山东省英雄山中学09-10学年高一数学上期中考试试卷人教版必修一
(完整版)人教版高一上学期必修1数学期中测试题含答案,推荐文档
11.A 提示: f 3 f 2 f 1 f 0, f 2 f 0.414, f 2 f 1
由于函数 f (x) 在 R 上为偶函数,且在区间[1,0] 上为递增,于是区间[0,1] 上为递减。
为单调递增。
y
loga
x 单调递减。
6.C。7.C
8.A
提示:由 x log2 3 1得 x
lg 2 lg 3
log 3
2 ,于是 3x
9x
2 22
6。
9.B 提示:函数 y f (x 1) 中的 x 1应满足1 x 1 2 0 x 1,故
y f (x 1) 的定义域为0,1。
20.(本题满分 12 分)已知 f (x) loga (1 x)(a 0, a 1) 。 (1)求 f (x) 得定义域; (2)求使 f (x) 0 成立的 x 的取值范围。
21.(本题满分 12 分) 我国是水资源匮乏的国家为鼓励节约用水,某市打算出台一项水费政策措施,规定:每一 季度每人用水量不超过 5 吨时,每吨水费收基本价 1.3 元;若超过 5 吨而不超过 6 吨时, 超过部分水费加收 200%;若超过 6 吨而不超过 7 吨时,超过部分的水费加收 400%,如果某
2 3
,
Hale Waihona Puke 4.已知 f (x6 ) log2 x ,则 f (8) ( )
4
A.
3
B. 8
C. 18
1
D.
2
5.当 0<a<1 时,在同一坐标系中,函数 y ax 与 y loga x 的图象是( )
6、若函数 y (a2 3a 3) a x 是指数函数,则有
(
)
A、 a 1或a 2 B、 a 1
人教版高一数学上学期期中考试试题(含两套,附答案)
人教版高一数学上学期期中考试试题(含两套,附答案)考试时间:120分钟 满分:150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.1. 已知集合{}6,5,4,3,2,1=U ,{}5,3,2=M ,{}6,4=N ,则=N M C U)(( ) A.{}46, B.{}146,, C.∅ D.{}23456,,,, 2.以下各组两个函数是相同函数的是( ) A ()(),f x g x ==B.()()2,25f x g x x ==-C.)(12)(),(12)(Z n n n g Z n n n f ∈+=∈-=D.12)(|1|)(2+-=-=x x x g x x f ,3.已知点M 在幂函数()f x 的图象上,则()f x 的表达式为( ) A.12()f x x = B.12()f x x -= C.2()f x x = D.2()f x x -=4. 函数⎪⎩⎪⎨⎧≥<-=-)1(2)1(21)(x x xx f x ,((2))f f -=( )A.21 B.41C.2D.4 5.函数()2ln f x x x=-的零点所在的大致区间的( ) A.()1,2 B.()2,3 C.(),3e D.(),e +∞ 6.函数xxee xf --=)(是( )A.奇函数,且在(,)-∞+∞上是增函数B.奇函数,且在(,)-∞+∞上是减函数C.偶函数,且在(,)-∞+∞上是增函数D.偶函数,且在(,)-∞+∞上是减函数 7.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A.2B.-2C.1D.-18.已知1.01.1=x ,1.19.0=y ,34log 32=z ,则( ) A.z y x >> B.z x y >> C.x z y >> D.y z x >>9.函数()()2212f x x a x =+-+在(]4,∞-上是减函数,则实数a 的取值范围是( ) A.3a ≤- B.3a ≥- C.5a ≥ D.3a ≥10.已知2211)(xx x f -+=,则)(x f 不满足...的关系是( ) A.)()(x f x f =- B.)()1(x f xf = C.)()1(x f x f -= D.)()1(x f xf -=-11.已知函数324)(2---=xx x f ,若2)1(->-x f ,则实数x 的取值范围是( ) A.[]3,1- B.[]2,2- C.()()+∞∞-,20, D.()2,0 12.如图一直角墙角,两边的长度尺足够长,P 处有一棵树与两墙的距离分别是am 、4m ,其中012a <<,不考虑树的粗细,现在想用16m 长的篱笆,借助墙角围成一个矩形的花圃ABCD ,设此矩形花圃的最大面积为S ,若将这棵树围在花圃内,则函数()S f a =(单位2m )的图象大致是( )二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合{}2|230A x x x =--=,{}|0B x x a =-=,若B A ⊂≠,则实数a 的值构成的集合是 .14.2()lg(45)f x x x =--+的单调递增区间为 . 15.已知函数)(x f )10(2≠>=-a a ax ,经过定点)1,(m ,则函数x m y =的反函数是 .16.若函数()x f 同时满足:①对于定义域上的任意x ,恒有()()0=-+x f x f ;②对于定义域上的任意21,x x ,当21x x ≠时,恒有()()02121<--x x x f x f ,则称函数()x f 为“理想函数”。
山东省泰安英雄山中学2009届高三年级第一次复习检测数学文科卷人教版
山东省泰安英雄山中学2009届高三年级第一次复习检测数学文科卷第Ⅰ卷一、选择题(本大题共12小题,每题,5分,共60分) 1.设集合""""},30|{},01|{B m A m x x B x xx A ∈∈<<=<-=是那么的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 2.若命题p B A x p ⌝∈则 :是( )A .B x A x ∉∉且 B .B x A x ∉∉或C .B A x ∉D .B A x ∈3.已知函数)1(+=x f y 的图象过点(3,2),则函数)(x f 的图象关于x 轴的对称图形一定过点( )A .(2,-2)B .(2,2)C .(-4,2)D .(4,-2)4.如果奇函数)(x f 在区间)0](,[>>a b b a 上是增函数,且最小值为m ,那么)(x f 在区间],[a b --上是( )A .增函数且最小值为mB .增函数且最大值为-mC .减函数且最小值为mD .减函数且最大值为-m5.定义M N N M B x A x x B A -==∉∈=-是若且},6,3,2{},5,4,3,2,1{},|{等于( ) A .M B .N C .{1,4,5} D .{6}6.与函数)12lg(1.0-=x y 的图象相同的函数解析式是 ( )A .)21(12>-=x x y B .121-=x yC .)21(121>-=x x y D .|121|-=x y 7.对一切实数x ,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是 ( )A .]2,(--∞B .[-2,2]C .),2[+∞-D .),0[+∞8.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为y=2x 的图像,则)(x f y =的函数表达式为 ( )A .22+=x yB .22+-=x yC .22--=x yD .)2(log 2+-=x y9.设奇函数),0()(+∞在x f 上为增函数,且的则不等式0)()(,0)1(<--=xx f x f f 解集为( )A .),1()0,1(+∞-B .)1,0()1,( --∞C .),1()1,(+∞--∞D .)1,0()0,1( -10.当]2,0[∈x 时,函数23)1(4)(2=--+=x x a ax x f 在时取得最大值,则a 的取值范围是( )A .],21[+∞-B .),0[+∞C .),1[+∞D .),32[+∞11.已知),(1,log 1,4)13()(+∞-∞⎩⎨⎧><+-=是x x x a x a x f a 上是减函数,那么a 的取值范围是( )A .(0,1)B .)31,0(C .)1,71[D .)31,71[12.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过400元的按全部稿酬的11%纳税。
人教版新教材高中数学高一上学期期中考试数学试卷(共三套)
人教版新教材高中数学高一上学期期中考试数学试卷(一)一、选择题(共12小题)1.命题“0x R ∃∈,2450x x ++>”的否定是( )A .0x R ∃∈,2450x x ++>B .0x R ∃∈,2450x x ++≤C .x R ∀∈,2450x x ++>D .x R ∀∈,2450x x ++≤2x 的取值范围是( ) A .1≥x B .2x ≠ C .1x > D .1≥x 且2x ≠3.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c4.若实数x ,y ,z 满足1212y x y y z y-<<-⎧⎨-<<-⎩,记2P xy yz xz y =+++,2Q x y z =++,则P 与Q 的大小关系是( )A .P Q <B .P Q >C .P Q =D .不确定5.若1m n >>,a =,()1lg lg 2b m n =+,lg 2m n c +⎛⎫= ⎪⎝⎭,则( ) A .a b c << B .c a b << C .b a c << D .a c b <<6.当1x >时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(],2-∞ B .[)2,+∞ C .[)3,+∞ D .(],3-∞7.一元二次方程220x bx +-=中,若0b <,则这个方程根的情况是( )A .有两个正根B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大8.不等式22412ax x a x ++>-对一切x ∈R 恒成立,则实数a 的取值范围是( )A .2a >B .2a <-C .22a -<<D .2a < 9.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1 B .2C .4D .5 10.若函数()f x 满足(32)98f x x +=+,则()f x 的解析式是( )A .()98f x x =+B .()=32f x x +C .()=34f x x --D .()=32f x x +或()=34f x x --11.已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a 的取值范围是( )A .1,12⎛⎤ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .[]1,212.已知函数2()23f x x ax =-+,且其对称轴为1x =,则以下关系正确的是( )A .(3)(2)(7)f f f -<<B .(3)(2)(7)f f f -=<C .(2)(3)(7)f f f <-<D .(2)(7)(3)f f f <<-一.填空题(共6小题) 13.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________.14.(已知14x y -<+<,23x y <-<,则32x y +的取值范围是________.15.已知0x >,0y >,且28x y xy +=,则x y +的最小值是________.16.已知函数()f x =的定义域为R ,则a 的取值范围为_______ .17.已知函数()151x m f x =-+是奇函数,则实数m 的值为________. 18.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()1f x x x =+,则0x <时,()f x = ________.三.解析题(共6小题)19.已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式;(2)当1x >-时,求()211f x y x -=+的最大值. 20.已知关于x 的不等式2260kx x k -+<;(1)若不等式的解集为()2,3,求实数k 的值;(2)若0k >,且不等式对一切23x <<都成立,求实数k 的取值范围.21.已知函数2()23=++f x x ax ,[]4,6x ∈-.(1)当2a =-时,求()f x 的最值;(2)求实数a 的取值范围,使()y f x =在区间[]4,6-上是单调函数;22.已知函数()[)22,1,x x a f x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.23.已知函数()21x b f x x +=-是定义域()1,1-上的奇函数. (1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.24.已知()()2227m f x m m x -=--是幂函数,且在()0,∞+上单调递增.(1)求m 的值;(2)求函数()()()211g x f x a x =--+在区间[]2,4上的最小值()h a .【答案解析】二.选择题(共12小题)1.命题“0x R ∃∈,2450x x ++>”的否定是( )A .0x R ∃∈,2450x x ++>B .0x R ∃∈,2450x x ++≤C .x R ∀∈,2450x x ++>D .x R ∀∈,2450x x ++≤ 【答案】D【解析】命题“0x R ∃∈,2450x x ++>”的否定是:x R ∀∈,2450x x ++≤故选D2x 的取值范围是( ) A .1≥xB .2x ≠C .1x >D .1≥x 且2x ≠【答案】D【解析】 解:根据题意,得1020x x -≥⎧⎨-≠⎩,解得1≥x 且2x ≠. 故选:D.3.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b d C .a d >bc D .ad <b c【答案】D【解析】方法1:∵c <d <0,∴-c >-d >0,∴110d c>>--, 又a >b >0,∴a b d c >--,∴a b d c <.故选:D.方法2:令a =3,b =2,c =-3,d =-2.则a c =-1,b d=-1,排除选项A ,B. 又a d =-32,b c =-23,∴a b d c <,排除选项C. 故选:D.4.若实数x ,y ,z 满足1212y x y y z y-<<-⎧⎨-<<-⎩,记2P xy yz xz y =+++,2Q x y z =++,则P 与Q 的大小关系是( )A .P Q <B .P Q >C .P Q =D .不确定【答案】A【解析】 ()22P Q xy yz xz y x y z =--+++++()()()2111xz y x z y =+-++-- ()()111x y z y =+-+--因为1212y x y y z y -<<-⎧⎨-<<-⎩,所以()10,1x y +-∈,()10,1z y +-∈, 所以()()()110,1x y z y +-+-∈,所以110P Q -<-=,即P Q <故选:A5.若1m n >>,a ,()1lg lg 2b m n =+,lg 2m n c +⎛⎫= ⎪⎝⎭,则( ) A . a b c <<B .c a b <<C .b a c <<D .a c b <<【答案】A【解析】解:因为1m n >>,所以lg lg 0m n >>,则()1lg lg 2b m n =+≥,因为lg lg m n >,所以等号不成立,即()1lg lg 2b m n a =+>=,因为2m n +>()1lg lg lg 22m n c m n b +⎛⎫=>=+= ⎪⎝⎭, 所以a b c <<,故选:A.6.当1x >时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( ) A .(],2-∞B .[)2,+∞C .[)3,+∞D .(],3-∞ 【答案】D【解析】因为当1x >时,不等式11x a x +≥-恒成立, 又111121311x x x x +=-++≥+=--, 当且仅当2x =时取等号, 所以11`x x +-的最小值等于3, 3a ∴≤则实数a 的取值范围为](3-∞,故选:D7.一元二次方程220x bx +-=中,若0b <,则这个方程根的情况是( )A .有两个正根B .有一正根一负根且正根的绝对值大C .有两个负根D .有一正根一负根且负根的绝对值大【答案】B【解析】由220x bx +-=,可知()2241280b b ∆=-⨯⨯-=+>,所以方程有两个不相等的实数根.设方程220x bx +-=的两个根为c ,d ,则c d b +=-,2cd =-,由2cd =-得方程的两个根为一正一负,排除A,C由c d b +=-和0b <可知方程的两个根中,正数根的绝对值大于负数根的绝对值,B正确故选:B.8.不等式22412ax x a x ++>-对一切x ∈R 恒成立,则实数a 的取值范围是( )A .2a >B .2a <-C .22a -<<D .2a <【答案】A【解析】不等式22412ax x a x ++>-对一切x ∈R 恒成立,即()22410a x x a +++->对一切x ∈R 恒成立, 若20a +=,显然不恒成立.若20a +≠,则200a +>⎧⎨∆<⎩, 即()()20164210a a a +>⎧⎨-+-<⎩,解得2a >. 故选:A9.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5 【答案】D【解析】 因为函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则(2)=4f -, 又(4)=5f ,所以[(2)]=5f f -故选:D.10.若函数()f x 满足(32)98f x x +=+,则()f x 的解析式是( )A .()98f x x =+B .()=32f x x +C .()=34f x x --D .()=32f x x +或()=34f x x --【答案】B【解析】 设232,3t t x x -=+∴=, 所以2()983(2+8=323t f t t t -=⨯+=-+) 所以()=32f x x +.故选:B.11.已知函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,若()f x 在(),-∞+∞上是增函数,则实数a 的取值范围是( )A .1,12⎛⎤ ⎥⎝⎦B .1,2⎛⎫+∞ ⎪⎝⎭C .[1,)+∞D .[]1,2【答案】D【解析】因为函数22,(1)()(21)36,(1)x ax x f x a x a x ⎧-+≤=⎨--+>⎩,在(),-∞+∞上是增函数, 所以1210122136a a a a a ≥⎧⎪->⎨⎪-+≤--+⎩,解得12a ≤≤,故选:D12.已知函数2()23f x x ax =-+,且其对称轴为1x =,则以下关系正确的是( )A .(3)(2)(7)f f f -<<B .(3)(2)(7)f f f -=<C .(2)(3)(7)f f f <-<D .(2)(7)(3)f f f <<-【答案】C【解析】解:根据题意,函数2()25f x x ax =-+,其对称轴为1x =,其开口向上, ()f x 在[1,)+∞上单调递增,()()35f f -=,则有()()()2(3)57f f f f <-=<;故选:C .三.填空题(共6小题)13.已知集合A ={x |x <a },B ={x |1<x <2},A ∪(∁R B )=R ,则实数a 的取值范围是________.【答案】{a |a ≥2}【解析】∵B ={x |1<x <2},∴∁R B ={x |x ≤1或x ≥2}.又∵A ∪(∁R B )=R ,A ={x |x <a }.观察∁R B 与A 在数轴上表示的区间,如图所示:可得当a ≥2时,A ∪(∁R B )=R.故答案为{a |a ≥2}14.已知14x y -<+<,23x y <-<,则32x y +的取值范围是________. 【答案】323,22⎛⎫- ⎪⎝⎭【解析】设()()32+=++-x y m x y n x y ,则32m n m n +=⎧⎨-=⎩,∴5212m n ⎧=⎪⎪⎨⎪=⎪⎩即()()513222+=++-x y x y x y , 又∵14x y -<+<,23x y <-<, ∴()551022x y -<+<,()13122x y <-<, ∴()()351232222x y x y -<++-<, 即3233222x y -<+< ,∴32x y +的取值范围为323,22⎛⎫- ⎪⎝⎭. 故答案为:323,22⎛⎫- ⎪⎝⎭15.已知0x >,0y >,且28x y xy +=,则x y +的最小值是________.【答案】18【解析】解:因为0x >,0y >,且28x y xy +=, 所以281y x +=, 所以28()x y x y y x ⎛⎫+=++ ⎪⎝⎭ 2882x y y x=+++1018≥+= 当且仅当28x y y x =,即12,6x y ==取等号, 所以x y +的最小值为18,故答案为:1816.已知函数()f x =的定义域为R ,则a 的取值范围为_____ .【答案】[]0,1【解析】由于函数()f x =的定义域为R ,∴不等式2210ax ax ++≥对任意的x ∈R 恒成立,当0a =时,10≥恒成立,即0a =符合题意;当0a ≠时,则20440a a a >⎧⎨∆=-≤⎩,得001a a >⎧⎨≤≤⎩,解得01a <≤.综上,a 的取值范围是[]0,1. 故答案为:[]0,1. 17.已知函数()151xmf x =-+是奇函数,则实数m 的值为________. 【答案】2 【解析】因为()f x 是奇函数,所以(0)102mf =-=,解得2m =, 2m =时,51()15151x x xm f x -=-=++,满足()()f x f x -=-,是奇函数, 故答案为:2.18.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()1f x x x =+,则0x <时,()f x = ________. 【答案】()1x x - 【解析】当0x <时,0x -> ()()1f x x x ∴-=--()f x 为奇函数 ()()()1f x f x x x ∴=--=- 本题正确结果:()1x x - 三.解析题(共6小题)19.已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式; (2)当1x >-时,求()211f x y x -=+的最大值. 【答案】(1)()23318f x x x =--+;(2)max 3y =-.【解析】(1)因为函数()218f x ax bx =++,()0f x >的解集为()3,2-,那么方程2180ax bx ++=的两个根是3-,2,且0a <,由韦达定理有3213183326b a ab a ⎧-+=-=-⎪=-⎧⎪⇒⎨⎨=-⎩⎪-⋅=-=⎪⎩, 所以()23318f x x x =--+.(2)()()221113331331111f x x x x x y x x x x x -++---⎛⎫===-⋅=-+ ⎪++++⎝⎭()13111x x ⎡⎤=-++-⎢⎥+⎣⎦,由1x >-,则:根据均值不等式有:1121x x ++≥+,当且仅当 111x x +=+,即0x =时取等号, ∴当0x =时,max 3y =-.20.已知关于x 的不等式2260kx x k -+<; (1)若不等式的解集为()2,3,求实数k 的值;(2)若0k >,且不等式对一切23x <<都成立,求实数k 的取值范围. 【答案】(1)25k =(2)20,5⎛⎤⎥⎝⎦【解析】(1)不等式2260kx x k -+<的解集为()2,32∴和3是方程2260kx x k -+=的两根且0k >由根与系数的关系得:223k+=, 解得:25k =(2)令()226f x kx x k =-+,则原问题等价于()()2030f f ⎧≤⎪⎨≤⎪⎩即44609660k k k k -+≤⎧⎨-+≤⎩,解得:25k ≤又0k >∴实数k 的取值范围是20,5⎛⎤⎥⎝⎦21.已知函数2()23=++f x x ax ,[]4,6x ∈-. (1)当2a =-时,求()f x 的最值;(2)求实数a 的取值范围,使()y f x =在区间[]4,6-上是单调函数; 【答案】(1)最小值是1-,最大值是35.;(2)6a -或4a . 【解析】解:(1)当2a =-时,22()43(2)1f x x x x =-+=--,由于[]4,6x ∈-,()f x ∴在[]4,2-上单调递减,在[]2,6上单调递增,()f x ∴的最小值是()21f =-,又(4)35,(6)15f f -==,故()f x 的最大值是35.(2)由于函数()f x 的图像开口向上,对称轴是x a =-,所以要使()f x 在[]4,6-上是单调函数,应有4a --或6a -,即6a -或4a .22.已知函数()[)22,1,x x a f x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围. 【答案】(1)72(2)3a >- 【解析】 (1)当12a =时,()122f x x x =++,∵()f x 在区间[)1,+∞上为增函数,∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712f =.(2)在区间[)1,+∞上,()220x x af x x++=>恒成立220x x a ⇔++>恒成立. 设22y x x a =++,[)1,x ∈+∞,因为()222+a=11y x x x a =+++-在[)1,+∞上递增,∴当1x =时,min 3y a =+,于是,当且仅当min 30y a =+>时,函数()0f x >恒成立, 故3a >-.23.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数. (1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数; (3)解不等式()()10f t f t -+<. 【答案】(1)()21x f x x =-;(2)证明见解析;(3)1,12⎛⎫⎪⎝⎭. 【解析】(1)由于函数()21x bf x x +=-是定义域()1,1-上的奇函数,则()()f x f x -=-, 即()2211x bx b x x -++=-+-+,化简得0b =,因此,()21xf x x =-; (2)任取1x 、()21,1x ∈-,且12x x <,即1211x x -<<<, 则()()()()()()()()()()()()2212212112121222221211221211111111111x x x x x x x x x x f x f x x x x x x x x x ----+-=-==---+-+--,1211x x -<<<,210x x ∴->,1210x x +>,110x -<,110x +>,210x -<,210x +>.()()120f x f x ∴->,()()12f x f x ∴>,因此,函数()y f x =在区间()1,1-上是减函数;(3)由(2)可知,函数()y f x =是定义域为()1,1-的减函数,且为奇函数,由()()10f t f t -+<得()()()1f t f t f t -<-=-,所以111111t t t t ->-⎧⎪-<-<⎨⎪-<<⎩,解得112t <<. 因此,不等式()()10f t f t -+<的解集为1,12⎛⎫⎪⎝⎭.24.已知()()2227m f x m m x -=--是幂函数,且在()0,∞+上单调递增.(1)求m 的值;(2)求函数()()()211g x f x a x =--+在区间[]2,4上的最小值()h a . 【答案】(1)4 (2)当52a <时, ()()274h a g a ==-;当5922a ≤≤时,()()22121124a a g h a --⎛⎫==-+ ⎪⎝⎭,当92a >时, ()()4218h a g a ==-. 【解析】(1)()()2227m f x m m x -=--是幂函数,∴2271m m --=,解得4m =或2m =-; 又()f x 在()0,∞+上单调递增, ∴20m ->, ∴m 的值为4;(2)函数()()()()2211211g x f x a x x a x =--+=--+,当52a <时,()g x 在区间[]2,4上单调递增,最小值为()()274h a g a ==-; 当5922a ≤≤时,()g x 在区间[]2,4上先减后增,最小值为()()22121124a a g h a --⎛⎫==-+ ⎪⎝⎭, 当92a >时,()g x 在区间[]2,4上单调递减,最小值为()()4218h a g a ==-.人教版新教材高中数学高一上学期期中考试数学试卷(二)一、选择题(共12小题)1.有下列四个命题,其中真命题是( ). A .n ∀∈R ,2n n ≥B .n ∃∈R ,m ∀∈R ,m n m ⋅=C .n ∀∈R ,m ∃∈R ,2m n <D .n ∀∈R ,2n n <2. 22530x x --<的一个必要不充分条件是( )A .132x -<<B .16x -<<C .102x -<<D .132x -<<3.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->- D .若a b >,c d <,则a b c d> 4.下列不等式中,正确的是( ) A .a +4a≥4 B .a 2+b 2≥4abC ≥2a b+ D .x 2+23x 5.已知2x >-,8y >-,8082x y x -=++,则x y +的最小值为( ) A .2B .4C .8D .146.已知m ,0n >,4121m n +=+,则m n +的最小值为( ) A .72B .7C .8D .47.不等式10xx-≥的解集为( ) A .[0,1]B .(0,1]C .(﹣∞,0]∪[1,+∞)D .(﹣∞,0)∪[1,+∞)8.已知11232f x x ⎛⎫-=+ ⎪⎝⎭,()8f m =,则m 等于( )A .14- B .14C .32D .32-9.已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( ) A.(,-∞ B.()C .()(),02,-∞+∞D.(),-∞⋃+∞10.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =x 3C .y =lnxD .y =x 211.已知函数321()(1)m f x m m x -=--是幂函数,对任意的12,(0,)x x ∈+∞且12x x ≠,满足1212()()0f x f x x x ->-,若,,0a b R a b ∈+<,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断12.已知()f x 是定义在[]1,1-上的奇函数,对任意的[]12,1,1x x ∈-,均有()()()()21210x x f x f x --≥.当[]0,1x ∈时,()25x f f x ⎛⎫= ⎪⎝⎭,()()11f x f x =--,则 2902913143152016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .112-B .6-C .132-D .254-四.填空题(共6小题)13.已知条件2:340p x x --;条件22:690q x x m -+-≤,若q ¬是p ¬的充分不必要条件,则实数m 的取值范围是__________. 14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 15.已知正实数a ,b 满足36a b +=,则1412a b+++的最小值为______.16.若222x x a x x a +++--≥对x ∈R 恒成立,则实数a 的取值范围为______.17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.18.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()()1232020f f f f ++++=________.三.解析题(共6小题)19.已知函数()|31||1|f x x x =-++. (1)解不等式()2f x ;(2)记函数()()2|1|g x f x x =++的值域为M ,若t M ∈,求44t t+的最小值. 20.设:p 实数x 满足22430x ax a -+<,:q 实数x 满足31x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 21.已知函数()f x 对任意x 满足:3()(2)4f x f x x --=,二次函数()g x 满足:(2)()4g x g x x +-=且()14g =-.(1)求()f x ,()g x 的解析式;(2)若[,]x m n ∈时,恒有()()f x g x ≥成立,求n m -的最大值.22.已知函数23f x x x =-(). (1)对任意0x R f x m ∈-≥,()恒成立,求实数m 的取值范围: (2)函数()g x kx k =-,设函数()()()F x f x g x =-,若函数()y F x =有且只有两个零点,求实数k 的取值范围.23.已知函数()f x 是定义在[]1,1-上,若对于任意[],1,1x y ∈-,都有()()()f x y f x f y +=+且0x >时,有()0f x >.(1)证明:()f x 在[]1,1-上为奇函数,且为单调递增函数;(2)解不等式1(1)()02f x f x ++>;24.已知函数()4mf x x x=-,且()43f =.(1)求m 的值;(2)证明()f x 的奇偶性;(3)判断()f x 在()0,∞+上的单调性,并给予证明.【答案解析】一、选择题(共12小题)1.有下列四个命题,其中真命题是( ). A .n ∀∈R ,2n n ≥B .n ∃∈R ,m ∀∈R ,m n m ⋅=C .n ∀∈R ,m ∃∈R ,2m n <D .n ∀∈R ,2n n <【答案】B 【解析】对于选项A ,令12n =,则2111242⎛⎫=< ⎪⎝⎭,故A 错;对于选项B ,令1n =,则m ∀∈R ,1⋅=m m 显然成立,故B 正确; 对于选项C ,令1n =-,则21<-m 显然无解,故C 错; 对于选项D ,令1n =-,则2(1)1-<-显然不成立,故D 错. 故选B2. 22530x x --<的一个必要不充分条件是( )A .132x -<<B .16x -<<C .102x -<<D .132x -<<【答案】B 【解析】求解不等式22530x x --<可得132x -<<,结合所给的选项可知22530x x --<的一个必要不充分条件是16x -<<. 本题选择B 选项.3.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->- D .若a b >,c d <,则a b c d> 【答案】A 【解析】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误;对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a b a b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A4.下列不等式中,正确的是( ) A .a +4a≥4 B .a 2+b 2≥4abC ≥2a b+ D .x 2+23x 【答案】D 【解析】a <0,则a +4a≥4不成立,故A 错; a =1,b =1,a 2+b 2<4ab ,故B 错,a =4,b =16<2a b+,故C 错;由基本不等式得x 2+23x ≥=D 项正确. 故选:D.5.已知2x >-,8y >-,8082x y x -=++,则x y +的最小值为( ) A .2 B .4C .8D .14【答案】C 【解析】解:因为8082x y x -=++,所以822082x y x +--=++,即82182y x +=++, 因为2x >-,8y >-,所以20x +>,80y +>,所以()8282x y x y y x ⎛⎫+=++ ⎪++⎝⎭ ()()82281082x y y x ⎛⎫⎡⎤=+++-+ ⎪⎣⎦++⎝⎭()()822882x y y x ++=+++8==当且仅当()()822882x y y x ++=++即4x =,4y =时取等号, 故选:C6.已知m ,0n >,4121m n +=+,则m n +的最小值为( ) A .72B .7C .8D .4【答案】A 【解析】 ∵m ,0n >,4121m n+=+, ∴()()4111411911554122122n m m n m n m n m n +⎛⎫⎛⎫++=+++⨯=++≥+= ⎪ ⎪++⎝⎭⎝⎭, 当且仅当411n m m n +=+且4121m n +=+,即2m =,32n =时取等号, 故m n +的最小值72. 故选:A.7.不等式10xx-≥的解集为( ) A .[0,1]B .(0,1]C .(﹣∞,0]∪[1,+∞)D .(﹣∞,0)∪[1,+∞)【答案】B 【解析】 根据题意,1100(1)0x x x x x x--≥⇒≤⇒-≤且0x ≠, 解得01x <≤,即不等式的解集为(0,1], 故选:B8.已知11232f x x ⎛⎫-=+ ⎪⎝⎭,()8f m =,则m 等于( ) A .14-B .14C .32 D .32-【答案】B 【解析】解:设112x t -=,则22x t =+,()47f t t ∴=+,()478f m m ∴=+=,解得14m =. 故选:B .9.已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A .(,-∞ B .()C .()(),02,-∞+∞D .(),-∞⋃+∞【答案】A 【解析】由于函数()y f x =为R 上的奇函数,则()()f x f x =--. 当0x <时,0x ->,则()()()33f x f x x x =--=--=.所以,对任意的x ∈R ,()3f x x =,则函数()y f x =为R 上的增函数.由()()242f t f m mt ->+可得224mt m t +<-,即2420mt t m ++<,由题意可知,不等式2420mt t m ++<对任意的实数t 恒成立. ①当0m =时,则有40t <,在t R ∈不恒成立;②当0m ≠时,则(2,1680m m m <⎧⇒∈-∞⎨∆=-<⎩. 综上所述,实数m的取值范围是(,-∞. 故选:A .10.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x 2+2x B .y =x 3 C .y =lnx D .y =x 2【答案】D 【解析】A 选项:y =x 2+2x 是非奇非偶函数所以,所以不是偶函数,不合题意;B 选项:y =x 3是奇函数,不合题意;C 选项:y =lnx 是非奇非偶函数,所以不是偶函数,不合题意;D 选项:y =x 2既是偶函数又在区间(0,+∞)上单调递增. 故选:D11.已知函数321()(1)m f x m m x -=--是幂函数,对任意的12,(0,)x x ∈+∞且12x x ≠,满足1212()()0f x f x x x ->-,若,,0a b R a b ∈+<,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断【答案】B 【解析】由题可知:函数321()(1)m f x m m x -=--是幂函数 则21=12--⇒=m m m 或1m =- 又对任意的12,(0,)x x ∈+∞且12x x ≠,满足1212()()0f x f x x x ->-所以函数()f x 为(0,)+∞的增函数,故2m =所以()7=f x x ,又()()f x f x -=-,所以()f x 为R 单调递增的奇函数由0a b +<,则a b <-,所以()()()<-=-f a f b f b 则()()0f a f b +< 故选:B12.已知()f x 是定义在[]1,1-上的奇函数,对任意的[]12,1,1x x ∈-,均有()()()()21210x x f x f x --≥.当[]0,1x ∈时,()25x f f x ⎛⎫=⎪⎝⎭,()()11f x f x =--,则 2902913143152016201620162016f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-++-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .112-B .6-C .132-D .254-【答案】C 【解析】由f (x )=1-f (1-x ),得 f (1)=1,令12x =,则1122f =() , ∵当x ∈[0,1]时,25x f f x =()(), ∴152x f f x =()(), 即1111111111115222525410224f f f f f f ⎛⎫====== ⎪⎝⎭()(),(),()(), 1290125201610<< , ∵对任意的x 1,x 2∈[-1,1],均有(x 2-x 1)(f (x 2)-f (x 1))≥0290120164f ∴=() , 同理29131431512016201620164f f f =⋯=-==()()() . ∵f (x )是奇函数,∴2902913143152016201620162016f f f f -+-+⋯+-+-()()()() 29029131431513[]20162016201620162f f f f =--++⋯++=-()()()(),故选:C .五.填空题(共6小题)13.已知条件2:340p x x --;条件22:690q x x m -+-≤,若q ¬是p ¬的充分不必要条件,则实数m 的取值范围是__________. 【答案】4m ≥或4m ≤- 【解析】∵条件2:340p x x --;∴:14p x -≤,∴:4p x ⌝>或1x <-, ∵条件22:690q x x m -+-,,∴:3q x m ⌝>+或x 3m <-,若q ¬是p ¬的充分不必要条件,则31434m m m ⎧--⎪⇒≥⎨+⎪⎩,解得:4m ≥或4m ≤-故答案为4m ≥或4m ≤-14.已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++842a b a b +=+≥=+,当且仅当a b +=4时取等号,结合1ab =,解得22a b =-=+,或22a b =+=. 故答案为:415.已知正实数a ,b 满足36a b +=,则1412a b+++的最小值为______.【答案】1313+ 【解析】正实数a ,b ,即0a >,0b >;36a b +=,13(2)13a b ∴+++=则13(2)11313a b +++=, 那么:14(12a b+++13(2)4(1)3(2))()1()131313(2)13(1)a b a b b a +++++=++++121213+⨯=当且仅当2(1)2)a b +=+时,即取等号.∴1412a b +++的最小值为:1313+, 故答案为:1313+. 16.若222x x a x x a +++--≥对x ∈R 恒成立,则实数a 的取值范围为______.【答案】2a ≥ 【解析】因为222x x a x x a +++--≥对x ∈R 恒成立,当20x x a --≥时,222221x x a x x a x x +++--=≥∴≥或1x ≤-恒成立,因此22(1)(1)02110a a a ⎧----≤∴≥⎨--≤⎩; 当20x x a --<时,222221x x a x x a x a x a +++--=+≥∴≥-恒成立,因此2(1)(1)02112a a a a a ⎧----≥⎪∴≥⎨-<⎪⎩; 综上:2a ≥ 故答案为:2a ≥17.已知函数()2(1)mf x m m x =--是幂函数,且()f x 在(0,)+∞上单调递增,则实数m =________.【答案】2 【解析】由题意,函数()2(1)mf x m m x =--是幂函数,可得211m m --=,即220m m --=,解得2m =或1m =-,当2m =时,函数()2f x x =,此时()f x 在(0,)+∞上单调递增,符合题意; 当1m =-时,函数()1f x x -=,此时()f x 在(0,)+∞上单调递减,不符合题意,故答案为:2.18.已知()f x 是定义域为(),-∞+∞的奇函数,满足()()11f x f x -=+,若()12f =,则()()()()1232020f f f f ++++=________.【答案】0. 【解析】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,又因为()12f =、()00f =, 在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以()()()()2020(3)(2020)1234505004(1)(2)f f f f +f f f f +++=⨯+++=⨯=⎡⎤⎣⎦ 故答案为:0.三.解析题(共6小题)19.已知函数()|31||1|f x x x =-++. (1)解不等式()2f x ;(2)记函数()()2|1|g x f x x =++的值域为M ,若t M ∈,求44t t +的最小值.【答案】(1)1|02x x ⎧⎫≤≤⎨⎬⎩⎭;(2)17. 【解析】解:(1)依题意,得4,1,1()22,1,314,.3x x f x x x x x ⎧⎪-≤-⎪⎪=-+-<<⎨⎪⎪≥⎪⎩于是1()242x f x x ≤-⎧≤⇔⎨-≤⎩或113222x x ⎧-<<⎪⎨⎪-+≤⎩或1342x x ⎧≥⎪⎨⎪≤⎩,解得102x ≤≤.即不等式()2f x ≤的解集为1|02x x ⎧⎫≤≤⎨⎬⎩⎭. (2)证明:()|31|3|1||31(33)|4g x x x x x =-++≥--+=, 当且仅当(31)(33)0x x -+≤时,取等号,所以[4,)M =+∞. 则44y t t=+在[4,)+∞单调递增, 所以4114444174t t t t ⎛⎫⎛⎫+=+≥⨯+= ⎪ ⎪⎝⎭⎝⎭.所以44t t +的最小值为17. 20.设:p 实数x 满足22430x ax a -+<,:q 实数x 满足31x -<. (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若其中0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1){}|23x x <<(2)423a ≤≤【解析】对于q :由31x -<得131x -<-<,解24x <<(1)当1a =时,对于p :()()243310x x x x -+=--<,解得13x <<,由于p q∧为真,所以,p q 都为真命题,所以2413x x <<⎧⎨<<⎩解得23x <<,所以实数x 的取值范围是{}|23x x <<.(2)当0a >时,对于p :()()224303x ax a x a x a =---+<,解得3a x a <<.由于p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,所以234a a ≤⎧⎨≥⎩,解得423a ≤≤.所以实数a 的取值范围是423a ≤≤.21.已知函数()f x 对任意x 满足:3()(2)4f x f x x --=,二次函数()g x 满足:(2)()4g x g x x +-=且()14g =-.(1)求()f x ,()g x 的解析式;(2)若[,]x m n ∈时,恒有()()f x g x ≥成立,求n m -的最大值. 【答案】(1)求()1f x x =+,2()23g x x x =--;(2)n m -的最大值5. 【解析】(1)()()324f x f x x --=①, 用2x -代替上式中的x , 得()()3284f x f x x --=-②, 联立①②,可得()1f x x =+;设()2g x ax bx c =++,所以()()()()222224g x g x a x b x c ax bx c x +-=++++---=, 即4424ax a b x ++=所以44420a ab =⎧⎨+=⎩,解得1a =,2b =-,又()14g =-,得3c =-,所以2()23g x x x =--. (2)令()()f x g x ≥, 即2123x x x +--≥2340x x --≤解得14x -≤≤所以当[]1,4x ∈-时,()()f x g x ≥若要求[,]x m n ∈时,恒有()()f x g x ≥成立, 可得()415n m -≤--=,即n m -的最大值是5.22.已知函数23f x x x =-(). (1)对任意0x R f x m ∈-≥,()恒成立,求实数m 的取值范围: (2)函数()g x kx k =-,设函数()()()F x f x g x =-,若函数()y F x =有且只有两个零点,求实数k 的取值范围.【答案】(1)94⎛⎫-∞- ⎪⎝⎭,;(2)()()01-∞⋃+∞,,. 【解析】解:(1)23f x x x =-()的定义域为R , 22()3()3()(-)f x x x x x f x =---=-=, 故函数()y f x =关于y 轴对称,当0x >时,23()f x x x =-, 当32x =时,min 39()()24f x f ==-, 对任意,()0x R f x m ∈-≥恒成立,即有min ()m f x ≤,故实数m 的取值范围为94-∞-(,).(2)显然1x =不是函数()()()F x f x g x =-的零点.故函数()()()F x f x g x =-有且只有两个零点.y k ⇔=与23||()1x x h x x -=-的图象有两个交点.当0x ≥时,223||3()11x x x xh x x x --==--, 222223(23)(1)(3)23()()01(1)(1)x x x x x x x x h x x x x ------+''===>---恒成立, 故函数()y h x =在(0,1)单调递增,在(1,)+∞单调递增, 且当(0,1)x ∈时,1x →时,函数()h x →+∞, 当(1,)x ∈+∞时,1x →时,函数()h x →-∞,x →+∞时,函数()h x →+∞,当0x <时,223||3()11x x x xh x x x -+==--, 2222223(23)(1)(3)23(3)(1)()()1(1)(1)(1)x x x x x x x x x x h x x x x x ++--+---+''====---- 令()0h x '=,因为0x <,故解得1x =-,当(,1)x ∈-∞-时, ()0h x '>,故在(,1)-∞-单调递增, 当(1,0)x ∈-时, ()0h x '<,故在(1,0)-单调递减, 函数()y h x =的图像如图所示,根据图象可得,实数k 的取值范围为01-∞+∞(,)(,).23.已知函数()f x 是定义在[]1,1-上,若对于任意[],1,1x y ∈-,都有()()()f x y f x f y +=+且0x >时,有()0f x >.(1)证明:()f x 在[]1,1-上为奇函数,且为单调递增函数;(2)解不等式1(1)()02f x f x ++>;【答案】(1)证明见解析;(2)2,03x ⎛⎤∈- ⎥⎝⎦. 【解析】(1)证明:令0x y ==有(0)0f =,令y x =-,()()()f x x f x f x -=+-,即0(0)()()f f x f x ==+-, 所以()f x 是奇函数. 又令1211x x ,则()()21f x f x -=()()()2121f x f x f x x +-=-,又当0x >时,有()0f x >,210x x ->, ∴()210f x x ->,即()()210f x f x ->, ∴()f x 在定义域[]1,1-上为单调递增函数;(2)∵()f x 在[]1,1-上为单调递增的奇函数,有1(1)()02f x f x ++>,则1(1)()2f x f x +>-,∴1111112112x x x x ⎧⎪-≤+≤⎪⎪-≤-≤⎨⎪⎪+>-⎪⎩,即202223x x x ⎧⎪-≤≤⎪-≤≤⎨⎪⎪>-⎩,2,03x ⎛⎤∈- ⎥⎝⎦,解得不等式的解集为2,03x ⎛⎤∈- ⎥⎝⎦.24.已知函数()4mf x x x=-,且()43f =. (1)求m 的值;(2)证明()f x 的奇偶性;(3)判断()f x 在()0,∞+上的单调性,并给予证明.【答案】(1)1m =;(2)奇函数,证明见解析;(3)单调增函数,证明见解析. 【解析】(1)()4444134m m f =-=-=,解得1m =; (2)因为()4f x x x=-,定义域为{}0x x ≠,关于原点对称,又()()44f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,因此,函数()y f x =为奇函数; (3)设120x x >>,则()()()12121212214444f x f x x x x x x x x x ⎛⎫⎛⎫-=---=-+- ⎪ ⎪⎝⎭⎝⎭()()()1212121212441x x x x x x x x x x -⎛⎫=-+=-+ ⎪⎝⎭,因为120x x >>,所以120x x ->,所以()()12f x f x >, 因此,函数()y f x =在()0,∞+上为单调增函数.人教版新教材高中数学高一上学期期中考试数学试卷(三)一、选择题(共12小题) 1.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件2.若a >b ,则下列各式中正确的是( ) A .ac >bcB .ac 2>bc 2C .a +c 2>b +c 2D .11a b<3.设m =,n =p =,则m ,n ,p 的大小顺序为( ) A .m p n >>B .p n m >>C .n m p >>D .m n p >>4.已知0,0x y >>,且142x y +=,242mx y m +>+恒成立,则实数m 的取值围是( )A .(8,0)-B .C .(9,1)-D .(8,1)-5.若函数()()22422x x f x x x -+=>-在x a =处取最小值,则a =( )A .1B .2C .4D .66.已知关于x 的不等式()()110ax x -+<的解集是1(,1),2⎛⎫-∞-⋃-+∞ ⎪⎝⎭,则a 等于( )A .2B .2-C .12- D .127.已知命题“∃x 0∈R ,20014(2)04x a x +-+≤”是假命题,则实数a 的取值范围为( ) A .(-∞,0) B .[0,4] C .[4,+∞) D .(0,4)8.将函数()212x f x x x -=-的图象向左平移1个单位长度,得到函数()g x 的图象,则函数()g x 的图象大致是( )A .B .C .D .9.如果2()(2)1f x ax a x =--+在区间1,2⎛⎤-∞ ⎥⎝⎦上为减函数,则a 的取值( )A .(0,1]B .[0,1)C .[0,1]D .(0,1)10.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( )A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣ C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦11.已知321()(1)1x f x x x +=+--,若(2018)f a =,则(2016)f -=( ) A .a -B .2a -C .4a -D .1a -12.已知,a b ∈R ,不等式22122x ax bx x ++<++在x ∈R 上恒成立,则( ) A .0a <B .0b <C .02ab <<D .04ab <<二、填空题(共6小题)13.不等式220mx mx --<对任意x ∈R 恒成立的充要条件是m ∈__________. 14.已知11x y -≤+≤,12x y ≤-≤,则3x y -的取值范围是______ 15.已知0a >,0b >且1a b +=,则311a b++的最小值为____________. 16.已知二次不等式220ax x b ++>的解集为1x x a ⎧⎫≠-⎨⎬⎩⎭,且a b >,则22a b a b +-的最小值为__________. 17.当2x ≠时,则42y x x =+-的值域是____________ 18.若不等式组22202(52)50x x x k x k ⎧-->⎨+++<⎩的整数解只有-2,则k 的取值范围是________.三.解析题(共6小题)19.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>. (1)求()R C B A ⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围. 20.已知0a >,0b >. (1)若1a b +=,求14a b+的最小值;(2≥21.已知函数2()2f x ax bx a =+-+.(1)若关于x 的不等式()0f x >的解集是(1,3)-,求实数,a b 的值; (2)若2,0b a =>,解关于x 的不等式()0f x >. 22.已知函数2()1(0)f x x ax a =++>.(1)若()f x 的值域为[0,)+∞,求关于x 的方程()4f x =的解;(2)当2a =时,函数22()[()]2()1g x f x mf x m =-+-在[2,1]-上有三个零点,求m 的取值范围. 23.求函数解析式(1)已知()f x 是一次函数,且满足3(1)2(1)217.f x f x x +--=+求()f x .(2)已知()f x 满足12()()3f x f x x+=,求()f x .24.定义在非零实数集上的函数()f x 对任意非零实数,x y 满足:()()()f xy f x f y =+,且当01x <<时()0f x <.(1)求(1)f -及(1)f 的值; (2)求证:()f x 是偶函数;(3)解不等式:21(2)02f f x ⎛⎫+-≤ ⎪⎝⎭.【答案解析】一、选择题(共12小题) 1.已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件。
山东省高一上学期期中考试数学试卷-附带答案
山东省高一上学期期中考试数学试卷-附带答案学校:___________班级:___________姓名:___________考号:___________本试卷共4页,22题,全卷满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x <0},B={x|﹣x 2-x +2>0},则C R A ∩B=( )A.{x|0<x <1}B.{x|0≤x <1}C.{x|﹣2<x <0}D.{x|1<x <2} 2.已知函数f(x)=(m 2-m -1)x m 为幂函数,则m 为( ) A.﹣1或2 B.2 C.﹣1 D.1 3.若函数f(x)的定义域为[-1,2],则函数y=2√x+1的定义域为( )A.(﹣√3,2]B.[0,√3]C.(﹣1,2]D.(﹣1,√3] 4.已知a ,b ,c 均为实数,则( )A.若a>b ,则ac 2>bc 2B.若a<b<0.则b a >abC.若a>6且1a >1b ,则b<0<a D.若a<b ,则a 2<ab<b 2 5.已知命题p:∀x>0,√3-x >0.则命题p 的否定是( )A.∀x>0,√3-x ≤0B.∃x>0,3-x ≤0C.∃x>0,√3-x ≤0D.∀x ≤0,√3-x ≤0 6.已知函数f(x)=x+√x +1.其定义城为M ,值域为N .则"x ∈M"是"x ∈N"的条件( ). A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要7.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,f(x)=12(lx -a 2l+|x -2a 2l -3a 2).若∀x ∈R ,f(x -a)<f(x),则实数a 的取值范围为( )A.[﹣16,16] B.[0,16] C.[﹣13,13] D.(0,16)8.不等式x 2+2axy+4y 2≥0对于∀x ∈[2,3],∀y ∈[2,9]恒成立,则a 的取值范围是( ) A.[-2,+∞) B.[-5,+∞) C.[﹣133,+∞) D.[-1,+∞)二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数f(x)={x 2-2x +1,x ≤1﹣x +1,x >1,下列说法正确的是( )A.函数f(x)是减函数B.∀a ∈R ,f(a 2)>f(a -1)C.若f(a -4)>f(3a),则a 的取值范围是(﹣2,+∞)D.在区间[1,2]上的最大值为0 10.已知a ,b 是两个正实数,满足a+b=1,则( )A.√a +√b 的最小值为1B.√a +√b 的最大值为√2C.a 2+b 2的最小值为12 D.a 2+b 2的最大值为1 11.已知函数f(x)=ax 2-3x+4,若任意x 1,x 2∈[﹣1,+∞)且x 1≠x 2:都有f (x 1)-f (x 2)x 1-x 2<﹣1,则实数a 的值可以是( )A.﹣1B.﹣12 C.0 D.1212.已知函数f(x)的定义域为R ,f(x -1)为奇函数,f(3x -2)为偶函数,则( ) A.f(13)=0 B.f(1)=0 C.f(4)=0 D.f(3)=0 三.填空题:本题共4小题,每小题5分,共20分. 13.已知函数f (x )={2x +1x ,x <0x 2-3x +1,x ≥0,则f (f (2))= .14.写出3x -1>0的一个必要不充分条件是 . 15.关于x 的不等式11-x≥2x 的解集为 .16.设函数f(x)的定义域为R ,满足f(x+1)=3f(x),且当x ∈(0,1]时,f(x)=x(x -1).若对任意x∈(-∞,m],都有f(x)≥﹣2,则m 的取值范围是 .四.解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。
2023-2024学年山东省泰安市英雄山中学高一(上)期中数学试卷【答案版】
2023-2024学年山东省泰安市英雄山中学高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求。
1.命题“∀x <0,x 3﹣x 2+1≤0”的否定是( )A .∃x <0,x 3﹣x 2+1≥0B .∃x <0,x 3﹣x 2+1>0C .∃x ≥0,x 3﹣x 2+1≤0D .∀x ≥0,x 3﹣x 2+1>02.已知集合A ={x |﹣1≤x ≤1},B ={x |3x <1},则A ∩B =( )A .[﹣1,0)B .[﹣1,0]C .(﹣1,1)D .[0,1)3.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.下列函数中,是奇函数,又在定义域内为减函数的是( )A .y =(12)xB .y =1xC .y =﹣x 3D .y =x 25.函数f (x )=2x +2−x x 的图象大致为( )A .B .C .D .6.若奇函数f (x )在[1,3]上是增函数,且有最小值7,则它在[﹣3,﹣1]上( )A .是减函数,有最小值﹣7B .是增函数,有最小值﹣7C .是减函数,有最大值﹣7D .是增函数,有最大值﹣77.已知幂函数f(x)=mx m−12满足条件f (3﹣a )>f (a ),则实数a 的取值范围是( )A .[0,1)B .[0,32)C .[0,32]D .[0,3]8.若函数f(x)={(5a −4)x +7a −3,(x <1)(2a −1)x ,(x ≥1)在(﹣∞,+∞)上单调递减,则实数a 的取值范围为()A .[35,45)B .[35,1]C .(35,45)D .(12,45)二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
山东省泰安英雄山中学2009届高三年级第一次复习检测数学理科卷
山东省泰安英雄山中学2009届高三年级第一次复习检测数学理科卷第Ⅰ卷一、选择题(本大题共12小题,每题,5分,共60分) 1.设集合""""},30|{},01|{B m A m x x B x xx A ∈∈<<=<-=是那么的 ( )A .充分不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.已知函数)1(+=x f y 的图象过点(3,2),则函数)(x f 的图象关于x 轴的对称图形一定过点( )A .(2,-2)B .(2,2)C .(-4,2)D .(4,-2)3.如果奇函数)(x f 在区间)0](,[>>a b b a 上是增函数,且最小值为m ,那么)(x f 在区间],[a b --上是( )A .增函数且最小值为mB .增函数且最大值为-mC .减函数且最小值为mD .减函数且最大值为-m4.与函数)12lg(1.0-=x y 的图象相同的函数解析式是( )A .21(12>-=x x y B .121-=x yC .21(121>-=x x y D .|121|-=x y 5.对一切实数x ,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是 ( )A .]2,(--∞B .[-2,2]C .),2[+∞-D .),0[+∞6.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x g y =的图象关于直线x y =对称,则)()(x g x g -+的值为( )A .2B .0C .1D .不确定7.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为y=2x 的图像,则)(x f y =的函数表达式为( )A .22+=x y B .22+-=x yC .22--=x yD .)2(log 2+-=x y8.当,10时<<<b a 下列不等式中正确的是 ( )A .b ba a )1()1(1->- B .b a b a )1()1(+>-C .bba a 1)1()1(->-D .b a b a )1()1(->-9.设奇函数),0()(+∞在x f 上为增函数,且的则不等式0)()(,0)1(<--=xx f x f f 解集为( )A .),1()0,1(+∞-B .)1,0()1,( --∞C .),1()1,(+∞--∞D .)1,0()0,1( -10.当]2,0[∈x 时,函数23)1(4)(2=--+=x x a ax x f 在时取得最大值,则a 的取值范围是( )A .],21[+∞-B .),0[+∞C .),1[+∞D .),32[+∞11.已知),(1,log 1,4)13()(+∞-∞⎩⎨⎧><+-=是x x x a x a x f a 上是减函数,那么a 的取值范围是( )A .(0,1)B .31,0(C .)1,71[D .)31,71[12.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。
(整理版)第一学期期中试卷高一数学
~ 度第一学期期中试卷高 一 数 学第一卷 客观卷〔共36分〕一、选择题〔每题3分,共36分,每题的四个选项中,只有一项为哪项符合题目要求的〕 1. 集合A ={x | x ( x -1) = 0},那么A .0∈AB . 1∉AC . -1∈AD . 0∉A 2. 集合M={(x,y)|x+y=2}, N={(x,y)|x-y=4},那么M ∩N 为A .x=3,y=-1B .(3,-1)C . {3 ,-1}D .{(3,-1)} 3. 以下函数中,与函数y = x ( x ≥0 ) 是同一函数的一个为A . y. y2C . yD . y =2x x4.函数21,0(),0x x f x x x +≥⎧=⎨<⎩,那么f 〔-2〕的值为A .1B .2C .4D .55. 函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么a 的取值范围是A .a ≥3B .a ≤-3C .a ≤5D .a ≥-36.函数f 〔x 〕=|x |和g 〔x 〕=x 〔2-x 〕的递增区间依次是A .〔-∞,0],〔-∞,1]B .〔-∞,0],[1,+∞)C .[0,+∞),〔-∞,1]D .[0,+∞〕,[1,+∞〕7.设集合A ={x|-5≤x <1=,B ={x|x ≤2},那么A B = A .{x|-5≤x <1= B .{x|-5≤x ≤2} C .{x|x <1= D .{x|x ≤2}8.函数xx f 1)(=,那么)1(-x f 的图像大致是x〔A 〕 〔B 〕 〔C 〕 〔D 〕 9.图中的曲线是log a y x =(0,1)a a >≠的图象,a 的值为2,43,310,15,那么相应曲线1234,,,C C C C 的a 依次为 A .2,43,15,310 B .2,43,310,15C .15,310,43,2D .43,2,310,1510.函数y=log 2x-123-x 的定义域是A . 〔32,1〕⋃〔1,+∞〕B . 〔21,1〕⋃〔1,+∞〕 C . 〔32,+∞〕 D . 〔21,+∞〕11.函数lg(1)lg(1)y x x =-++的图象关于A .直线0x =B .直线0y =对称C .点(0,0)对称D .点(1,1)对称12. 假设4log 3log 32⋅=P ,5lg 2lg +=Q ,0e M =,1ln =N ,那么正确的选项是0 x C 1C 2 C 4C 3 1yA Q P =B . M Q =C . N M =D .P N =第II 卷 主观卷〔共64分〕二、填空题:(本大题共4小题,每题4分,总分值16分;把答案填在横线上)13.化简1416()81-的值为 .14.函数(1)x y a a =>的定义域是[1,1]-,且最大值与最小值的差为1,那么a = .15.集合{1,2},{,},a A B a b ==假设1{}2A B =,那么A B = .16.设236ab==,那么11a b+的值为 . 三、解答题:(本大题共5小题,共48分.). 17.〔8分〕非空集合2{|0}Ax x ax b ,2{|8150}Bx x x ,且A B ⊆.求:〔1〕写出集合B 所有的子集;〔2〕求ab 的值.18.〔8分〕求以下函数的定义域:〔1〕y 〔2〕xx y +++=31)5(log 219.〔8分〕函数1()f x xx. 〔1〕求f (x ) 的定义域; 〔2〕用单调性定义证明函数1()f x xx在(0,)+∞上单调递增.20.〔8分〕函数)(x f 是定义在R 上的奇函数,且当0>x 时,x x x f -=2)(.〔1〕计算)0(f ,)1(-f ; 〔2〕当0<x 时,求)(x f 的解析式.21.〔8分〕函数2()log (41)xf x ax .假设函数()f x 是R 上的偶函数,求:实数a 的值;22.〔8分〕 函数()log (1)log (3),(01).a a f x x x a =-++<<〔1〕求函数()f x 的定义域;〔2〕假设函数()f x 的最小值为2-,求实数a 的值.。
(word版)高一数学期中考试测试题(必修一含答案)
高一年级上学期期中考试数学试题一、选择题〔本大题共12小题,每题5分,共60分。
给出的四个选项中,只有一项为哪一项符合题目要求的〕1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},那么A∩C UBA. 4,5 B. 2,3 C.1 D.22.以下表示错误的选项是〔A〕0 〔B〕1,2〔C〕(x,y)2xy103,4〔D〕假设AB,那么ABA 3xy53.以下四组函数,表示同一函数的是A.f〔x〕=x2,g〔x〕=x B.f〔x〕=x,g〔x〕=x2xC.f(x)lnx2,g(x)2lnx D.f(x)log a a x(a),g(x)3x34.设f(x)2x1,x2,{log3(x21),x 2.那么f(f(2))的值为A.0B.1C.2D.35.当0<a<1时,在同一坐标系中,函数ya x与y log a x的图象是6.令a6,b6,clog6,那么三个数a、b、c的大小顺序是A.b<c<a B.b<a<c C.c<a<b D.c<b<a7.函数f(x)lnx2的零点所在的大致区间是xA.〔1,2〕B.〔2,3〕C.8.假设xlog231,那么3x9x的值为A.6B.3C.1,1和〔3,4〕 D . e,e51D .2 29.假设函数y=f x的定义域为1,2,那么y f(x1)的定义域为〔〕A.2,3B.0,1C.1,0D.3,2 10.f(x)是偶函数,当x<0时,f(x)x(x1),那么当x>0时,f(x)A.x(x1)B.x(x1)C x(x1)D.x(x1)11.设f(x)(x R)为偶函数,且f(x)在0,上是增函数,那么f(2)、f()、f(3)的大小顺序是A.f()f(3)f(2)B.C.f()f f(2)D.f()f(2)f(3) f()f(2)f(3)12函数f(x)的图象是连续不断的,x与f(x)的对应关系见下表,那么函数f(x)在区间[1,6]上的零点至少有X123456 Y(A)2(B)3(C)4(D)5第二卷(非选择题共90分)二、填空题(本大题共4小题,每题4分,共16分。
((新人教版))必修一高一数学第一学期期中考试试卷(K12教育文档)
((新人教版))必修一高一数学第一学期期中考试试卷(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(((新人教版))必修一高一数学第一学期期中考试试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为((新人教版))必修一高一数学第一学期期中考试试卷(word版可编辑修改)的全部内容。
必修一高一数学第一学期期中考试试卷 试卷满分:150分 考试时间:120分钟第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.已知集合{1,2,3,4}A =,那么A 的真子集的个数是( )A 、15B 、16C 、3D 、42.若()f x =(3)f = ( )A 、10B 、4C 、D 、2 3。
不等式(x +1)(2-x )>0的解集为 ( )A 、{|12}x x x <->或B 、{|21}x x x <->或C 、{|21}x x -<<D 、{|12}x x -<<4.下列各组函数中,表示同一函数的是 ( )A 、0,1x y y == B 、11,12+-=-=x x y x yC 、33,x y x y ==D 、()2,x y x y ==5.函数)3(-=x f y 的定义域为[4,7],则)(2x f y =的定义域为A 、(1,4)B [1,2]C 、)2,1()1,2(⋃--D 、 ]2,1[]1,2[⋃-- 6.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个7.若函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,则实数a 的取值范围是A、3a≤-B、3a≥-C、5a≤D、3a≥8.定义域为R的函数y=f(x)的值域为[a,b],则函数y=f(x+a)的值域为( ) A.[2a,a+b] B.[a,b]C.[0,b-a]D.[-a,a+b]9.下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
人教版高一数学上学期期中检测试卷(含答案)
人教版高一数学上学期期中检测试卷(含答案)一、选择题1. 已知集合A ={1,2},B ={x|−1<x <2},则A ∩B =( )A.{0}B.{1}C.{1,2}D.{0,1,2}2. 命题“∀x ∈N ,x 2+x >0”的否定是( )A.∀x ∉N ,x 2+x <0B.∀x ∈N ,x 2+x ≤0C.∃x ∈N ,x 2+x <0D.∃x ∈N ,x 2+x ≤03. 设f (x )={x +3, x ≥0,1, x <0,则f(f (−1))=( ) A.4 B.3 C.2 D.14. 若a >b ,则下列不等式成立的是( )A.a 2>b 2B.a 3>b 3C.2a−b <1D.1a <1b5. 已知p:|x|>1,q:x >1,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6. 函数y =1+x|x|的图象大致是( ) A. B. C. D.7. 函数f (x )是定义在R 上的奇函数, x >0时f (x )=x 2−3x ,则不等式f (x )<0的解集是( )A.(0,3)B.(3,+∞)C.(−∞,−3)∪(0,3)D.(−3,0)∪(3,+∞)8. 已知m , n ∈R ,且有2m +2n =2m+n ,则m +n +1+2m+n 的最小值是( )A.6B.7C.8D.9二、多选题9.已知集合A ={1, 16, 4x},B ={1, x 2},若B ⊆A ,则x 可能取值有( )A.0B.−4C.1D.410.以下说法正确的有( )A.实数x>y>0是1x <1y成立的充要条件B.不等式ab≤(a+b2)2对a,b∈R恒成立C.命题“∃x∈R,x2+x+1≥0”的否定是“∀x∈R,x2+x+1<0"D.若1x +1y=1,则x+y的最小值是411.已知a,b,c为实数,且a>b>0,则下列不等式正确的是()A.1a <1bB.ac2>bc2C.ba<abD.a2>ab>b212.已知f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称,当0≤x≤1时,f(x)=x,关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g(x)在(−1,0)上单调递增C.方程g(x)=0在[0,4]上恰有三个实根D.g(x)的最大值为2三、填空题13.函数y=a x−2020+1(a>0且a≠1)的图象必经过定点________.14.若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.15.函数f(x)的定义域为(0, 3),则函数y=f(x+1)x−1的定义域是________.16.若x,y是正数,且x+2y=1,则xy的最大值为________,1x +xy的最小值为________.四、解答题17.已知函数f(x)=√4−x+√x+3的定义域为集合A.(1)求集合A;(2)若集合B={x∈N|0<x<3},求A∩B并写出它的所有子集.18.已知命题p:∀x∈[1, 2],x2−a≥0,命题q:∃x∈R,x2+2ax+2−a=0.若命题p与q都是真命题,求实数a的取值范围.19.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.(1)现已画出函数f(x)在y轴左侧的图像,如图所示,请补出完整函数f(x)的图像,并根据图像写出函数f(x)的增区间;(2)写出函数f(x)的解析式和值域.20.已知函数f(x)=x+m,且此函数图象过点(1, 5).x(1)求f(x)的解析式;(2)讨论函数f(x)在[2, +∞)上的单调性?并证明你的结论.(3)求函数f(x)在区间[2, 4]上的最小值和最大值.21.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D 点在AN上,且对角线MN过C点,已知AB=3米,AD=4米.(1)要使矩形AMPN的面积大于50平方米,则DN的长应在什么范围?(2)当AN的长为多少米时,矩形花坛AMPN的面积最小?并求出最小值.22.定义在非零实数集上的函数f(x)对任意非零实数x,y满足:f(xy)=f(x)+f(y),且当0<x<1时,f(x)<0.(1)求f(−1)及f(1)的值;(2)求证:f(x)是偶函数;)≤0.(3)解不等式:f(2)+f(x2−12参考答案:一、1-4 BDAB 5-8 BBCB二、9.A,B10.B,C11.A,C,D12.A,D三、13.(2020,2)14.m≤−1615.{x|−1<x<2且x≠1}16.18,1+2√2四、17.解:(1)∵ 函数f(x)=√4−x+√x+3,∵ 函数的定义域为:{4−x≥0,x+3>0,解得−3<x≤4,∵ 集合A={x|−3<x≤4}.(2)∵ 集合B={x∈N|0<x<3}={1, 2},集合A={x|−3<x≤4},∵ A∩B={1, 2},∵ A∩B的所有子集为:⌀,{1},{2},{1, 2}.18.解:根据题意,命题p:∀x∈[1, 2],x2−a≥0,若命题p为真,必有a≤(x2)min=1,即a≤1;对于命题q,∃x∈R,x2+2ax+2−a=0,若命题q为真,即方程x2+2ax+2−a=0有解,则有Δ=4a2−4(2−a)≥0,解可得:a≥1或a≤−2.若命题p与q都是真命题,即{a≤1,a≥1或a≤−2,则有a≤−2或a=1.故a的取值范围为{a|a≤−2或a=1}.19.解:(1)函数图像如图所示:f(x)的递增区间是(−1, 0),(1, +∞).(2)∵x ≤0时,f(x)=x 2+2x ,令x >0, 则−x <0,故f(−x)=x 2−2x ,∵ 函数f(x)为偶函数,∵ f(x)=f(−x),∴当x >0时,f(x)=x 2−2x .∵ f(x)={x 2+2x ,x ≤0,x 2−2x ,x >0,值域为:{y|y ≥−1}.20.解:(1)∵ 函数图象过点(1, 5).得1+m =5,解得m =4,∵ f(x)=x +4x .(2)函数f(x)在[2, +∞)上的单调递增,证明如下:∀x 1,x 2∈[2,+∞),且x 1<x 2,f (x 1)−f (x 2)=x 1+4x 1−x 2−4x 2 =(x 1−x 2)+4(x 2−x 1)x 1x 2=(x 1−x 2)(x 1x 2−4)x 1x 2,∵ x 1,x 2∈[2,+∞)且x 1<x 2,∵ x 1−x 2<0,x 1x 2>4, x 1x 2>0,∵ f (x 1)−f (x 2)<0,即f (x 1)<f (x 2),∵ f (x )在[2,+∞)上单调递增.(3)由f(x)在[2, +∞)上单调递增,可知函数f(x)在区间[2, 4]上也单调递增,当x =2时,函数取得最小值4,当x =4时,函数取得最大值5.21.解:(1) 设DN 的长为x (x >0)米,则AN =x +4米. ∵ DN AN =DC AM , ∵ AM =3(x+4)x , ∵ S AMPN =AN ⋅AM =3(x+4)2x ,由矩形AMPN 的面积大于50得: 3(x+4)2x >50,又x >0,得: 3x 2−26x +48>0,解得: 0<x <83或x >6,即DN 长的取值范围为: (0,83)∪(6,+∞). (2)由(1)得,矩形花坛AMPN 的面积为:y =3(x +4)2x =3x 2+24x +48x =3x +48x+24 ≥2√3x ⋅48x +24=48,当且仅当3x =48x ,即x =4时,矩形花坛AMPN 的面积取得最小值48,故DN 的长为4米时,矩形AMPN 的面积最小,最小值为48平方米.22.解:(1)在f(xy)=f(x)+f(y)中,令x =y =1,则f(1)=f(1)+f(1),∵ f(1)=0,再令x =y =−1,则f(1)=f(−1)+f(−1),∵ f(−1)=0.(2)在f(xy)=f(x)+f(y)中,令y =−1,则f(−x)=f(x)+f(−1)=f(x),∵ f(−x)=f(x),∵ f(x)为偶函数.(3)任取x 1,x 2∈(0, +∞),且x 1<x 2,∵ 0<x 1x 2<1,∵ f(x1x 2)<0, ∵ f(x 1)=f(x 2⋅x 1x 2)=f(x 2)+f(x1x 2)<f(x 2),∵ f(x)在(0, +∞)是增函数, ∵ f(x)在(−∞, 0)是减函数, ∵ f(2)+f(x 2−12)=f(2x 2−1)≤0=f(1)=f(−1),∵ {2x 2−1<0,2x 2−1≥−1,或{2x 2−1>0,2x 2−1≤1,解得−√22<x <√22或−1≤x <−√22或√22<x ≤1, ∵ 不等式的解集为[−1, −√22)∪(−√22, √22)∪(√22, 1].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省英雄山中学09-10学年高一数学上期中考试试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.函数f (x )=x 20081-的定义域是 ( )A .-∞,0]B .[0,+∞C .(-∞,0)D .(-∞,+∞)2.若函数f(x) = + 2x+ log 2x 的值域是 {3,223-1, 5 +2, 20},则其定义域是( )A .{0,1,2,4}B .{21,1,2,4} C .{-21,1,2,4} D .{41,1,2,4}3.函数y=log 2008 (2x 2-3x+1)的递减区间为 ( )A .(1,+)B .(-,43)C .(21,+)D .(-,21) 4.若( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.下列函数中,同时满足:是奇函数,定义域和值域相同的函数是 ( )A .y=220082008xx -+B .y=lgxx+-20092009C .y=-x31D .y=||x6.f (x)=㏑x +2x -5的零点一定位于以下的区间 ( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)7.幂函数1-=x y 及直线x y =,1=y ,1=x 将平面直角坐标系的第一象限分成八个“卦限”:①,②, ③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数21x y =的图象经过的“卦限”是 ( )A .④,⑦B .④,⑧C .③,⑧D .①,⑤8.下表是函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型 ( )t/月A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型9.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述: ①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过230m ; ③浮萍从24m 蔓延到212m 需要经过1.5个月; ④浮萍每个月增加的面积都相等。
其中正确的是 ( ) A .①②③ B .①②③④ C .②③④ D .①②10.若20092009ln ,20082008ln ,20072007ln ===c b a ,则( )A .a<b<cB .c<b<aC .c<a<bD .b<a<c 11.设函数20071)2009)(2008()(+--=x x x f ,有 ()A .在定义域内无零点B .存在两个零点,且分别在)2008,(-∞、),2009(+∞内 C .存在两个零点,且分别在)2007,(--∞、),2007(+∞内 D .存在两个零点,都在)2009,2008(内 12.在计算机的算法语言中有一种函数叫做取整函数(也称高斯函数),它表示的整数部分,即[]是不超过的最大整数.例如:。
设函数,则函数的值域为( )A .B .C .D .第Ⅱ卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。
13.函数)(x f 是定义在)2 ,2(-上的奇函数,当)2 ,0(∈x 时,12)(-=x x f ,则)31(log 2f 的值为 .14.若函数()f x 唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论:(1)函数()f x 在区间(0,1)内有零点; (2)函数()f x 在区间(0,1)或(1,2)内有零点; (3)函数()f x 在区间[2,16)内无零点;(4)函数()f x 在区间(0,16)上单调递增或递减.其中正确的有 (写出所有正确结论的序号). 15.若对任意的]2,1(∈x ,2)1(log ->x x a ,则a . 16.给出下列四种说法:①函数(且)与函数(且)的定义域相同;②函数与的值域相同;③函数与都是奇函数; ④函数与在区间[0,+]上都是增函数.其中正确的序号是_________ ____(把你认为正确叙述的序号都填上).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分).17.(12分)已知函数1()21xf x a =-+. (1)求证:不论a 为何实数()f x 总是为增函数; (2)确定a 的值,使()f x 为奇函数; (3)当()f x 为奇函数时,求()f x 的值域.18.(12分)对于)32(log )(221+-=ax x x f ,(1)函数的“定义域为R”和“值域为R”是否是一回事?分别求出实数a 的取值范围; (2)结合“实数a 的取何值时)(x f 在),1[+∞-上有意义”与“实数a 的取何值时函数的定义域为),3()1,(+∞⋃-∞”说明求“有意义”问题与求“定义域”问题的区别.19.(12分)证明方程]2,1[236在区间xx =-内有唯一一个实数解,并求出这个实数解(精确到0.1).20.(12分)某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件,为了估计以后每月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量,y与月份x 的关系,模拟函数可以选用二次函数或函数c b a y x +⋅=(a 、b 、c 为常数)已知四月份该产品的产量为1.37万件,请问用以上哪个函数作模拟函数较好?说明理由.21.(12分)已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求(2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.22.(14分)设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.(1)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间;(2)对给定的r(0<r<0.5=,证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(I)所确定的含峰区间的长度不大于0.5+r;(3)选取x1,x2∈(0,1),x1<x2,由(I)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)参考答案一、选择题1.A ;提示:x 20081-成立只需要保证012008≤⇒<x x;2.B ;提示:依次将选项答案代入验证即可; 3.D ;提示:复合函数单调性,注意定义域;4.C ;提示:10lg lg lg =⇒==+ab ab b a ,所以xx xa ab -==)1(;5.C ;提示:由幂函数10<<α时的性质可得; 6.B ;提示:由零点存在性定理得来,0)()(<b f a f ; 7.D ;提示:结合幂函数的五种形式,在代入21和2验证即可; 8.A ;提示:随着自变量每增加1函数值增加2,一定为一次函数; 9.D ;提示:结合图像说明,理解指数爆炸的意义;10.B ;提示:构造函数x y ln =,通过观察图像上的点(2007ln ,2007)、(2008ln ,2008)、(2008ln ,2008)与原点连线所构造的直角三角形的边长比值的变化求得; 11.D ;提示:将二次函数按平移来处理观察根的变化情况;12.B ;提示:该题具有迷惑性,值域与函数无关;由于)(x f 0)(=-+x f ,分)(x f 为0和不为0两种情况讨论;二、填空题13.-2;提示:2)12()3(log )31(log 3log 222-=--=-=f f ;14.(3);提示:零点存在性定理能确定零点的区间,一般不可能求出具体的位置; 15.21<<a ;提示:我们首先取2=x 代入关系式进行验证,必有12log >a 成立,即a a a log 2log >。
假设10<<a ,则当]2,1(∈x 时,0log <x a ,关系式2)1(log ->x x a 不成立。
所以1>a 。
由a a a log 2log >,且1>a ,有21<<a ;16.①③;提示:函数的值域为R ,的值域(0,∞+);函数在),1[+∞上单增; 三、解答题 17.解:(1)()f x 的定义域为R, 设12x x <,则121211()()2121x x f x f x a a -=--+++=121222(12)(12)x x x x -++, 12x x <, 1212220,(12)(12)0x x x x ∴-<++>,12()()0,f x f x ∴-<即12()()f x f x <,所以不论a 为何实数()f x 总为增函数……………………4分 (2)()f x 为奇函数, ()()f x f x ∴-=-,即112121x xa a --=-+++, 解得: 1.2a =11().221x f x ∴=-+…………………………8分 (3)由(2)知11()221x f x =-+, 211x+>,11110,()2122x f x ∴-<-<∴-<<+所以()f x 的值域为11(,).22-………………………………12分18.解:记223)()(a a x x g -+-==μ,则μ21log )(=x f ;(1)不一样;…………………………1分定义域为R ⇔0)(>x g 恒成立。
得:0)3(42<-=∆a ,解得实数a 的取值范围为)3,3(-。
……………………4分 值域为R :μ21log 值域为R μ⇔至少取遍所有的正实数,则0)3(42≥-=∆a ,解得实数a 的取值范围为),3[]3,(+∞⋃--∞。
…………6分 (2)实数a 的取何值时)(x f 在),1[+∞-上有意义: 命题等价于0)(>=x g μ对于任意),1[+∞-∈x 恒成立,则⎩⎨⎧>--<0)1(1g a 或⎩⎨⎧>--≥0312a a ,解得实数a 得取值范围为)3,2(-。