (2k )=12k +1+12k +2+…+12k +1.15.观察①sin 210°+cos 240°+sin10°cos40°=34;②sin 26°+cos 236°+sin6°cos36°=34.两式的结构特点可提出一个猜想的等式为________________.[答案] sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34[解析] 观察40°-10°=30°,36°-6°=30°, 由此猜想:sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.可以证明此结论是正确的,证明如下: sin 2α+cos 2(30°+α)+sin α·cos(30°+α) =1-cos2α2+1+cos(60°+2α)2+12[sin(30°+2α)-sin30°]=1+12[cos(60°+2α)-cos2α]+12sin(30°+2α)-12=1+12[-2sin(30°+2α)sin30°]+12sin(30°+2α)-12=34-12sin(30°+2α)+12sin(30°+2α)=34. 16.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b 、ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集F ={a +b 2|a ,b ∈Q }也是数域.有下列命题:①整数集是数域;②若有理数集Q ⊆M ,则数集M 必为数域; ③数域必为无限集; ④存在无穷多个数域.其中正确命题的序号是________.(把你认为正确命题的序号都填上) [答案] ③④[解析] 考查阅读理解、分析等学习能力. ①整数a =2,b =4,ab不是整数;②如将有理数集Q ,添上元素2,得到数集M ,则取a =3,b =2,a +b ∉M ; ③由数域P 的定义知,若a ∈P ,b ∈P (P 中至少含有两个元素),则有a +b ∈P ,从而a +2b ,a +3b ,…,a +nb ∈P ,∴P 中必含有无穷多个元素,∴③对.④设x 是一个非完全平方正整数(x >1),a ,b ∈Q ,则由数域定义知,F ={a +b x |a 、b ∈Q }必是数域,这样的数域F 有无穷多个.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分) ABC 的三个内角C B A ,,成等差数列,求证:cb ac b b a ++=+++311 17证明:要证原式,只要证3,1a b c a b c c aa b b c a b b c+++++=+=++++即即只要证2221,bc c a abab b ac bc +++=+++而02222,60,A C B B b a c ac +===+- 222222222221bc c a ab bc c a ab bc c a abab b ac bc ab a c ac ac bc ab a c bc+++++++++∴===+++++-+++++18.(本题满分12分) 已知,a b c >> 求证:114.a b b c a c+≥--- 17证明:a c a c a b b c a b b ca b b c a b b c---+--+-+=+----224b c a b a b b c --=++≥+--,()a b c >> 1144,.a c a c a b b c a b b c a c--∴+≥∴+≥----- 19.(本题满分12分)如图,长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E 是棱1AA 上任意一点。

第十一章图形与证明单元测试

第十一章图形与证明单元测试

第十一章 图形与证明单元测试班级 姓名 学号 得分:一、选择题:(请将你的答案填在下表中,4分×9=36分)1.下列语句中,不是命题是A 、对顶角不相等;B 、连结AB 并延长到C ; C 、平行线间的距离处处相等;D 、全等三角形的周长相等2.如图,AD ∥BC ,点E 在BD 的延长线上,若∠ADE=155°,则∠DBC 的度数为 A 、155° B 、50° C 、45° D 、25°3.如图,下列推理正确的是A 、∵MA ∥NB , ∴∠1=∠2 B 、∵MC ∥ND , ∴∠1=∠3 C 、∵∠2=∠4, ∴MC ∥ND D 、∵∠1=∠3, ∴MA ∥NB 4.如图,∠A 、∠DOE 和∠BEC 的大小关系是A 、∠A>∠DOE>∠BECB 、∠DOE>∠A>∠BEC C 、∠DOE>∠BEC >∠AD 、∠BEC >∠DOE>∠A5.考虑下面3个命题:①有一个角是100°的两个等腰三角形相似;②斜边和周长对应相等的两个直角三角形全等;③内错角相等,其中真命题有A 、仅①B 、①③C 、②③D 、①②③6.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为 A 、35° B 、45° C 、55° D 、125°7.如图,∠A+∠B+∠C+∠D+∠E+∠F 的度数为A 、180°B 、360°C 、540°D 、720° 8.甲、乙、丙、丁四位同学猜测自己的数学成绩, 甲说:“如果我得优,那么乙也得优” 乙说:“如果我得优,那么丙也得优” 丙说:“如果我得优,那么丁也得优”大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优? A 、甲 B 、乙 C 、丙 D 、丁 9.如右图,如果AB ∥CD ,则角α、β、γ之间的关系式为A 、α+β+γ=360°B 、α+β+γ=180°C 、α+β-γ=180°D 、α-β+γ=180° A B C DE (第2题图)M N A C B D 2 1 34 (第3题图)A B C E D O (第4题图)A C a b 1 2B A BC D E F(第7题图)(第6题图) α γβ E BA二、填空题(将答案直接填写在横线上,3分×8=24分)10. 直角三角形两个锐角的差为20°,则这两个锐角的度数分别为:___________; 11. 已知命题“如果一个三角形是直角三角形,那么它的两个锐角互余”,写出它的条件和结论,并写出其逆命题条件:________________________________________________; 结论:________________________________________________; 逆命题:_______________________________________________;12. 命题“全等三角形的对应角相等”的逆命题:______________________________; 13.举反例说明命题“如果a+b>0,那么a>0,b>0”是假命题,反例为:_________________________________________________________________; 14. 如图,直线MN ∥PQ ,AB ⊥MN ,垂足为O ,BC 与PQ 相交于点E ,若∠BEP=43°, 则∠ABC=_________°;15.如图,a ∥b ,∠1=(3x-7)°, ∠2=(5x+11)°,则x=__________ 16.如图,已知∠BDC=142°,∠B =34°,∠C=28°,则∠A=_________;17.如图,两平面镜m 、n 的夹角为θ,入射光线AO 平行于n 射到m 上,经两次反射后的出射光线PB 平行于m ,则θ的度数为_________。

沪科版八年级数学上册试题 第13章 三角形中的边角关系、命题与证明 单元测试卷 (含解析)

沪科版八年级数学上册试题 第13章 三角形中的边角关系、命题与证明 单元测试卷 (含解析)

第13章《三角形中的边角关系、命题与证明》单元测试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知一个三角形的两边长分别为6和3,则这个三角形的第三边长可能是()A .3B .6C .9D .102.下列图形中具有稳定性的是( )A .B .C .D .3.如图,CE 是的外角的平分线,若,,则的度数为( ).A .95°B .90°C .85°D .80°4.下列长度的三条线段能首尾相接构成三角形的是( )A .,,B .,,C .,,D .,,5.以下命题的逆命题中,属于真命题的是( ).A .如果a>0,b>0,则a+b>0B .直角都相等C .两直线平行,同位角相等D .若a=b ,则|a|=|b|6.具备下列条件的,不是直角三角形的是( )A .B .C .D .::::7.如图,直线CE ∥DF ,∠CAB =125°,∠ABD =85°,则∠1+∠2=( )ABC ACD ∠40B ∠=︒65ACE ∠=︒A ∠1cm 2cm 3cm 3cm 4cm 5cm4cm 5cm 10cm 6cm 9cm 2cmABC A B C ∠+∠=∠1123A B C∠=∠=∠23A B C ∠=∠=∠A ∠B ∠1C ∠=34A .30°B .35°C .36°D .40°8.已知中,,求证:,下面写出运用反证法证明这个命题的四个步骤:①∴,这与三角形内角和为矛盾②因此假设不成立.∴③假设在中,④由,得,即.这四个步骤正确的顺序应是( )A .④③①②B .③④②①C .①②③④D .③④①②9.用反证法证明命题“在三角形中,至少有一个内角大于或等于60°”时,第一步应先假设( )A .三角形中有一个内角小于B .三角形中有一个内角大于C .三角形的三个内角都小于D .三角形的三个内角都大于10.如图,中,、分别是高和角平分线,点在的延长线上,,交于点,交于点;下列结论中正确的结论有( )①;②;③;④.A .①②③B .①③④C .①②④D.①②③④ABC ∆AB AC =90B ∠<︒180A B C ∠+∠+∠>︒180︒90B ∠<︒ABC ∆90B ∠≥︒AB AC =90B C ∠=∠≥︒180B C ∠+∠≥︒60︒60︒60︒60︒ABC BD BE F CA FH BE ⊥BD G BC H DBE F ∠=∠()12F BAC C ∠=∠-∠2BEF BAF C ∠=∠+∠BGH ABE C ∠=∠+∠二、填空题(本大题共6个小题,每题3分,共18分)11.命题“平行四边形的对角线互相平分”,它的逆命题是__________,逆命题是__________命题(填“真”或“假”)12.现将一把直尺和的直角三角板按如图摆放,经测量得,则___________.13.BM 是ABC 中AC 边上的中线,AB=7cm ,BC=4cm ,那么ABM 与BCM 的周长之差为_________________cm .14.用一组整数a ,b ,c 的值说明命题“若a >b >c ,则a+b >c”是错误的,这组值可以是a =__,b =__,c =__.15.如图所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且△ABC 的面积为4.则△BEF 的面积为_________.16.如图,射线AB 与射线CD 平行,点F 为射线AB 上的一定点,连接CF ,点P 是射线CD 上的一个动点(不包括端点C ),将沿PF 折叠,使点C 落在点E 处.若,当点E 到点A 的距离最大时,_____.三、解答题(本大题共8小题,共72分;第17-18每小题6分,第19-21每小题8分,第22小题10分,第23小题12分,第24小题14分)17.如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E ,点F 为AC 延长线上的一点,连接DF.60︒1142∠=︒2∠= PFC △=62DCF ∠︒=CFP ∠(1)求∠CBE 的度数;(2)若∠F =25°,求证:.18.如图,有下列三个条件:①DE//BC ;②;③.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题?请你都写出来;(2)你所写出的命题都是真命题吗?若是,请你就其中的一个真命题给出推理过程;若不是,请你对其中的假命题举出一个反例(温馨提示:)BE DF ∥12∠=∠B C ∠=∠180B C BAC ∠+∠+∠=︒19.先阅读下面的内容,再解决问题,例题:若,求和的值.解:问题:(1)若,求的值.(2)已知是的三边长,满足,且是中最长的边,求的取值范围.20.如图,△ABC 中,∠ABC 与∠ACB 的外角的平分线相交于点E ,且∠A=60°.(1)①若∠ABC=40°,则∠E=________;②若∠ABC=100°,则∠E=________.(2)嘉嘉说∠E 的大小与∠B 的度数无关,你认为他说得对吗?请说明理由.2222690m mn n n ++-+=m n 2222222226902690()(3)0m mn n n m mn n n n m n n ++-+=∴+++-+=∴++-=Q 0,303,3m n n m n ∴+=-=∴=-=2222440x y xy y +-++=y x ,,a b c ABC 2210841a b a b +=+-c ABCc21.用反证法证明:两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1 l2证明:假设l1 l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P 180° 所以∠1+∠2 180°,这与 矛盾,故 不成立.所以 .22.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE,AE交CD 于H.∠DCE的平分线交AE于G.(1)求证:AD∥BC;(2)若∠BAC=∠DAE,∠AGC=2∠CAE.求∠CAE的度数;(3)(2)中条件∠BAC=∠DAE仍然成立,若∠AGC=3∠CAE,直接写出∠CAE的度数 .23.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有_______个,以点O为交点的“8字型”有________个:②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAB=3∠CAP,∠CDB=3∠CDP”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.24.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A= ;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由;(3)如图③,延长线段CP、QB交于点E,△CQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.答案一、选择题1.B【分析】组成三角形的三边的大小关系是:两边之和大于第三边,两边之差小于第三边,由此即可求出答案.【详解】解:设第三边长为x ,根据三角形的三边关系得,∴,即.故选:.2.C【分析】根据三角形具有稳定性,即可对图形进行判断.【详解】解:A 、中间竖线的两侧是四边形,不具有稳定性,故本选项错误;B 、对角线下方是四边形,不具有稳定性,故本选项错误;C 、对角线两侧是三角形,具有稳定性,故本选项正确;D 、对角线两侧是四边形,不具有稳定性,故本选项错误.故选C .3.B【分析】根据角平分线的定义,可求出∠ACD=2∠ACE ,再根据三角形的外角定理即可求出.【详解】∵CE 是的外角的平分线,,∴∠ACD=2∠ACE=130°,∵,∴∠A=130°-40°=90°,故选:B .4.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,知A 、1+2=3,不能组成三角形,故选项错误,不符合题意;B 、3+4>5,能够组成三角形,故选项正确,符合题意;6363x -<<+39x <<B A ∠ABC ACD ∠65ACE ∠=︒40B ∠=︒C 、5+4<10,不能组成三角形,故选项错误,不符合题意;D 、2+6<9,不能组成三角形,故选项错误,不符合题意;故选:B .5.C【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【详解】解:A.如果,则不一定是,,选项错误,不符合题意;B.如果角相等,但不一定是直角,选项错误,不符合题意;C.同位角相等,两直线平行,选项正确,符合题意;D.如果,可得或,选项错误,不符合题意.故选:C .6.C【分析】分别求出各个选项中,三角形的最大的内角,即可判断.【详解】解:根据三角形的内角和为180°,可知,据此逐项判断:A 、由,可以推出,本选项不符合题意;B 、由,可以推出,本选项不符合题意;C 、由,推出,是钝角三角形,本选项符合题意;D 、由,可以推出,本选项不符合题意;故选:C .7.A【分析】根据三角形的外角的性质可得,根据平行线的性质可得,进而即可求得.【详解】解:∵CE ∥DF ,∴∠CAB =125°,∠ABD =85°,0a b +>0a >0b >a b =a b =a b =-180A B C ∠+∠+∠=o A B C ∠+∠=∠90C ∠=︒1123A B C ∠=∠=∠90C ∠=︒23A B C ∠=∠=∠108011A ⎛⎫∠=︒ ⎪⎝⎭ABC ∆::1:3:4A B C ∠∠∠=90C ∠=︒1,2CAB CEA DBA DFB ∠=∠+∠∠=∠+∠180CEA DFB ∠+∠=︒12∠+∠180CEA DFB ∠+∠=︒1,2CAB CEA DBA DFB∠=∠+∠∠=∠+∠()12CAB ABD CEA DFB ∴∠+∠=∠+∠-∠+∠,故选A .8.D【分析】根据反证法的一般步骤判断即可.【详解】解:运用反证法证明这个命题的四个步骤1、假设在中,2、由,得,即3、,这与三角形内角和为矛盾4、因此假设不成立.综上所述,这四个步骤正确的顺序应是:③④①②故选:D9.C【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:用反证法证明命题“三角形中至少有一个角大于或等于60°”时,第一步应假设这个三角形中三个内角内角都小于60°,故选:C .10.D【分析】根据角平分线的性质、三角形的高线性质和三角形内角和定理判断即可;【详解】∵,∴,∵,∴,∵,∴,故①正确;,,∵,∴,12585180=︒+︒-︒=30︒ABC ∆90B ∠≥︒AB AC =90B C ∠=∠≥︒180B C ∠+∠≥︒180A B C ∴∠+∠+∠>︒180︒90B ∴∠<︒BD FD ⊥90FGD F ∠+∠=︒FH BE ⊥90BGO DBE ∠+∠=︒FGD BGH ∠=∠DBE F ∠=∠90ABD BAC ∠=︒-∠9090DBE ABE ABD ABE BAC CBD DBE BAC ∠=∠-∠=∠-︒+∠=∠-∠-︒+∠90CBD C ∠=︒-∠DBE BAC C DBE ∠=∠-∠-∠由①得,,∴,故②正确;∵BE 平分,∴,,∴,,∴,故③正确;∵,,∴,∵,,∴,∴,故④正确;∴正确的有①②③④;故选:D .二、填空题11. 对角线互相平分的四边形是平行四边形 真【分析】根据逆命题的要求写出逆命题,再判断即可.【详解】解:命题“平行四边形的对角线互相平分”,它的逆命题是对角线互相平分的四边形是平行四边形,此命题是真命题.故答案为:对角线互相平分的四边形是平行四边形;真.12.【分析】由直尺可得,由直角三角板可知,再利用三角形外角定理和平行线性质推角,即可得到答案.【详解】解:如图,由题可知∴∵,∴又∵∴故答案为:.DBE F ∠=∠()12F BAC C ∠=∠-∠ABC ∠ABE CBE ∠=∠BEF CBE C ∠=∠+∠22BEF ABC C ∠=∠+∠BAF ABC C ∠=∠+∠2BEF BAF C ∠=∠+∠AEB EBC C ∠=∠+∠ABE CBE ∠=∠AEB ABE C ∠=∠+∠BD FC ⊥FH BE ⊥FGD FEB ∠=∠BGH ABE C ∠=∠+∠52︒AB CD 490∠=︒AB CD 56∠=∠1142∠=︒490∠=︒5141429052∠=∠-∠=︒-︒=︒26∠=∠252∠=︒52︒13.3【分析】根据中线的定义可得,ABM 与BCM 的周长之差=AB BC ,据此即可求解.【详解】解:∵BM 是ABC 的中线,∴MA=MC ,∴=AB+BM+MA BC CM BM=AB BC=74=3(cm).答:ABM 与BCM 的周长是差是3 cm .故答案是:3.14. -2 -3 -4【分析】根据题意选择a 、b 、c 的值,即可得出答案,答案不唯一.【详解】解:当a =﹣2,b =﹣3,c =﹣4时,﹣2>﹣3>﹣4,则(﹣2)+(﹣3)<(﹣4),∴命题若a >b >c ,则a+b >c ”是错误的;故答案为:﹣2,﹣3,﹣4.15.1【分析】根据点D ,E ,F 分别是BC ,AD ,CE 的中点,可以推出,进而推出,即可得到答案.【详解】解:∵点D 是BC的中点- ΔΔABM BCM C C ------ 12S S =△BEC △ABC 14B E F A B C S S =∴∵点E 是AD 的中点∴∴又∵点F 是CE 的中点∴又∵∴故答案为:1.16.【分析】利用三角形三边关系可知:当E 落在AB 上时,AE 距离最大,利用且,得到,再根据折叠性质可知:,利用补角可知,进一步可求出.【详解】解:利用两边之和大于第三边可知:当E 落在AB 上时,AE 距离最大,如图:∵且,∴,∵折叠得到,∴,∵,∴.故答案为:三、解答题17.(1)解:∵∠ACB =90°,∠A =40°,∴∠CBD=∠A+∠ACB=130°,∵BE 平分∠CBD,ABD ADCS S = DEC S S S S ===△ABE △DBE △AEC △12S S =△BEC △ABC1124BEF BEC ABCS S S == 4ABC S = 1BEF S =△59︒AB CD =62DCF ∠︒=62CFA ∠︒EFP CFP ∠=∠118EFP CFP ∠+∠=︒59EFP CFP ∠=∠=︒AB CD =62DCF ∠︒=62CFA ∠︒PCF PEF EFP CFP ∠=∠118EFP CFP ∠+∠=︒59EFP CFP ∠=∠=︒59︒∴;(2)证明:∵∠ACB =90°,∴∠BCE=90°,∵∠CBE=65°,∴∠BEC=90°-65°=25°,∵∠F =25°,∴∠F=∠BEC ,∴.18.(1)解:一共能组成三个命题:①如果DE//BC ,,那么;②如果DE//BC ,,那么;③如果,,那么DE//BC ;(2)解:都是真命题,如果DE//BC ,,那么,理由如下:∵DE//BC ,∴,∵,∴.如果DE//BC ,,那么;理由如下:∵DE//BC ,∴,,∵,∴;如果,,那么DE//BC ;理由如下:∵,∴∠B+∠C=180°-∠BAC ,∵∠1+∠2+∠BAC=180°,∴∠1+∠2=180°-∠BAC ,1652CBE CBD ∠=∠=︒BE DF ∥12∠=∠B C ∠=∠B C ∠=∠12∠=∠12∠=∠B C ∠=∠12∠=∠B C ∠=∠1B ∠=∠2C∠=∠12∠=∠B C ∠=∠B C ∠=∠12∠=∠1B ∠=∠2C ∠=∠B C ∠=∠12∠=∠12∠=∠B C ∠=∠180B C BAC ∠+∠+∠=︒∴∠B+∠C=∠1+∠2,∵,,∴∠B=∠1,∴DE//BC .19.解:(1)∵,∴,∴,∴,∴,∴;(2)∵,∴,∴,∴,∴,∵是中最长的边,∴,即.20.(1)解:①∵BE ,CE 分别是△ABC 的内角和外角的平分线∴∠DBE=∠ABC=20°,∠DCE=∠ACD∵∠ACD=∠ABC+∠A=60°+40°=100°,∠DCE=∠DBE+∠E∴∠DCE=∠ACD=50°,∴∠E=∠DCE-∠DBE=50°-20°=30°;②∵BE ,CE 分别是△ABC 的内角和外角的平分线∴∠DBE=∠ABC=50°,∠DCE=∠ACD∵∠ACD=∠ABC+∠A=100°+60°=160°,∠DCE=∠DBE+∠E∴∠DCE=∠ACD=80°,12∠=∠B C ∠=∠2222440x y xy y +-++=2222440x xy y y y -++++=()()2220x y y -++=0,20x y y -=+=2,2x y =-=-()2124y x -=-=2210841a b a b +=+-2210258160a a b b -+++=-()()22450a b -+=-50,40a b -=-=5,4a b ==c ABC 545c ≤<+59c ≤<121212121212∴∠E=∠DCE-∠DBE=80°-50°=30°;故答案为:①30°;②30°;(2)解:嘉嘉说得对.理由如下:∵BE ,CE 分别是△ABC 的内角和外角的平分线∴∠DBE=∠ABC ,∠DCE=∠ACD∵∠DCE=∠DBE+∠E∴∠E=∠DCE -∠DBE=∠ACD -∠ABC=(∠ACD -∠ABC)又∵∠ACD=∠ABC+∠A∴∠E=(∠ABC+∠A-∠ABC )=∠A∴∠E 的大小与∠B 的度数无关.21.已知:如图,直线l 1,l 2被l 3所截,∠1+∠2=180°.求证:证明:假设l 1不平行l 2,即l 1与l 2交与相交于一点P .则∠1+∠2+∠P=180°(三角形内角和定理),所以∠1+∠2<180°,这与∠1+∠2=180°矛盾,故假设不成立.所以结论成立,l 1∥l 2.22.(1)证明:∵AB ∥CD ,∴∠B =∠DCE ,∵∠B =∠D ,∴∠D =∠DCE ,∴AD ∥BC ;1212121212121212l l //(2)解:设∠CAG =x ,∠DCG =z ,∠BAC =y ,则∠EAD =y ,∠D =∠DCE =2z ,∠AGC =2∠CAE =2x ,∵AB ∥CD ,∴∠AHD =∠BAH =x +y ,∠ACD =∠BAC =y ,△AHD 中,x +2y +2z =180°①,△ACG 中,x +2x +y +z =180°,即3x +y +z =180°,∴6x +2y +2z =360°②,②﹣①得:5x =180°,解得:x =36°,∴∠CAE =36°;(3)解:设∠CAE =x ,∠DCG =z ,∠BAC =y ,则∠EAD =y ,∠D =∠DCE =2z ,∠AGC =3∠CAE =3x ,∵AB ∥CD ,∴∠AHD =∠BAH =x +y ,∠ACD =∠BAC =y ,△AHD 中,x +2y +2z =180°①,△ACG 中,x +3x +y +z =180°,∴4x +y +z =180°,∴8x +2y +2z =360°②,②﹣①得:7x =180°,解得:x =,∴∠CAE =;故答案为:.23.(1)解:△AOC 中,∠A+∠C=180°-∠AOC ,△BOD 中,∠B+∠D=180°-∠BOD ,∵∠AOC=∠BOD ,∴∠A+∠C=∠B+∠D ;1807︒1807︒1807︒(2)解:①以线段AC 为边的“8字型”有:△ACM 和△PDM ,△ACO 和△BOD ,△ACO 和△DNO ,共3个;以点O 为交点的“8字型”有:△ACO 和△BDO ,△ACO 和△DNO ,△AMO 和△BDO ,△AMO 和△DNO ,共4个;②△AMC 和△DMP 中,∠C+∠CAM=∠P+∠PDM ,△BDN 和△PAN 中,∠B+∠BDN=∠P+∠PAN ,∴∠C+∠CAM+∠B+∠BDN =∠P+∠PDM+∠P+∠PAN ,∵PA 平分∠BAC ,PD 平分∠BDC ,∴∠CAM=∠PAN ,∠BDN=∠PDM ,∴∠C+∠B=2∠P ,∴120°+100°=2∠P ,∴∠P=110°;③∵∠CAB=3∠CAP ,∠CDB=3∠CDP ,∴∠CAM=∠CAB ,∠PAN=∠CAB ,∠BDN=∠BDC ,∠PDM=∠BDC ,△AMC 和△DMP 中,∠C+∠CAM=∠P+∠PDM ,∠C-∠P=∠PDM-∠CAM=∠BDC-∠CAB ,3(∠C-∠P )=∠BDC-∠CAB ,△BDN 和△PAN 中,∠B+∠BDN=∠P+∠PAN ,∠P-∠B=∠BDN-∠PAN=∠BDC-∠CAB ,(∠P-∠B )=∠BDC-∠CAB ,∴3(∠C-∠P )=(∠P-∠B ),2∠C-2∠P=∠P-∠B ,3∠P=∠B+2∠C ;24.(1)如图①中,13232313131323233232∵∠ABC 与∠ACB 的平分线相交于点P ,∴∠BPC=180°﹣(∠PBC+∠PCB )=180°(∠ABC+∠ACB )=180°(180°﹣∠A ),=90°∠A ,∵∠BPC=α,∴∠A=2α﹣180°.故答案为2α﹣180°.(2)结论:∠BPC+∠BQC=180°.理由:如图②中,∵外角∠MBC ,∠NCB 的角平分线交于点Q ,∴∠QBC+∠QCB (∠MBC+∠NCB )(360°﹣∠ABC ﹣∠ACB )(180°+∠A )12-12-12+12=12=12==90°∠A ,∴∠Q=180°﹣(90°∠A )=90°∠A ,∵∠BPC=90°∠A ,∴∠BPC+∠BQC=180°.(3)延长CB 至F ,∵BQ 为△ABC 的外角∠MBC 的角平分线,∴BE 是△ABC 的外角∠ABF 的角平分线,∴∠ABF=2∠EBF ,∵CE 平分∠ACB ,∴∠ACB=2∠ECB ,∵∠EBF=∠ECB+∠E ,∴2∠EBF=2∠ECB+2∠E ,即∠ABF=∠ACB+2∠E ,又∵∠ABF=∠ACB+∠A ,∴∠A=2∠E ,∵∠ECQ=∠ECB+∠BCQ∠ACB ∠NCB =90°,如果△CQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠ECQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠ECQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;12+12+12-12+12=12+③∠Q=2∠E,∵∠Q+∠E=90°,∴∠E=30°,则∠A=2∠E=60°;④∠E=2∠Q,∵∠Q+∠E=90°,∴∠E=60°,则∠A=2∠E=120°.综上所述,∠A的度数是90°或60°或120°.。

九年级数学上第一单元测试题及答案

九年级数学上第一单元测试题及答案

九年级(上)单元测试卷第一章证明(二)(时间90分钟满分120分)一、选择题(每小题3分;共30分)1、两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条边对应相等2、如图;由∠1=∠2;BC=DC;AC=EC;得△ABC≌△EDC的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形底边长为7;一腰上的中线把其周长分成两部分的差为3;则腰长是()A、4B、10C、4或10D、以上答案都不对4、如图;EA⊥AB;BC⊥AB;EA=AB=2BC;D为AB中点;有以下结论:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE。

其中结论正确的是()A、(1);(3)B、(2);(3)C、(3);(4)D、(1);(2);(4)5、如图;△ABC中;∠ACB=90°;BA的垂直平分线交CB边于D;若AB=10;AC=5;则图中等于60°的角的个数为()A、2B、3C、4D、5(第2题图) (第4题图) (第5题图)6、设M表示直角三角形;N表示等腰三角形;P表示等边三角形;Q表示等腰直角三角形;则下列四个图中;能表示他们之间关系的是()7、如图;△ABC中;∠C=90°;AC=BC;AD平分∠CAB交BC于点D;DE⊥AB;垂足为E;且AB=6cm;则△DEB的周长为()A、4cmB、6cmC、8 cmD、10cm8、如图;△ABC中;AB=AC;点D在AC边上;且BD=BC=AD;则∠A的度数为()A、30°B、36°C、45°D、70°9、如图;已知AC平分∠PAQ;点B;B′分别在边AP;AQ上;如果添加一个条件;即可推出AB=AB′;那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C(第7题图) (第8题图) (第9题图) (第10题图) 10、如图;△ABC中;AD⊥BC于D;BE⊥AC于E;AD与BE相交于F;若BF=AC;则ABC的大小是()A、40°B、45°C、50°D、60°二、填空题(每小题3分;共15分)11、如果等腰三角形的一个底角是80°;那么顶角是度.12、如图;点F、C在线段BE上;且∠1=∠2;BC=EF;若要使△ABC≌△DEF;则还须补充一个条件.(第12题图) (第13题图) (第15题图)13、如图;点D在AB上;点E在AC上;CD与BE相交于点O;且AD=AE;AB=AC。

六年级上册数学第三单元题型专项训练-判断题人教版(含答案)

六年级上册数学第三单元题型专项训练-判断题人教版(含答案)

人教版数学六年级上册题型专练第三单元分数除法判断题专项训练判断题作为小学数学的必考题目,其重要性当然不言而喻。

判断题是一种以对或错来选择的题型。

判断题的命题通常是一些比较重要的或有意义的概念、事实、原理或结论。

一般表现为出一句话,然后自行选择在后面的括号内打上“√”或“×”这两种答案。

对或者错,似乎很容易。

但很多判断题看上去似是而非,常使一些同学感到捉摸不定。

解决判断题的关键,在于同学们能否正确地找出或辨析试题的设错方式。

以下这几种方法能帮助同学们更方便快捷地解答判断题。

一、概念判断法。

有些判断题偷换或省略了某些形成概念的关键性词语,这时可以把已学的概念与命题进行比较,确定其正误。

【例1】(2021·江西石城县·六年级期末)真分数的倒数一定大于它本身。

()分析:分数的分子比分母小的分数叫做真分数。

真分数都小于1;根据倒数的意义,乘积是1的两个数互为倒数。

求一个数的倒数的方法,就是把这个数的分子和分母调换位置。

由此解答。

真分数都小于1,它的倒数一定大于它本身。

故本题说法是正确的。

例如:12的倒数是2,2大于12。

故答案为:√解题策略【例2】(2021·山东沂南县·六年级期末)一个数除以分数的商比原来的数大。

( )分析:一个数(0除外)除以大于1的数,结果比原来的数小;一个数(0除外)除以小于1的数,结果比原来的数大。

据此解答即可。

由分析可知:一个数除以分数的商不一定比原来的数大。

如3÷32=2,2<3。

故答案为:× 二、计算判断法。

有些判断题实质是容易算错的计算题,这时可以把它当作一般的计算题,先算出结果,再进行判断。

【例1】(2021·广东南沙区·六年级期末)44551655⨯÷⨯=。

( )分析:先把分数除法化为分数乘法,再利用乘法结合律简便计算出结果即可。

445555⨯÷⨯ 455554⨯⨯⨯= ()455554⎛⎫⨯⨯⨯ ⎪⎝⎭= 125⨯=25=故答案为:× 三、反证判断法。

推理与证明单元测试题及答案

推理与证明单元测试题及答案

A B C 1. 用数学归纳法证明“22111(1)1n n a a a a a a++-++++=≠-”,在验证1n =成立时,等号左边的式子是_________. 2. 由命题“存在x ∈R ,使220x x m ++≤”是假命题,求得m 的取值范围是(,)a +∞,则实数a 的值是3.空间任一点O 和不共线三点A 、B 、C ,则)1(=++++=z y x OC z OB y OA x OP 是P ,A ,B ,C 四点共面的充要条件.在平面中,类似的定理是 .4. 设函数)12ln()(-++=x a x x f 是奇函数的充要条件a = . 5. 如图,在每个三角形的顶点处各放置一个数,使位于ABC △的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别成等差数列.若顶点A ,B ,C 处的三个数互不相同且和为1,则所有顶点上的数之和等于 .6.已知a b c >>,且0a b c ++=,求证:23b ac a -<.7. 等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;(11)当b=2时,记 22(log 1)()n n b a n N +=+∈证明:对任意的n N +∈ ,不等式1212111·······1n nb b b n b b b +++>+16.证明:(分析法)因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<, 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->,所以()(2)0a c a c -+>成立,故原不等式成立.17.解:因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数的图像上.所以得n n S b r =+,当1n =时,11a S b r ==+,当2n ≥时,1111()(1)n n n n n n n n a S S b r b r b b b b ----=-=+-+=-=-,又因为{n a }为等比数列,所以1r =-,公比为b ,1(1)n n a b b -=-(2)当b=2时,11(1)2n n n a b b --=-=, 1222(log 1)2(log 21)2n n n b a n -=+=+=则1212n n b n b n ++=,所以121211135721·······2462n n b b b n b b b n++++=⋅⋅ 下面用数学归纳法证明不等式121211135721 (1246)2n n b b b n n b b b n ++++=⋅⋅>+成立. ① 当1n =时,左边=32,右边=2,因为322>,所以不等式成立. ② 假设当n k =时不等式成立,即121211135721·······12462k k b b b k k b b b k ++++=⋅⋅>+成立.则当1n k =+时,左边=11212111113572123·······246222k k k k b b b b k k b b b b k k ++++++++=⋅⋅⋅⋅⋅+ 2223(23)4(1)4(1)111(1)1(1)1224(1)4(1)4(1)k k k k k k k k k k k ++++++>+⋅===+++>++++++ 所以当1n k =+时,不等式也成立.由①、②可得不等式恒成立.。

人教A版高中数学选修一第二章推理与证明答案.docx

人教A版高中数学选修一第二章推理与证明答案.docx

第二章合情推理与演绎推理答案 2.1.1 合情推理与演绎推理(1)1、d n a a n )1(1-+=2、B3、A4、()nn n n )1(1169411+-++-+-+Λ 5、θθθn cos 23cos 22cos 2 6、V+F —E=2 7、解:9)5(,5)4(,2)3(,0)2(====f f f f可以归纳出每增加一条直线,交点增加的个数为原有直线的条数 4)4()5(,3)3()4(,2)2()3(=-=-=-∴f f f f f f 猜测得出1)1()(-=--n n f n f 有)1(432)2()(-++++=-n f n f Λ)2)(1(21)(-+=∴n n n f 因此)2)(1(21)(,5)4(-+==n n n f f8、解:4211223⨯=432212233⨯=+44332122333⨯=++4544321223333⨯=+++()414321223333+=+++++n n Λ由此可以有求和的一般公式为()414321223333+=+++++n n Λ2.1.2合情推理与演绎推理(2)1、C2、D3、D4、类比5、(1)圆柱面(2)两个平行平面6、()()()x C x S x S 22= ()()()()()y S x C y C x S y x S +=+7、在等比数列{}n a 中,若q p n m +=+,()*,,,Nq p n m ∈,则q p n ma a a a⋅=⋅8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。

苏教版数学高二数学苏教版选修2-2单元测试 第2章推理与证明

苏教版数学高二数学苏教版选修2-2单元测试 第2章推理与证明

第2章过关检测(时间90分钟,满分100分)一、填空题(本大题共14小题,每小题4分,满分56分)1.如果f (x +y )=f (x )f (y ),且f (1)=1,则f (2)f (1)+f (3)f (2)+…+f (2 010)f (2 009)等于__________.2.若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比为:S △OM 1N 1S △OM 2N 2=OM 1OM 2·ON 1ON 2.若从点O 所作的不在同一个平面内的三条射线OP 、OQ和OR 上分别有点P 1、P 2与点Q 1、Q 2和R 1、R 2,则类似的结论为:__________.3.根据图中的5个图形及相应的点的个数的变化规律,试猜测第n 个图中有__________个点.4.三段论:“①只有船准时起航,才能准时到达目的港;②这艘船是准时到达目的港的;③所以这艘船是准时起航的.”中的“小前提”是__________.5.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则S (n )共有__________项,S (2)=__________.6.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下: ①当n =1时,左边=1,右边=21-1=1,等式成立. ②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1, 则当n =k +1时,1+2+22+…+2k -1+2k =1-2k +11-2=2k +1-1,所以当n =k +1时等式成立. 由此可知对任何n ∈N *,等式都成立. 上述证明的错误是__________.7.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中真命题是__________.8.从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,归纳出一般的式子是__________.9.已知a >b >0,且ab =1,若0<c <1,p =log c a 2+b 22,q =log c (1a +b )2,则p 、q的大小关系是__________.10.在椭圆中,我们有如下结论:椭圆x 2a 2+y 2b 2=1上斜率为1的弦的中点在直线x a 2+yb 2=0上,类比上述结论,得到正确的结论为:双曲线x 2a 2-y 2b 2=1上斜率为1的弦的中点在直线__________上.11.在等差数列{a n }中,当a r =a s (r ≠s )时,数列{a n }必定是常数列.然而在等比数列{a n }中,对某些正整数r ,s (r ≠s ),当a r =a s 时,非常数数列{a n }的一个例子是__________.12.将正奇数排列如下表,其中第i 行第j 个数表示a ij (i ∈N *,j ∈N *),例如a 32=9,a ij=2 009,则i +j =__________.13.在平面上的n 个圆中,每两个圆都相交,每三个圆不交于一点,则它们把平面分成__________部分.14.{a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a n +1a n =(a n -1+2)(a n -2+2),n =3,4,5,…,则a 3=__________.二、解答题(本大题共4小题,满分44分)15.(10分)如图,已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a .求证:b 与c 是异面直线.16.(10分)已知数列{a n}满足a1=1,且4a n+1-a n a n+1+2a n=9(n∈N*).(1)求a2,a3,a4;(2)由(1)猜想{a n}的通项公式a n,并用数学归纳法证明你的猜想.17.(12分)下列命题是真命题还是假命题,用分析法证明你的结论.命题:若a>b>c且a+b+c=0,则b2-aca< 3.18.(12分)已知f (n )=(2n +7)·3n +9,是否存在自然数m ,使对任意n ∈N *,都有m 整除f (n )?若存在,求出最大值的m 值,并证明你的结论;若不存在,说明理由.参考答案1.2 009 解析:令x =n (n ∈N *),y =1得f (n +1)=f (n )·f (1)=f (n ),所以f (n +1)f (n )=1,所以f (2)f (1)+f (3)f (2)+…+f (2 010)f (2 009)=1+1+…+1=2 009. 2.VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 23.n 2-n +1 解析:如设第n 个图中的点数为a n ,则有a 1=1,a 2=3=22-1,a 3=7=32-2,a 4=13=42-3,a 5=21=52-4.故a n =n 2-(n -1)=n 2-n +1.4.② 解析:①的意思是:如果船不准时起航,那么它就不能准时到达目的港,它的逆否命题是:如果船准时到达目的港,那么它是准时起航.由此可知,①是大前提,②是小前题.5.n 2-n +1 1312解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.S (2)=12+13+14=1312. 6.在证明n =k +1时,没有用假设n =k 时的结论7.③⑤ 解析:“F (k )真⇒F (k +1)真”等价于“F (k +1)假⇒F (k )假”.8.1-4+9-16+…+(-1)n +1n 2=(-1)n -1·n (n +1)2(n ∈N *) 解析:1-4=-(1+2)=(-1)2-1·2(2+1)2,1-4+9=1+2+3=(-1)3-13(3+1)2,1-4+9-16=-(1+2+3+4)=(-1)4-14(4+1)2,由此可归纳出结论. 9.p >q 解析:∵a 2+b 22≥ab =1,∴p =log c a 2+b 22<0.又q =log c (1a +b )2=log c 1a +b +2ab>log c 14ab =log c 14>0,∴q >p . 10.x a 2-yb2=0 11.1,-1,1,-1,…(不唯一)12.60 解析:2 009是正奇数1,3,5,…中的第1 005个,则1 005=1+2+3+…+(i -1)+j =(i -1)i2+j .估算:当i =45时,(i -1)i2=990,j =15,所以i +j =60.13.n 2-n +2 解析:n =1时,a 1=2; n =2时,a 2=4=a 1+2=a 1+2×1; n =3时,a 3=8=a 2+4=a 2+2×2; n =4时,a 4=14=a 3+6=a 3+2×3; …a n +1=a n +2n .由⎩⎪⎨⎪⎧a 1=2a n +1=a n+2n⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2(n -1)+2(n -2)+…+2×1+2=n 2-n +2.14.2 解析:由已知a 4a 3=(a 2+2)(a 1+2)=5×2=10×1, ∴a 3可能取值1,2,5,10. 若a 3=1,a 4=10,从而a 5=(a 3+2)(a 2+2)a 4=1510=32,显然a 5不是非负整数,与题设矛盾. 若a 3=10,则a 4=1,从而a 5=60. 但再计算a 6=35,也与题设矛盾.∴a 3=2,a 4=5(或a 3=5,a 4=2⇒a 5∉N *,舍去). 15.证明:假设b 、c 不是异面直线,即b 与c 共面, 设b 与c 确定的平面为γ,则γ∩α=b ,γ∩β=c , ∵a ∥c ,∴α∥γ.又a ⊂α,且α∩γ=b , ∴a ∥b ,这与a ∩b =A 矛盾.因此b 与c 不可能共面,故b 与c 是异面直线. 16.解:(1)由4a n +1-a n a n +1+2a n =9得 a n +1=9-2a n 4-a n =2-1a n -4,求得a 2=73,a 3=135,a 4=197.(2)猜想a n =6n -52n -1.证明:①当n =1时,猜想成立.②设当n =k 时(k ∈N +)时,猜想成立,即a k =6k -52k -1,则当n =k +1时,有a k +1=2-1a k -4=2-16k -52k -1-4=6k +12k +1=6(k +1)-52(k +1)-1,所以当n =k +1时猜想也成立.③综合①②,猜想对任何n ∈N +都成立. 17.解:此命题是真命题.∵a +b +c =0,a >b >c ,∴a >0,c <0. 要证b 2-ac a <3成立,只要证b 2-ac <3a ,即证b 2-ac <3a 2,也就是证(a +c )2-ac <3a 2,即证(a-c)(2a+c)>0,∵a-c>0,2a+c=(a+c)+a=a-b>0,∴(a-c)(2a+c)>0成立.故原不等式成立.18.解:由f(1)=36,f(2)=108,f(3)=360,f(4)=1 224,猜想f(n)被36整除.证明:①当n=1时,猜想显然成立.②设n=k时,f(k)能被36整除.则n=k+1时,f(k+1)=[2(k+1)+7]·3k+1+9=3[(2k+7)·3k+9]+18(3k-1-1),根据假设3[2(k+7)·3k+9]被36整除,而3k-1-1是偶数,∴18(3k-1-1)能被36整除,从而f(k+1)能被36整除.综上所述,n∈N*时,f(n)能被36整除,由于f(1)=36,故36是整除f(n)的自然数中的最大数.。

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学一轮复习 第十一章《算法框图及推理与证明》精编配套试题(含解析)理 新人教A版

2014届高考数学(理)一轮复习单元测试第十一章算法框图s 及推理与证明一、选择题(本大题共12小题,每小题5分,共60分.) 1、, 当输入x 为60时, 输出y 的值为( )A .25B .30C .31D .612.(2013年高考某某卷(理))阅读如下程序框图,如果输出5i =,那么在空白矩形框中应填入的语句为( )A .2*2S i =-B .2*1S i =-C .2*S i =D .2*4S i =+3.下列推理正确的是( )A .把a (b +c )与log a (x +y )类比,则有log a (x +y )=log a x +log a yB .把a (b +c )与sin(x +y )类比,则有sin(x +y )=sin x +sin yC .把(ab )n 与(x +y )n 类比,则有(x +y )n =x n +y nD .把(a +b )+c 与(xy )z 类比,则有(xy )z =x (yz ) 4、(2013高考某某理)设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈5、古希腊人常用小石子在沙滩上摆成各种形状来研究数。

比如:输入xIf x ≤50 Then y =0.5 * x Elsey =25+0.6*(x -50) End If 输出y他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

高二数学第一章推理与证明单元测试题及答案

高二数学第一章推理与证明单元测试题及答案

高二数学选修2-2《推理与证明》质量检测试题参赛试卷 姓名:_________班级:________ 得分:________第Ⅰ卷(选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

. 2.由10>8,11>10,25>21,…若a >b >0且m >0,则a +m 与a 之间大小关系为( )A .相等B .前者大C .后者大D .不确定3、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

(A)假设三内角都不大于60度; (B) 假设三内角都大于60度;(C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。

5、用数学归纳法证明“)12(212)()2)(1(-⋅⋅⋅⋅=+++n n n n n n”(+∈N n )时,从 “1+==k n k n 到”时,左边应增添的式子是 ( )A .12+kB .)12(2+kC .112++k k D .122++k k 6、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得( )A .当n=6时该命题不成立B .当n=6时该命题成立C .当n=8时该命题不成立D .当n=8时该命题成立7、已知n 为正偶数,用数学归纳法证明 )214121(2114131211nn n n +++++=-++-+-时,若已假设2(≥=k k n 为偶 数)时命题为真,则还需要用归纳假设再证( )A .1+=k n 时等式成立B .2+=k n 时等式成立C .22+=k n 时等式成立D .)2(2+=k n 时等式成立8、在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 20049、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是( ) A .12 B.13 C.14 D.1510、数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n ≥1时,S n =( ) A .1212-+n nB .1212--n nC .nn n 2)1(+ D .1-121-n二、填空题(每小题5分,共4小题,满分20分)11、设等差数列{a n }的前n 项和为S n , 则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.12、设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;当n>4时,()f n = (用含n 的数学表达式表示)。

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2《统计案例》、《推理与证明》单元测试题

选修1-2?统计案例?、?推理与证明?单元测试可能用到的公式:回归直线的方程是:a bx y+=ˆ,其中1221,ni i i nii x y nxyb a y bx xnx ==-==--∑∑;相关指数21122)()ˆ(1∑∑==---=n i ini i iy yyyR ,总偏差平方和:21()nii y y =-∑,残差平方和:21ˆ()niii y y=-∑.随机变量()()()()()22n ad bc K a b c d a c b d -=++++一、选择题 〔每题 5分,共 10小题,共 50分〕1. 工人月工资 〔元〕 依劳动生产率 〔千元〕 变化的回归直线方程为6090y x =+, 以下判断正确的选项是 〔 〕.A. 劳动生产率为 1000元时,工资为 50 元B. 劳动生产率提高 1000 元时,工资提高 150元C. 劳动生产率提高 1000 元时,工资提高 90 元D. 劳动生产率为 1000元时,工资为 90 元2. 在画两个变量的散点图时,下面哪个表达是正确的〔 〕. A. 预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上 C. 可以选择两个变量中任意一个变量在x 轴上 D. 可以选择两个变量中任意一个变量在 y 轴上3. 回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),那么回归直线的方程是 〔 〕. A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D. 0.08 1.23y x =+4.在两个变量 y 与 x 的回归模型中,分别选择了 4 个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是〔 〕A. 模型 1 的相关指数 2R 为 0.95 B. 模型 2的相关指数2R 为 0.80 C. 模型 3 的相关指数2R 为 0.50 D. 模型 4的相关指数2R 为 0.25 5. x 与y 那么y 与x 的线性回归方程为y bx a =+必过点〔 〕.A. 〔2,2〕B. 〔1.5,3〕C. 〔1,2〕D. 〔1.5,4〕A.“假设33a b ⋅=⋅,那么a b =〞类推出“假设00a b ⋅=⋅,那么a b =〞B.“假设()a b c ac bc +=+〞类推出“()a b c ac bc ⋅=⋅〞C.“假设()a b c ac bc +=+〞 类推出“a b a bc c c+=+ 〔c ≠0〕〞 D.“n n a a b =n (b )〞 类推出“n n a a b +=+n(b )〞7. 有一段演绎推理是这样的:“直线平行于平面,那么平行于平面内所有直线;直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,那么直线b ∥直线a 〞的结论显然是错误的,这是因为 〔 〕 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误8.用反证法证明命题:“三角形的内角中至少有一个不大于60度〞时,反设正确的选项是〔 〕。

《第1章 证明(二)》2013年成都市重点中学单元测试卷(一)

《第1章 证明(二)》2013年成都市重点中学单元测试卷(一)

《第1章证明(二)》2013年成都市重点中学单元测试卷(一)《第1章证明(二)》2013年成都市重点中学单元测试卷(一)一、填一填(每题3分,共30分)1.(3分)(2012•金堂县一模)在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏要求在他们中间放一个木凳,使他们抢坐到凳子的机会相等,试想想凳子应放在△ABC的三条_________线的交点最适当.2.(3分)(2003•吉林)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为_________cm2.3.(3分)用反证法证明“三角形中至少有一个角不小于60°时,假设“_________”,则与“_________”矛盾,所以原命题正确.4.(3分)如图,上午8时,一条船从A处测得灯塔C在北偏西30°,以15海里/时的速度向正北航行,9时30分到达B处,测得灯塔C在北偏西60°,那么当船继续航行,_________时_________分测得灯塔C在正西方向.5.(3分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了_________米.6.(3分)撑伞时,把伞“两侧的伞骨”和支架分别看作AB、AC和DB、DC,始终有AB=AC,DB=DC,请大家考7.(3分)如图,正方形ABCD的边长为2cm,E是CD的中点,将△ADE绕点A顺时针方向旋转能与△ABF重合,则EF=_________.8.(3分)印度数学家拜斯迦罗(公元1114~1185年)的著作中有个有趣的“荷花问题”:湖静浪平六月天,荷花半尺出水面;忽来一阵狂风急,吹倒花儿水中偃.湖面之上不复见,入秋渔翁始发现;残花离根二尺遥,试问水深尺若干?即:如图,在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵狂风把荷花吹倒在水中淹没了.到了秋天,渔翁发现,淹没在水中的残花离根部有二尺远,试问水深是多少尺?答:_________尺.9.(3分)某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_________元.10.(3分)如图是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为_________.二、选一选.(每题3分,共15分)12.(3分)(2001•济南)同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG 可以看成是把菱形ABCD 以A 为中心( )13.(3分)如图,∠ABC=∠DCB ,需要补充一个直接条件才能使△ABC ≌△DEF .甲、乙、丙、丁四位同学填写的条件分别是:甲“AB=DC ”;乙“AC=DB ”;丙“∠A=∠D ”;丁“∠ACB=∠DBC ”.那么这四位同学填写错误的为( )14.(3分)有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是( )15.(3分)(2003•江西)设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,三、做一做.(每题7分,共42分)16.(7分)阅读下题及证明过程:已知:如图,D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE .∴△AEB≌△AEC…第一步∴∠BAE=∠CAE…第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.17.(7分)小明在做作业时,不小心将墨水瓶打翻,使一道作业题只看到如下字样:“如图,点D、E在△ABC的边BC上,AB=AC,.求证:BD=CE.”请你为本题设置一个条件,将它补充成一道完整的证明题;并证明它.18.(7分)如图:△ABD和△CDH都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等的三角形,并写出证明过程.19.(7分)如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请你判断△OMN的形状,并证明你的结论.20.(7分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.21.(7分)在直线MN上能否找到点A,使以BC为一边的△ABC是等腰三角形,如果能的话,这样的点A有几个?试着把它找出来,如果不能,说明理由.四、用心想一想,你一定最棒!(共33分)22.(11分)小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.23.(11分)如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.24.(11分)已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.现要求:(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹);(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.《第1章证明(二)》2013年成都市重点中学单元测试卷(一)参考答案与试题解析一、填一填(每题3分,共30分)1.(3分)(2012•金堂县一模)在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏要求在他们中间放一个木凳,使他们抢坐到凳子的机会相等,试想想凳子应放在△ABC的三条垂直平分线的交点最适当.2.(3分)(2003•吉林)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.3.(3分)用反证法证明“三角形中至少有一个角不小于60°时,假设“三角形的三个内角都小于60°”,则与“三角形的内角和是180°”矛盾,所以原命题正确.4.(3分)如图,上午8时,一条船从A处测得灯塔C在北偏西30°,以15海里/时的速度向正北航行,9时30分到达B处,测得灯塔C在北偏西60°,那么当船继续航行,10时15分测得灯塔C在正西方向.BD=小时5.(3分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了8米.AC==24CE=6.(3分)撑伞时,把伞“两侧的伞骨”和支架分别看作AB、AC和DB、DC,始终有AB=AC,DB=DC,请大家考虑一下伞杆AD与B、C的连线BC的位置关系为垂直.7.(3分)如图,正方形ABCD的边长为2cm,E是CD的中点,将△ADE绕点A顺时针方向旋转能与△ABF重合,,由于将FA=EA=EF=AE=×=AE===,EF=×=..8.(3分)印度数学家拜斯迦罗(公元1114~1185年)的著作中有个有趣的“荷花问题”:湖静浪平六月天,荷花半尺出水面;忽来一阵狂风急,吹倒花儿水中偃.湖面之上不复见,入秋渔翁始发现;残花离根二尺遥,试问水深尺若干?即:如图,在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵狂风把荷花吹倒在水中淹没了.到了秋天,渔翁发现,淹没在水中的残花离根部有二尺远,试问水深是多少尺?答: 3.75尺.9.(3分)某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要480元.10.(3分)如图是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.二、选一选.(每题3分,共15分)11.(3分)(2000•安徽)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()12.(3分)(2001•济南)同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以A为中心()13.(3分)如图,∠ABC=∠DCB ,需要补充一个直接条件才能使△ABC ≌△DEF .甲、乙、丙、丁四位同学填写的条件分别是:甲“AB=DC ”;乙“AC=DB ”;丙“∠A=∠D ”;丁“∠ACB=∠DBC ”.那么这四位同学填写错误的为( )14.(3分)有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍”请你计算后帮小明在标牌的“▇”填上适当的数字是( )15.(3分)(2003•江西)设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,三、做一做.(每题7分,共42分)16.(7分)阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,∵EB=EC,∠ABE=∠ACE,AE=AE,∴△AEB≌△AEC…第一步∴∠BAE=∠CAE…第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.17.(7分)小明在做作业时,不小心将墨水瓶打翻,使一道作业题只看到如下字样:“如图,点D、E在△ABC的边BC上,AB=AC,.求证:BD=CE.”请你为本题设置一个条件,将它补充成一道完整的证明题;并证明它.18.(7分)如图:△ABD和△CDH都是等腰直角三角形,且D在BC上,BH的延长线与AC交于点E,请你在图中找出一对全等的三角形,并写出证明过程.19.(7分)如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请你判断△OMN的形状,并证明你的结论.20.(7分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,求折叠△AED的面积.=BF21.(7分)在直线MN上能否找到点A,使以BC为一边的△ABC是等腰三角形,如果能的话,这样的点A有几个?试着把它找出来,如果不能,说明理由.四、用心想一想,你一定最棒!(共33分)22.(11分)小林在课堂上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.∵∵23.(11分)如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.==,AB=2BC=AB=AC==24.(11分)已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.现要求:(1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹);(2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.参与本试卷答题和审题的老师有:MMCH;zhjh;wenming;kuaile;蓝月梦;gsls;gbl210;499807835;sd2011;HJJ;zjx111;sjzx;fuaisu;ljj;CJX;ln_86;caicl;wdxwwzy;心若在;sks;算术;mmll852(排名不分先后)菁优网2013年9月6日。

初二几何证明单元测试

初二几何证明单元测试

初二几何证明单元测试导言:几何证明是初中数学学科的重点内容之一。

通过进行几何证明,学生能够提高逻辑思维和分析问题的能力,加深对几何概念的理解。

为了检测学生对几何证明的掌握情况,提高他们的几何证明能力,初二数学教师安排了几何证明单元测试。

1. 测试内容几何证明单元测试主要涵盖了初二上学期所学的几何知识点,包括角的性质、平行关系、全等三角形等内容。

测试共分为三个部分:选择题、填空题和证明题。

2. 选择题选择题是测试中的第一部分,共包括20道题目。

这些题目要求学生从给出的选项中选择正确答案。

选择题的目的是检测学生对几何概念的理解,以及对几何性质和定理的掌握情况。

3. 填空题填空题是测试中的第二部分,共包括10道题目。

这些题目要求学生填写正确的答案,以准确描述几何图形的特征、性质或关系。

填空题的目的是检测学生对几何概念的运用能力,以及对几何性质和定理的理解程度。

4. 证明题证明题是测试中的第三部分,共包括2道题目。

这些题目要求学生完整地证明给定的几何问题。

证明题的目的是检测学生对几何性质和定理的深入理解和应用能力。

通过解答证明题,学生可以培养逻辑思维和推理能力,提高解决几何问题的能力。

5. 测试方法几何证明单元测试通过书面形式进行,要求学生在规定的时间内独立完成。

学生需要在答题卷上写下自己的答案,以便教师进行评分。

为了保护学生隐私,答题卷上不得包含个人身份信息。

6. 测试目标几何证明单元测试的主要目标是检测学生对几何证明的理解和掌握程度。

通过测试结果的分析,教师可以了解学生的优势和不足,。

【2021精品试卷】人教版二年级数学下册《9.数学广角-推理》-单元测试3

【2021精品试卷】人教版二年级数学下册《9.数学广角-推理》-单元测试3

人教版二年级数学下册《9.数学广角-推理》-单元测试3一、单选题(总分:40分本大题共8小题,共40分)1.(本题5分)同一宿舍住着小花、小朵、小美、小丽四名学生,正在听音乐,她们中有一个人在修指甲,一人在做头发,一人在化妆,一人在看书,已知:(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(3)如果小花不在化妆,那么小美就不在修指甲(4)小丽不在看书,也不在修指甲下列说法正确的是()A.小花在化妆B.小朵在做头发C.小美在做头发D.小丽在化妆2.(本题5分)在下面的方格中,每行、每列都有1、2、3、4这四个数,并且每个数在每行、每列都只出现一次,A是( )。

A.3B.2C.13.(本题5分)6人参加乒乓球赛,每两人都要比赛一场,胜者的2分,负者的0分,比赛结果有两人并列第二名,两人并列第5名,那么,第4名得()分。

A.3B.4C.5D.64.(本题5分)爸爸买了三个不同的福娃送给三兄妹.打开包装前,哥哥猜:“一定有欢欢,而没有晶晶”;弟弟猜:“晶晶和欢欢当中至少有一个,一定没有迎迎”;妹妹猜:“一定有妮妮,没有贝贝”.爸爸笑着回答:“你们每个人猜的两句话中,都恰好有一句是对的,有一句是错的”.爸爸买的三个福娃的名字分别是()A.欢欢、晶晶、迎迎B.贝贝、妮妮、迎迎C.晶晶、贝贝、妮妮D.欢欢、妮妮、贝贝5.(本题5分)哈利波特有个带密码的箱子,但是他忘记了密码,只记得密码是一个三位数.这个三位数的个位数字比十位数字大,十位数字比百位数字大,并且没有比5大的数字,哈利波特最多要试()次就肯定能打开这个箱子.A.8B.9C.10D.116.(本题5分)A、B、C、D、E五人进行乒乓球比赛,每人两个人都要赛一场.现在A、D都赛了4场,B、C都赛了3场,E至少赛了()场.A.1B.2C.3D.47.(本题5分)10、一个棱长为1的小正方体形状的骰子,它的六个面上各写有一个大写英文字母D、E、G、I、N、O中的一个.先将它放在由20个边长为1的小正方形拼成的4×5的棋盘的左上角的小方格上,令字母D朝上(如图所示),然后将它连续的向邻格翻动,并且恰好经过4×5棋盘上的其余的19个小方格各1次(共翻动了19次),最终停止在棋盘的右下角的小方格上.如果图中小方格中给定的字母是骰子在翻动到该小方格上时,骰子朝上的面上所写的字母(字母可“正放”、“横放”或“倒放”).那么,骰子翻动到画有“﹡”的小方格时,骰子朝上的面所写的字母是()A.OB.EC.GD.I8.(本题5分)甲、乙、丙三人进行百米赛跑.赛前三人预测,甲说:“我第一”;乙说:“我第一”;丙说:“我和甲都不可能得第一”.比赛结果证明,他们三人只有一个人的预测是正确的.这次比赛()得了第一名.A.甲B.乙C.丙二、填空题(总分:25分本大题共5小题,共25分)9.(本题5分)除107后,余数为2的两位数有____________.10.(本题5分)有七名学生参加运动会.他们身上的T恤上分别标记有号码1、2、3、…或7.比赛最终获得第一名的学生完成比赛用时1分钟;最终获得第二名的学生完成比赛用时2分钟;最终获得第三名的学生完成比赛用时3分钟;依此类推.并且(1)将每位学生穿着的T恤上的号码与所费的时间相加,我们发现:(1)所得的和最大是13(恰只有一位学生);(2)所得的和最小是4(恰只有一位学生);(3)恰好有三位学生所得的和等于9.(2)第一名的学生所穿的T恤上的数大于第二名的学生所穿的T恤上的数.那么得到第一~七名的学生的T恤上的号码分别是____.(要求按顺序写)11.(本题5分)A、B、C分别代表三支球队,表示B负于A,看,____队是冠军.12.(本题5分)10名选手参加象棋比赛,每两名选手间都要比赛一场,比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名得分总分相等,如果胜者得2分,输者得0分,和局各得1分,则前六名的分数各为____分.13.(本题5分)某学校为了表扬好人好事,学校找到了A、B、C、D四人来核实4人中谁做了好事(只有1人做了好事).A说:“是B做的.”B说:“是D做的.”C说:“不是我做的.”D说:“B说的不对.”这四人只有一人说了实话.问:这件好事是____做的.三、解答题(总分:35分本大题共5小题,共35分)14.(本题7分)有n名(n≥3)选手参加的一次乒乓球循环赛中,没有一个全胜的.问:是否能够找到三名选手A、B、C,使得A胜B,B胜C,C胜A?15.(本题7分)赵云、孙林、李红、周丽四人进行羽毛球比赛,每两人之间要进行一场比赛,赵云胜了3场,孙林胜了2场,李红最多能胜几场?16.(本题7分)大灰、二灰和三灰三只松鼠进行跳远比赛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同心中学2010-2011学年高二数学选修2-2单元检测题
推理与证明
命题人:蔡永登
一、选择题(每小题5分,共40分)
1.下面使用的类比推理中恰当的是( )
A.“若22m
n =··,则m n =”类比得出“若00m n =··,则m n =” B.“()a b c ac bc +=+”类比得出“()a b c ac bc =··” C.“()a b c ac bc +=+”类比得出“
(0)a b a b
c c c c
+=+≠” D.“()n n n pq p q =·”类比得出“()n n n p q p q +=+”
2.图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是( )
A.25 B.66 C.91 D.120
3.用数学归纳法证明等式(3)(4)
123(3)()2n n n n *+++++++=∈N 时,第一步验证1
n =时,左边应取的项是( ) A.1 B.12+ C.123++ D.1234+++
4.用数学归纳法证明(1)(2)()213(21)n n n n n n +++=- ····,从k 到1k +,左边需要增乘的代数式为( ) A.21k +
B.2(21)k +
C.
21
1
k k ++ D.
23
1
k k ++
5.下列给出的平面图形中,与空间的平行六面体作为类比对象较为合适的是( ) A.三角形 B.梯形 C.平行四边形 D.矩形
6.命题“三角形中最多只有一个内角是钝角”的结论的否定是( ) A.有两个内角是钝角 B.有三个内角是钝角 C.至少有两个内角是钝角 D.没有一个内角是钝角
7.已知1m >
,a
b ,则以下结论正确的是( ) A.a b >
B.a b <
C.a b =
D.a ,b 大小不定
8.用反证法证明命题:若整系数一元二次方程20(0)ax bx c a ++=≠有有理根,那么a b c ,,中至少有一个是偶数时,下列假设中正确的是( ) A.假设a b c ,,都是偶数 B.假设a b c ,,都不是偶数
C.假设a b c ,,至多有一个是偶数 D.假设a b c ,,至多有两个是偶数 二、填空题(每小题5分,共20分) 9.已知21111()12f n n n n n
=++++++ ,则()f n 中共有 项.
10
<
<,根据以上不等式的规律,请写出对正实数m
n ,成立的条件不等式 .
11.在数列{}n a 中,12a =,1()31n
n n a a n a *+=∈+N ,可以猜测数列通项n a 的表达式为 .
12.若三角形内切圆的半径为r ,三边长为a b c ,,,则三角形的面积等于1
()2
S r a b c =++,
根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别是1234S S S S ,,,,则四面体的体积V = .
同心中学2010-2011学年高二数学选修2-2单元检测题
推理与证明
班别:姓名:学号:分数:
一.选择题(每小题5分,共40分)
二.填空题(每小题5分,共20分)
9._______ 10. _______
11. _______ 12. _______
三、解答题(每小题10分,共40分)
13.已知a是整数,2a是偶数,求证:a也是偶数.(用反正法)
14.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.
15.已知命题:“若数列{}n a 是等比数列,且0n a >,则数列)n b n *∈N 也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.
16.是否存在常数a b c ,,,使得等式222222421(1)2(2)()n n n n n an bn c -+-++-=++ 对一切正整数n 都成立?若存在,求出a b c ,,的值;若不存在,说明理由.
同心中学2010-2011学年高二数学选修2-2单元检测题
推理与证明 答案
一、选择题
1、C
2、C
3、D
4、B
5、C
6、C
7、B
8、B
二、填空题
9、21n n -+ 10、当20m n += 11、265n a n =- 12、12341
()3
R S S S S +++
三、解答题
13.证明:(反证法)假设a 不是偶数,即a 是奇数. 设21()a n n =+∈Z ,则22441a n n =++. 24()n n +∵是偶数,
2441n n ++∴是奇数,这与已知2a 是偶数矛盾. 由上述矛盾可知,a 一定是偶数.
14. 证明:(分析法)设圆和正方形的周长为l ,依题意,圆的面积为2
π
2πl ⎛⎫
⎪⎝⎭·, 正方形的面积为2
4l ⎛⎫
⎪⎝⎭

因此本题只需证明2
2
π2π4l l ⎛⎫⎛⎫
> ⎪ ⎪⎝⎭⎝⎭

要证明上式,只需证明22
2π4π16l l >,
两边同乘以正数24l
,得11
π4>.
因此,只需证明4π>.
∵上式是成立的,所以2
2
π2π4l l ⎛⎫⎛⎫
> ⎪ ⎪⎝⎭⎝⎭

这就证明了如果一个圆和一个正方形的周长相等,那么圆的面积比正方形的面积最大.
15. 解:类比等比数列的性质,可以得到等差数列的一个性质是:若数列{}n a 是等差数列,
则数列12n
n a a a b n
+++=
也是等差数列.
证明如下: 设等差数列{}n a 的公差为d ,则12n
n a a a b n
+++= 11(1)2(1)2
n n d
na d a n n -+
=
=+-,
所以数列{}n b 是以1a 为首项,
2
d
为公差的等差数列.
16. 解:假设存在a b c ,,,使得所给等式成立. 令123n =,,代入等式得0164381918a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,,,解得14140a b c ⎧=⎪⎪

=-⎨⎪
=⎪⎪⎩
,,,
以下用数学归纳法证明等式2222224211
1(1)2(2)()44
n n n n n n n -+-++-=+ 对一切正整数
n 都成立.
(1)当1n =时,由以上可知等式成立;
(2)假设当n k =时,等式成立,即2222224211
1(1)2(2)()44
k k k k k k k -+-++-=- ,
则当1n k =+时,
222222221[(1)1]2[(1)2][(1)](1)[(1)(1)]k k k k k k k k +-++-+++-+++-+ 2222221(1)2(2)()(21)2(21)(21)k k k k k k k k k =-+-++-+++++++
424211(1)11(21)(1)(1)44244k k k k k k k +=-++=+-+·. 由(1)(2)知,等式结一切正整数n 都成立.。

相关文档
最新文档